八培第三讲整式的乘除和乘法公式电子教案

合集下载

整式的乘除的教学设计

整式的乘除的教学设计

第四组:))(()计算(y x y -x 4-y -x 22+考查点:乘法公式: 1、完全平方式 2、平方差公式第五组:计算 [()22b -b a +] ÷a +ab b a ÷22 考查点:多项式除法(两种方法解答)说明:每组展示的同时其他同学也动手做题达到练习巩固的作业。

四、课堂测试单选题(本大题共6小题, 共60分)1. 下列计算正确的有( )2. ①;②;③;④; ⑤.⑥ A. 0个 B. 1个 C. 2个 D. 3个2.绿色植物靠吸收光量子来进行光合作用,已知每个光量子的波长约为毫米,则每个光量子的波长可用科学记数法表示为( )米.A. B. C. D. 3.下列各式,计算正确的是( )A.B. C.D.4.已知,,则的值为( ) A. -80 B. 2 C. 3 D. 825. 已知是完全平方式,则的值为( )A. 1B. 3C. -3D. ±36.若,,则的结果为( )A. 45B. 39C. 15D. 21说明:学生通过睿课堂平台在pad 上独立完成课堂测试,通过睿课堂可以多方面的了解学生的答题速度,正确率,难点等情况。

五、小结1. 学生对本章知识有了系统的交接和掌握。

2. 灵活利用本章知识解决实际问题。

六、布置作业一份单元测试试卷七、教学评价本节内容是关于整式的乘除这一章的知识点,通过课前自主学习,把学生从被动地学习数学知识变为主动地获取数学知识。

把同学们求知的欲望在教师的点拨下萌发出来;让知识的学习在教师的指导下灵活起来;让探究的意识在教师的引导下增强起来;让反馈的信息在师生互动中得到及时解决;让学生的思维在探究的过程中拓展开来。

让同学们的积极性不断提高起来。

整式的乘除教案原文

整式的乘除教案原文

整式的乘除教案原文一、教学目标:1. 知识与技能:(1)理解整式乘除的概念和意义;(2)掌握整式乘除的运算方法和相关性质;(3)能够熟练地进行整式乘除的计算。

2. 过程与方法:(1)通过实例演示和练习,培养学生的观察、分析、推理能力;(2)运用归纳总结的方法,让学生掌握整式乘除的运算规律;(3)注重培养学生运用整式乘除解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和自信心;(2)培养学生勇于探索、积极思考的科学精神;(3)培养学生合作交流、共同进步的良好习惯。

二、教学内容:1. 整式乘法:单项式乘单项式、单项式乘多项式、多项式乘多项式。

2. 整式除法:单项式除以单项式、多项式除以单项式、多项式除以多项式。

3. 整式乘除的运算法则和性质。

三、教学重点与难点:1. 教学重点:整式乘除的运算方法和相关性质。

2. 教学难点:整式乘除的运算规律和灵活应用。

四、教学过程:1. 导入新课:通过生活实例或数学故事,引出整式乘除的概念和意义。

2. 讲解与演示:运用多媒体课件或板书,讲解整式乘除的运算方法,并进行示范性计算。

3. 练习与交流:学生独立完成练习题,教师选取典型答案进行讲解和交流,引导学生发现和总结整式乘除的运算规律。

4. 拓展与应用:布置一些实际问题,让学生运用整式乘除进行解决,提高学生的应用能力。

5. 总结与反思:对本节课的内容进行归纳总结,强调整式乘除的运算方法和注意事项。

五、课后作业:1. 完成课后练习题,巩固整式乘除的基本运算方法。

2. 举一反三,运用整式乘除解决实际问题,提高学生的应用能力。

六、教学评价:1. 评价目标:本节课主要评价学生对整式乘除的概念理解、运算方法和应用能力的掌握程度。

2. 评价方法:(1)课堂问答:通过提问,了解学生对整式乘除概念和运算方法的理解情况;(2)练习批改:检查学生课后作业完成情况,评估其运算能力和应用水平;七、教学反思:1. 教学内容:回顾本节课的教学内容,梳理整式乘除的概念、运算方法和应用实例;2. 教学过程:反思教学过程中的亮点和不足,如课堂问答、练习与交流、拓展与应用等环节;3. 学生反馈:根据学生课堂表现、作业完成情况和学习感悟,了解学生的学习效果和需求;4. 改进措施:针对教学中的不足和学生反馈,调整教学策略和方法,为后续教学做好准备。

人教版数学八年级上册《整式的乘除》教学设计1

人教版数学八年级上册《整式的乘除》教学设计1

人教版数学八年级上册《整式的乘除》教学设计1一. 教材分析人教版数学八年级上册《整式的乘除》是初中数学的重要内容,主要让学生掌握整式乘除的运算方法,为后续代数的学习打下基础。

本节课的内容包括整式乘法、整式除法,以及多项式与多项式的运算。

通过本节课的学习,学生能够理解整式乘除的运算规则,并能灵活运用到实际问题中。

二. 学情分析八年级的学生已经掌握了整数、分数和小数的四则运算,对于新的运算规则,他们有一定的接受能力和学习兴趣。

但同时,学生对于抽象的代数运算可能会感到困惑,因此,在教学过程中,需要注重引导学生理解运算规则,并通过丰富的实例来帮助学生理解和掌握。

三. 教学目标1.知识与技能:使学生掌握整式乘除的运算方法,能熟练进行整式的乘除运算。

2.过程与方法:通过小组合作、讨论交流的方式,培养学生的合作能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力。

四. 教学重难点1.重点:整式乘除的运算方法。

2.难点:理解整式乘除的运算规则,并能灵活运用到实际问题中。

五. 教学方法采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究,合作交流,提高学生解决问题的能力。

六. 教学准备1.教学素材:PPT、黑板、粉笔等。

2.教学工具:多媒体设备。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容,例如:“小明有一块长方形的地毯,长为6米,宽为4米,他想将地毯剪成相同大小的小块,每块的尺寸是多少?”让学生思考如何通过整式乘法来解决这个问题。

2.呈现(10分钟)通过PPT展示整式乘法的运算规则,并通过例题来解释和展示运算过程。

例如,展示(a+b)×(c+d)的运算过程,引导学生理解分配律。

3.操练(10分钟)让学生独立完成一些整式乘法的练习题,教师随机抽取学生进行答案的讲解和解析。

同时,引导学生发现整式乘法中的规律和技巧。

4.巩固(10分钟)通过一些具有挑战性的问题,让学生进一步巩固整式乘法。

人教版八年级上册数学整式的乘除全章课件

人教版八年级上册数学整式的乘除全章课件
17个10 =1017
3个10
通过观察可以发现1014、 103这两个因数是同底数 幂的形式,所以我们把 像1014×103的运算叫做
同底数幂的乘法 .
请同学们先根据自己的理解,解答下列各题. 103 ×102 =(10×10×10)×(10×10) = 10( 5 ) 23 ×22 =(2×2×2)×(2×2)=2×2×2×2×2 =2( 5 )
2.计算:(1)23×24×25
(2)y · y2 · y3
【解析】(1)23×24×25=23+4+5=212 (2)y · y2 · y3 = y1+2+3=y6
3.计算:(-a)2×a4
【解析】原式 = a2×a4 =a6
(-2)3×22 原式 = -23 ×22
= -25
当底数互为相反数时, 先化为同底数形式.
(an)3·(bm)3·b3=a9b15 a3n ·b3m·b3=a9b15 a3n ·b3m+3=a9b15 3n=9,3m+3=15
n=3,m=4.
通过本课时的学习,需要我们掌握:
积的乘方法则 (ab)n =anbn (n为正整数) 积的乘方等于把积的每个因式分别乘方,再把 所得的幂相乘.
通过本课时的学习,需要我们掌握: 1.am·an =am+n(m、n都是正整数) 2.am·an·ap = am+n+p (m、n、p都是正整数)
14.1.2 幂的乘方
1.经历探索幂的乘方运算性质的过程,进一步体会幂 的意义,发展推理能力和有条理的表达能力. 2.了解幂的乘方的运算性质,并能解决一些实际问题.
【解析】xm·x2m= x3m =2 x9m =(x3m)3 = 23 =8 6.若a3n=3,求(a3n)4的值.

整式的乘除教案原文

整式的乘除教案原文

整式的乘除教案原文一、教学目标1. 知识与技能:(1)理解整式的乘除概念;(2)掌握整式乘除的运算法则;(3)能够熟练进行整式的乘除运算。

2. 过程与方法:(1)通过实例演示,引导学生发现整式乘除的规律;(3)设计适量练习,提高学生的运算能力。

3. 情感态度与价值观:(1)培养学生积极参与数学学习的兴趣;(2)培养学生克服困难的意志品质;(3)培养学生合作交流的能力。

二、教学重点与难点1. 教学重点:(1)整式乘除的概念;(2)整式乘除的运算法则;(3)整式乘除的运算步骤。

2. 教学难点:(1)整式乘除的运算法则的灵活运用;(2)复杂整式乘除的运算。

三、教学准备1. 教师准备:(1)熟记整式乘除的运算法则;(2)准备典型例题和练习题;(3)准备多媒体教学设备。

2. 学生准备:(1)掌握整式的基本概念;(2)了解整式加减的运算方法;(3)预习整式乘除的相关内容。

四、教学过程1. 导入新课:(1)复习整式的基本概念;(2)复习整式加减的运算方法;(3)引导学生思考整式乘除的概念及运算法则。

2. 知识讲解:(1)通过实例演示,引导学生发现整式乘除的规律;(3)讲解整式乘除的运算步骤。

3. 课堂练习:(1)设计适量练习题,让学生独立完成;(2)引导学生互相讨论,共同解决问题;(3)讲解练习题,巩固所学知识。

五、课后作业2. 布置适量课后练习题,巩固所学知识;3. 鼓励学生进行合作学习,互相交流学习心得。

六、教学拓展1. 引导学生思考:整式乘除在实际生活中的应用;2. 举例说明整式乘除在其他学科中的应用;3. 引导学生探索整式乘除的运算规律。

七、课堂小结2. 强调整式乘除在数学中的重要性;3. 鼓励学生积极参与课后练习,巩固所学知识。

八、课后作业2. 布置适量课后练习题,巩固所学知识;3. 鼓励学生进行合作学习,互相交流学习心得。

九、教学反思2. 针对学生的学习情况,调整教学策略;3. 思考如何提高学生的学习兴趣和积极性。

华师版八年级数学上册第12章3 乘法公式

华师版八年级数学上册第12章3 乘法公式

(-a-b)(a-b)=(-b-a)(-b+a)=(-b)2- 符号变化
a2=b2-a2
系数变化 (3a+2b)(3a-2b)=(3a)2-(2b)2=9a2-4b2
续表:
知1-讲
变化形式
应用举例
指数变化 (a3+b2)(a3-b2)=(a3)2-(b2)2=a6-b4
增项变化 (a-b+c)(a-b-c)=(a-b)2-c2
知1-练
解法提醒:运用平方差公式计算的三个关键步骤: 第1步,利用加法的交换律调整两个二项式中项的位 置,使之与公式左边相对应,已对应的就不需调整,如 (1)(2)不需调整,(3)(4)就必须调整. 第2步,找准公式中的a, b分别代表哪个单项式或多项式. 第3步,套用公式计算, 注意将底数带上括号. 如(1)中(5m)2不能写成5m2 .
知2-练
=(2m)2+2·2m·n+n2
两个二项式相乘,若有一项相
=4m2+4mn+n2.
同,另一项互为相反数,则用
(4)(2x+3y)(-2x-3y)
平方差公式计算;若两项都相
=-(2x+3y)2
同或都互为相反数,则用完全 平方公式计算.
=-[(2x)2+2·2x·3y+(3y)2]
=-(4x2+12xy+9y2)=-4x2-12xy-9y2.
知2-讲
知2-讲
(6)ab=12[(a+b)2-(a2+b2)]=14[(a+b)2-(a-b)2]; (7)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc; (8)a2+b2+c2+ab+ac+bc=12[(a+b)2+(b+c)2+(a+c)2]
例 3 计算: (1)(x+7y)2;(2)(-4a+5b)2; (3)(-2m-n)2;(4)(2x+3y)(-2x-3y).

八年级数学上册 第12章《整式的乘除》教案 (新版)华东师大版-(新版)华东师大版初中八年级上册数学

八年级数学上册 第12章《整式的乘除》教案 (新版)华东师大版-(新版)华东师大版初中八年级上册数学
2、整式的乘除
例2先化简,再求值: ,其中 。(思路点拨:注意运算顺序及准确性)
(变式训练):若 ,
求 的值。
3、乘法公式的灵活运用
例3已知 ,求 ; 的值。(Biblioteka 路点拨:注意公式的变形及相互关系)
4、因式分解的运用
例4求 的值
(思路点拨:注意观察数字特征,灵活运用因式分解进行有关计算)
(变式训练)计算:
整式的乘除
课 题
单元复习
课 型
复习课
教师复备
教学
目标
1、牢固掌握幂的运算性质和整式乘除的运算法则,理解、掌握乘法公式;
2、分解因式的方法及运用;
3、培养自己的运算能力,以及分析问题、解决问题的能力。
教学重点、难点
重点:有关乘除法的各种运算法则和公式的理解与运用。
难点:有关乘除法的各项运算法则的理解与应用。
课后
反思
课前
预习
【导学提纲】
知识结构与知识归纳:
(一)知识结构见教材P43
(二)知识归纳:
1、整式乘除相关法则及公式有哪些?
2、因式分解:
(1)因式分解的步骤是什么?
(2)因式分解的常用方法有哪些?
(3)分解因式要注意哪些问题?
典例
讲解
1、幂的运算性质
例1已知 (m、n为正整数),求 的值。(思路点拨:注意公式的逆用)

初二八年级数学整式的乘除法

初二八年级数学整式的乘除法
此外,整式乘除法还可以用于解决一些日常生活中的问题,例如计算时间和距离 等。通过整式乘除法,我们可以更准确地计算出所需的数值,从而更好地理解和 解决实际问题。
在数学和其他学科中的应用
整式乘除法是数学中的一个基本概念,它在代数、几何和三角学等数学领域中有广泛的应用。例如, 在代数中,我们可以使用整式乘除法来化简多项式、解方程和证明代数恒等式等。在几何中,我们可 以使用整式乘除法来计算图形的面积和周长等。
对整式乘除法的理解更加深入
通过本章的学习,我对整式的乘除法有了更深入的 理解,掌握了其基本法则和应用技巧。
增强了数学运算能力
整式乘除法涉及较多的数学运算,通过不断练习, 我的运算能力得到了提高。
学会了解决实际问题
通过解决实际问题,我学会了如何运用整式乘除法 来解决生活中的数学问题。
下一步学习计划
深入学习分式的运算法则
初二八年级数学整式的乘除法

CONTENCT

• 引言 • 整式乘法规则 • 整式除法规则 • 整式乘除法的实际应用 • 练习与巩固 • 总结与回顾
01
引言
主题简介
整式乘除法是初中数学中的重要内容,是代数运算 的基础之一。
通过学习整式的乘除法,学生可以掌握代数式的基 本运算规则,为后续学习方程、不等式、函数等打 下基础。
学习几何学知识
在掌握了整式的乘除法后,我将继续 学习分式的运算法则,包括分式的加、 减、乘和除等。
在掌握了整式和分式的运算法则后, 我将开始学习几何学知识,包括平面 几何和立体几何等。
强化数学思维能力
通过练习更多的数学题目,提高自己 的数学思维能力,为后续的学习打下 坚实的基础。
THANK YOU
感谢聆听

人教版八年级数学上册第14章14.1.4整式的乘法整式的除法(教案)

人教版八年级数学上册第14章14.1.4整式的乘法整式的除法(教案)
其次,整式的除法运算中,学生对于多项式除以多项式的步骤掌握不够熟练,有的同学在操作过程中会漏掉一些细节。我想在以后的复习课上,可以设计一些针对性的练习,让学生多加练习,以便更好地掌握这个难点。
此外,课堂上的实践活动和小组讨论环节,我发现学生们参与度很高,但也有一些小组在讨论过程中偏离了主题。为了提高讨论效率,我需要在接下来的课程中加强对学生讨论方向的引导,确保每个小组都能围绕主题展开有效的讨论。
-整式的除法法则,包括多项式除以单项式和多项式除以多项式的步骤。
-乘除混合运算的顺序和法则,以及如何简化表达式。
举例:重点讲解如何将一个多项式(如\(3x^2 + 5x - 2\))除以一个单项式(如\(x\)),以及如何将一个多项式(如\(4x^3 - 2x^2 + 3x\))除以另一个多项式(如\(2x - 1\))。
4.培养学生合作交流、积极参与的学习态度,增强数学建模与数学应用意识。
5.使学生能够运用整式的乘除法则,解决实际生活中的问题,提高数学素养。
三、教学难点与重点
1.教学重点
-单项式乘以单项式的运算法则,特别是符号的处理。
-单项式乘以多项式、多项式乘以多项式的运算法则,尤其是分配律的应用。
-整式的乘法在实际问题中的应用,如面积和体积的计算。
同学们,今天我们将要学习的是《整式的乘法与除法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积或体积的情况?”(如计算长方形面积或圆柱体积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整式乘除的奥秘。
(二)新课讲授(用时10分钟)
人教版八年级数学上册第14章14.1.4整式的乘法整式的除法(教案)

奥数-整式的乘除-第3讲法师

奥数-整式的乘除-第3讲法师

第三讲 整式的乘法与除法一、 基础知识●整式的加减整式的加减涉及到许多概念,准确地把握这些概念并注意它们的区别与联系是解决有关问题的基础,概括起来就是要掌握好以下两点:1.透彻理解“三式”和“四数”的概念“三式”指的是单项式、多项式、整式;“四数”指的是单项式的系数、次数和多项式的次数、项数.2.熟练掌握“两种排列”和“三个法则”“两种排列”指的是把一个多项式按某一字母的升幂或降幂排列,“三个法则”指的是去括号法则、添括号法则及合并同类项法则.物以类聚,人以群分.我们把整式中那些所含字母相同、并且相同字母的次数也相同的单项式作为一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类型.这样,使得整式能大为简化,整式的加减实质就是合并同类项● 整式的乘法与除法 指数运算律是整式乘除的基础,有以下4个:.,(),()m n m n m mn a a aa a ab +==n =,.n n m n m n a b a a a -÷=学习指数运算律应注意:1.运算律成立的条件;2.运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展,方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.二、 例题第一部分 基础概念与整式加减法例1. 若2x+5y-3=0,则432_____x y= (2002年绍兴市竞赛题)解:8例2. 已知单项式0.25x b y c 与单项式-0.125x 1-m y 12-n 的和为0.625ax n y m,求abc 的值. 解:12 提示:由题意得b=m-1=n,c=2n-1=m,0.625a=0.25+(-0.125)例3. 同时都含有字母a ,b ,c ,且系数为1的7次单项式共有( ).(A)4个 (B)12个 (D)25个(北京市竞赛题)解:C 提示:设满足条件的单项式为m n p a b c 的形式,其中m 、n 、p 为自然数,且m+n+p=7.例4. 把一个正方体的六个面分别标上字母A 、B 、C 、D 、E 、F 并展开如图 所示,已知:A=2234y xy x +-,C=2223y xy x --,B=)(21A c -, E=B -2C ,若正方体相对的两个面上的多项式的和都相等,求D 、F . (第9题) 解:2222374,9112D x xy y F x xy y =-+=-+例5. 已知 22276(2)()x xy y x y x y A x y B -----=-+++.求A 、B 的值. 思路点拨 等号左右两边的式子是恒等的,它们的对应项系数对应项系数对应相等,从而可以通过比较对应项系数来解.解:A=-3,B=2。

2024年华师大版八年级数学上册全套精品课件

2024年华师大版八年级数学上册全套精品课件

2024年华师大版八年级数学上册全套精品课件一、教学内容本节课我们将学习2024年华师大版八年级数学上册教材第3章《整式的乘除》以及第4章《因式分解》。

详细内容包括整式的乘法法则、整式的除法法则、多项式乘以多项式、因式分解的定义及方法。

二、教学目标1. 理解并掌握整式的乘除法则,能够熟练地进行整式乘除运算。

2. 学会多项式乘以多项式的运算方法,并能应用于解决实际问题。

3. 掌握因式分解的定义及常用方法,能够对简单的多项式进行因式分解。

三、教学难点与重点教学难点:整式的除法法则、因式分解的方法。

教学重点:整式的乘法法则、多项式乘以多项式、因式分解的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:练习本、笔、计算器。

五、教学过程1. 导入:通过一个实际情景引入整式的乘除,让学生感受到数学与生活的紧密联系。

2. 新课:讲解整式的乘法法则,通过例题进行讲解,然后让学生进行随堂练习。

3. 练习:针对整式的除法法则,设计一些练习题,让学生独立完成,然后进行讲解。

5. 新课:引入多项式乘以多项式,通过例题讲解,让学生学会运算方法。

6. 练习:设计一些多项式乘以多项式的练习题,让学生巩固所学知识。

7. 新课:讲解因式分解的定义及方法,通过例题进行讲解,让学生理解并掌握。

8. 练习:设计一些因式分解的练习题,让学生独立完成,然后进行讲解。

10. 互动:鼓励学生提问,解答学生在学习过程中遇到的问题。

六、板书设计1. 整式的乘法法则2. 整式的除法法则3. 多项式乘以多项式4. 因式分解的定义及方法七、作业设计1. 作业题目:(1)计算:3x(x+2) 2(x1)(x+2)(2)计算:(x+3)(x3) ÷ (x2)(3)因式分解:x^2 5x + 6(4)因式分解:2x^2 8x2. 答案:(1)3x^2 + 4x 2(2)x + 5(3)(x2)(x3)(4)2x(x4)八、课后反思及拓展延伸1. 反思:本节课学生对整式的乘除及因式分解掌握程度如何,有哪些需要改进的地方。

《整式的乘除与因式分解》初中数学教案

《整式的乘除与因式分解》初中数学教案

《整式的乘除与因式分解》初中数学教案一、教学目标:1. 让学生掌握整式乘除的计算方法,能够正确进行整式的乘除运算。

2. 让学生理解因式分解的意义,掌握因式分解的方法,能够对简单的多项式进行因式分解。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容:1. 整式的乘法:单项式乘单项式,单项式乘多项式,多项式乘多项式。

2. 整式的除法:单项式除以单项式,多项式除以单项式。

3. 因式分解:提公因式法,公式法。

三、教学重点与难点:1. 教学重点:整式的乘除运算,因式分解的方法。

2. 教学难点:因式分解的灵活运用,解决实际问题。

四、教学方法:1. 采用讲授法,讲解整式乘除的运算方法和因式分解的方法。

2. 采用案例分析法,分析实际问题,引导学生运用因式分解解决实际问题。

3. 采用互动教学法,引导学生积极参与讨论,提高学生的思维能力。

五、教学过程:1. 导入:通过复习相关知识,引导学生进入新课。

2. 讲解:讲解整式乘除的运算方法和因式分解的方法,结合案例进行分析。

3. 练习:让学生进行相关的练习,巩固所学知识。

4. 拓展:引导学生运用因式分解解决实际问题,提高学生的应用能力。

5. 总结:对本节课的内容进行总结,布置作业。

六、教学评价:1. 通过课堂练习和课后作业,评价学生对整式乘除和因式分解的掌握程度。

2. 观察学生在解决问题时的思维过程和方法选择,评价学生的逻辑思维能力和解决问题的能力。

3. 采用学生自评、互评和他评的方式,鼓励学生积极参与评价,提高学生的自我认知和反思能力。

七、教学资源:1. 教材:《整式的乘除与因式分解》相关章节。

2. 教学课件:展示整式乘除和因式分解的运算方法和案例分析。

3. 练习题:提供不同难度的练习题,巩固学生对知识的理解和应用。

4. 教学视频:讲解整式乘除和因式分解的运算方法和案例分析。

八、教学进度安排:1. 第一课时:讲解整式乘法,包括单项式乘单项式、单项式乘多项式、多项式乘多项式。

2019八年级数学上册 第12章 整式的乘除 12.3 乘法公式 1 两数和乘以这两数的差教案

2019八年级数学上册 第12章 整式的乘除 12.3 乘法公式 1 两数和乘以这两数的差教案
计算:
(1)(x+Βιβλιοθήκη )(x+3)(2)(x-1)(x+2);(3)(x+2)(x-2);
(4)(x+5)(x+5);(5)(x-5)(x-5)(6)(x2+2x+3)(2x-5)
学生回忆并回答.学生计算练习问为本节课作知识储备
活动
一:
创设
情境
导入
新课
【课堂引入】
计算:
(1)(x+2)(x-2);(2)(1+3a)(1-3a);
(3)(x+5y)(x-5y);(4)(y+3z)(y-3z).
做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现.
从学生的已有的知识出发,利用多媒体,激发学生的强烈的好奇心和求知欲.
活动
二:
实践
探究
交流
新知
【探究】平方差公式
【学生活动】分四人小组,合作学习,获得以下结果:
(3)(1+2c)(1-2c);(4)(-2x-y)(2x-y).
注意公式的变化形式:
(1)(b+a)(-b+a)=(a+b)(a-b)=a2-b2.
(2)(-a-b)(a-b)=[(-b)-a][(-b)+a]
=(-b)2-a2=b2-a2.
(3)(a+b)(a-b)(a2+b2)=(a2-b2)(a2+b2)
【学生活动】先独立完成上面的演练题,再与同伴交流.
4.计算:(1+ )(1+ )(1+ )(1+ )+ .
课堂总结
本节课的内容是两数和与这两数差的积,公式指出了具有特殊关系的两个二项式积的性质.运用平方差公式应满足两点:一是找出公式中的第一个数a,第二个数b;二是两数和乘以这两数差,这也是判断能否运用平方差公式的方法.
通过合作学习,体会在解决具体问题过程中与他人合作的重合性,体验数学活动充满着探索性和创造性.

2024-2025学年华师版初中数学八年级(上)教案第12章整式的乘除12.2整式的乘法(第3课时)

2024-2025学年华师版初中数学八年级(上)教案第12章整式的乘除12.2整式的乘法(第3课时)

第12章 整式的乘除12.2整式的乘法第3课时 多项式与多项式相乘教学目标1.使学生理解并掌握多项式乘以多项式的法则.2.经历探索多项式与多项式相乘的过程,通过导图理解多项式与多项式相乘的结果,能够按多项式乘法法则进行简单的多项式乘法运算,达到熟练地进行多项式乘法运算的目的.3.培养数学感知,体验数学在实际应用中的价值,树立良好的学习态度.教学重难点重点:多项式乘以多项式的形成过程及其理解和应用. 难点:多项式乘以多项式的法则的正确应用.教学过程复习巩固1.口述单项式与单项式相乘的法则. 【答案】(1)系数相乘作为积的系数;(2)相同的字母,应用同底数幂的乘法法则,底数不变,指数相加; (3)只在一个单项式中出现的字母,连同它的指数一起作为积的一个因式.2.口述单项式乘以多项式的法则.【答案】单项式与多项式相乘,就是用单项式分别乘以多项式的每一项,再把所得的积相加.导入新课【创设情境,课堂引入】某地区在退耕还林期间,将一块长m 米、宽a 米的长方形林地的长、宽分别增加n 米和b 米.用两种方法表示这块林地现在的面积.思考:(1)加长加宽后得到的林地的长为多少?宽为多少?面积为多少? 【答案】长为()n m +米,宽为()b a +米,面积为()()m n a b ++平方米.教学反思(2)现在这块林地可以看作由四块面积分别为多少的长方形林地组成,总面积为多少?【答案】四块林地的面积分别为ma 平方米、mb 平方米、na 平方米、nb 平方米,总面积为()ma mb na nb +++平方米.(3)两种不同的方法,得到的结果相等吗? 【答案】相等.()()m n a b ma mb na nb ++=+++. 想一想:(1)()()m n a b ma mb na nb ++=+++的等号左边是什么运算?等号右边又是什么运算?(2)请你总结规律.探究新知【实践探究,交流新知】多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.多项式与多项式相乘−−→−转化单项式与多项式相乘−−→−转化单项式与单项式相乘.字母呈现:ma +mb +na +nb .【 例1 计算:(1)(x +2)(x −3) ; (2)(2x + 5y )(3x −2y ). 解:(1)(x +2)(x −3)2326x x x -+-=26x x --=;(2)(2x + 5y )(3x −2y ) =6x 2−4xy +15yx −10y 2 =6x²+11xy −10y². 例2 计算:(1)(m −2n )(m²+mn −3n²) ;(2)(3x²−2x +2)(2x +1). 解:(1)(m −2n )(m²+mn −3n²)=222232223m m m mn m n n m n mn n n +---+教学反思=3222233226m m n mn m n mn n +---+ =322356m m n mn n --+; (2)(3x²−2x +2)(2x +1)=6x³+3x²−4x²−2x +4x +2=6x³−x²+2x +2.【巩固练习】计算:(1)(x +2y )(5a +3b ); (2)(2x −3)(x +4); (3)(x +y )2; (4)(x +y )(x 2-xy +y 2). 解:(1)原式=x ·5a +x ·3b +2y ·5a +2y ·3b =5ax +3bx +10ay +6by ; (2)原式=2x 2+8x -3x -12=2x 2+5x -12;(3)原式=(x +y )(x +y )=x 2+xy +xy +y 2 =x 2+2xy +y 2;(4)原式=x 3-x 2y +xy 2+x 2y -xy 2+y 3 =x 3+y 3.【反思总结】(学生总结,老师点评) 多项式乘以多项式中的注意事项: (1)运算要按一定顺序,做到不重不漏.(2)多项式乘以多项式,未合并同类项之前积的项数应等于两个多项式的项数之积.(3)多项式的每一项分别与另一个多项式的每一项相乘时,要带上每项前面的符号一起运算:同号相乘得正,异号相乘得负.【合作探究,解决问题】【小组讨论】例3 先化简,再求值:(2)(3)(2)(4)x y x y x y x y -+--- ,其中1x =-,y =2.解:(x -2y )(x +3y )-(2x -y )(x -4y ) =x 2+3xy -2xy -6y 2-(2x 2-8xy -xy +4y 2) =x 2+xy -6y 2-2x 2+9xy -4y 2 =-x 2+10xy -10y 2. 当x =-1,y =2时,原式=-(-1)2+10×(-1)×2-10×22 =-1-20-40 =-61.【拓展延伸】例4 已知ax 2+bx +1(a ≠0)与3x -2的积不含x 2项,也不含x 项,求系数a ,b 的值.思考:由积中不含x 2项、x 项可以推出什么?由此怎样求出a ,b 的值? 解:(ax 2+bx +1)(3x -2)=3ax 3-2ax 2+3bx 2-2bx +3x -2=3ax 3+(3b -2a )x 2+(3-2b )x -2.教学反思因为积不含x 2项,也不含x 项, 所以3b -2a =0,3-2b =0,解得a =94,b =32.即系数a ,b 的值分别是94,32.【反思总结】解决此类问题,先根据多项式乘以多项式的法则写出展开式,合并同类项后,再根据不含某一项,得出这一项系数等于零,由此列方程(组)解答.【拓展练习】 计算:(1)(x +2)(x +3)= x 2+5x +6 ; (2)(x -4)(x +1)=x 2-3x -4;(3)(y +4)(y -2)=228y y +-; (4)(y -5)(y -3)=2815y y -+. 根据上面的计算结果,观察规律并填空: (x +p )(x +q )=2x +p q +()x + pq . 课堂练习1.下列多项式相乘,结果为x 2−4x −12的是( ) A .(x −4)(x +3) B .(x −6)(x +2) C .(x −4)(x −3) D .(x +6)(x −2)2.如果(x +a )(x +b )的结果中不含x 的一次项,那么a ,b 满足( )A .a =bB .a =0C .a =−bD .b =03.如图,正方形卡片A 类、B 类和长方形卡片C 类各有若干张,如果要拼一个长为(a +3b )、宽为(2a +b )的大长方形,则需要A 类、B 类和C 类卡片的张数分别为( )A.2,3,7B.3,7,2C.2,5,3D.2,5,7 4.计算: (1)(y +1)(x -y )-x (y -x ); (2)(-7x 2-8y 2)(-x 2+3y 2); (3)(3a +1)(2a -3)-(6a -5)(a -4). 5.化简求值:(4x +3y )(4x -3y )+(2x +y )(3x -5y ),其中x =1,y =−2.参考答案1.B2.C3.A4.解:(1)原式=xy +x -y 2-y -xy +x 2=x 2+x -y 2-y ;(2)原式=7x 4-21x 2y 2+8x 2y 2-24y 4=7x 4-13x 2y 2-24y 4; (3)原式=6a 2-9a +2a -3-6a 2+24a +5a -20=22a -23.教学反思5.解:(4x+3y)(4x−3y)+(2x+y)(3x−5y)教学反思=16x2−12xy+12xy−9y2+6x2−10xy+3xy−5y2=22x2−7xy−14y2.当x=1,y=−2时,原式=22×12-7×1×(-2)-14×(-2)2=22+14 −56=−20.课堂小结通过本节课的学习,要求同学们:1.理解并掌握多项式乘以多项式的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.即(a+b)(p+q)=ap+aq+bp+bq.实质:先转化为单项式乘以多项式的运算,再转化为单项式乘以单项式的运算.2.多项式与多项式相乘,(1)不要“漏乘”;(2)注意“符号”.布置作业请完成本课时对应练习!板书设计多项式与多项式相乘1.法则先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.(a+b)(p+q)=ap+aq+bp+bq.实质:先转化为单项式乘以多项式的运算,再转化为单项式乘以单项式的运算.2.多项式乘以多项式中的注意事项(1)运算要按一定顺序,做到不重不漏;(2)多项式乘以多项式,未合并同类项之前积的项数应等于两个多项式的项数之积;(3)每一项相乘时要带上每项前面的符号一起运算.。

整式的乘除教案原文

整式的乘除教案原文

整式的乘除教案原文一、教学目标:1. 知识与技能:(1)理解整式的乘除概念;(2)掌握整式乘除的运算方法;(3)能够运用整式乘除解决实际问题。

2. 过程与方法:(1)通过实例演示,引导学生观察、思考整式乘除的过程;(2)运用小组合作、讨论的方式,探索整式乘除的运算规律;(3)培养学生运用数学知识解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生积极主动参与课堂活动的精神;(3)培养学生合作、交流的良好习惯。

二、教学重点与难点:1. 教学重点:(1)整式乘除的概念及运算方法;(2)运用整式乘除解决实际问题。

2. 教学难点:(1)整式乘除过程中的运算规律;(2)灵活运用整式乘除解决实际问题。

三、教学准备:1. 教师准备:(1)教学课件或黑板;(2)例题及练习题;(3)教学道具或教具。

2. 学生准备:(1)预习相关知识;(2)准备好笔记本、文具等学习用品。

四、教学过程:1. 导入新课:(1)复习相关知识,如多项式、单项式等;(2)提问:同学们,你们知道如何计算两个多项式的乘积吗?今天我们将学习整式的乘除运算。

2. 教学新课:(1)讲解整式乘除的概念及运算方法;(2)通过实例演示,让学生观察、思考整式乘除的过程;(3)引导学生运用小组合作、讨论的方式,探索整式乘除的运算规律。

3. 课堂练习:(1)布置练习题,让学生独立完成;(2)挑选部分学生的作业进行点评、讲解。

4. 应用拓展:(1)让学生运用整式乘除解决实际问题;(2)鼓励学生分享自己的解题心得。

五、课后作业:1. 巩固整式乘除的基本运算;2. 运用整式乘除解决实际问题;3. 预习下一节课的内容。

六、教学评估:1. 课堂表现评估:观察学生在课堂上的参与程度、提问回答情况、小组合作表现等,了解学生的学习状态。

2. 作业评估:检查学生课后作业的完成质量,评估学生对整式乘除运算的理解和应用能力。

3. 练习题评估:通过学生完成的练习题,评估学生对整式乘除运算的掌握程度。

人教版八年级数学上册(教案):14.2 乘法公式

人教版八年级数学上册(教案):14.2 乘法公式

乘法公式一、说教材1、教材所处的地位及前后联系本节课是《整式的乘除》的内容,是在学习了多项式和多项式相乘和平方差公式之后引入的又一种比较特殊多项式乘以多项式,即完全平方公式。

它和平方差公式一样,也是数学中最基本的一个公式,理解和运用完全平方公式,对于以后学习因式分解,解一元二次方程都具有举足轻重的作用。

2、教学目标:1)通过合作学习探索得到完全平方公式,培养学生认识由一般法则到特殊法则的能力。

2)通过体念、观察并发现完全平方公式的结构特征,并能从广义上理解公式中字母的含义。

3)初步学会运用完全平方公式进行计算。

3、教材的重点难点:本节课的重点是理解完全平方公式,运用公式进行计算。

难点是从广泛意义上理解公式中的字母,判明要计算的代数式是哪两个数的和(差)的平方。

二、说教法针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。

同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。

边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。

另外本节课采用计算机辅助教学,利用多彩的图形世界引导学生完全平方公式的发现和推导,使代数教学不再枯燥。

三、说学法在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。

四、说教学程序(一)合作学习,探求新知用投影片显示:1、如图所示,你能用不同的方法表示下面图形的面积吗?2、把学生回答的结果的不同形式板书在黑板上,提问这些表示的结果都相等吗?3、指出:即完全平方和公式。

4、模仿练习:(用两数和的完全平方公式计算(填空))1)=2)=5、换元拓展提问:等于什么?是否可以写成?你能继续做下去吗?通过讨论,尝试得到(二)探求规律,巩固练习1、探求规律在模仿运用公式的基础上,结合两个公式的特征,可用一句顺口溜来强化记忆:“首平方,尾平方,首尾两倍中间放。

华师版八年级数学整式的乘除教案

华师版八年级数学整式的乘除教案

第13章整式乘除§13.1 幂运算1、同底数幂乘法教学目1.熟记同底数幂乘法运算性质,了解法则推导过程.2.能熟练地进行同底数幂乘法运算.3.通过法则习题教学,训练学生归纳能力,感悟从未知转化成已知思想.4.会逆用公式a m a n=a m+n.教学重点:掌握并能熟练地运用同底数幂乘法法则进行乘法运算.教学难点:对法则推导过程理解及逆用法则.教学过程一、复习活动,1.填空.(1)2×2×2×2×2=(),a·a·…·a=( )m个(2)指出各部分名称.二、探索,概括.1.下述题目,要求学生说出每一步变形根据之后,再提问让学生直接说出23×25=( ),36×37=( ),由此可发现什么规律?(1)23×22=( )×( )=2( ),(2)53×52=( )×( )=5( ),(3)a3a4=( )×( )=a( ).2.如果把a3×a4中指数3和4分别换成字母m和n(m、n为正整数),你能写出a m a n结果吗?你写是否正确?(让学生猜想,并验证.)即a m·a n=a m+n(m、n为正整数)让学生用文字语言表述法则:同底数幂相乘,底数不变,指数相加.三、举例及应用.1.例1 计算:(1)103×104 (2)a·a3(3)a·a3·a5解(1)103×104=103+4=107.(2)a·a3=a1+3=a4.(3)a·a3·a5=a4·a5=a92、练习第19页练习第1题.3、提问:通过以上练习,你对同底数是如何理解?在应用同底数幂运算法则中,应注意什么?四、拓展延伸. 由a m a n=a m+n,可得a m+n=a m a n(m、n为正整数.)例2 已知a m=3,a m=8,则a m+n=( )五、巩固练习. P19 1.2.六、课堂小结. 1.在运用同底数幂乘法法则解题时,必须知道运算依据.2.“同底数”可以是单项式,也可以是多项式.3.不是同底数时,首先要化成同底数.七、布置作业. 课本第23页习题13.1第1题1、2、幂乘方教学目1.熟记幂乘方运算法则,知道幂乘方性质是根据乘方童义和同底数幂乘法性质推导出来.2.能熟练地进行幂乘方运算.3.在双向应用幂乘方运算公式中,培养学生思维灵活性.教学重点:理解幂乘方意义,掌握幂乘方法则.教学难点:注意与同底数幂乘法区别.教学过程一、复习活动.1.如果—个正方体棱长为16厘米,即42厘米,那么它体积是多少?2.计算:(1)a4·a4·a4;(2)x3·x3·x3·x3.3.你会计算(a4)3与(x3)5吗?二、新授.1.x3表示什么意义? 2.如果把x换成a4,那么(a4)3表示什么意义?3.怎样把a2·a2·a2·a2=a2+2+2+2写成比较简单形式? 4.由此你会计算(a4)5吗?5.根据乘方意义及同底数幂乘法填空.(1) (23)2=23×23=2( );(2) (32)3=( )×( )×( )=3( );(3) (a3)5=a3×( )×( )×( )×( )=a( ).6.用同样方法计算:(a3)4;(a11)9;(b3)n(n为正整数).这几道题学生都不难做出,在处理这类问题时,关键是如何得出3+3+3+3=12,教师应多举几例.教师应指出这样处理既麻烦,又容易出错.此时应让学生思考,有没有简捷方法?引导学生认真思考,并得到:(23)2=23×2=26;(32)3=32×3=36;(a11)9=a11×9=a99(b3)n=b3×n=b3n(现察结果中幂指数与原式中幂指数及乘方指数,猜想它们之间有什么关系?结果中底数与原式底数之间有什么关系?)怎样说明你猜想是正确?即(a m)n=a m·a n(m、n是正整数).这就是幂乘方法则. 你能用语言叙述这个法则吗? 幂乘方,底数不变,指数相乘.三、举例及应用.1.例1 计算:(1) (103)5;(2)(b3)4.解(1)(105)5=103×5=1015.(2)(b3)4=b3×4=b12.2.练习.课本第20页练习第2题.3.例2 下列计算过程是否正确?(1)x2·x6·x3+x5·x4·x=x ll+x10=x2l. (2)(x4)2+(x5)3=x8+x15=x23(3) a2·a·a5+a3·a2·a3=a8+a8=2a8. (4)(a2)3+a3·a3=a6+a6=2a6.说明.(1)要让学生指出题中错误并改正,通过解题进一步明确算理,避免公式用错.(2)进一步要求学生比较“同底数幂乘法法则”与“幂乘方法则”区别与联系.4.练习. 课本第20页练习第1题.5.例3 填空.(1) a12=(a3)( )=(a2)( )=a3·a( )=(a( ))2;(2) 93=3( );(3) 32×9n=32×3( )=3( ).(此题要求学生会逆用幂乘方和同底数幂乘法公式,灵活、简捷地解题.)四、巩固练习. 补充习题.五、课堂小结.1.(a m)n=a m·n(m、n是正整数),这里底数a,可以是数、是字母、也可以是代数式;这里指数是指幂指数及乘方指数.2.对于同底数幂乘法、幂乘方、合并同类项这三个法则,要理解它们联系与区别.在利用法则解题时,要正确选用法则,防止相互之间发生混淆(如:a m·a n=a mn(a m)n=a m+n).并逐步培养自己“以理驭算”良好运算习惯.六、布置作业. 课本第23页习题第2题.3、积乘方教学目1.能说出积乘方性质并会用式子表示.2.使学生理解并掌握积乘方法则.3.使学生能灵活地运用积乘方法则进行计算.4.通过法则推导过程培养学生分析问题、解决问题能力.教学重点:探索积乘方法则形成过程.教学难点:积乘方公式推导及公式逆用.教学准备学生:4张正方形硬纸片、若干张边长为a小正方形纸片.教学过程一、提问.1.a2·a3=a5,也就是说:( ). 即a m·a n=a m+n(m、n为正整数).(让学生明白所用到运算法则及运算律.)2.(a3)7=a( ),也就是说:( ). 即(a m)n=a m·n(m、n为正整数.)(让学生明白同底数幂乘法与幂乘方法则区别.)二、引导观察.1.计算.22×32=4×9=36. (2×3)2=(2×3)(2×3)=6×6=36.从而得到:(2×3)2=22×32=36.进而猜想:(ab)2与a2b2是否相等?2.探索,概括.于是我们得到了积乘方法则:(ab)n=a n b n(n是正整数).这就是说,积乘方,等于各因数乘方积.教师应一步一步地引导学生,得出结论(因为指数是用字母表示,就学生思维状况来说是个难点).然后让学生自己对照公式总结,自己叙述出法则.3.引导学生剖析积乘方法则.问题:三个或三个以上因式积乘方,是不是也具有这一性质?(1)(abc)n=(ab)n c n=a n b n c n.即(abc)n=a n b n c n(n为正整数).三、举例及应用.1.例1 计算:(1)(2b)3;(2)(2×a3)2;(3)(-a)3;(4)(-3x)4.解(1)(2b)3=23b3=8b3.(2)(2×a3)2=22×(a3)2=4×a6.(3)(-a)3=(-1)3·a3=-a3.(4)(-3x)4=(-3)4·x4=81x4(第(1)题由学生回答,教师板演,并要求学生说出每一步根据是什么;第(2)、(3)、(4)题由学生完成,根据学生完成情况,提醒学生注意:①系数乘方;②因数中若有幂形式,要注意运算步骤,先进行积乘方,后作因数幂乘方.)2.练习. 课本第21页练习第1题.五、拓展延伸.因为(ab)n=a n b n,所以a n b n=(ab)n.逆用性质进行计算:(1)24×44×0.1254=(2×4×0.125)4. (2)(-4)2002×(0.25)2002=?六、看谁做又快又正确?1.(-5ab)2=( ) 2.(xy2)3=( ) 3.(-2xy3)4=( );4.(-2×103)=( );5.(-3a)3=( ).七、开放性练习.准备若干张边长为a小正方形纸片,让学生前后位四人一组,动手拼图形.现有若干个边长为a小正方形纸片,你能拼出一个新正方形吗?多少个小正方形才能拼成一个新正方形?并用不同表示方法表示新正方形面积.从不同表示法中,你发现了什么?八、课堂小结.这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决问题?请注意:积乘方要将每一因式(特别是系数)都要乘方.九、布置作业. 课本第23页习题13.1第4题13.2同底数幂除法教学目:1、能说出同底数幂相除法则,并正确地进行同底数幂除法运算;2、理解任何不等于零数零次幂都等于1;3、能正确进行有关同底数幂乘除混合运算。

八年级上册数学教案《整式的乘法》

八年级上册数学教案《整式的乘法》

八年级上册数学教案《整式的乘法》学情分析本节课是整式乘法中的单项式乘以单项式、单项式乘以多项式内容,它与前面学习的同底数幂的乘法、积的乘方、幂的乘方联系非常密切,是对上述内容的拓展和延续,是对《整式的加减法》的后续学习,同时也是初中代数关于式的学习的重要内容。

而本节课——单项式乘以单项式用到了有理数的乘法、幂的运算性质,且后续的单项式与多项式的乘法,都要转化为单项式乘法,并为因式分解的学习打下基础,所以单项式乘以单项式将起到承前启后的作用,在整式乘除法中占有非常重要的地位。

因此在本节课的教学中要注重探讨单项式与单项式相乘的法则的形成过程,引导学生研究如何经过具体到抽象,特殊到一般,归纳概括得到性质。

培养学生对知识的转化能力和学生对问题中所蕴藏的数学规律进行探索的兴趣。

教学目的1、能正确区别各单项式中的系数同底数的次数,会运算乘法运算。

2、经历探索单项式乘法法则的探究,正确应用单项式乘法步骤运行运算。

3、培养学生自主探究,体会单项式相乘的运算规律。

教学重点掌握单项式与单项式,单项式与多项式相乘的运算法则。

教学难点能够灵活地进行单项式与单项式,单项式与多项式相乘的运算。

教学方法讲授法、讨论法、练习法教学过程一、新课导入1、幂的运算性质有哪几条?同底数幂的乘法法则:(a m)n = a mn积德乘方法则:(ab)n = a n b n2、计算:(1)x2·x3·x4 = x9(2)(x3)6 = x18(3)(-2a4b2)3 = -8 a12b6(4)(x3)6 = x18(5)(-5/3)5(-3/5)5 = 1二、学习新知1、单项式与单项式相乘光的速度约是3×105km/s,太阳光照射到地球上需要的时间约是5×102s,你知道地球与太阳的距离约是多少吗?地球与太阳的距离约是(3×105)×(5×102)km2、思考(1)怎样计算(3×105)×(5×102)?计算过程中用到哪些运算律及运算性质?利用乘法交换律和乘法结合律:(3×105)×(5×102)=(3×5)×(105×102)=1.5×108(2)如果将上式中的数字改为字母,比如ac5·bc2,怎样计算这个式子? ac5·bc5 = (a·b)(c5·c2)(乘法交换律、结合律)= abc5+2= abc73、单项式与单项式的乘法法则单项式与单项式相乘,把它们的系数同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

人教版八年级数学上册《乘法公式》

人教版八年级数学上册《乘法公式》

牛刀小试
下列各式计算对不对?若不对应怎样改正?
(1)(x+2)(x-2)= x2-2 x2-4
(2)(-3a-2)(3a-2)= 9a2-4 4-9a2
精选2021版课件
18
快乐学习2:
计算
102×98 =(100+2)(100-2) =1002-22 =9996
(y+2 )( y-2)-(y-1)(y+5) = y2-22-(y2+5y-y-5) = y2-4-y2-4y+5 = -4y+1
精选2021版课件
11
整式的乘除与因式分解
乘法公式
──平方差公式
精选2021版课件
12
你能用简单方法计算下列问题吗?
(1)、1002×998 =(1000+2)(1000-2) =10002+2×1000-2×1000-22 = 10002-22 =999996
(2)、 200004×199996
2.根据公式(a+b)(a-b)= a 2-b 2计算.
(1)(x+y)(x-y);
(2)(a+5)(5-a);
(3)(xy+z) (xy-z);
(4)(c-a) (a+c);
(5)(x-3) (-3-x).
精选2021版课件
10
活动5 知识应用,加深对平方差公式的理解
1
下列多项式乘法中,能用平方差公式计算的是( ):
解:(1)(3x+2)(3x-2) =(3x)2-22 =9x2-4;
(3) (-x+2y)(-x-2y)
(2)(b+2a)(2a-b) =(2a+b)(2a-b) =(2a)2-b2 =4a2-b2.

整式的乘除经典教案

整式的乘除经典教案

整式的乘除经典教案(含知识点和例题较难)(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2、同底数幂的乘法①同底数幂的乘法法则:同底数幂相乘,指数相加:a m ·a n = (m ,n 都是正整数)②幂的乘法法则:幂的乘方,底数不变,指数相乘:(a m )n = (m ,n 都是正整数)③积的乘法法则:积的乘方,等于把积的每一个因式分别乘教师姓名 学生姓名 填写日期 学科年级教材版本 课题名称 乘法公式、整式的化简课时计划上课时间教学目标同步教学知识运用平方差公式,完全平方式进行计算、运用平方差公式和完全平方公式来进行整式化简个性化问题解决教学重点 平方差公式的推导及应用、理解完全平方公式,运用公式进行计算教学难点 理解公式中的字母a ,b 、综合运用平方差公式和完全平方公式进行整式的化简、运用乘法公式解决实际问题教学过程教师活动学生活动作业情况反馈:回顾:1、利用旋转变换构造出全等三角形(重点)例1、如图,已知点E 、F 分别在正方形ABCD 的边BC 、CD 上,并且∠DAF=∠EAF .求证:BE +DF=AE例2、如图,正方形ABCD 的边BC 、CD 上取E 、F 两点,使∠EAF=45°,AG ⊥EF 于G . 求证:AG=AB .方,再把所得的幂相乘:(ab )n = a n ·b n (n 为正整数)例1、在数学活动中,小明为了求2341111122222n++++⋅⋅⋅+的值(结果用n 表示),设计如图7-1所示的几何图形。

(1)请你利用这个几何图形求 2341111122222n ++++⋅⋅⋅+的值为__________。

(2)请你利用图7-2,再设计一个能求 2341111122222n ++++⋅⋅⋅+的值的几何图形。

课堂练习例2、综合提高:12212312412图7-1图7-23、单项式的乘法单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲 整式的乘除和乘法公式
第一部分、教学目标:
1、会运用单项式相乘的法则进行计算,并解决一些实际生活和科学计算中的问题。

2、会进行单项式乘以多项式的计算以及含有单项式乘以多项式的混合运算。

3、能说出多项式与多项式相乘的法则,并且知道多项式乘以多项式的结果仍然是多项式.会进行多项式乘以多项式的计算及混合运算。

4、能使学生正确地利用平方差公式和两数和的平方与两数差的平方公式进行多项式的乘法。

第二部分、教学重点、难点
1、单项式与单项式相乘、单项式乘以多项式、多项式乘以多项式的法则;掌握乘法公式的特点,牢记公式。

2、运用法则进行混合运算时,不要漏项;具体问题具体分析,会用乘法公式进行计算。

第三部分、教学过程
题型一 多项式乘法在化简求值中的应用
例、当2
1
-=a 时,求代数式
)3(2)4)(2()2(2a b b a b b a b a b a -+--++-)(的值. 分析:先利用整式的乘法法则将所求的代数式化简,再将a 的值代入. 解:原式=a b b a b a ab ab ab ab ab 2
2
2
2
2
2
46-2482224-=++--+--+
当2
1-=a 时,原式=1-414-4-4-)2
1-(2
2
=⨯=⨯=a
题型二 运用整式乘法解不等式或方程
例、求出使
)3)(2(9)43(23+->-+x x x x )(成立的非负整数解。

分析:本题是多项式乘多项式与不等式及求不等式特殊解的综合题,注意求非负整数解时,不要漏掉0.
解:
)3)(2(9)43(23+->-+x x x x )( ∴)6(98612292-+>-+-x x x x x
∴549298629-+>--x x x x ∴548929629->---x x x x ∴46-15->x ∴15
46<
x ∴满足条件的非负整数解为.3,2,1,0=x 例、6)2)(3()4(322
+=+---+x x x x x )(
分析:借助多项式乘多项式的法则将方程化简成熟悉的一元一次方程来解. 解:6)2)(3()4(322
+=+---+x x x x x )(
即6)632(123822
2
2
+=--+--+-x x x x x x x ∴6612522
2
2
+=++---x x x x x ∴124-=x ∴3-=x
题型三 整式乘法在恒等式求值中的应用
例、要使4523)(3
2
++=-++x b x a x x x 成立,则b a .的值分别为多少?
分析:解此类题时可以先化简,然后比较系数列方程来求解,也可以抓住对应项成立的条件,用取特殊值的方法求解.
解:原式变形,得4532)3(3++=-++x x b x a x .
比较系数,则有⎩
⎨⎧=-=+4253b a 解得⎩⎨⎧-==22b a
题型四 运用整式乘法解决实际问题
例、 如图,在长方形ABCD 中,AB=3+x ,AE=13-x ,CF=22+x ,请以x 的多项式表示图中阴影部分的面积.
分析:由于阴影部分是梯形,运用梯形面积公式进行计算即可.
AB CF AE S ⋅+=)(阴影21=)3()2213(21+⋅++-x x x =)3(1521++x x )(=)3165(2
12
++x x =
23
8252++x x S 阴影=2
3
8252++x x 题型五 乘法公式的变形技巧
例、计算 1
2013201120122
+⨯
分析:题中数字较大,但仔细观察会发现:分母中的20132011⨯可写成
)12012()12012(+⨯-,这样可直接运用平方差公式求解.
解:原式=1
)12012()12012(20122
++⨯-
=112012201222
+-
=2
2
20122012 =1 例、已知31=+
x x ,求441
x
x +的值. 分析:此题弄清次数变化是解决问题的关键,将31
=+x
x 两边平方后再平方,即可求出。

解:由31
=+
x x 两边平方,得 91222=++x x ,即71
22=+x x
将7122=+x x 两边再平方,得491
244=++x x
471
44=+∴x
x
题型六 规律探究题
例、观察下列各式: 12)1)(1(-=+-x x x 13)12)(1(-=++-x x x x 14)123)(1(-=+++-x x x x x …
(1)根据前面的规律,得=++-+-)11)(1(x x n x n x ;(其中n 为正整数)
(2)利用上述规律计算:250232221+++++ 的值。

分析:(1)根据规律可知,)11)(1(+++-+-x x n x n x 的结果中x 的指数是
1+n ,故其结果为;11-+x n (2)根据规律,发现x 是2,n 是50,则将其代入到
(1)中所求的公式中即可求解. 解:(1)11
-+x
n
(2)上述规律中,,取,取502n x 则有
)(1-2)(122223249250++++++ =1-251
∴)(122223249250++++++ =1-251
即原式=1-251
典型习题练习
1、若2x 2+5x +1=a (x +1)2+b (x +1)+c,那么a ,b ,c 应为 ( ) A .a =2,b =-2,c =-1
B .a =2,b =2,c =-1
C .a =2,b =1,c =-2
D .a =2,b =-1,c =2
2、若6x 2-19x +15=(ax +b )(cx +b ),则ac +bd 等于 ( ) A .36
B .15
C .19
D .21
3、(1)已知实数x 满足x+x 1 =3,则x 2+21
x
的值为 .
(2)若a 2﹣3a+1=0.则代数式441
a a
+的值为_________.
(3)已知 x 2
﹣11x+1=0,求 2
42+1x x x +.
4、已知实数a 、b 满足(a+b )2=1,(a ﹣b )2=25,求a 2+b 2+ab 的值.
5、计算:
(1)(x ﹣y )(x+y )(x 2+y 2) (2)(a ﹣2b+c )(a+2b ﹣c )
(3)(a ﹣b+c ﹣d )(c ﹣a ﹣d ﹣b ) (4)
6、已知22224-6140x y z x y z ++-++=,求x y z ++的值.
7、观察以下等式: (x+1)(x 2﹣x+1)=13+x (x+3)(x 2﹣3x+9)=273+x (x+6)(x 2﹣6x+36)=2163+x …
(1)按以上等式的规律,填空:(a+b )( )=33b a +
(2)利用多项式的乘法法则,证明(1)中的等式成立.
(3)利用(1)中的公式化简:(x+y )(x 2﹣xy+y 2)﹣(x ﹣y )(x 2+xy+y 2)
第四部分、板书设计
第五部分、作业布置
今天是2020年 月 号 星期 天气 今日所学:数的开方 今日作业:新思维 页 下次上课时间:下周 第六部分、课后反思
课后作业
1、试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数.
2、试求多项式222451213x xy y y -+-+的最小值以及此时,x y 的值.
3、已知,,a b c 满足22227,21,617a b b c c a +=-=--=-,求a b c ++的值.
4、已知多项式13323+++x ax x 能被12+x 整除,且商式为13+x ,试求a 的值.
5、多项式2x +kx+6能被x+2整除,求常数k 的值.
n
226、计算:
(1)(a+2)(2a +4)(4a +16)(a -2);
(2)(2+1)(2
2+1)(4
2+1)…( +1
)+1(n 是正整数);
(3)(3+1)(32
+1)(34
+1)…(1024
3+1)-2
32048

(4)2481611111
(1)(1)(1)(1)(1)22222+⨯+⨯+⨯+⨯+
7、计算:(1)22222212197198199200-+•••+-+- (2))200
11()19911()311()211(2222-⨯-⨯•••⨯-⨯-
8、观察下列各式:
2233
2
4
(1)(1)1,(x 1)(x 1)1,(x 1)(x 1)1
x x x x x x x x -+=--++=--+++=-
(1)根据上面各式的规律得:12(1)(...1)m m x x x x ---++++= ;(其中m 为正整数);
(2)根据这一规律,计算23691222...2+++++ 的值. (3)根据这一规律,计算20174366662
+•••+++ 的值.
9、已知22(2006)(2004)2005,(2006)(2004)a a a a --=-+-求.
10、已知4a b -=,240ab c ++=,求a b +的值.
11、已知2220,1a b c a b c ++=++=(1)求ab bc ac ++的值;(2)求444a b c ++的值.。

相关文档
最新文档