初一数学有理数拓展提高难题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学《有理数》拓展提高试题(一)姓名
友情提醒:试卷较难,请耐心想一想
一、 选择题(每小题3分,共30分)
1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( )
A.-1
B.0
C.1
D.2
2、有理数a 等于它的倒数,则a 2004是----------------------------------------------------( )
A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数 3、若0ab ≠,则
a b
a b
+的取值不可能是-----------------------------------------------( ) A .0 B.1 C.2 D.-2
4、当x=-2时,37ax bx +-的值为9,则当x=2时,3
7ax bx +-的值是( )A 、
-23 B 、-17 C 、23 D 、17
5、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是………………………( )
A 、1
B 、2
C 、3
D 、4
6、若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ).
A.2
B. -2
C. 6
D.2或6 7、x 是任意有理数,则2|x |+x 的值( ).
A.大于零
B. 不大于零
C. 小于零
D.不小于零
8、观察这一列数:34-,57, 910-, 1713,33
16
-,依此规律下一个数是( )
A.4521
B.4519
C.6521
D.6519 9、若1
4
+x 表示一个整数,则整数x 可取值共有( ).
A.3个
B.4个
C.5个
D.6个
10、
30
28864215
144321-+⋅⋅⋅-+-+-+-⋅⋅⋅+-+-等于( )
A .41
B .41-
C .21
D .2
1-
二、填空题(每小题4分,共32分)
11.请将3,4,-6,10这四个数用加减乘除四则运算以及括号组成结果为24的算式
(每个数有且只能用一次)_____________________ ;
12. (-3)2013×( -3
1
)2014=;
13.若|x-y+3|+()2
2013y x -+=0,则
y
x x
2-=.
14.北京到兰州的铁路之间有25个站台(含北京和兰州),设制种票才能满足票务需求. 15.设c b a ,,为有理数,则由
c
c
b b a a ++ 构成的各种数值是 16.设有理数a ,b ,
c 在数轴上的对应点如图所示,
则│b-a │+│a+c │+│c-b•│=____ _ ___; 17.根据规律填上合适的数: 1,8,27,64,,216; 18、 读一读:式子“1+2+3+4+5+…+100”表示从1开始
的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为100
1n n =∑,这里“∑”是求和符号,例如“1+3+5+7+9+…
+99”(即从1开始的100以内的连续奇数的和)可表示为
50
1
(21);n n =-∑又如
“3
3
3
3
3
3
3
3
3
3
12345678910+++++++++”可表示为10
31
n n =∑,同学们,通过以上材料的阅读,请解答下列问题:
(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)
用求和符号可表示为;
(2)计算:5
21(1)n n =-∑=(填写最后的计算结果)。
三、解答题 19、计算:
⎪⎭⎫ ⎝
⎛
--+-⎪⎭⎫ ⎝⎛---32775.2324523(4分) 20、计算:5025249⨯⎪⎭⎫ ⎝
⎛
-(4分)
21、已知02a 1b =-+-,
求
()()()()
()()200620061
2211111+++⋅⋅⋅+++++++b a b a b a ab 的值 (7分) 22、(7分)阅读并解答问题
求2008322.......221++++的值, 解:可令S =2008322......221++++, 则2S =20094322......222++++ ,
因此2S-S =122009-,
所以2008322......221++++=1
22009-
仿照以上推理计算出2009325......551++++的值
23.(8分)三个互不相等的有理数,既可以表示为1,b a +,a 的形式,也可以表示为
0,a b
,b 的形式,试求20012000b a +的值.
24、(8分)电子跳蚤落在数轴上的某点K 0,第一步从K 0向左跳1个单位到K 1,第二步由 K 1向右跳2个单位到K 2,第三步由K 2向左跳3个单位到K 3,第四步由K 3跳4个单位到K 4,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点K 100所表示的数恰是20,试求电子跳蚤的初始位置K 0点所表示的数。 (附答案,见下页) 答案‘
一、 选择题
1、B
2、D
3、B
4、A 5 、 A 6、D 7、D 8、D 9、D 10、D 二、填空题
11、(答案不唯一)、12、31
-13、670 14、702 15、1,-1,3,-3
16、-2c17、125 18、(1)∑=50
1n )n 2( (2)50
三、解答题
19、解:原式=15.175.56.4375.26.43
2
775.23246.4-=-=--=---+
+ 20、解:原式=()49825005025150105025110-=--=⎪⎭
⎫
⎝⎛⨯-⨯-=⨯⎪⎭⎫ ⎝⎛--
21、
2008
2007
22、4
2152010-
23、解:由于三个互不相等的有理数,既表示为1,b a +,a 的形式,又可以表示为0,a
b
,b 的形式,也就是说这两个数组的元素分别对应相等.于是可以判定b a +与a 中有一个是0,b a b 与中有一个是1,但若0=a ,会使a b
无意义,∴0≠a ,只能0=+b a ,即
b a -=,于是1-=a
b
.只能是1=b ,于是a =-1。∴原式=2.
24、解: 设K0点所表示的数为x ,则K1,K2,K3,…,K100所表示的数分别为1x -,12x -+,123x -+-,…,1234
99100x -+-+-+. 由题意知:1234
99100
x -+-+-+