八年级几何证明题集锦及解答值得收藏
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级几何全等证明题归纳
1.如图,梯形ABCD中,AD∥BC,∠DCB=45°,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.
求证:CF=AB+AF.
证明:在线段CF上截取CH=BA,连接DH,
∵BD⊥CD,BE⊥CE,
∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,
∵∠EFB=∠DFC,
∴∠EBF=∠DCF,
∵DB=CD,BA=CH,
∴△ABD≌△HCD,
∴AD=DH,∠ADB=∠HDC,
∵AD∥BC,
∴∠ADB=∠DBC=45°,
∴∠HDC=45°,∴∠HDB=∠BDC—∠HDC=45°,
∴∠ADB=∠HDB,
∵AD=HD,DF=DF,
∴△ADF≌△HDF,
∴AF=HF,
∴CF=CH+HF=AB+AF,
∴CF=AB+AF.
2.如图,ABCD为正方形,E为BC边上一点,且AE=DE,AE与对角线BD交于点F,连接CF,交ED于点G.判断CF与ED的位置关系,并说明理由.
解:垂直.
理由:∵四边形ABCD为正方形,
∴∠ABD=∠CBD,AB=BC,
∵BF=BF,
∴△ABF≌△CBF,
∴∠BAF=∠BCF,
∵在RT△ABE和△DCE中,AE=DE,AB=DC,
∴RT△ABE≌△DCE,
∴∠BAE=∠CDE,
∴∠BCF=∠CDE,∵∠CDE+∠DEC=90°,
∴∠BCF+∠DEC=90°,
∴DE⊥CF.
3.如图,在直角梯形ABCD中,AD∥BC,∠A=90º,AB=AD,DE⊥CD交AB于E,DF平分∠CDE交BC于F,连接EF.证明:
CF=EF
解:
A
E
D
过D作DG⊥BC于G.
由已知可得四边形ABGD为正方形,
∵DE⊥DC
∴∠ADE+∠EDG=90°=∠GDC+∠EDG,
∴∠ADE=∠GDC.
又∵∠A=∠DGC且AD=GD,
∴△ADE≌△GDC,
∴DE=DC且AE=GC.
在△EDF和△CDF中∠EDF=∠CDF,DE=DC,DF为公共边,∴△EDF ≌△CDF,
∴EF=CF
4.已知:在⊿ABC中,∠A=900,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。
证明:
过点C作CG⊥CA交AF延长线
于G
∴∠G+∠GAC=90°…………①
又∵AE⊥BD
∴∠BDA+∠GAC=90°…………②
综合①②,∠G=∠BDA
在△BDA与△AGC中,
∵∠G=∠BDA
∠BAD=∠ACG=90°
BA=CA
∴△BDA≌△AGC
∴DA=GC
∵D是AC中点,∴DA=CD
∴GC=CD
由∠1=45°,∠ACG=90°,故∠2=45°=∠1
在△GCF与△DCF中,
∵GC=CD
∠2=45°=∠1
CF=CF
∴△GCF≌△DCF
∴∠G=∠FDC,又∠G=∠BDA
∴∠ADB=∠FDC
5.如图,梯形ABCD中,AD∥BC,CD⊥BC,BC=CD,O是BD的中点,E是CD延长线上一点,作OF⊥OE交DA的延长线于F,OE交AD于H,OF交AB于G,FO的延长线交CD于K,求证:OE=OF
提示:
由条件知△BCD为等腰Rt△,连接OC,可证△OCK≌△ODH(AAS),
得OK=OH,再证△FOH≌△EOK(AAS),得OE=OF
A
B C
D
E
G
F
K
O
H
6.如图,在正方形ABCD的边BC上任取一点M,过点C作CN⊥DM 交AB于N,设正方形对角线交点为O,试确定OM与ON之间的关系,并说明理由.
解:∵四边形ABCD是正方形,
∴DC=BC,∠DCM=∠NBC=90°,
又∵CN⊥DM交AB于N,
∴∠NCM+∠CMD=90°,
而∠CMD+∠CDM=90°,
∴∠NCM=∠CDM,
∴△DCM≌△CBN,
∴CM=BN,
再根据四边形ABCD是正方形可以得到
OC=OB,∠OCM=∠OBN=45°,
∴△OCM≌△OBN.
∴OM=ON,∠COM=∠BON,而∠COM+∠MOB=90°,
∴∠BON+∠MOB=90°.
∴∠MON=90°.
∴OM与ON之间的关系是OM=ON;OM⊥ON.
7.如图,正方形CGEF的对角线CE在正方形ABCD的边BC的延长线上(CG>BC),M是线段AE的中点,DM的延长线交CE于N.
探究:线段MD、MF的关系,并加以证明.
证明:根据题意,知AD∥BC.
∴∠EAD=∠AEN(内错角相等),
∵∠DMA=∠NME(对顶角相等),
又∵M是线段AE的中点,
∴AM=ME.
∴△ADM≌△ENM(ASA).
∴AD=NE,DM=MN.(对应边相等).
连接线段DF,线段FN,
线段CE是正方形的对角线,∠DCF=∠NEF=45°,
根据上题可知线段AD=NE,
又∵四边形CGEF是正方形,
∴线段FC等于FE.
∴△DCF≌△NEF(SAS).
∴线段FD=FN.
∴△FDN是等腰三角形.
∴线段MD⊥线段MF.
8.如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角∠NDM,角的两边分别交AB、AC边于M、N两点,连接MN.试探究BM、MN、CN之间的数量关系,并加以证明.
证明:BM+CN=NM
延长AC至E,使CE=BM,连接DE,
∵△BDC是顶角∠BDC=120°的等腰三角形,△ABC是等边三角形,∴∠BCD=30°,
∴∠ABD=∠ACD=90°,