传热学-微尺度流动与换热

合集下载

传热学-微尺度流动与换热共27页

传热学-微尺度流动与换热共27页
传热学Байду номын сангаас微尺度流动与换热
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非

西安交通大学《传热学》第六章期末考试拓展学习8

西安交通大学《传热学》第六章期末考试拓展学习8

西交《传热学》第六章单相对流传热的关联式前言各位同学,以下是西交《传热学》第六章单相对流传热的关联式的,单相对流传热试验关联式,这个标题提醒了我们这一章的主要学习内容:单相状态,对流传热,试验,关联式。

单相是指没有相变的发生,怎么理解呢,就是在传热过程中传热的双方的状态没有变化,比如说在一块冰融化的过程中就存在状态的变化。

试验,每一个理论的产生和技术的应用都要经过研究人员在大量试验的基础上加以总结,因此试验是一种的重要的研究手段,从实验中可以推算出该项试验现象遵循的试验方程式即试验关联式。

主要介绍单相对流传热的实验结果,本章将按内部流动、外部流动、大空间自然对流及有限空间自然对流的顺序展开讨论。

为了通过有限次数的实验测定而得出具有一定通用性的换热规律,在进行实验以及整理实验数据时,都必须遵循一定的原则,即相似原理。

本章将先对相似原理进行较深入的介绍基础上,再逐一介绍各类具体的实验关联式。

一、微细尺度通道内的流动与换热及纳米流体换热简介产生背景:20世纪80年代初期由于高新科学技术的发展在机械、电子、控制与能源领域,一门新兴交叉学科-微机电系统(micro-electro-mechanical system-MEMS)迅速崛起。

这里的所谓“微”是指工作部件的特征尺度在1毫米(10-3 m)到微米(10-6 m)的尺度范围。

目前微型热交换器、微尺度作用器、微尺度控制器件、微尺度生物芯片等不少已经成为商业产品。

在这样微细尺度的通道内,流体的流动与热交换出现了许多与常规尺度通道中的流动与传热过程不同的特点(统称为尺度效应,size effects)。

微细尺度传热学的研究也成为传热学研究的一个前沿重要分支领域。

气体在微细尺度通道中流动时,气体分子的平均自由程λ与通道的特征尺度L(对圆管取为直径)之比称为Knudsen(努森)数,是表征流动区域的重要参数:KnLλ=根据Kn数大小的不同,可以将气体的流动划分为以下四个区域连续介质区(continuum region):0.001Kn≤根据Kn数大小的不同,可以将气体的流动划分为以下四个区域连续介质区(continuum region):0.001Kn≤速度滑移与温度跳跃区(velocity slip and temperature jump r egion):0.0010.1Kn<<过渡区(transition region): 0.110Kn <<自由分子区(free-molecular region): 10Kn ≥Navier -Stokes 方程与能量方程以及无速度滑移(即固体壁面上流体速度等于当地的固体表面速度)与无温度跳跃即(固体壁面上流体的温度等于当地的固体表面的温度)边界条件仅适用于Knudsen 数小于 的连续介质区;在 0.0010.1Kn <<的范围内,上述控制方程仍然适用,但必须采用速度滑移与温度跳跃的条件;在过渡区与自由分子区基于连续介质假定而导出的Navier -Stokes 方程与能量方程不再适用,对流动与传热过程的数学描述需要采用基于分子动力论的有关原理与方程。

微尺度

微尺度

微通道换热器传热系数的 限制因素
• 1.通道尺寸的减少伴随着更高压力降的 产生。 • 2.
纳米流体想法的产生
• 引子:1873年,麦克斯韦最早提出用金 属颗粒来增加流体的传热性能。 • 产生:纳米流体介质,是指把金属或非 金属纳米粉体分散到水、醇、油等传统 换热介质中,制备成均匀、稳定、高导热 的新型换热介质。 • 结果:其传热特性远远高于普通流体。
微通道换热器的传热和对流
诸葛一然 11121505
微通道换热器原理
• 原理:利用传热学将热量从热流体传给 冷流体,冷热流体分别在固体壁面的两 侧流过,热流体的热量以对流和传导的 方式传给冷流体。
微通道换热器的制造
• 采用拉丝或光刻等技术在金属、玻璃等 基材上刻出几十至几百微米的细微槽道 来构成换热器的壁面,再采用焊接或胶 粘等方式形成封闭腔体来进行冷热流体 的热交换,达到制冷的目的。
对流的参数测量
流量
摩擦系数
对流参数
压强
粘度
布朗运动(Brownian motion )
• 定义:悬浮在流体中的微粒受到流体分 子与粒子的碰撞而发生的不停息的随机 运动 。
• 应用:纳米流体中的纳米颗粒发生碰撞 从一处运动到另一处传输热量,增加了 道换热器
大尺度微通道换热器
微通道换热器的制作
• 焊接要求: • 1.设计专用的工艺装置来保证槽道边缘 的对称。 • 2.保证基片在焊接时不被氧化。 • 探索结果:把待焊接片防在专门的密闭 腔体中并抽真空来进行焊接,可采用扩 散焊的方式。
传热的参数测量
温差
传热参数
热导率
热流

微尺度传热ppt

微尺度传热ppt

• 气体稀薄效应
通常用努曾数来表示气体稀薄的程度
当kn《1,连续介质区;0.01<kn<0.1, 滑移区; 0.1<kn<1,过渡 区, kn》1,自由分子流区;气体的稀薄性一般导致气体流动阻 力降低和换热减弱。
微喷管:缝宽19微米, 微喷管:缝宽19微米, 19微米 308微米 深308微米 图2 微喷管
2、微尺度流动和对流换热
• 流动阻力规律与常规尺寸条件下的不同 • 充分发展通道流的阻力因子与雷诺数的乘积不再是常数, 而应是雷诺数的函数。 • 微细通道湍流的 Nu比常规情况高 • 微细通道流传热数据很分散 • 微细通道层流向湍流过渡的雷诺数减小
影响微细流动与传热现象的某些因素:
• 流体的压缩性
由于微细通道内压力降很大,导致流体密度沿程有明显的变化,所 以必须考虑流体的压缩性,它不仅会形成加速压降,而且还将改变速 度剖面。
• 界面效应
在微细管道中液体表面张力将起更为重要的影响,此外,由于固壁 有时带静电,液体可以有极性 ,静电场的存在会阻碍液体中离子的运 动,从而使液体流动阻力增加,同时对微细管道中传热也会有重要影 响。
三、微尺度传热研究的主要问题
• • • • 微尺度导热 微尺度流动和对流换热 微尺度热辐射 微尺度的相变传热
1、的物理机制来自于两个方面:一是与导热问 题中的特征长度有关;另一方面导热能力与材料中晶粒大小有关,当 尺寸减小时,晶粒尺寸会随之减小,由于晶粒界面增大,所以输运能 力减弱,导热系数降低。
图3
图3示出了系统水平上的热耗散与系统体积之间的关系图;从图可见, 所有气冷系统数据均范入图3中的两条平行线之间的带内,由此带的斜率 看出,气冷系统中的体积热耗散密度几乎独立于系统尺寸,其范围大约在 3000W/m3—7000w/m3之间,其中笔记本电脑中的体积热耗散密度最 高,达7000W/m3。如此高密度的热量输运是一个富有挑战性的课题。 冷却微小系统的困难在于:首先,冷却空气速率不能太高,以尽可能减小 声学噪音;其次,器件结构紧凑性要求仅允许保留有限的冷却流体空间; 第三.同样的要求不允许在模块上安装大容量热沉(扩展表面);第四,低 造价的原则要求尽可能地采用塑料封装;露片,而这又会增大芯片与模块 表面之间的导热热阻,于是热量将主要聚集在基底材料上、所以,针对各 类电子器件中相当高的热源密度(图4),寻找具有高效热输运效能的微槽传 热方法多年来一直是人们探索的主题。

最新微尺度传热ppt

最新微尺度传热ppt
所有这些都说明微米/纳米电子机械系统本身所具有的独特的魅力 和意义,在这些小型或中型尺寸的系统中 ,无一例外地要用到受迫对 流空气来冷却发热器件。
图3
图3示出了系统水平上的热耗散与系统体积之间的关系图;从图可见, 所有气冷系统数据均范入图3中的两条平行线之间的带内,由此带的斜率 看出,气冷系统中的体积热耗散密度几乎独立于系统尺寸,其范围大约在 3000W/m3—7000w/m3之间,其中笔记本电脑中的体积热耗散密度最 高,达7000W/m3。如此高密度的热量输运是一个富有挑战性的课题。 冷却微小系统的困难在于:首先,冷却空气速率不能太高,以尽可能减小
• 另一类是当容器或通道尺寸缩小至与核的临界直径具有同 一量级时,相变及其换热规律必会发生变化。
四、微尺度传热的主要应用领域
1、薄膜中的热传导
1987年 ,瑞士科学家发现 YBa2Cu3O7陶瓷在温度35 K以上具有超 导电性即高温超导性。人们第一次认识到自然界存在一个超导体及半 导体均可工作的温度范围 ,于是一种集超导体-半导体于一身的功能 强大的复合器件应运而生。这类器件的基本单元是一种沉积在硅或镓 砷化物基底上的高温超导薄膜,其内外的传热问题与超导的研究和应 用密切相关 ,因而对薄膜热物性及其热输运规律进行研究自然就成为 提高仪器性能的关键所在。
• 导热的辐射效应
电子器件和电子封装中的介电薄膜材料的导热行为可能产生异常 情况,当膜厚很小时,可以用辐射传递问题来分析和讨论晶格振动。
2、微尺度流动和对流换热
• 流动阻力规律与常规尺寸条件下的不同 • 充分发展通道流的阻力因子与雷诺数的乘积不再是常数,
而应是雷诺数的函数。 • 微细通道湍流的 Nu比常规情况高 • 微细通道流传热数据很分散 • 微细通道层流向湍流过渡的雷诺数减小

微流动与传热研究

微流动与传热研究

1、流型
表征着两相系统中的流动结构,它受力学 因素所制约。但反过来极大地影响传热, 两相系统中的压降、传热系数、CI-IF等均 两相系统中的压降、传热系数、CI-IF等均 与流型息息相关。对于大通道中的流型已 进行了深入的实验及理论研究,但对于直 径在2mm以下的毛细管及更小尺寸的微通 径在2mm以下的毛细管及更小尺寸的微通 道中的流型研究相当少 随着当量直径的减小,表面张力的作用越 来越显著,从而导致了流型出现一些新的 特点。然而,到目前为止,在受热通道中 两相流流型的研究方面却非常少。
国内外研究现状
1、单相流体的流动与传热特性 2、流体相变的流动与传热特性 (1、流型 2、压降 3、传热 系数)
单相流体的流动与传热特性
对于充分发展的紊流(Re>10000): 对于充分发展的紊流(Re>10000): Nu=0.023Re0.8Pr0.4 对于充分发展的层流(Re<2200): 对于充分发展的层流(Re<2200): Nu=1.86(RePr)0.33(d/L)0.33(µf/µw)0.14 对于过渡区域(Re=2200到10000): 对于过渡区域(Re=2200到10000): Nu=0.116(Re2/3-125)Pr1/3(1+(d/ (1+(d/ L))2/3(µf/µw)0.14 其中d为管径,L为管长度,u 其中d为管径,L为管长度,uf为流体粘度
2、压降
压降对于微换热器的设计具有重要意义,它决定 了液体循环系统所需的压头。减小通道的尺寸可 以获得很高的传热系数,但与此同时却使得压降 增加、压力脉动增大。对于大通道中的两相压降, 采用现有的模型或关联式来进行预测,其误差为 ±30%左右。而将其用于微通道时,其误差则更 30%左右。而将其用于微通道时,其误差则更 大。由于两相流的复杂性及考虑到工业应用的方 便,通常采用半理论的关联式来对两相压降进行 估计。这些关联式的共同特点是所有的变量均采 用其时均值,假设总压降由摩擦压降、加速压降 和重位压降三部分组成,并将两相压降表示成单 相摩擦压降与两相倍率乘积的形式。从而将两相 压降的问题转化为确定两相倍率的问题

最新微尺度传热ppt

最新微尺度传热ppt
- ns (10 - 9s) – ps ( 10 - 12s) -fs (10 - 15s) 其中ns 是目前数字系统如计算机的时钟脉冲宽度的量级。
图1 多尺度的客观世界
微尺度的流动和传热与常规尺度的流动和传热的 不同的原因:
(1)当物体的特征尺寸缩小至与载体粒子的平均自由程同一量级时, 基于连续介质概念的一些宏观概念和规律就不再适用,粘性系数、导 热系数等概念要重新讨论 , N-S方程和导热方程等也不再适用。
微细尺度传热是近些年形成的一个新的学科分支,主要研究空间尺度和时 间尺度微细情况下的传热学规律。当尺度微细化后,其动和传热的规律已明显 不同于常规尺度条件下的流动和传热现象,换言之,当研究对象微细到一定程 度以后 ,出现了流动和传热的尺度效应。“微细”只是一个相对的概念 ,而不是 指某一特定尺度。不同的场合会有不同的定义。所谓“微尺度”并没有严格的 界定,只是一个相对大小的概念,它不仅包括空间尺度,还包括时间尺度。随着 研究对象的不同,出现微尺度效应的时空尺度范围也不相同。通常所指的空间微 尺度是跨越微米到原子尺度的宽广范围:
进 入 夏 天 ,少 不了一 个热字 当头, 电扇空 调陆续 登场, 每逢此 时,总 会想起 那 一 把 蒲 扇 。蒲扇 ,是记 忆中的 农村, 夏季经 常用的 一件物 品。 记 忆 中 的故 乡 , 每 逢 进 入夏天 ,集市 上最常 见的便 是蒲扇 、凉席 ,不论 男女老 少,个 个手持 一 把 , 忽 闪 忽闪个 不停, 嘴里叨 叨着“ 怎么这 么热” ,于是 三五成 群,聚 在大树 下 , 或 站 着 ,或随 即坐在 石头上 ,手持 那把扇 子,边 唠嗑边 乘凉。 孩子们 却在周 围 跑 跑 跳 跳 ,热得 满头大 汗,不 时听到 “强子 ,别跑 了,快 来我给 你扇扇 ”。孩 子 们 才 不 听 这一套 ,跑个 没完, 直到累 气喘吁 吁,这 才一跑 一踮地 围过了 ,这时 母 亲总是 ,好似 生气的 样子, 边扇边 训,“ 你看热 的,跑 什么? ”此时 这把蒲 扇, 是 那 么 凉 快 ,那么 的温馨 幸福, 有母亲 的味道 ! 蒲 扇 是 中 国传 统工艺 品,在 我 国 已 有 三 千年多 年的历 史。取 材于棕 榈树, 制作简 单,方 便携带 ,且蒲 扇的表 面 光 滑 , 因 而,古 人常会 在上面 作画。 古有棕 扇、葵 扇、蒲 扇、蕉 扇诸名 ,实即 今 日 的 蒲 扇 ,江浙 称之为 芭蕉扇 。六七 十年代 ,人们 最常用 的就是 这种, 似圆非 圆 , 轻 巧 又 便宜的 蒲扇。 蒲 扇 流 传 至今, 我的记 忆中, 它跨越 了半个 世纪, 也 走 过 了 我 们的半 个人生 的轨迹 ,携带 着特有 的念想 ,一年 年,一 天天, 流向长

传热学 微尺度ppt

传热学 微尺度ppt

二、一些典型微热器件及其相应的热现象
所以,针对各类电子器件中相当高的热源密度 (图1.4),寻求具有高效热输运效能的微槽传热方法 多年来一直是人们探索的主题。
图1.4 模板上各类热源的几 何结构及其设置
二、一些典型微热器件及其相应的热现象
• 5、微型换热器 如上所述,微型换热器最实际的应用是在微电 子器件的冷却上。现代微制造技术的进展已经使得 加工由多个水力学直径在10到10³μm之间的微型管道 组成的换热器成为可能。这类流动槽道或交错肋片 通常制作在硅、金属或其他合适材料的薄片上,每 一薄片既可单独组成一个平板换热器,也可堆叠和 焊接在一起以形成平行的顺流或逆流换热器(见图1.5 及图1.6)。
二、一些典型微热器件及其相应的热现象
图1.7 微热管运行示意图
二、一些典型微热器件及其相应的热现象
• 6、微型燃气透平用燃烧室 Waitz等新近发展了一个针对微燃气透平的燃 烧室,如图1.8
图1.8 微型燃气透平发电机
二、一些典型微热器件及其相应的热现象
微型和常规器件在设计上的差别大多是由于尺 寸缩小引起的,但它也受燃烧室与发动机的相对尺 寸、周期压比、材料温度极限等影响。微型燃烧室 的一些特别之处在于: (1) 具有更短的用于混合和燃烧的停留时间; (2) 附加的能量损失主要由较高的比表面积决定; (3) 采用了难熔的结构陶瓷。 微机电技术是在一些难熔结构陶瓷的微加工成 为可能后才得以实现的,这些材料具有适应恶劣环境 的优异的机械、热学及化学性质。它们已经成为制造 某些大尺度器件的着眼点。
微米/纳米尺度传热学
第一章 绪论
西安电子科技大学
第一章 绪论
一 、导言 二、一些典型微热器件及其相应的热现象 三、微器件中传热问题的尺寸效应 四、微尺度传热学中的一些分析方法

微尺度 传热

微尺度 传热

这里v0为特征速度,ν为流体动力黏度。Mach数 为流动速度与声速的比值
v0 Ma a0 (5.9)
Mach数为流体可压缩性的动力学测速。基于气体 分子动力学理论,可将平均自由程与黏度关联起 来,即
三、流体模型区域划分
1 L * vm 2
(5.10)
其中µ 为黏度, 于声速,且
一、导言
论偏离于传统流体力学理论所预示的情况,其摩 擦因子是Reynolds数的函数,乘积(f Re)值取决于 槽道表面的粗糙度,且最高可达118,远大于传统 流道下对应的层流值64,而且流体从层流转变到 湍流时的Reynolds数约为1000,这也与传统认识 不同;此外,Pfahler等对尺寸在0.5µm到50µ m的 槽道内气体和液体进行了一系列实验研究,其流 动假设得到充分发展,且槽道长度与其水力学直 径的比值非常大,因不能找到计算可压缩流的阻 力因子公式,作者们引用了前人的观察结论,将 不可压缩流的值用于一些亚音速可压缩流,于是 所测得的摩擦因子与采用不可压缩流理论预示出
二、一个典型微尺度流动现象
f (110 8) / Re Re 900 900 Re 3000 f (0.195 0.017) / Re0.11 3000 Re 15000 (5.4) f 0.165(3.48 log Re)2.4 (0.081 0.007)
三、流体模型区域划分
对稀薄气体动力学的先期实验工作,是由Knudsen 在1909年完成的,在零Knudsen数极限,连续动量 和能量方程中的输运项可以忽略,而N-S方程可简 化为无黏Euler方程,热传导、黏性扩散以及耗散 效应均可忽略。从连续介质的观点看流动可近似 为等熵(即绝热及可逆)过程,而分子观点则认为每 一处速度分布均处于局部平衡或呈Maxwell形式。 随着Kn的增加,稀薄效应变得更为显著,从而会 最终使连续模型不再成立。不同Knudsen数区域可 归纳如下:

传热学-学习课件-专题1-微尺度传热问题

传热学-学习课件-专题1-微尺度传热问题
分子动力学方法则用于揭示那些量子力学效应不明显时的物 理现象的分子特征,它们也对分子统计理论,如Boltzmann 方法及直接Monte-Carlo模拟法,提供分子碰撞动力学方面 的知识;
直接Monte-Carlo模拟则是一种计算微尺度器件内(通常其 Knudsen数较大)尤其是稀薄气体流的流动和传热问题的方法;
对于具有量子效应的物理过程,如光与物质的相互作用、金 属材料中的热传导问题等,应采用量子分子动力学方法。
微尺度传热的应用
1、薄膜中的热传导
1987年 ,瑞士科学家发现 YBa2Cu3O7陶瓷在温度35 K以上具有超导 电性即高温超导性。人们第一次认识到自然界存在一个超导体及半导体 均可工作的温度范围 ,于是一种集超导体-半导体于一身的功能强大的 复合器件应运而生。这类器件的基本单元是一种沉积在硅或镓砷化物基 底上的高温超导薄膜,其内外的传热问题与超导的研究和应用密切相关 , 因而对薄膜热物性及其热输运规律进行研究自然就成为提高仪器性能的 关键所在。
传热学研讨课 Heat Transfer Seminar
研讨主题:微尺度传热问题
主讲老师:王舫
课前准备:
从研讨内容中选定汇报主题,查阅微尺度传热研究的 相关资料(论文,图书,专利,新闻等),制作PPT 进行课堂汇报。
研讨内容:
微尺度判据; 微尺度传热特点; 微尺度传热的主要问题; 微尺度传热的应用
Kn 0.001
-连续介质区
0.001 Kn 0.1 -速度滑移、温度跳跃区
0.1 Kn 10 -过渡区
Kn>10
-自由分子流
当气体流动的Kn数大于0.001以后连续介质的假 定失效,流动与换热呈现出许多新的特点。
微尺度流动与传热的特点

微尺度换热与流动研究进展陶文铨64页PPT

微尺度换热与流动研究进展陶文铨64页PPT

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
微尺度换热与流动研究进展陶文铨
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。

谢谢!
64

PO6013微尺度流动与传热-SJTU

PO6013微尺度流动与传热-SJTU

1《微尺度流动与传热》课程教学大纲课程名称:微尺度流动与传热课程代码:PO6013学分/学时:3学分/48学时开课学期:春季学期适用专业:工程热物理、热能动力工程、制冷与低温工程、核科学与工程、航空航天工程先修课程:工程热力学,流体力学,传热学后续课程:无开课单位:机械与动力工程学院一、课程性质和教学目标(需明确各教学环节对人才培养目标的贡献,专业人才培养目标中的知识、能力和素质见附表)课程性质:微尺度流动与传热学是近些年传热学领域形成的一个新的学科分支。

当尺度微细化后,其流动和传热的规律已经明显不同于常规尺度条件下的流动和传热现象,出现了流动和传热的尺度效应。

同时,微尺度还包括时间尺度上的微细。

本课程就微尺度流动与传热的尺度效应开展讲解和探讨,对其物理机制展开分析。

主要内容包括微尺度的多相流,沸腾和凝结换热,以及微尺度换热器加工、设计和性能分析等。

其中将相变传热中的微尺度传热问题分为两大类:一是常规尺度沸腾或凝结中存在的微细尺度传热问题:如汽泡、液滴的成核和相变过程中的微液膜换热等等。

另一类是当容器或通道尺寸缩小至与成核临界直径具有同一量级时,相变及其换热规律的变化。

教学目标:本课程的目的在于使研究生了解国际传热界的最新研究成果,培养学生的创新意识。

在讲授求解微尺度流动与传热问题的方法时,强调对传热现象物理机制的分析,训练学生从工程或科研的实际问题中抽象概括出典型微尺度传热问题的能力。

通过本课程学习,使学生进一步掌握传热学的基本规律,并能运用这些规律进行基本热学过程分析。

掌握空间微尺度和时间微尺度条件下的流动和传热科学的核心问题,具有正确分析和提高系统传热效率的能力。

二、课程教学内容及学时分配(含实践、自学、作业、讨论等的内容及要求)1. 微尺度传热学的发展(4学时/课堂教学)2内容:20世纪60年代,以田长霖教授为代表的热物理学家开始注意到工程中传热问题的尺寸效应,于是微尺度传热学逐渐兴起,并于80年代后期得到迅速发展。

有关微细尺度传热问题的研究进展1

有关微细尺度传热问题的研究进展1

有关微细尺度传热问题的研究进展1有关微细尺度传热问题的研究进展余益松(常州大学石油工程学院常州213002)摘要:随着科技的进步,以及技术应用的需求,工程学在微观领域取得了长足的发展。

一方面器件的特征尺度越来越小,已经从微米量级向亚微米量级发展。

另一方面器件的集成度也不断增大。

高的集成度不仅对技术要求提出了挑战,而且可以想象,如此多的集成元件会使热流密度很大。

这样的矛盾充分体现在高密度的微电子领域。

如此多的热量如何能够快速的传递的出去,以保证机械的正常运转。

这给工程师们造成了很大的困扰。

微细尺度传热问题便是在这种背景下发展起来的。

无论是在国内还是在国外,这个问题已经成为制约微型电子机械系统发展的一大障碍。

工业、国防、航空、航海、医学、生物工程以及农业的“微型化”发展,迫切需要解决散热这一基础性的问题。

为此国内外的许多学者对这方面做了很多的研究工作,但经过三四十年的发展其所取得的成果依然很少,甚至不同的学者对这一问题持有相反的观点。

至今对这一问题仍然没有形成一个统一的认识。

本文通过简要的介绍微尺度传热问题的由来、特点、内部机理、所遇到的问题、发展前景及其所涉及主要的研究方向,使读者对这一问题有一个初步的认识和了解。

关键词:特征尺度;集成;微细尺度;散热;传递Research progress of the micro-scale heat transfer problems Yu yisong(Changzhou University of Petroleum Engineering, Changzhou, 213002, China;)Abstract:With the advancement of technology, and technology applications demand, the engineering has made considerable development in the microscopic field. On the one hand, the characteristic scale of the device is getting smaller andsmaller, from microns to submicron development. The other hand, the device integration is also increasing. The high degree of integration is not only a challenge on the technical requirements, but you can imagine, so many integrated components cause the heat flux. This fully reflects the contradictions in the field of high-density microelectronic. How so much heat can be quickly passed out, in order to ensure the normal operation of the machinery? This caused a lot of distress to the engineers. A micro-scale heat transfer problem is developed in this context. Whether at home or abroad, this issue has become a major obstacle restricting the development of micro-electro-mechanical systems. Industrial, defense, aviation, marine, medical, bio-engineering, and agriculture "miniaturization" development, there is an urgent need to address the basic problem of the heat. This home and abroad many scholars in this area to do a lot of research work is still very small, but after three or four decades the development of their achievements, and even different scholars hold the opposite point of view on this issue. So far on this issue is still not formed a unified understanding. In this paper, a brief introduction to micro scale heat transfer problem the origin, characteristics, internal mechanism, the problems encountered, the prospects for the development its main research direction, so that readers have a preliminary knowledge and understanding of this issue.Keywords:Characteristic scale;Integrated;Fine-scale;Radiating;Transfer1 引言20世纪60年代著名物理学家Richard Feynman[1]提出了微型机械的设想,这开辟了工程学的一个新的领域-微电子机械系统。

微尺度对流传热

微尺度对流传热
微型热管理模块
在微电子封装中,通过微型热管理模块实现热量快速传输和均匀分 布,提高封装可靠性和稳定性。
在生物医学领域的应用
1 2
生物芯片的热管理
在生物芯片中,利用微尺度对流传热技术,实现 快速、均匀的热流传输,提高生物实验的准确性 和可靠性。
微型冷却系统
在医疗植入物和精密手术器械中,利用微型冷却 系统降低设备温度,提高手术安全性和效果。
加强实验研究
发展更为精密的实验测量技术,提高实验结果的准确性和 可靠性,为理论研究提供有力支持。
注重实际应用
在研究过程中,注重与实际应用相结合,将研究成果转化 为实际生产力,推动微尺度对流传热技术的实际应用和产 业化发展。
感谢您的观看
THANKS
采用多物理场耦合求解方法,综 合考虑流场、温度场、应力场等 物理场之间的相互作用。
03
微尺度对流传热的实验研 究
实验设备与技术
微通道反应器
用于模拟微尺度流动和传热过程,具有高精 度和高通量的特点。
微流体芯片
用于研究微尺度流动和传热特性,具有微型 化、集成化和高灵敏度的优点。
光学显微镜
用于观察微尺度流动现象和测量流速、温度 等参数,具有高分辨率和高精度。
应用前景
探讨微尺度对流传热在微型热力系统、 微电子散热、生物医学等领域的应用 前景。
04
微尺度对流传热的应用
在能源领域的应用
微型热力发电
01
利用微尺度对流传热原理,将热能转化为电能,为微型设备提
供动力。
高效散热设计
02
在紧凑型电子设备中,通过优化微尺度对流传热路径,提高散
热效率,延长设备使用寿命。
VS
研究现状
目前,研究者们在实验和数值模拟方面取 得了一系列重要成果,对微尺度对流传热 的机理和规律有了更深入的认识。同时, 研究领域也在不断拓展,涉及到更多实际 应用背景的问题。

微纳米尺度流动与传热传质基础

微纳米尺度流动与传热传质基础

微纳米尺度流动与传热传质基础
微纳米尺度的流动与传热传质基础是一个复杂的学科领域,它涵
盖了不同的领域如微流体力学、传热传质、生物化学、材料科学等。

这个领域的研究对科技领域有着巨大的影响,因为它可以给人们带来
更小、更快、更有效的技术方案。

首先,我们来谈谈微纳米尺度的流动。

在微纳米尺度下,流体遵
循的是微观运动学原理,与宏观流体力学不同。

流动的介质是极小的、具有高表面活性和流体分子之间相互作用的物质,如气体、液体和悬
浮液。

微观尺度下,一些特殊现象如界面现象、毛细现象和饱和悬浮
等在流动中变得更加明显。

流体与控制介质界面的形状和内部运动也
是微观尺度流动的重要特征。

其次,微纳米尺度的传热传质也是一个重要的领域。

在微观尺度下,热传递是通过分子间的能量传递来实现的。

在微观尺度下,物态
变化也会对热传递产生巨大影响,如气态、液态和固态之间的相变。

热传递方式包括传导、对流和辐射。

同时,由于微纳米尺度下表面积
相对较大,因此表面效应和相互作用在传热传质过程中也是非常重要的。

最后,我们谈论微纳米尺度流动与传热传质的应用。

微纳米科技
在生物医学和环境监测方面有着广泛的应用,例如微型分析仪器、悬
浮液调制和细胞操作体系等。

在电子学和热管理领域,微纳米技术也
具有很高的价值,例如光纤通讯、光电处理和半导体热管理等。

综上所述,微纳米尺度流动与传热传质基础是一个复杂的学科领域,从理论研究到实际应用都具有非常重要的意义。

我们可以预见这
个领域在未来将对科技进步和产业发展产生更多的贡献。

传热学微尺度ppt课件

传热学微尺度ppt课件
建立和求解Boltzmann方程的主要动机源于两 类应用:其一是为了在当材料内能量载子的平均自 由程远小于问题的特征尺寸时,能够从微观模型导 出介质的宏观行为,所以这些应用是统计力学基本 问题的一种特殊情形,而统计力学的任务 就是在物
6
二、Boltzmann输运理论
质原子结构及其宏观连续介质行为之间建立一个桥 梁,此方面的典型应用是解释气体的宏观行为,并 从分子对相互作用定理计算出黏度及热传导系数。 Boltzmann方程的第二类应用是在平均自由程与特 征几何尺寸相比不再能忽略时对宏观介质的描述。 很明显,在这样的条件下,人们不再能指望介质的 “宏观行为”能够轻易地用密度、比热容、热导率 等量来描述,虽然这些概念仍然是有意义的,且最 后结果仍要借助于物体的可测量如温度来衡量。所 以,在这些条件下,Boltanann方程作为一个可涵 盖整个传热行为的方程而占有特别重要的地位。
4
二、Boltzmann输运理论
1、概述
众所周知,在动力学理论中,空间和时间内 的局域热平衡是一个隐含的固有假没。设体积的 特征长度为lr,时间尺度为τr,则当物体的尺寸 L=lr,或真实时间t≈τr ,也或二者兼有时,则动力 学理论不再成立,这是因为此时局域平衡假设不 再有效,为此需要一个更基本的理沦。 Boltzmann输运方程正是这样一种理论,它被认为 是现有方法中用来分析微尺度能量输运现象的最 具有普遍适用性、最基本和强有力的工具,虽然 其最初的主要目的是用作气体研究,但发展至今 已被推广用于范围极其广泛的各类介质。
加速度矢量口的分量。
vdt , t
dt )
f (v, r, t)dv dt
f t

scat
d
v
d

微尺度流动与传热基本规律的研究

微尺度流动与传热基本规律的研究

第二章实验设计
恒温控制单元
图2.1实验系统图(单微通道)
图2.2单微通道实验段结构图
实验过程如下:
●向储液容器中装入去离子水,约占容器总容积的80%。

·设定恒温控制单元的温度为95。

C,如此高的温度可使液体中的不凝结性气体排出。

●密闭储液容器,从液面顶部通入高压氮气,由精密压力调节阀控制所需
的实验压力,容器中的液体温度由恒温控制单元PID控制。

●打开系统管路阀门,使液体流过实验段,逐渐增加加热功率。

质量流速
通过精密电子天平由称重法得到,加热功率由功率计直接读出。

23
中国科学技术大学博士学位论文
图2.5微槽道换热器立体结构图
§2.2测试技术
实验需要测量的主要参数有:微尺度通道的壁面温度,工质的进出口温度,工质流量,电加热功率,实验段的压力等‘”。

温度的测量:
均由K型热电偶测得,热电偶的精度为O.1℃,所有热电偶在安装前都经过校验。

压力和压差的测量:
采用压力传感器(se仃asystemModel206)测量实验段的进口压力,精度为O.5%FS。

采用压差变送器(DPl300一DP55E22M4D1)测量实验段的进出口压差,精度为0.5%FS。

流量的测量:
采用转子流量计和电子天平。

转子流量计读数经高精度电子天平(JJl000)
26。

传热学微尺度ppt

传热学微尺度ppt
01
02
ห้องสมุดไป่ตู้
考虑到上述原因,Adams等(1998)采用了直径为0.76mm和1.09mm的圆形槽道,对其中水的湍流单相受迫对流问题进行了实验研究,由此避开了槽道高宽比引起的附加效应。图7.4为测试段中内径中为0.76mm的管道详细图示。整个测试段在一个铜圆柱上加工而成。Adams等(1998)的得到了一个一般性的Nusselt数为
正是这些复杂因素增大了分析微对流传热问题的复杂性,如何正确评价各种因素对微传热的贡献具有特别重要的意义。本章将扼要介绍微对流传热方面的一些典型问题及其有关的物理机制。
7.2一些典型的微尺度对流传热现象
现在已经得到普遍认同的是,对于微结构内的流动和热交换,经典有效的模型不一定适用。比如,Wu和Little(1984)测量了流过四个微槽道测试元件(槽高在89m到97 m ,槽宽在312 m 到572 m 范围)中氮气的换热系数,试验给出的层流区、过渡区及湍流区由1000到3000的Reynolds数分开,层流Nusselt数随Reynolds变化,而过渡区换热数据很难关联,Reynolds比拟对于粗管中的湍流不再成立。Chio等(1991)测定了微管内氮气在层流和湍流区的摩擦和对流换热系数,试验结果表明与传统尺寸管道中得到的热流体关系严重偏离。对于直径小于10m或Reynolds数低于400的微管情况,其摩擦关联式C=fRe得到的常数是C=53而非传统的64,所测得的层流换热Nusselt数强烈地表现为Reynolds数的函数,而对于微管中的湍流换热,则7倍于由Colburn比拟j=f/8得到的值。
气或流体引起的摩擦力、静电力及黏性力的重要性不断增大,而此类规律尚未得到充分认识,所以隐含在各种微加工技术中的关键问题是建立小器件的科学与工程基础。 借助于先进的微加工技术,目前制造由多个水利直径在10μm到1000μm的微小流道组成的微型热交换器已不成问题。微尺度对流换热的例子可以在不同结构如微凹槽表面(Xu及Carey,1990)、微热管(Swanson及Peterson,1995;Peterson等,1998)、微效应器、微控制器甚至一些生物反应器中找到,冲击流最近也被证实能较大的增强微槽道(Zhang等,1997)及电子芯片表面(Lin等,1997)的传热性能。研究者们也对小尺度方形槽道内流体的非牛顿行为和层流强化换热问题进行了实验研究(Lin等,1996)。在许多应用中,微槽道内极强的过冷单项相受迫对流是一个有效的冷却机制,而宽度和深度加工为20m到1000 m范围的微槽道还被用于需要高热流的场合。由于在如此众多的领域,如微电子学、生物反应器及微热交换器等中的重要应用,微结构中的流动和传热已经成为近期研究的主要目标之一。

微尺度流体液力学与传热特性研究

微尺度流体液力学与传热特性研究

微尺度流体液力学与传热特性研究第一章引言流体力学和传热学是物理学的两个分支,它们分别研究流体的运动和与物体之间的热传递。

在微尺度下,流体的流动和传热特性往往与传统尺度下的情况有很大不同,这使得微尺度流体力学和传热学成为了一个热点研究领域。

第二章微尺度流体力学微尺度流体力学研究的主要是微观尺度下的流体行为,主要包括微通道流、微纳米颗粒悬浮体、微纳米流动和微纳米流体特性研究等。

微尺度流体力学与传统流体力学的不同之处在于,微尺度下的流体运动主要受到分子效应和表面效应的影响。

微尺度流体力学研究中的主要问题包括:纳米通道流体的输运机理和性质、纳米尺度的流体相变、微尺度下的流体稳定性和混合、微通道流中的传热过程以及微纳米流动中的流动稳定性等。

第三章微尺度传热学微尺度传热学主要研究微尺度下的传热特性,包括对于微观物质热传递机理的研究以及针对微观传热问题的解决方案。

在微尺度下,分子热传递是十分重要的。

微尺度传热学的主要问题包括:微流混合中的传热增强、纳米流体的相变传热、微观尺度下的液-液传热、界面传热,以及微观传热与微观流体力学的耦合等。

第四章微尺度流体力学与传热特性的重要性微尺度流体力学和传热学的研究对于微纳米器件和系统的设计和制造具有非常重要的意义,因为这些器件和系统的效率往往受到微观尺度下的流体力学和传热特性的影响。

比如,在微纳米元件中,微通道的增强传热和制冷效果是非常重要的。

研究微通道流中传热特性的机理和提高热传递效率是这一领域关注的重点。

此外,还可以应用微纳米流体力学和传热学的知识来设计高效的微纳米传感器和微纳米能量转换器等。

第五章结论微尺度流体力学和传热学的研究领域涉及到多个方面,包括微纳米元件、微纳米系统、生物体系等,发展非常迅速,对于推动微纳米技术的发展具有重要意义。

未来我们可以通过更多的理论和实验研究来深入挖掘微尺度流体力学和传热学的奥秘,进一步开发和设计出更加智能化、有效率的微纳米器件和系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8
(3)换热器:尺度已经跨越3个数量级
图7 换热器的多尺度范围
22
4 微尺度流动与换热基本特点 (1)面积与体积之比大大增加 常规尺度的物体,例如1米立方的体积,其表
面积为6米平方,面积/体积之比,
A/V=6m-1
将该物体分为尺度为1微米的 1018 小立方体,
侧面积与体积之比为
A/V=6 106 m-1
图12 二维微肋管
27
图13 三维微肋管
28
在微尺度系统中作用在流体上的体积力与表面
力的相对重要性发生了巨大的变化:表面力的地位
上升: 随着尺度减小,粘性力相对作用增强,惯 性力作用变小,越靠近壁面这种规律越明显。 (2)对气体可压缩性大大增加,引起稀薄效应
对气体在微细通道中的受迫对流,由于单位
通道长度流体压降很大,沿通道长度流体密度发 生显著变化。
性,电渗,电泳。
(4)固体表面的绝对粗糙度在微尺度通道中影响更 加明显
常规尺度通道 同样的绝对粗糙度
微细尺度通道
对内径8毫米的
管子在壁面上产生
0.1 微米厚的凝结 液体大约需要6百万 个分子。
图8 管内凝结的 分子动力学模拟 预测
17
(a) 日立Thermoexcel-E
(b) Wieland GEWA-TW
尽管通道进口当地Ma数很小,但是出口处, Ma可以很大;必须考虑可压缩性;同时流体沿通道
剧烈加速,稀薄性影响逐渐显露。
气体的稀薄性用无量纲数Kn(Knudsen)数
表示:
Kn

L
为气体分子平均自由程;
L 为通道特征尺度。
气体流动按Kn数大小的分类(钱学森,1946):
Kn 0.001
(1)微喷管内的流动 图4 微喷管系 统示例
10 12
微喷管
15 12
加热器 喷嘴
70°
0.1
0.92 0.2
1.2
隔板
4.5
0.3
0.1 0.3
0.42
2.42 7
基座
工质
图5 微喷嘴加热系统
5
微喷管: 缝宽19微米, 深308微米 图6 微喷管
6
微喷管用于自由分子微电阻加热推力器中,可为 微型航天器姿态控制提供动力。其工作原理是采用薄
微尺度流动与换热
1 微尺度流动与换热的一般概念
大千世界的物体 尺度变化跨三十余个
数量级,近10余年来
科学技术发展的重要 方向之一是微型化。
图1 多尺度的客观世界
爱因斯坦曾经预言: “未来科学的发展无非是继续向宏观世界和微观世界 进军” ;
1959,美国物理学家、诺贝尔奖获得者理查德· 弗曼在美国西海岸会议上宣读了一篇经典论文
“There is plenty of room at bottom”,首次提出
纳米技术的预言。
1962年,第一个硅微型压力传感器问世,其后
开发出尺寸为50-500mm的齿轮、齿轮泵、气动涡
轮及联结件等微机械 (里程碑 )。
1989年,在美国盐湖城会议上,首次提出
MEMS概念:Micro-Electro-Mechanical
(2)燃料电池流场板内的流动 燃料电池流场板内的流动燃料电池等温地将化学
能转换成为电能,不需要经过热机过程,效率不受卡
诺循环地限制,转化效率可达40-60%;环境友好,
几乎不排放氮氧化合物与硫化物,二氧化碳地排放过
量也必火电厂减少40% 以上被认为是21世纪很有希 望的高效、洁净能源。
图7 PEMFC的电化学反应示意图
Systems,这是指特征尺度在 1mm-1 μm 之间 集电子、机械于一身的器件。在这样的器件中有气体 或者液体作为工作介质,其内部的流动与换热就是一 般的微尺度流动与换热。
2 热流现象的尺度范围
图2 热流科学研究对象的时间尺度
20
图3 热流科学研究对象的空间尺度 21
3 微尺度流动与换热举例
(c) Wolverine-Turbo-B
(d) Wielad GEWA-SE
(e) Trent 弯翅管
(f) 烧结表面
图9 部分商用沸腾换热强化表面结构示意图
24
图10 双侧强化管C 26
Hitachi Review, 1975, 24(8):329-334
-连续介质区
0.001 Kn 0.1 -速度滑移、温度跳跃区 0.1 Kn 10 Kn>10
-过渡区 -自由分子流
当气体流动的Kn数大于0.001以后连续介质 的假定失效,流动与换热呈现出许多新的特点。
(3)对液体,由于面体比的变化使固体表面的界面 效应明显:双电层(Electric Double Layer),电粘
膜电阻做加热器,通过推进剂分子(水蒸气或氩气)
与加热器壁面的碰撞,将能量传递给推进剂,再经过 喷管喷出,产生推力。推力器尺寸很小(通道宽度 1~100μm)。它要求加热元件与出口缝隙之间的空 间等于气体的平均自由程,从而减少分子之间的碰撞,
保证喷出气体的分子动能等于加热器的温度(系统内
最高温度),提高总效率,从而获得最高的比冲(单 位质量推进剂所产生的冲量称为比冲量) 。
相关文档
最新文档