2020年高中物理竞赛辅导课件★★(F经典物理的困难)
合集下载
2020年高中物理竞赛辅导课件:波动和光学(波动)05总结和真题练习(共15张PPT)
Y(m)
P
o
-0.04
0.20
u=0.08m/s X(m)
解:⑴由波形图:A=0.04 m, =0.40 m =2f=2u/=0.4 (s-1)
x=0处旋矢图:
O
X
A
0= -/2
x=0处的振动方程:
y 0.04 cos(0.4t 0.5 ) (SI )
波动方程:
y 0.04 cos(0.4t 2 x 0.5 )
若=2k (k=0, 1, 2, ) 则A=A1 +A2 若=(2k+1) (k=0, 1, 2, ) 则A=A1 -A2
⒍ 驻波 ⑴形成条件
⑵特点: ①各点振幅不同
波节:A=0, x=/2 波腹:A=2a, x=/2 ②相邻波节之间同相,波节两侧反相
③无能量的单向传播
⒎多普勒效应
S vS
vR R
2020
全国高中生物理学奥林匹克竞赛
普通物理学
(含竞赛真题练习)
SUMMARY
⒈简谐波表达式(波函数)
⑴沿+x方向传播
y
A cos(t
2
x 0)
⑵沿-x方向传播
y
A cos(t
2
x 0)
⒉简谐波的动力学 ⑴质元的能量
( uT )
① Ep Ek y A Ep Ek 0
y 0 Ep Ek max. ② Ep Ek f (t, x)
⑵波的强度(平均能流密度)
I wu 1 u 2 A2
2
⑶波动方程
2 y x 2
1 u2
2 y t 2
⒊ 惠更斯原理
⒋ 半波损失 从波疏到波密,垂直入射,反射时相位突 变.
2020年高中物理竞赛(力学篇)01运动的描述:相对运动(共13张PPT)
故 v v u
t t
绝对速度 相对速度
牵连速度
3、加速度的变换关系
a a'a0
绝对
相对
牵连
加速度 加速度 加速度
例 1.河水自西向东流动,速度为10 km/h,一轮船在 题 水中航行,船相对于河水的航向为北偏西30o,航速
为20km/h。此时风向为正西,风速为10km/h。试 求在船上观察到的烟囱冒出的烟缕的飘向。(设 烟离开烟囱后即获得与风相同的速度)
vcs
v fd 10 正西
v cs 20 北偏西30o
vfd vsd
vcd vcs v sd
vcd 10 3 km / h 方向正北
v fd v fc vcd v fc v fd vcd v fd v sd v fc vcs 20km / h
方向为南偏西30o。
vcs vcd vfd vsd
其加速度为a,他沿车前进的斜上方抛出一球,设抛球 时对车的加速度的影响可以忽略,如果使他不必移动他
在车中的位置就能接住球,则抛出的方向与竖直方向的
夹角应为多大?
解:抛出后车的位移:
x1
v0t
1 2
at 2
a
球的位移:
x2 (v0 v0' sin )t
V0
y2
(v0'
cos
)t
1 2
gt 2
小孩接住球的条件为:x1=x2; y=0
2020全国高中奥林匹克竞赛 物理
力学篇 (基础版)
1-3 相对运动
一、运动描述具有参考系、运动参考系也是相对的
二、绝对运动、牵连运动、相对运动
三者应具有如下变换关系y y’
绝对位矢
r r r0
t t
绝对速度 相对速度
牵连速度
3、加速度的变换关系
a a'a0
绝对
相对
牵连
加速度 加速度 加速度
例 1.河水自西向东流动,速度为10 km/h,一轮船在 题 水中航行,船相对于河水的航向为北偏西30o,航速
为20km/h。此时风向为正西,风速为10km/h。试 求在船上观察到的烟囱冒出的烟缕的飘向。(设 烟离开烟囱后即获得与风相同的速度)
vcs
v fd 10 正西
v cs 20 北偏西30o
vfd vsd
vcd vcs v sd
vcd 10 3 km / h 方向正北
v fd v fc vcd v fc v fd vcd v fd v sd v fc vcs 20km / h
方向为南偏西30o。
vcs vcd vfd vsd
其加速度为a,他沿车前进的斜上方抛出一球,设抛球 时对车的加速度的影响可以忽略,如果使他不必移动他
在车中的位置就能接住球,则抛出的方向与竖直方向的
夹角应为多大?
解:抛出后车的位移:
x1
v0t
1 2
at 2
a
球的位移:
x2 (v0 v0' sin )t
V0
y2
(v0'
cos
)t
1 2
gt 2
小孩接住球的条件为:x1=x2; y=0
2020全国高中奥林匹克竞赛 物理
力学篇 (基础版)
1-3 相对运动
一、运动描述具有参考系、运动参考系也是相对的
二、绝对运动、牵连运动、相对运动
三者应具有如下变换关系y y’
绝对位矢
r r r0
2020年高中物理竞赛(力学篇)02运动、力学定律:对称性和守恒定律(共20张PPT)
r
U
f AB
(r)
r
B B B
U U
fBA f AB
A r A A
三、时间平移对称性与机械能守恒律
时间平移的对称性意味着时间的均匀性,表示系统 的势函数与时间无关,这将导致能量守恒。
讨论一维情况: EP x, t t E p( x, t)
对两个粒子的保守系统有:
EP x1, x2, t t Ep(x1, x2, t)
用泰勒级数展开
EP x1,
x2, t
t
E p ( x1 ,
x2, t)
EP t
t
高次项
EP x1,
x2, t
t
E p ( x1 ,
x2, t)
E P t
t
高次项
上式中必有:EP 0 t
考虑动能和势能可推导出
dEP 0 dt
E 常数
如果系统对于时间平移是对称的,那么系统
的能量一定守恒。——能量守恒定律
x r sin cos y r sin sin z r cos
o
r
P
x
m
2x t 2
E p x
m
2 y t 2
E p y
y
EP
t
Lz
m
2z t 2
E p z
Ep具有旋转不变性,即与φ无关
EP 0
t Lz 0
Lz 常量
空间旋转对称性意味着空间旋转一个角度,系
统势函数保持不变,必然导致角动量守恒。
系统
外界
孤立系统 封闭系统 开放系统
n
外力 F Fi
i1
· ·i · ·
内力 fij f ji
2020年高中物理竞赛辅导课件★★感应电动势
bavBsin30ocos
12vBl
方向:a b
dl
=60o,
l c
且dB/dt =
i L(v
n d
x
0。 B)
B
b
dl
a v
解法二:B用 S法拉B(第lx定)co律s
1 2
B(lx)
此电动势只出 现在ab杆上
i
d
dt
1 2
B
d dt
(l
x)
1 2
Blv
0
顺时针方向
15
例3. 金属杆oa长L,在匀强磁场B中以角速度反
运动导体内的电子同时参与两个方向的运动:
v u
方向, 方向,
随导体运动; 电子漂移形成电流。
总洛仑兹力 F f1 f2
b
f2 F
u
f1
v
V
a
18
是什么力做功呢?
总洛仑兹力 F f1 f2
b
即( 显然
F f1 f1
V f2) //u ,
(vf1F uu)V0f0,1
uF不f2做v 功0
电力线不闭合有源无旋场
保守场
导体内产生感应电动势
形成感应电流
L
S
Ei
Ei dl
dS
S
0 B t
dS
电力线闭合有旋无源场
非保守场
23
4.感应电场 Ei的计算
L
Ei
dl
S
B t
dS
例4. 在半径为R的圆柱形区域有一均匀磁场B,
且
dB dt
>0。
求(1)感应电场的分布
解:根据磁场B的对称性, 取半径为r 的电场线为
2020年高中物理竞赛辅导课件(振动和波基础篇)08电磁波(共31张PPT)
的性质:
E
1. ε E = μ H
v
2. E 与 H 同步变化 H
3.电磁波是一横波,
E
E、H、v 两两垂直,
v
且三者成右旋关系。 H
4. 电磁波的偏振性。 (E 及H 都在各自的平面内振动。)
三、电磁波的能量 电场能量与磁场能量体密度分别为:
we= 12ε E 2 wm = 12μ H 2
电磁场能量体密度为:
E x
=
m
H t
E = E0 cos ω ( t
x u
)+j
E x
=
m
H t
H=
1 m
E x
dt
=
E0ω
mu
sinω
(
t
x u
)+j
dt
H=
E0 mu
cosω
(
t
= H0 cosω ( t
H0
=
E0 mu
=
e
m
E0
x u
)+j
x u
)+j
e E0 = m H0
从上面的讨论可以得到在无限大均匀绝
缘介质(或真空中)传播的平面简谐电磁波
e 0 = 8.85×10-12 F.m-1
理论上预言电磁波在真空中的传播速度为:
u=
1
e m0 0
=
2.9979×108
m.s-1
由实验测得真空中的光速为;
c = 2.99792458×108 m.s-1
两个数据惊人的吻合,成为光波是电磁 波的重要实验证据。
麦克斯韦不但预言了电磁波的存在。还 预言了电磁波传播的速度。
10 2 1cm 100 1m
2020年高中物理竞赛—力学篇(进阶版)1 绪论(共30张PPT)
其原意是“自然的科学” , 即在古 代欧洲 , 物理学是自然科学的总称.
但随着自然科学的发展 , 各种独立 的学科分别陆续形成 , 如化学 , 生物学, 天文学,地质学及各种工程学科等。
(下一页)
因此后来,物理学成为专门的:
研究物质运动中最普遍、最基本的运动
形式的基本规律的学科。
。
物理学是自然科学的基础
大小
A= A
(矢量的模)
2、矢量相等: 大小相同,方向相同 。
标量不能与矢量相等,即 A A (下一页)
3、矢量的运算法则: (1) 加减法
含平行四边形法则和三角形法则
B
C
C
B
A C A B
A C A B
(下一页)
(2) 数乘
大小
A
C
方向
C A 0 C平行于 A
0 C平行于 A
“×”、“ ·”不能随便乱用。 (6)矢量的非法运算包括
1,
ln B,
C,
A
即:矢量不能作除数、取对数;
eD
不能开方、作指数。
矢量与标量不能相等。 !!!
(下一页)
(7)矢量的导数还是个矢量
若A Ar0 则
dA dt
dA dt
r0
A
dr0 dt
若在直角坐标系,坐标轴方向不变,各
分量互不相干,分别求导。如:
它涉及的范围,最初包括:
力学、 热学和分子物理学、 称为 :
电磁学、
经典物理学
光学.
(下一页)
随着研究的发展,在十九世纪末 , 人们发现了经典物理学的局限性。
在高速运动领域,即速度可与光速比 拟时, 应适用爱因斯坦建立的相对论力学;
但随着自然科学的发展 , 各种独立 的学科分别陆续形成 , 如化学 , 生物学, 天文学,地质学及各种工程学科等。
(下一页)
因此后来,物理学成为专门的:
研究物质运动中最普遍、最基本的运动
形式的基本规律的学科。
。
物理学是自然科学的基础
大小
A= A
(矢量的模)
2、矢量相等: 大小相同,方向相同 。
标量不能与矢量相等,即 A A (下一页)
3、矢量的运算法则: (1) 加减法
含平行四边形法则和三角形法则
B
C
C
B
A C A B
A C A B
(下一页)
(2) 数乘
大小
A
C
方向
C A 0 C平行于 A
0 C平行于 A
“×”、“ ·”不能随便乱用。 (6)矢量的非法运算包括
1,
ln B,
C,
A
即:矢量不能作除数、取对数;
eD
不能开方、作指数。
矢量与标量不能相等。 !!!
(下一页)
(7)矢量的导数还是个矢量
若A Ar0 则
dA dt
dA dt
r0
A
dr0 dt
若在直角坐标系,坐标轴方向不变,各
分量互不相干,分别求导。如:
它涉及的范围,最初包括:
力学、 热学和分子物理学、 称为 :
电磁学、
经典物理学
光学.
(下一页)
随着研究的发展,在十九世纪末 , 人们发现了经典物理学的局限性。
在高速运动领域,即速度可与光速比 拟时, 应适用爱因斯坦建立的相对论力学;
2020年高中物理竞赛辅导课件(电磁学)磁场的能量(共16张PPT)
)22π
r
l
dr
I
=
μ I 2l
4π
ln( R 2 ) R1
r dr
计算自感的另一种方法:
因为
Wm
=
1 2
L
I
2
所以
L
=
பைடு நூலகம்
2Wm I2
[例2] 两个共轴圆线圈,半径分别为 R 及r ,匝数分别为N1和N2 ,相距为d ,设 r 很 小,则小线圈所在处的磁场可视为均匀的 ,
求两线圈的互感系数。(湖南名校联盟模拟)
22
I
l
Il
(a)
(b)
已知:l=20cm, b=10cm, N=100
求:(1) Ma , (2) Mb
解:(1)
B
=
m 2
0I px
I
Φ
= sB.dS
=
2b m 0 I
b 2px
.l dx
=
m0I l 2p
2b dx
bx
=
m0 2
I p
l
ln2
Ψ
=NΦ
=
m
0NI 2p
l
ln2
bb l
(a) bb 22
已知:R,r,d, N1 , N2 求:M
解:
B 1=
N 1m0I 1pR2 2 p (R2+d )2 3/2
Ψ 21
=N
2B
1S
=
N 2N 1m0I 1pR2 2 p (R2+d )2 3/2
pr
2
M
=
Ψ21
I1
=
m0N 2N 1pr 2R2 2 (R2+d )2 3/2
2020年高中物理竞赛辅导课件(振动和波基础篇)07波的能量和惠更斯原理(共14张PPT)
能流P :单位时间通 过某一面积的波能。
P=Swu
u S
u
平均能流P : 能流在一个周期内的平均值。
P = S wu 波的强度 I(能流密度):通过垂直于波的传 播方向的单位面积的平均能流。
I = wu=
1ρ
2
Aω2 2u
谢谢观看!
惠更斯原理
惠更斯 C.Huygens
惠更斯原理(Huygens, principle)
CB
sin i sin r
=
AB AD
AB
=
u1Δ t u2Δ t
=
u1 u2
=
n2 n1
= n2 1
谢谢观看!
2020高中物理学竞赛 辅导课件
振动与波·基础篇 (含真题练习)
物理竞赛教研组 编制
波 的 能 量
波的能量 波的强度
一、能量密度
dm
取体积元dV,
dV
体元内质量为 dm =ρdV
y = A cosω (t
x u
)
v
=
y t
=
Aω sinω (t
x u
)
dWk
=
1 dmv 2
2
=
1 ρdVAω2 2sinω2
一、惠更斯原理 惠更斯原理:波动所到达的媒质中各点, 都可以看作为发射子波的波源,而后一时刻 这些子波的包迹便是新的波阵面。
用惠更斯原理确定 下一时刻平面波的波前
t +Δt 时刻的波面
uΔt ... ......
子波波源
t 时刻的波面
用惠更斯原理确定 下一时刻球面波的波前
t +Δt 时刻 的波面
2
(t
x u
P=Swu
u S
u
平均能流P : 能流在一个周期内的平均值。
P = S wu 波的强度 I(能流密度):通过垂直于波的传 播方向的单位面积的平均能流。
I = wu=
1ρ
2
Aω2 2u
谢谢观看!
惠更斯原理
惠更斯 C.Huygens
惠更斯原理(Huygens, principle)
CB
sin i sin r
=
AB AD
AB
=
u1Δ t u2Δ t
=
u1 u2
=
n2 n1
= n2 1
谢谢观看!
2020高中物理学竞赛 辅导课件
振动与波·基础篇 (含真题练习)
物理竞赛教研组 编制
波 的 能 量
波的能量 波的强度
一、能量密度
dm
取体积元dV,
dV
体元内质量为 dm =ρdV
y = A cosω (t
x u
)
v
=
y t
=
Aω sinω (t
x u
)
dWk
=
1 dmv 2
2
=
1 ρdVAω2 2sinω2
一、惠更斯原理 惠更斯原理:波动所到达的媒质中各点, 都可以看作为发射子波的波源,而后一时刻 这些子波的包迹便是新的波阵面。
用惠更斯原理确定 下一时刻平面波的波前
t +Δt 时刻的波面
uΔt ... ......
子波波源
t 时刻的波面
用惠更斯原理确定 下一时刻球面波的波前
t +Δt 时刻 的波面
2
(t
x u
2020年高中物理竞赛辅导课件:热学(热力学第二定律)(共24张PPT)
S2
S1
R
2 1
dQ T
⒉熵增加原理(Entropy Principle)
——对于孤立系统中发生的任何过程,系统 的熵或者增加(如果过程是不可逆的),或者 保持不变(如果过程是可逆的),即
S 0
Notes: ①该原理可看成是热Ⅱ律的数学表述
②开放系统中的不可逆过程,熵不一 定增加。
③结合热Ⅱ律的微观意义可知,熵是 系统无序程度的量度。
k——Boltzmann常量
——热力学概率(一个宏观状态 中所包含的微观状态数)
热力学概率举例:
计算N个分子空间分布的微 观状态数
N左 N右
0 N1
1
N-1 C1N
2
N-2 CN2
………
N
0
C
N N
图形表示(当N很大时):
O N/2
N左
对于均匀分布的那个宏观态,有
N
CNN / 2 2N
可逆过程——仅使外界发生无穷小的变化就 能使自身反向进行的过程
不可逆过程——不是可逆的过程
e.g. ①无摩擦的缓慢绝热压缩过程 (可逆)
②有摩擦的缓慢绝热压缩过程 (不可逆) ③快速绝热压缩过程 (不可逆)
一般,可逆过程
无摩擦的准静态过程
Note: 实际的宏观热力学过程都是不可逆的.
§3.2 热力学第二定律 ⒈开尔文表述(Kelvin statement) ——从单一热源吸热并把它全部转变为功的 循环过程是不存在的。
*[例3-2] 绝热自由膨胀后的熵变
V
2V
解:初态:(T, V) 末态:(T, 2V)
设计一可逆过程(等温膨胀)以计算熵变.
S 2 dQ Q A 1 M RT ln 2V
2020年高中物理竞赛辅导课件★★功 功率
单位: 瓦特 符号W 1W=1J·s-1
当额定功率一定时,负荷力越大,可达到的 速率就越小;负荷力越小,可达到的速率就越大。 这就是为什么汽车在上坡时走得慢,下坡时走得 快的道理。
3
例1.如图所示,一匹马以平行于圆弧形路面的拉力 拉着质量为m的车沿半径为R的圆弧形路面极
缓慢地匀速移动,车与路面的滑动摩擦系数为,
b
a
r 6ti
d(
r xi
)
x
0
6tdx
2 0
6t
3t2 m
dt
36
(J)
8
例. 速度大小为v0=20m/s的风作用于面积为S=25m2 的船帆上, 作用力 F aSρ(v0 v)2/ 2 , 其中a为无
量纲的常数, ρ为空气密度,v为船速。
(1)求风的功率最大时的条件;
(2) a=l, v=15m/s, =1.2kg/m,
第4章 功和能
Work & Energy
第1节 功 功率
Work & Power
1. 功 ——力的空间积累效应
力F 将质点由 ar移动到 b,
相应于元位r移 dA F
drr dr
, 力F对质点所做的功为: ——元功 r t+dt
b
所做的总功
Aab ab
r F
b
a
F
r dr
r
dr cos
t
dr
(1) 力对质点所做的功, 不仅与始、末位置有关, 而且往往与路径有关。
(2) 功是标量,但有正负, 且与参考系有关。
2
2. 功率 ——做功的快慢 功率:力在单位时间内所做的功
平均功率:
P
高中物理竞赛讲义PPT课件
设质心离a边x,则
1 b2 a 2x 1 ab x=b/3
3
2
同理可得,y=a/3.
思考:半径为R、均匀半圆板的质心位置。
x 4R
3
例5 确定半径为R、质量分布均匀半圆形金属线环的质心位置。
解析:以AB为轴将线环旋转360°, 得一球面,得
4R2 2x R
A
●x
●
对策:识破题目的障眼法,找到原型。
(3) 题目的物理过程较多,有的是同一个物理原型的反复运用,加上各 种物理情形的讨论,有的是多个不同物理原型的综合。
对策:养成严谨的思维习惯。对于讨论题不要想当然,问问自己,有几 种可能?都要考虑进去。
力学竞赛内容提要
1、运动学 参照系。质点运动的位移和路程,速度,加速度。 相对速度。 矢量和标量。矢量的合成和分解。 匀速及匀速直线运动及其图象。运动的合成。抛体运动。
力学竞赛辅导漫谈
序
1.物理竞赛辅导的目标 2.物理竞赛辅导具体任务
(1)竞赛所需的物理知识; (2)物理问题的思维方法; (3)解决赛题的思路方法; (4)提高选手的赛场情商。
3.竞赛试题与常规考题之间的区别: ()考查的问题原型相同,但是综合性或复杂性更强。 对策:熟悉各种原型问题。
(2)在试题的入手上设置障碍,让人难以下手,实际上还是对应于一些 基本的物理原型。
zC=∑mixi/mC
例1 如图所示,一根竖直悬挂着的无限长细线上等距离 地固定着n个质量不等的质点小球,相邻两个小球之间的 距离为a。已知最上端小球与悬点之间距离也为a,它的质 量为m,其余各球的质量依次为2m、3m、……,一直到 nm。求整个体系的质心位置到天花板的距离。
(2n+1)a/3
高中物理竞赛讲义PPT课件
B1 B
三个质点相遇?
解析:根据题意,三质点均做等速率曲线运动,而且任意时刻
三个质点的位置分别在正三角形的三个顶点上,但是这个正三角 形的边长不断缩小,如图所示。现把从开始到追上的时间t分成n
个微小时间间隔△t(△t→0),在每个微小时间间隔内,质点的 运动可以近似为直线运动。于是,第一个末三者的位置A1、B1、 C1如图所示。这样可依次作出以后每经△t,以三个质点为顶点组
例2 如图所示,一个质量均 匀、半径为R、质量密度为σ 的薄板。现沿着一条半径挖去 其中半径为R/2的圆形薄板, 求剩余薄板的质心位置。
R
R/2
●
●
O
质心在原来圆心、挖去薄板圆心所在的直径 上,在圆心O的另一侧,与O点距离为 R/6.
例3 如图所示,一根细长轻质硬棒上等距离地固定着n 个质量不等的质点小球,相邻两个小球之间的距离为a。已 知最左端小球与左端点之间距离也为a,它的质量为m,其 余各球的质量依次为2m、3m、……,一直到nm。求整个 体系的质心位置到左端点的距离。
斜面上放上一块质量为m的滑块B。现将系统由静止释放,求释
放后劈A对物块B的压力、劈A相对地面的加速度各是多少?
(不计一切摩擦)
解析方法1:-牵连加速度
对A, Nsinθ=MaA,
(1)
对B, Nsinθ=maBx,
(2)
mg-Ncosθ=maBy, (3)
A、B加速度关联,
aBy = (aBx+aA)tanθ (4)
(2)若面物体上各质点速度不等,质心将沿曲线运动, 平面物体在空间扫出一个不规则体积。定理可证成立。
例4 一直角三角形板质量分布均匀,两直角边长度分别 为a和b,求质心位置。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
40r2
m v2 r1 2来自mvn2e280r
En
e2
80rn
1 n2
me2
802h2
n 1 E1 13.6eV
n 1
n
rn , En 0
E4 E3 E2
n 1 n2 n3
n4
E1
帕邢系
巴耳末系
n
4 3
2
1
莱曼系
4.里德伯公式的推导 F时氢,原氢子原从子高的能发级光E频n跃率迁为到低能级Ek
En
h
Ek
me4
8 02h3
1 k2
1 n2
~
c
me4
802h3c
1 k2
1 n2
R
1 k2
1 n2
其中
R
me4
802h3c
1.0973731107
m1
原子光谱的分立性:发射电磁波的
频率等于电子绕核转动的频率电 子作螺旋运动的频率连续变化光 谱为连续光谱。
2.玻尔理论的基本假设
定态假设:原子系统只能处在一系 列具有不连续能量的稳定状态(定态) 。定态时核外电子在一定的轨道上 作圆周运动,但不发射电磁波
kn
Ek En h
®量子化条件:电子在稳定圆轨道上
运动时,其轨道角动量L=mvr必须
等于h/2的整数倍,即
L
n
h
2
n
n 1,2,
h
2
3.氢原子轨道半径和能量的计算
(1)轨道半径
e2
40r 2
m v2 r
L
mvr
n
h
2
v
nh
2mr
rn
n 2
0h 2 me 2
n 1,2,
n 1 rn n2r1
En
1 2
mvn 2
e2
4 0 rn
e2
m v2 r1 2来自mvn2e280r
En
e2
80rn
1 n2
me2
802h2
n 1 E1 13.6eV
n 1
n
rn , En 0
E4 E3 E2
n 1 n2 n3
n4
E1
帕邢系
巴耳末系
n
4 3
2
1
莱曼系
4.里德伯公式的推导 F时氢,原氢子原从子高的能发级光E频n跃率迁为到低能级Ek
En
h
Ek
me4
8 02h3
1 k2
1 n2
~
c
me4
802h3c
1 k2
1 n2
R
1 k2
1 n2
其中
R
me4
802h3c
1.0973731107
m1
原子光谱的分立性:发射电磁波的
频率等于电子绕核转动的频率电 子作螺旋运动的频率连续变化光 谱为连续光谱。
2.玻尔理论的基本假设
定态假设:原子系统只能处在一系 列具有不连续能量的稳定状态(定态) 。定态时核外电子在一定的轨道上 作圆周运动,但不发射电磁波
kn
Ek En h
®量子化条件:电子在稳定圆轨道上
运动时,其轨道角动量L=mvr必须
等于h/2的整数倍,即
L
n
h
2
n
n 1,2,
h
2
3.氢原子轨道半径和能量的计算
(1)轨道半径
e2
40r 2
m v2 r
L
mvr
n
h
2
v
nh
2mr
rn
n 2
0h 2 me 2
n 1,2,
n 1 rn n2r1
En
1 2
mvn 2
e2
4 0 rn
e2