复合函数的单调性与不等式恒成立问题

复合函数的单调性与不等式恒成立问题
复合函数的单调性与不等式恒成立问题

复合函数的单调性与不等式恒成立问题

班级 学号 姓名

1、对于(0,3)上的一切实数x ,不等式()122-<-x m x 恒成立,则实数m 的取值范围是 。

2、不等式a 220x ax ++≥对任意x ∈R 恒成立,则a 的取值范围为 .

3、不等式022

≥-+ax ax 的解集为φ,则a 的取值范围为 .

4、当[]1,3x ∈时,不等式220x ax ++>恒成立,则a 的范围为 .

5、当[]1,3a ∈时,不等式220x ax ++>恒成立,则x 的范围为 .

6、已知函数36,2(),63,2x x y f x x x +≥-?==?--<-?

若不等式()2f x x m ≥-恒成立,则实数m 的取值范围是 .

6.若二次函数()()22

42221f x x p x p p =----+在区间[-1,1]内至少存在一实数c ,使f(c)>0,则实数p 的取值范围 ( )

A .121<<-p

B .233<<-p

C .3-≤p

D .2

13-<<-p 8.若满足不等式08603422<+-<+-x x x x 和同时成立的x 的值,使关于x 的不等式0

922<+-a x x 也成立,则

( )

A .9>a

B .9=a

C .90≤

D .9≤a 9.若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是 ( )

A.(-∞,2]

B.[-2,2]

C.(-2,2]

D.(-∞,-2) 15.对于满足0≤p ≤4的实数p ,使342-+>+p x px x 恒成立的x 的取值范围是 .

7、已知a ax x x f -++=3)(2

,若2)(],2,2[≥-∈x f x 恒成立,求a 的取值范围.

例1.若函数bx x a x f 1)1()(2++=,且3)1(=f ,2

9)2(=f ⑴求b a ,的值,写出)(x f 的表达式 ; ⑵判断)(x f 在),1[+∞上的增减性,并加以证明。

例4.已知f(x)=x

a x x ++22 >0在x ∈[)+∞,1上恒成立,求实数a 的取值范围。

3.已知(],1x ∈-∞时,不等式()

21240x x a a ++-?>恒成立,求a 的取值范围。

例3.不等式3

642222++++x x m mx x <1对一切实数x 恒成立,求实数m 的取值范围。 8、对任意的1

[,1],2

x ∈函数()0322>-+=a a x a ax y 的图象均不在直线x y -=的上方,求a 的取值范围.

7.已知()x f 是R 上奇函数, ()[][)+∞=-,33,0,04与且在f 上分别递减和递增,则不等式()()042<-x f x 的解集为

18.已知关于x 的不等式(0)1(2)12()32<-+-++m x m x m 对任意R x ∈成立,求m 的取值范围。

19.定义在实数集上的单调函数)(x f 满足f(3)=log 23,且对于任意x,y ∈R ,都有f(x+y)=f(x)+f(y) 。若)239()3(+-

9、已知定义在R 上函数f (x )为奇函数,且在[)+∞,0上是增函数,对于任意]1,1[-∈x 求实数m 范围,使()()224420f x f m mx -+-> 恒成立。

例2.设b

x f x x ++-=+1212)((b a ,为实常数)是R 上的奇函数. (1)求b 的值并判断函数的增减性;

(2)对任何实数x 都有2

c )(2-

13.函数f (x )的定义域为D {}0x x =>, 满足: 对于任意,m n D ∈,都有()()()f mn f m f n =+,且f (2)=1.

(1)求f (4)的值;

(2)如果(26)3,()(0,)f x f x -≤+∞且在上是单调增函数,求x 的取值范围.

11、定义在D 上的函数)(x f ,如果满足:对任意 D x ∈,存在常数 0>M ,都有M x f ≤)( 成立,则称)(x f 是D 上的有界函数,其中M 称为函数)(x f 的上界.已知函数2

1)(ax x x f ++=. (1) 当1-=a 时,求函数)(x f 在()0-,

∞上的值域,判断函数)(x f 在()0-,∞上是否为有界函数,并说明理由;

(2) 若函数)(x f 在[]4,1∈x 上是以3为上界的有界函数,求实数a 的取值范围.

1.(1)若关于x 的不等式02>--a ax x 的解集为),(+∞-∞,求实数a 的取值范围;

(2)若关于x 的不等式32-≤--a ax x 的解集不是空集,求实数a 的取值范围.

解:(1)设()a ax x x f --=2.则关于x 的不等式02>--a ax x 的解集为),(+∞-∞()0>?x f 在()+∞∞-,上恒成立()0m in >?x f ,

即(),04

42

min >+-=a a x f 解得04<<-a

(2)设()a ax x x f --=2.则关于x 的不等式32-≤--a ax x 的解集不是空集()3-≤?x f 在()+∞∞-,上能成立()3m in -≤?x f ,

即(),34

42

m in -≤+-=a a x f 解得6a ≤-或2a ≥

2. 若函数y =R 上恒成立,求m 的取值范围。 分析:该题就转化为被开方数2680mx mx m +++≥在R 上恒成立问题,并且注意对二次项系数的讨论。

略解:要使y =R 上恒成立,即2680mx mx m +++≥在R 上 恒成立。

1 0m =时,80≥ 0m ∴=成立

2

0m ≠时,()()2036483210m m m m m >????=-+=-≤??,01m ∴<≤ 由1 ,2 可知,01m ≤≤

5. 已知函数2()10f x x ax =++≥对于一切1(0,]2x ∈成立,求a 的取值范围。

解:令2x t =,(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:221t a a t

+-<, 要使上式在(]0,2t ∈上恒成立,只须求出()21t f t t +=

在(]0,2t ∈上的最小值即可。 ()22211111124t f t t t t t +????==+=+- ? ????? 11,2t ??∈+∞????

()()min 324f t f ∴== 234a a ∴-< 1322

a ∴-<<

变题:已知函数y=()f x =

的定义域为R,求a 的范围.

例5.已知x ∈(-

时,不等式1+2x +(a-a 2)4x >0恒成立,求实数a 的取值范围。

利用函数的最值求不等式恒成立问题

考点2、利用函数的最值求不等式恒成立问题 例3、已知过函数1)(23++=ax x x f 的图象上一点),1(b B 的切线的斜率为-3. (1)求b a ,的值; (2)求A 的取值范围,使不等式1987)(-≤A x f 对于]4,1[-∈x 恒成立; 【解析】(1)()x f '=ax x 232+ 依题意得3,323)1('-=∴-=+==a a f k ()1323+-=∴x x x f ,把),1(b B 代入得1)1(-==f b 1,3-=-=∴b a (2)令063)(2'=-=x x x f 得0=x 或2=x 31232)2(,1)0(23-=+?-==f f 17)4(,3)1(=-=-f f 17)(3],4,1[≤≤--∈∴x f x 要使1987)(-≤A x f 对于]4,1[-∈x 恒成立,则)(x f 的最大值198717-≤A 2004≥∴A 变式训练1、设函数2()()ln ()f x x a x a R =-∈ (Ⅰ)若x e =为()y f x =的极值点,求实数a . (Ⅱ)求实数a 的取值范围,使得对任意(0,3]x e ∈恒有2()4f x e ≤成立(注:e 为 自然对数的底数). 【解析】(I )求导得2()()2()ln ()(2ln 1)x a a f x x a x x a x x x -=-+=-+-¢ 因为x e =是()f x 的极值点,所以()0f e =¢ 解得a e =或3a e =. 经检验,符合题意,所以a e =,或3a e = (II )①当031a 时即1 3 a > 时,由①知,(0,1]x ?时,不等式恒成立,故下 研究函数在(1,3]a 上的最大值, 首先有22(3)(3)ln34ln3f a a a a a a =-=此值随着a 的增大而增大,故应

恒成立与存在性问题的基本解题策略

“恒成立问题”与“存在性问题”的基本解题策略 一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型 1、恒成立问题的转化:()a f x >恒成立?()max a f x >;()()min a f x a f x ≤?≤恒成立 2、能成立问题的转化:()a f x >能成立?()min a f x >;()()max a f x a f x ≤?≤能成立 3、恰成立问题的转化:()a f x >在M 上恰成立?()a f x >的解集为M ()()R a f x M a f x C M ?>???≤?? 在上恒成立 在上恒成立 另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max . 4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥ 5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤ 6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥ 7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤ 8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a,b]上 的值域为A ,g(x)在区间[c,d]上的值域为B,则A ?B. 9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方; 10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 恒成立问题的基本类型 在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题. 函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立; 某函数的定义域为全体实数R;●某不等式的解为一切实数;?某表达式的值恒大于a 等等… 恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。因此也成为历年高考的一个热点。 恒成立问题在解题过程中大致可分为以下几种类型: ①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象。 二、恒成立问题解决的基本策略 大家知道,恒成立问题分等式中的恒成立问题和不等式中的恒成立问题。等式中的恒成立问题,特别是多项式恒成立问题,常简化为对应次数的系数相等从而建立一个方程组来解决问题的。 (一)两个基本思想解决“恒成立问题” 思路1、max )]([)(x f m D x x f m ≥?∈≥上恒成立在 思路2、min )]([)(x f m D x x f m ≤?∈≤上恒成立在 如何在区间D 上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导

函数单调性练习(附 答案)

函数单调性 一. 填空题 1. 函数()1 2 x f x x -= +的单调递增区间是__________________. 2. 函数()2 32f x x x =-+的单调递减区间是__________________. 3. 函数()2f x x ax =+在()1,-+∞是增函数,那么a 的取值范围是__________. 4. 函数()f x 在R 上是增函数,()g x 在R 上是减函数,那么()()f x g x -在R 上是 _________. 5. 函数()f x 在()0,+∞上是增函数,(1)若()f x 在R 上是偶函数,那么()f x 在(),0-∞上是_________;(2)若()f x 在R 上是奇函数,那么()f x 在(),0-∞上是_________. 6. 设奇函数)(x f 的定义域为[]5,5-,若当[]0,5x ∈时, )(x f 的图象如右图,则不等式()0f x <的解是________. 7. 已知()()() () 2 3411a x a x f x x x --=<) 11. 已知函数( )f x = []0,1是减函数,则a 的取值范围是____________. 12. 设()f x 是R 上的减函数,则()3y f x =-的单调递减区间为 . 二. 选择题 13. 下列函数在(),0-∞上为增函数的是------------------------------------------------( )

不等式恒成立、能成立、恰成立问题

编号:2007-HX-001 不等式恒成立、能成立、恰成立问题 [文档副标题] [日期] 福建省长乐第一中学教科室 [公司地址]

不等式恒成立、能成立、恰成立问题 一、不等式恒成立问题的处理方法 1、转换求函数的最值: (1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,?()f x 的下界大于A (2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A 例1、设f(x)=x 2 -2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。 例2、已知(),22x a x x x f ++= 对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围; 例 3、R 上的函数()x f 既是奇函数,又是减函数,且当?? ? ??∈2, 0πθ时,有() ()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围. 例4、已知函数)0(ln )(4 4>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a 、b 为常数. (1)试确定a 、b 的值; (2)讨论函数)(x f 的单调区间; (3)若对任意0>x ,不等式2 2)(c x f -≥恒成立,求c 的取值范围。 2、主参换位法 例5、若不等式a 10x -<对[]1,2x ∈恒成立,求实数a 的取值范围 例6、若对于任意1a ≤,不等式2 (4)420x a x a +-+->恒成立,求实数x 的取值范围 例7、已知函数32 3()(1)132 a f x x x a x = -+++,其中a 为实数.若不等式2()1f x x x a '--+>对任意(0)a ∈+∞,都成立,求实数x 的取值范围. 3、分离参数法 (1) 将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2) 求()f x 在x D ∈上的最大(或最小)值; (3) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围。 适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。 例8、当(1,2)x ∈时,不等式2 40x mx ++<恒成立,则m 的取值范围是 .

函数不等式恒成立问题经典总结

函数、不等式恒成立问题解法(老师用) 恒成立问题的基本类型: 类型1:设)0()(2 ≠++=a c bx ax x f ,(对于任意实数R 上恒成立) (1)R x x f ∈>在0)(上恒成立00?且a ; (2)R x x f ∈<在0)(上恒成立00a 时,],[0)(βα∈>x x f 在上恒成立?????>>-?????<- ?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立?? ?>>?0 )(0 )(βαf f ],[0)(βα∈- ?????<-?0 )(2020)(2βββαααf a b a b f a b 或或 类型3: αα>?∈>min )()(x f I x x f 恒成立对一切 αα>?∈?∈>的图象的上方或的图象在恒成立对一切 恒成 一、用一次函数的性质 对于一次函数],[,)(n m x b kx x f ∈+=有: ?? ?<>?>0 )(0 )(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122 ->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。 解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2 <---x x m ,;令)12()1()(2 ---=x x m m f ,则22≤≤-m 时,0)(

高中数学恒成立与存在性问题

高中恒成立问题总结 解决高考数学中的恒成立问题常用以下几种方法: ①函数性质法; ②主参换位法; ③分离参数法; ④数形结合法。 XXX 核心思想: 1.恒成立问题的转化: 恒成立; 2.能成立问题的转化: 能成立; 3.恰成立问题的转化: 若在D 上恰成立在D 上的最小值; 若在D 上恰成立在D 上的最大值. 4.设函数,,对任意的,存在,使得,则 ; 设函数,,对任意的,存在,使得,则 ; 设函数,,存在,存在,使得,则 ; 设函数,,存在,存在,使得,则; 5.若不等式在区间D 上恒成立,则等价于在区间D 上函数和图象在函数图象上方; 若不等式在区间D 上恒成立,则等价于在区间D 上函数和图象在函数图象下方. 6.常见二次函数 ①.若二次函数(或)在R 上恒成立,则有(或); ②.若二次函数(或)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解. ()a f x >?()max a f x >()()min a f x a f x ≤?≤恒成立()a f x >?()min a f x >()()max a f x a f x ≤?≤能成立A x f D x ≥∈)(,?)(x f A x f =)(min ,D x ∈B x f ≤)(?)(x f B x f =)(max ()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≥()()x g x f min min ≥()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≤()()x g x f max max ≤()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≥()()x g x f min max ≥()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≤()()x g x f max min ≤()()f x g x >()y f x =()y g x =()()f x g x <()y f x =()y g x =2()(0)0f x ax bx c a =++≠>0<00a >???0<

(完整版)恒成立存在性问题

专题 恒成立存在性问题 知识点梳理 1、恒成立问题的转化:()a f x >恒成立?()max a f x >;()()min a f x a f x ≤?≤恒成立 2、能成立问题的转化:()a f x >能成立?()min a f x >;()()max a f x a f x ≤?≤能成立 3、恰成立问题的转化:()a f x >在M 上恰成立?()a f x >的解集为M ()()R a f x M a f x C M ?>???≤??在上恒成立 在上恒成立 另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max . 4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥ 5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤ 6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥ 7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤ 8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象 上方; 9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 题型一、常见方法 1、已知函数12)(2 +-=ax x x f ,x a x g = )(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围; 2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围; 2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,4 1 [∈x 恒成立,求实数b 的取值范围. 3、已知两函数2 )(x x f =,m x g x -?? ? ??=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实 数m 的取值范围为

运用函数的单调性与奇偶性解抽象函数不等式(附加半节课)—学生版

教学内容概要 教学内容

【知识精讲】 一、常见的抽象函数模型: ① 正比例函数模型:()0,≠=k kx x f ┄┄┄()()()y f x f y x f ±=±。 ② 幂函数模型:()2 x x f =┄┄┄()()()y f x f xy f ?=;() ()y f x f y x f =??? ? ??。 ③ 指数函数模型:()x a x f =┄┄┄()()()y f x f y x f ?=+;()()() y f x f y x f = -。 ④ 对数函数模型:()x x f a log =┄┄()()()y f x f xy f +=;()()y f x f y x f -=???? ??。 ⑤ 三角函数模型:()x x f tan =┄┄┄()()()()() y f x f y f x f y x f ?-+=+1。 如何利用函数单调性解题是历年高考和模考的重点,其中利用函数单调性解不等式是一个重点中的难点,如何攻克这个难点呢?一个词:去壳。 二、奇偶函数的性质: 奇函数:(1)()()f x f x -=-; (2)若奇函数()f x 的定义域包含0,则(0)0f =; (3)图像关于原点对称; (4)y 轴左右两侧的单调性相同; 偶函数:(1)()()f x f x -=; (3)图像关于y 轴对称; (4)y 轴左右两侧的单调性相反; 三、函数单调性的逆用: 若()f x 在区间D 上递增,则1212()()f x f x x x .(1x 2,x D ∈).

恒成立问题----不等式恒成立、能成立、恰成立问题分析及应用(例题+练习+答案)

不等式恒成立、能成立、恰成立问题分析及应用 一、不等式恒成立问题的处理方法 1、转换求函数的最值: (1)若不等式A x f >)(在区间D 上恒成立,则等价于在区间D 上A x f >min )(,即)(x f 的下界大于A (2)若不等式B x f <)(在区间D 上恒成立,则等价于在区间D 上B x f --++m f m f θθ恒成立,求实数m 的取值范围. 例4.已知函数)0(ln )(4 4>-+=x c bx x ax x f 在1=x 处取得极值c --3,其中b a 、为 常数. (1)试确定b a 、的值; (2)讨论函数)(x f 的单调区间; (3)若对任意0>x ,不等式2 2-)(c x f ≥恒成立,求c 的取值范围.

2、主参换位法 例5.若不等式01<-ax 对[]2,1∈x 恒成立,求实数a 的取值范围. 例6.若对于任意1≤a ,不等式024)4(2>-+-+a x a x 恒成立,求实数x 的取值范围. 例7.已知函数1)1(2 33)(2 3+++-= x a x x a x f ,其中a 为实数.若不等式1)('2+-->a x x x f 对任意),0(+∞∈a 都成立,求实数x 的取值范围. 3、分离参数法 (1)将参数与变量分离,即化为)()(x f g ≥λ(或)()(x f g ≤λ)恒成立的形式; (2)求)(x f 在D x ∈上的最大(或最小)值; (3)解不等式max )()(x f g ≥λ(或min )()(x f g ≤λ),得λ的取值范围. 适用题型:(1)参数与变量能分离;(2)函数的最值易求出。 例8.当)2,1(∈x 时,不等式042 <++mx x 恒成立,求m 的取值范围.

函数、不等式恒成立问题完整解法

函数、不等式恒成立问题完整解法 恒成立问题的基本类型: 类型1:设,<1)上恒成立 ;<2)上恒成立。 类型2:设 <1)当时,上恒成立 , 上恒成立 <2)当时,上恒成立 上恒成立 类型3: 。 类型4: 恒成一、用一次函数的性质 对于一次函数有:

例1:若不等式对满足的所有都成立,求x的范 围。 解读:我们可以用改变主元的办法,将m视为主变元,即将元不等式化为: ,;令,则时, 恒成立,所以只需即,所以x的范围是。 二、利用一元二次函数的判别式 对于一元二次函数有: <1)上恒成立; <2)上恒成立 例2:若不等式的解集是R,求m的范围。 解读:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m,所以要讨论m-1是否是0。 <1)当m-1=0时,元不等式化为2>0恒成立,满足题意; <2)时,只需,所以,。 三、利用函数的最值<或值域) <1)对任意x都成立; <2)对任意x都成立。简单计作:“大的大于最大的,小的小于最小的”。由此看出,本类问题实质上是一类求函数的最值问题。 例3:在ABC中,已知恒 成立,求实数m的范围。 解读:由 ,

,恒成立,,即 恒成立, 例4:<1)求使不等式恒成立的实数a的范围。 解读:因为函,显然函数有最 大值,。 如果把上题稍微改一点,那么答案又如何呢?请看下题: <2)求使不等式恒成立的实数a的范围。 解读:我们首先要认真对比上面两个例题的区别,主要在于自变量的取值范围的变 化,这样使得的最大值取不到,即a取也满足条件,所以 。 所以,我们对这类题要注意看看函数能否取得最值,因为这直接关系到最后所求参数a的取值。利用这种方法时,一般要求把参数单独放在一侧,所以也叫分离参数法。 四:数形结合法 对一些不能把数放在一侧的,可以利用对应函数的图象法求解。 例5:已知,求实数a的取值范围。 解读:由,在同一直角坐标系中做出两个函数的图象,如果两个函数分别在x=-1和x=1处相交,则由 得到a分别等于2和0.5,并作出函数的图象,所以,要想使函数 在区间中恒成立,只须在区间对应的图象在 在区间对应图象的上面即可。当才能保证,而才可以,所以。

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

函数与不等式恒成立1

专题一: 函数与不等式恒成立 (一) 利用判别式 本类型题源自初中,对x ∈R 适用。 例1 若y=lg [x 2 +(k+2)x+5 4]的定义域为R ,则求k 的取值范围。 解:转化为x 2 +(k+2)x+5 4>0对x ∈R 恒成立。 ?= (k+2)2-4 ·5 4 <0 (k+2)2<5 ∴k ∈(-2-5,5-2) 练习1若ax 2+x+a <0解集为?,求a 范围。 解:转化为ax 2+x+a ≥0解集为R 。 ①a=0,x ≥0(舍) ②a >0,?≤0 ∴a ≥12 综合得:a ≥ 12 2 若x ∈R ,sin x 2 +2kcosx-2k-2<0恒成立,求k 的取值范围。 解:转化为cosx 2-2k cosx+2k+1>0 ①?<0 即k ∈(1-2,1+2)成立 ②?=0 即k=1-2,1+2代入得k=1+2 ?>0 ③ f (1)>0 得k >1+2 k ≥1 综合得①②③:k >1-2 (二) 利用变量分离 练习2的另解:2k >2cos 1 cos 1 x x +-

令t=cosx-1∈【-2,0】 当cosx-1=0代回原式成立 当t= cosx-1∈【-2,0)时 2k >t+ 2t +2 (t+ 2 t +2)最大值为2-22 ∴k >1- 2 注:利用变量分离要擅长求各种基本函数的值域,诸如一次函数,二次函数, 反比例函数,耐克函数,幂指对数函数,三角及利用单调性求值域。 练习 1 已知f (x )= 2x - 12 x ∣∣ 。①若f (x )=2,求x 的值。②若2t f (2t )+m f (t )≥0 对于t ∈【1,2】恒成立,求实数m 的取值范围。(2008上海市高考题19) 解:①x <0,f (x )=0(舍); x >0,f (x )=2x -1 2 x =2, ∴x=㏒2(12)+ ②t ∈【1, 2】,2,t (2,2t - 212t )+m (2t - 1 2 t )≥0 2,t (2,t +1 2 t )+m ≥0 2,2t +1≥-m ∴m ∈【-5,+∞】 注:去绝对值和对含字母代数式因式分解是基本功。 2 已知二次函数f (x )=x 2+bx+1(b ∈R )满足f (-1)= f (3)。x >1时f (x )反 函数为f ,-1(x ),且f ,-1(x )>m (m-x )在x ∈【14,1 2 】恒成立,求实数m 的取值 范围。 解:- 2 b =1 ∴b=-2 ∴f (x )= x 2-2x+1=(x-1)2 当x >1时,f ,-1(x )= x +1(x >0) x +1>m 2-m x (m+1)x >m 2-1 ① m= -1(舍) ② m >-1, x >m-1 ∴m -1<12 ∴-1<m <3 2

不等式恒成立求参数的取值范围

不等式恒成立求参数的取值范围 武汉市第四十九中学 李清华 邮政编码;430080 一、 教学目标 1、 知识目标;掌握不等式恒成立问题求参数的范围的求解方法并会运用 2、 能力目标;培养学生分析问题解决问题的能力 3、 情感目标;优化学生的思维品质 二、 教学重难点 1、教学的重点;不等式恒成立问题求参数的范围的求解方法并会运用 2、教学的难点;不等式恒成立问题求参数的范围的求解方法的选择 三、 教学方法:高三复习探究课:学生研讨探究----学生归纳小结-----学生巩固 练习----学生变式探究---学生总结 四、 教学过程 1、 引人 高三数学复习中的不等式恒成立问题,涉及到函数的性质、图象, 渗透着换元、化归、数形结合、函数方程等思想方法,有利于考查学生的综合解题能力,因此备受命题者的青睐,也成为历年高考的一个热点。我们今天这堂课来研究不等式恒成立求参数的取值范围问题的求解方法。引入课题 2、新课 下面我们来看例1例1、对一切实数x ]1,1[-∈,不等式 a x a x 24)4(2-+-+>0恒成立,求实数a 的取值范围(由学生完成) 由一个基本题得到不等式恒成立问题求参数的范围的求解方法 解法一;分离参数 由原不等式可得:a(x-2) > -x 2+4x-4 , 又因为x ∈[-1,1] ,x-2∈[-3,-1] a<2-x

又因为x∈[-1,1],所以a<1. 解法二;分类讨论、解不等式 (x-2)[x-(2-a)]>0 当a=0时不等式恒成立 当a<0 时x>2-a 或x<2 不等式恒成立 当a>0时x>2 或x<2-a 所以2-a>1 即a<1 所以a<1时不等式恒成立 解法三;构造函数求最值 设f(x)=x2+(a-4)x+4-2a 当(4-a)/2∈[-1,1],即a∈[2,6]时 -a2<0 不成立,舍弃; 当a>6时,f(-1)=1-a+4+4-2a>0 a<3 不成立,舍弃; 当a<2时,f(1)=1+a-4+4-2a=1-a>0 a<1 综上得:a<1 解法四;构造方程用判别式韦达定理根的分布 设x2+(a-4)x+4-2a=0 方程无实根或有两实根两根小于-1或两根大于1 △=(a-4)2-4(4-2a)=a2≥0 所以1-(a-4)+4-2a>0且(4-a)/2<-1 或1+(a-4)+4-2a>0 且(4-a)/2>16且a<3 或a<1且a<2, 所以a<1 解法五;数形结合(用动画来演示

恒成立问题与存在性问题(最新精华)

恒成立问题与存在性问题 思路一: (1)若函数)(x f 在D 区间上存在最小值min )(x f 和最大值max )(x f ,则 不等式a x f >)(在区间D 上恒成立a x f >?min )(; 不等式a x f ≥)(在区间D 上恒成立a x f ≥?min )(; 不等式a x f <)(在区间D 上恒成立a x f )(或))((a x f ≥在区间D 上恒成立a m ≥?; 不等式a x f <)(或a x f ≤)(在区间D 上恒成立a n ≤?。 例题1: 已知函数.ln )(x x x f = (1)求函数.ln )(x x x f =的最小值; (2)若对所有的1≥x 都有1)(-≥ax x f ,求实数a 的取值范围。 答案:(1)11min )()(---==e e f x f ;(2)]1,(-∞ 变式:设函数)1ln(2)1()(2x x x f +-+= (1)求函数)(x f 的单调区间; (2)若当]1,1[1--∈-e e x 时,不等式m x f <)(恒成立,求实数m 的取值范围; (3)若关于x 的方程a x x x f ++=2)(在区间]2,0[上恰有两个相异实根,求实数a 的取 值范围。 答案:(1)递增区间是),0(+∞;递减区间是)0,1(- (2)22 ->e m (3))3ln 23,2ln 22(--

9运用函数地单调性与奇偶性解抽象函数不等式(附加半节课)—学生版

教学容概要

教学容 【知识精讲】 一、常见的抽象函数模型: ① 正比例函数模型:()0,≠=k kx x f ┄┄┄()()()y f x f y x f ±=±。 ② 幂函数模型:()2 x x f =┄┄┄()()()y f x f xy f ?=;() ()y f x f y x f =??? ? ??。 ③ 指数函数模型:()x a x f =┄┄┄()()()y f x f y x f ?=+;()()() y f x f y x f = -。 ④ 对数函数模型:()x x f a log =┄┄()()()y f x f xy f +=;()()y f x f y x f -=??? ? ??。 ⑤ 三角函数模型:()x x f tan =┄┄┄()()()()() y f x f y f x f y x f ?-+= +1。 如何利用函数单调性解题是历年高考和模考的重点,其中利用函数单调性解不等式是一个重点中的难点,如何攻克这个难点呢?一个词:去壳。 二、奇偶函数的性质:

奇函数:(1)()()f x f x -=-; (2)若奇函数()f x 的定义域包含0,则(0)0f =; (3)图像关于原点对称; (4)y 轴左右两侧的单调性相同; 偶函数:(1)()()f x f x -=; (3)图像关于y 轴对称; (4)y 轴左右两侧的单调性相反; 三、函数单调性的逆用: 若()f x 在区间D 上递增,则1212()()f x f x x x .(1x 2,x D ∈). 四、不等式恒成立问题的解法 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 通过上面的等价转化,转换为函数求最值的问题。 【经典例题】

高考数学:不等式恒成立、能成立、恰成立问题

不等式恒成立、能成立、恰成立问题 一、不等式恒成立问题的处理方法 1、转换求函数的最值: (1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,?()f x 的下界大于A (2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A 例1、设f(x)=x2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值围。 例2、已知(),22x a x x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试数a 的取值围; 例3、R 上的函数()x f 既是奇函数,又是减函数,且当 ??? ??∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒 成立,数m 的取值围. 例4、已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a 、b 为常数.(1)试确定a 、b 的值; (2)讨论函数)(x f 的单调区间; (3)若对任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值围。 2、主参换位法

例5、若不等式a 10x -<对 []1,2x ∈恒成立,数a 的取值围 例6、若对于任意 1a ≤,不等式2(4)420x a x a +-+->恒成立,数x 的取值围 例7、已知函数323()(1)132a f x x x a x = -+++,其中a 为实数.若不等式2()1f x x x a '--+>对任意(0)a ∈+∞,都成立,数x 的取值围. 3、分离参数法 (1) 将参数与变量分离,即化为 ()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2) 求()f x 在x D ∈上的最大(或最小)值; (3) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值围。 适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。 例8、当(1,2)x ∈时,不等式240x mx ++<恒成立,则m 的取值围是 . 例9、已知函数321()33f x ax bx x =+++,其中0a ≠(1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a , 且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值围. 4、数形结合 例10 、若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值围是________ 例11、当x ∈(1,2)时,不等式2(1)x -

不等式恒成立问题及能成立问题

例谈不等式恒成立问题和能成立问题的解题策略 ——谈2008年江苏高考数学试卷第14题 摘要:所有问题均可分成三类:恒成立问题、能成立问题和不成立问题。《例谈不等式恒成立问题和能成立问题》介绍了解决不等式恒成立问题和不等式能成立问题常用的直接法、分离参数法、分类讨论法、数形结合法等,采用了等价转化的处理策略。 关键词:分离参数、分类讨论、数形结合、等价转化,换元,求最值。 2008年江苏高考数学试卷第14题是一道很好的恒成立问题:设函数3()31()f x ax x x R =-+∈若对于任意[]1,1x ∈-都有()0f x ≥成立,则实数a 的值为 。解析如下: 析:将()0f x ≥中的,a x 分离,然后求函数的最值。 解:函数3()31()f x ax x x R =-+∈若对于任意[]1,1x ∈-都有()0f x ≥成立,函数3()31()f x ax x x R =-+∈对于任意[)(]1,0,0,10x x x ∈-∈=及其有()0f x ≥都成立。 若[)1,0x ∈-,33213()310f x ax x a x x =-+≥?≤- +,设1t x =则1t ≤- 3232133(1)t t t x x ∴-+=-+≤-,令323(1)y t t t =-+≤-,则'2360y t t =-+< 323(1)y t t t ∴=-+≤-单调递减,32min 1(1)3(1)4t y y =-==--+-=,4a ∴≤(1) 若(]0,1x ∈,33213()310f x ax x a x x =-+≥?≥- +,设1t x =,则1t ≥ 3232133(1)t t t x x ∴-+=-+≥,令323(1)y t t t =-+≥,则'2363(2)y t t t t =-+=--,当12t ≤≤时'0y ≥,323(1)y t t t =-+≥单调递增;当2t >时'0y <,323(1)y t t t =-+≥单调递减,32max 22324t y y ===-+?=,4a ∴≥(2) 若0x =则a R ∈,()0f x ≥成立(3) 由题意知(1)(2)(3)应同时成立4a ∴= 解题中采取了不等式恒成立问题的处理策略: 1、若f(x)≥a 对x ∈D 恒成立,只须f(x)min (x ∈D)≥a 即可。 2、若f(x)≤a 对x ∈D 恒成立,只须f(x)max (x ∈D)≤a 即可。

函数恒成立与存在性问题

恒成立与存在性问题 基本方法: 恒成立问题: 1. 对于(),x a b ?∈,()f x k ≥恒成立等价于min ()f x k ≥. 2. 对于(),x a b ?∈,()f x k ≤恒成立等价于max ()f x k ≤. 3. 对于[]12,,x x a b ?∈,12()()f x g x ≥等价于min max ()()f x g x ≥. 4. 对于[]12,,x x a b ?∈,12()()f x g x ≤等价于max min ()()f x g x ≤. 5. 对于[],x a b ?∈,()()f x g x ≥,等价于构造函数()()()h x f x g x =-,()h x 在区间[],a b 上的最小值min ()0h x ≥. 6. 对于[],x a b ?∈,()()f x g x ≤,等价于构造函数()()()h x f x g x =-,()h x 在区间[],a b 上的最大值max ()0h x ≤. 7. ()f x 在区间[],a b 上单调递增,等价于[]min ()0,,f x x a b '≥∈. 8. ()f x 在区间[],a b 上单调递减,等价于[]max ()0,,f x x a b '≤∈. 存在性问题: 1. ()0,x a b ?∈,使得()f x k ≥成立,等价于max ()f x k ≥. 2. ()0,x a b ?∈,使得()f x k ≤成立,等价于min ()f x k ≤. 3. []12,,x x a b ?∈,使得12()()f x g x ≥成立,等价于max min ()()f x g x ≥. 4. []12,,x x a b ?∈,使得12()()f x g x ≤,等价于min max ()()f x g x ≤. 5. [],x a b ?∈,使得()()f x g x ≥,等价于构造函数()()()h x f x g x =-,()h x 在区间[],a b 上的最大值max ()0h x ≥. 6. [],x a b ?∈,使得()()f x g x ≤,等价于构造函数()()()h x f x g x =-,()h x 在区间[],a b 上的最小值min ()0h x ≤. 参变分离: 解决有关参数的恒成立问题或存在性问题时经常会用到参变分离的方法:就是在

相关文档
最新文档