大学物理——静电场公式
大学物理常用公式(电场磁场 热力学)
![大学物理常用公式(电场磁场 热力学)](https://img.taocdn.com/s3/m/4f9c51b37fd5360cbb1adb05.png)
第四章 电 场一、常见带电体的场强、电势分布2)均匀带电球面(球面半径 )的电场:3)无限长均匀带电直线(电荷线密度为): E = ,方向:垂直于带电直线。
2r( rR ) 4)无限长均匀带电圆柱面(电荷线密度为):E =2r (rR )5)无限大均匀带电平面(电荷面密度为)的电场: E =/20 ,方向:垂直于平面。
二、静电场定理 1、高斯定理:e = ÑE v dS v = q 静电场是有源场。
Sq 指高斯面内所包含电量的代数和;E 指高斯面上各处的电场强度,由高斯面内外的全 部电荷产生; Ñ E vdS v 指通过高斯面的电通量,由高斯面内的电荷决定。
2、环路定理: Ñ E v dl v =0 静电场是保守场、电场力是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统: E v = E v i ;连续电荷系统: E v = dE v i =12、利用高斯定理求场强 四、求电势的两种方法n1、利用电势叠加原理求电势 分离电荷系统:U =U i ;连续电荷系统: U = dU i =1电势零点v v 2、利用电势的定义求电势 U =电势零点Edl五、应用vv b点电荷受力: F = qE电势差: U ab =U a -U b = b EdraE =1 qU =q4r 24r1)点电荷:E =0 (rR ) q2 (rR ) 4r 2U =q (r R ) 4r q (r R ) 4Ra 点电势能:W a = qU a由 a 到 b 电场力做功等于电势能增量的负值 A ab = -W = -(W b -W a )六、导体周围的电场1、静电平衡的充要条件: 1)、导体内的合场强为 0,导体是一个等势体。
2)、导体表面的场强处处垂直于导体表面。
E v ⊥表面。
导体表面是等势面。
2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。
大学物理电场磁场电磁感应公式总结
![大学物理电场磁场电磁感应公式总结](https://img.taocdn.com/s3/m/9d4f4e2c49d7c1c708a1284ac850ad02de800727.png)
对未来学习或研究方向展望
深入学习电磁理论
在大学物理的基础上,可以进一步深入学习电磁场理论,了解电磁波的传播、辐射和散射等现象,为后续的 学术研究或工程应用打下基础。
拓展应用领域
电磁场理论在各个领域都有广泛的应用,如无线通信、电子技术、材料科学等。未来可以将所学的电磁场理 论知识应用到相关领域中,解决实际问题。
交流电的有效值是根据电流的热效应来规定的,对于正弦 交流电,有效值$I = frac{I_m}{sqrt{2}}$。
交流电路中电场、磁场关系分析
电场与磁场相互垂直
在交流电路中,电场和磁场是相 互垂直的,且都垂直于电流的传 播方向。
电磁感应定律
变化的磁场会产生电场,从而产 生感应电动势,感应电动势的大 小与磁通量变化的快慢成正比, 即$e = -n frac{dPhi}{dt}$。
电感和电容
在交流电路中,电感对电流的变 化有阻碍作用,电容对电压的变 化有阻碍作用。电感和电容都是 储能元件,它们在交流电路中的 特性与其在直流电路中的特性有 很大不同。
变压器原理和应用举例
变压器原理
变压器是利用电磁感应原理来改变交流电压的装置。它由两个或多个匝数不同的线圈绕在同一个铁芯上制 成。当原线圈中加上交流电压时,在铁芯中就会产生交变磁通,从而在副线圈中产生感应电动势。
电场
电场强度、电势、高斯定理、静 电场的环路定理等概念和公式, 以及它们在求解电场分布、电势 能和电场力等问题中的应用。
磁场
磁感应强度、磁场线、磁通量、 安培环路定律等概念和公式,以 及它们在求解磁场分布、磁力和 磁矩等问题中的应用。
电磁感应
法拉第电磁感应定律、楞次定律、 自感和互感等概念和公式,以及 它们在求解感应电动势、感应电 流和磁场能量等问题中的应用。
大学物理笔记(6)电磁学(一)静电场
![大学物理笔记(6)电磁学(一)静电场](https://img.taocdn.com/s3/m/d8ee412c793e0912a21614791711cc7930b77841.png)
电荷体密度与电势关系
对于电荷体分布,可以取一小体积元,其电荷体密度为ρ, 则该体积元在距离r处产生的电势为dV=kρdV/r。电势ຫໍສະໝຸດ 与等势面概念及应用电势差定义
电势差是指电场中两点间电势的差值 ,用符号U表示,单位为伏特(V)。
种电荷相互吸引。
电场
电荷周围存在的一种特殊物质,对 放入其中的其他电荷有力的作用。
电场线
用来形象描述电场的曲线,电场线 上每点的切线方向表示该点的电场 强度方向,电场线的疏密程度反映 电场的强弱。
电场强度与电势
电场强度
描述电场强弱的物理量,用E表示 ,单位是牛/库仑(N/C)。电场 强度是矢量,方向与正电荷在该 点所受电场力方向相同。
电场强度
表示电场中某点的电场强弱 和方向的物理量,用E表示 。其方向与正电荷在该点所 受电场力的方向相同。
电势
描述电场中某点的电势能的 高低,用φ表示。电势差则 是两点间电势的差值,即电 压。
高斯定理
通过任意闭合曲面的电通量 等于该曲面内所包围的所有 电荷的代数和除以真空中的 介电常数。
常见误区及易错点提示
这种现象称为静电感应。
静电平衡
当导体内部电荷分布达到稳 定状态,即导体内部电场强 度为零时,称导体处于静电 平衡状态。此时,导体表面
电荷分布满足高斯定理。
屏蔽效应
处于静电平衡状态的导体, 其内部电场强度为零,因此 外部静电场对导体内部无影 响,这种特性称为屏蔽效应 。
介质在静电场中特性分析
01
电极化
05 静电场能量与能 量守恒定律探讨
静电场能量密度表达式推导
大学物理电磁学知识点总结
![大学物理电磁学知识点总结](https://img.taocdn.com/s3/m/88f9df10ad02de80d4d840f6.png)
大学物理电磁学知识点总结篇一:大学物理电磁学知识点总结大学物理电磁学总结一、三大定律库仑定律:在真空中,两个静止的点电荷q1和q2之间的静电相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸。
uuurqqurF21=k122errurur高斯定理:a)静电场:Φe=EdS=∫s∑qiiε0(真空中)b)稳恒磁场:Φm=uurrBdS=0∫s环路定理:a)静电场的环路定理:b)安培环路定理:二、对比总结电与磁∫LurrLEdl=0∫urrBdl=0∑Ii(真空中)L电磁学静电场稳恒磁场稳恒磁场电场强度:E磁感应强度:B定义:B=ururF定义:E=(N/C)q0基本计算方法:1、点电荷电场强度:E=urrurdF(dF=Idl×B)(T)Idlsinθ方向:沿该点处静止小磁针的N极指向。
基本计算方法:urqurer4πε0r21ruruIdl×er0r1、毕奥-萨伐尔定律:dB=24πr2、连续分布的电流元的磁场强度:2、电场强度叠加原理:urnur1E=∑Ei=4πε0i=1rqiuueri∑r2i=1inrururur0Idl×erB=∫dB=∫4πr23、安培环路定理(后面介绍)4、通过磁通量解得(后面介绍) 3、连续分布电荷的电场强度:urρdVurE=∫ev4πεr2r0urdSururλdlurE=∫er,E=∫es4πεr2l4πεr2r004、高斯定理(后面介绍)5、通过电势解得(后面介绍)几种常见的带电体的电场强度公式:几种常见的磁感应强度公式:1、无限长直载流导线外:B=2、圆电流圆心处:电流轴线上:B=ur1、点电荷:E=qurer4πε0r210I2R0I2πr2、均匀带电圆环轴线上一点:urE=B=3、圆rqxi22324πε0(R+x)R2IN2(x2+R2)3210α23、均匀带电无限大平面:E=2ε0(N为线圈匝数)4、无限大均匀载流平面:B=4、均匀带电球壳:E=0(r<R)(α是流过单位宽度的电流)urE=qurer(r>R)4πε0r25、无限长密绕直螺线管内部:B=0nI(n是单位长度上的线圈匝数)6、一段载流圆弧线在圆心处:B=(是弧度角,以弧度为单位)7、圆盘圆心处:B=rurqr(rR)20I4πR0ωR2(是圆盘电荷面密度,ω圆盘转动的角速度)6、无限长直导线:E=λ2πε0xλ0(r>R)2πε0r7、无限长直圆柱体:E=E=λr(r<R)4πε0R2电场强度通量:N·m2·c-1)(磁通量:wb)(sΦe=∫dΦe=∫EcosθdS=∫ssururEdS通量uurrΦm=∫dΦm=∫BdS=∫BcosθdSsss若为闭合曲面:Φe=∫sururEdS若为闭合曲面:uurrΦm=BdS=BcosθdS∫∫ss均匀电场通过闭合曲面的通量为零。
大学物理 静电场总结
![大学物理 静电场总结](https://img.taocdn.com/s3/m/d09d8dfbd1f34693daef3ec1.png)
5. 电势定义:
a
Wpa q0
ur r E dl
a
静电场力作的功与电势差、电势能之间的关系:
b ur r
Aab qE dl q(a b ) (Wpb Wpa ) a
6. 电势分布的典型结论
1) 点电荷: q 4 0r
2) 均匀带电圆环轴线上:
4 0
q R2 x2
3) 均匀带电球面的电势分布:
1)平行板电容器 C 0S
d
2) 电容器的串并联:
串联 1 1 1 1
C C1 C2
Cn
并联 C C1 C2 Cn
4. 电场能量
电容器的静电能: W Q2
2C
电场能量密度:
w
1 2
0E2
各向同性的电介质:
电介质 电位移
D ε0E P
D ε0εr E εE
Gauss定理
2. 静电平衡时导体上的电荷分布 1) 实心导体: 电荷只分布在表面,导体内部没有净电荷.
2) 空腔导体: • 腔内无电荷 电荷分布在外表面,内表面无电荷. •:腔内有电荷: 腔体内表面所带的电量和腔内带电体所带 的电量等量异号。 • 接地空腔导体 外表面不带电, 静电屏蔽 :
3. 电容 C Q
q
4
q
0R
L L rR L L rR
40r
4) 无限长均匀带电直线: ln rB 20 r
(B 0)
7. 电势的计算 叠加法 定义法
第6章 静电场中的导体与电介质
1. 导体的静电平衡条件:
电场描述: ⑴ 导体内部任意一点的场强为零。 ⑵ 导体表面处的场强方向与该处表面垂直.
电势描述: 导体是一等势体,表面是一等势面.
大学物理静电
![大学物理静电](https://img.taocdn.com/s3/m/480d070183d049649b6658a4.png)
2
2C
电场能量密度
e
1 2
0 r E 2
1 2
D
E
4).充有各向同性电介质
W
v
edV
E E0
r
C C0 r
注意:
1.
E表
0
n
是总电场。不是仅指表面电荷的电场。
例. 一接地的“无限大”导体板前垂直放置一“半无限长”均匀带电直线, 使该带电直线的一端距板面的距离为d.如图所示,若带电直线上
dW Udq W Udq
例:如图所示,半径为R的均匀带电球面,带有电荷
q.沿某一半径方向上有一均匀带电细线,电荷 线密度为λ,长度为l,细线左端离球心距离为
q R
r0.设球和线上的电荷分布不受相互作用影响,
O
试求细线所受球面电荷的电场力和细线在该电场 中的电势能(设无穷远处的电势为零).
r0
l
分 布
基本计算:
一、场强与电场力的计算:
1 .叠加法:先求出dq产生的场强的大小 dE 标明 方向,再对带电体积分 ,可得总场强:
Ex
dE x
Ey
dE y
2. 电场具有某种对称性时, 用Gauss 定律求场强.
S
E
dS
1
0
q内
3.先求任一点电势,再利用场强与电势的微分关系
, 求场强.
U EX x
EY
U y
4.电场力
dF Edq
F Edq
注意方向不同时分解.
二、电势与电势能的计算
1. 利用点电荷电势公式及电势叠加原理求电势.
dU 1 dq
U dU
2.
4 0 r
已知场强分布,由U a
大学物理一复习 第五章 静电场和习题小结
![大学物理一复习 第五章 静电场和习题小结](https://img.taocdn.com/s3/m/5aa76b44336c1eb91a375ddf.png)
q 4 π
0
dr r
2
r
q
1 q ( ) 4 r r 4 r q
0 0
r
E
V
q 4 π 0r
q 0, V 0 q 0, V 0
三、电势叠加原理
点电荷系
Va
q1
q2
a
E dl
V1 V 2 V n
第 五 章 静电场
Nothing in life is to be feared. It is only to be understood. ----(Marie Curie)
本章参考作业:P190
5-1,5-2、5-9①、5-14、5-21、 5-23、5-26、5-27、5-30。
学 习 要 点
的大小处处相等,且有
cos 1
cos 0
(目的是把“ E ”从积分号里拿出来)
计算高斯面内的电荷,由高斯定理求 E。
高斯定理运用举例: ---计算有对称性分布的场强
掌握所有 例题
1、球对称——球体、球面、球壳等。 2、轴对称——无限长直线、圆柱体、圆柱面。 3、面对称——无限大均匀带电平面。
E
0
R
r
三、面对称——无限大均匀带电平面。
例6、求无限大均匀带电平面的场 分布。已知面电荷密度为
o
p
dE
dE
解:对称性分析: 垂直平面 E
选取闭合的柱形高斯面
左底 侧
右底
侧 0
左底
E S
S'
E S
右底
2 ES
大学物理静电场总结
![大学物理静电场总结](https://img.taocdn.com/s3/m/47f00fd7581b6bd97f19eafc.png)
第七章、静 电 场一、大体概念 1、电场 (1)、电荷在周围空间激发电场,电荷之间的彼此作用是通过电场传递的。
电场对身处其中的电荷有力的作用(2)库伦定律 沿连线方向,同号相斥,异号相吸2、电场强度⑴、 实验电荷在电场中不同点所受电场力的大小、方向都可能不同;而在 同一点,电场力的大小与实验电荷电量成正比,若实验电荷异号,则所受电场力的方向相反。
咱们就用qF来表示电场中某点的电场强度,用E 表示,即qF E =⑵、点电荷的电场强度以点电荷Q 所在处为原点O,任取一点P(场点),点O 到点P 的位矢为r,把试验电荷q 放在P 点,有库仑定律可知,所受电场力为:r Qq F E 2041επ==⑶常见电场公式无穷大均匀带电板周围电场:εσ02=E3、电势⑴、电场中给定的电势能的大小除与电场本身的性质有关外,还与查验电荷有关,而比值qE pa 0则与电荷的大小和正负无关,它反映了静电场中某给定点的性质。
为此咱们用一个物理量-电势来反映那个性质。
即qE p V 0=⑶常见电势公式 点电荷电势散布:rq V επ04=半径为R 的均匀带点球面电势散布:Rq V επ04=()R r ≤≤0rq V επ04=()R r ≥221r qq k F =二、定理1、场强叠加定理点电荷系所激发的电场中某点处的电场强度等于各个点电荷单独存在时对 该点的电场强度的矢量和。
即E E E n E +++= (21)2、电势叠加定理V 1 、V 2 ...V n 别离为各点电荷单独存在时在P 点的电势点电荷系的电场中,某点的电势等于各点电荷单独 存在时在该点电势的代数和。
3、高斯定理在真空中的静电场内,通过任意封锁曲面的电通量等于该闭合曲面包围的所有电荷的代数和除以ε说明:①高斯定理是反映静电场性质的一条大体定理。
②通过任意闭合曲面的电通量只取决于它所包围的电荷的代数和。
③高斯定理中所说的闭合曲面,通常称为高斯面。
三、静电平衡1、静电平衡当一带电体系中的电荷静止不动,从而电场散布不随时刻转变时,带电 体系即达到了静电平衡。
【大学物理】静电场的环路定理 电势 等势面 电势梯度
![【大学物理】静电场的环路定理 电势 等势面 电势梯度](https://img.taocdn.com/s3/m/6cc53857f01dc281e53af026.png)
r r r r- r l cos
r
r
r+
q l
q+
3. 连续分布电荷电场中的电势 利用电势叠加原理:
dV
dq
dq VP 4 π 0 r
r
P
使用此公式的前提条件为有限大带电体且选无限远 处为电势零点;积分是对整个带电体的积分。 E 利用电势定义式: dl “ 0 ” P
qr E1 3 4 π 0 R
r
q E2 2 4 π 0 r
V1 E1dr E 2 dr
r R
R
q R
R
r
qr q dr dr 3 2 R 4 π r 4 π 0 R 0
2
q q q (3 R r ) 2 2 (R r ) 3 8 π 0 R 4 π 0 R 8 π 0 R
与路径无关
a
dr
任意带电体系产生的电场
任意带电体系都可以看成电荷系 q1、q2、…,移动q0, 静电力所作功为: b b q E •b dr W F dr 0
ab
q0 a• q0 ( E1 E 2 E n ) dr a( L) n b q 0 E i d r = qi q0 ( 1 1 ) a( L) i 1 rbi i 4 0 rai
注意:
• 电势能的零点可以任意选取,但是在习惯上, 当场源电荷为有限带电体时,通常把电势能的零 点选取在无穷远处。 这时,空间a点的电势能:
E pa
a
q0 E dl
• 电势能为电场和位于电场中的电荷这个系统所 共有。
大学物理电磁学总结
![大学物理电磁学总结](https://img.taocdn.com/s3/m/bfdd226c376baf1ffc4fad63.png)
大学物理电磁学总结电磁学部分总结静电场部分第一部分:静电场的基本性质和规律电场是物质的一种存在形态,它同实物一样也具有能量、动量、质量等属性。
静电场的物质特性的外在表现是:(1)电场对位于其中的任何带电体都有电场力的作用(2)带电体在电场中运动, 电场力要作功——电场具有能量1、描述静电场性质的基本物理量是场强和电势,掌握定义及二者间的关系。
电场强度 E =q 0∞ W a 电势 U a ==E ⋅d rq 0a2、反映静电场基本性质的两条定理是高斯定理和环路定理Φe =E ⋅d S =ε0∑qL E ⋅d r =0要掌握各个定理的内容,所揭示的静电场的性质,明确定理中各个物理量的含义及影响各个量的因素。
重点是高斯定理的理解和应用。
3、应用(1)、电场强度的计算1q E =r 02a) 、由点电荷场强公式 4πεr 及场强叠加原理 E = ∑ E 计i 0算场强一、离散分布的点电荷系的场强1q i E =∑E i =∑r 2i 0i i 4πεr 0i二、连续分布带电体的场强 d q E =⎰d E =⎰r 204πε0r其中,重点掌握电荷呈线分布的带电体问题b) 、由静电场中的高斯定理计算场源分布具有高度对称性的带电体的场强分布一般诸如球对称分布、轴对称分布和面对称分布,步骤及例题详见课堂笔记。
还有可能结合电势的计算一起进行。
c) 、由场强和电势梯度之间的关系来计算场强(适用于电势容易计算或电势分布已知的情形),掌握作业及课堂练习的类型即可。
(2)、电通量的计算a) 、均匀电场中S 与电场强度方向垂直b) 、均匀电场,S 法线方向与电场强度方向成θ角E =-gradU =-∇U∂U ∂U ∂U =-(i +j +k )∂x ∂y ∂zc) 、由高斯定理求某些电通量(3)、电势的计算a) 、场强积分法(定义法)——计算U P =⎰E ⋅d rb) 、电势叠加法——q i ⎰电势叠加原理计算⎰∑U i =∑4πεr⎰0iU =⎰dq ⎰dU =⎰⎰⎰4πε0r ⎰第二部分:静电场中的导体和电介质一、导体的静电平衡状态和条件导体内部和表面都没有电荷作宏观定向运动的状态称为静电平衡状态。
大学物理静电场(二)
![大学物理静电场(二)](https://img.taocdn.com/s3/m/87c524c608a1284ac8504311.png)
λdl v0 ∫ 4πε0r2 r L
v dq v0 则 E= ∫ 4π ε0r2 r =
σdS v0 ∫ 4πε0r2 r S
ρdV v0 ∫ 4πε0r2 r V
** 式中 L, S, V, 是 产生电场的源电荷 占据的空间, 占据的空间,由此 来确定上述积分的 变量及上、下限。 变量及上、下限。
dx
dq = dl ⋅ dx ⋅σ
dq ∴ 带电线的线密度 λ = = σ ⋅ dx dl
6
(1).设P点与带电平面(宽度为 ,无限长)在同一平面内 设 点与带电平面 宽度为d,无限长) 点与带电平面( 设每个细长带电线的线密度为λ
σ
λ dE = 2πε0r
λ =σ ⋅ dx
P o x d dx a
S
∴Φe总 = 0
v v 即 Φe = ∫∫ E ⋅ dS = 0
S
对任何形状的闭合面都成立(面内无电荷) 对任何形状的闭合面都成立(面内无电荷)
19
的圆柱面, 例:匀强电场中有一半径为R的圆柱面,其轴线与电场平 匀强电场中有一半径为 的圆柱面 行,求通过此闭合面的电通量 v v S3 v E S2 v
电通量是标量,有正、 电通量是标量,有正、负
v E v dS
v E
v E
v dS
v dS
0 ≤θ <
π
2
, Φe > 0
π θ = , Φe = 0
2
π
2
< θ ≤ π , Φe < 0
2. 非均匀场中
v n
dS
v v ∴dΦe = E ⋅ dS cosθ = E ⋅ dS
每个小面元视为处在匀强场中
−σ
大学物理(电磁学)参考公式
![大学物理(电磁学)参考公式](https://img.taocdn.com/s3/m/fb873bf631b765ce04081423.png)
大学物理(电磁学)参考公式第一章:一段带电直棒中垂线上一点的场强: 21220)4(4L x x LE +=πελ均匀带电细圆环轴线上任一点场强: 23220)(4x R qxE +=πε 电偶极子在匀强电场中所受的力矩:E P M ϖϖρ⨯= 高斯定理:∑⎰=⋅=Φint1qS d E e εϖρ第三章:静电场的环路定理:0d =⋅⎰Lr E ϖϖ; 电势的定义: ⎰⋅=0d P Pr E ϖϖϕ 均匀带电圆环轴线上一点的电势: 2/1220)(4x R q+=πεϕ 静电场的能量: ⎰⎰==VVeV E V w W d 2d 2ε移动电荷时电场力做功: 212112)(W W q A -=-=ϕϕ第五章:各向同性电介质中的电极化强度与电场强度的关系:()E P r ρρ10-=εε 电介质表面的面束缚电荷密度:n e P P ρρ⋅=='θσcos电介质中封闭面内的体束缚电荷:intq P ds '=-⋅⎰v v Ñ 电位移矢量:0D E P ε=+v v v电位移矢量D ρ的高斯定理:∑⎰=⋅int 0q s d D s ρρ 平行板电容器的电容:dSC r εε0=圆柱形电容器的电容:()120ln 2R R L C r επε=球形电容器的电容:122104R R R R C r -=επε电容器并联:∑=i C C 电容器串联:∑=iC C 11 电容器的能量:QU CU C Q W 21212122=== 静电场的总能量:dV E dV W e ⎰⎰==22εω 第七章: 一个运动电荷在另外的运动电荷周围所受的力 B v q E q F ϖϖϖϖ⨯+=霍尔电压 nqbIBU H =载流导线L 在磁场中受的力 ⎰⨯=L B l Id F ϖϖϖ载流线圈在均匀磁场中受的力矩 B e SI B m M n ϖϖϖωϖ⨯=⨯=线圈磁矩在磁场中的势能 B m W m ϖϖ⋅-=第八章:电流元产生的磁场(毕-萨定律)024r Idl e dB rμπ⨯=v vv磁通连续定理 ⎰=⋅S S d B 0ϖϖ 直线电流的磁场 ()210cos cos 4θθπμ-rIB =圆电流轴线上的磁场 ()2322202x R IR B +=μ载流直螺线管轴线上的磁场 ()120cos cos 2θθμ-=nIB运动电荷产生的磁场 204r e v q B rϖϖϖ⨯=πμ 安培环路定理⎰∑=⋅LI r d B int 0μϖϖ推广的安培环路定理 ⎰⎰⎰⋅⎪⎪⎭⎫ ⎝⎛∂∂+=⎪⎭⎫ ⎝⎛⋅+=⋅S c L s c S d t E J S d E dt d I r d B ϖϖϖϖϖϖϖ0000εμεμ 第九章:磁化强度 r 01M rB μμμ-r r= 磁化电流密度n j M e '=⨯r v r磁场强度 00BrB H M μμμ-v vr v == H 的环路定理0int LH dr I ⋅=∑⎰v vÑ第十章: 法拉第电磁感应定律: 动生电动势:感生电场:互感系数:211212M i i ψψ==互感电动势: 两个载流线圈的总磁能:自感系数:L Iψ=自感电动势:L d dI L dt dt εψ=-=- 自感磁能: 磁场能量密度: (非铁磁质) 磁场总磁能: (非铁磁质)d dtεΦ=-()bb ab ne aaE dl v B dlε=⋅=⨯⋅⎰⎰r r r r rd d d d LSd E l B s dt t εΦ=⋅=-==-⋅⎰⎰r r r rÑ感感1221212d dIM dt dtεψ=-=-2112121d dI M dt dtεψ=-=-212m WLI =221122121122m W L I L I M I I =++2122m B BH ωμ==12m m VVW dV BHdVω==⎰⎰。
大学物理Ⅱ 高斯定理
![大学物理Ⅱ 高斯定理](https://img.taocdn.com/s3/m/439eec7a0029bd64793e2c21.png)
P
l
e
E dS S
E dS
侧 E dS 上底 E dS 下底 E dS
侧 EdS E 侧 dS E 2r l
根据高斯定理得 E 2r l 1 l 0
E 2 0 r
用高斯定理求场强小结:
1 . 对称性分析
电荷分布对称性→场强分布对称性
点电荷 球对称性 均匀带电球面
均匀带电球壳
球体
轴对称性 柱对称
无限带电直线
无限带电圆柱 无限圆柱面 无限同轴圆柱面
无限大平面 面对称性 无限大平板
若干无限大平面
2. 高斯面的选择
①高斯面必须通过所求的场强的点。
②高斯面上各点场强大小处处相等,方向处处与该 面元线平行;或者使一部分高斯面的法线与场强方 向垂直;或者使一部分场强为零。
+ q+ +
+
0
R
r
高斯定理的应用
例2 均匀带电球体的电场。球半径为R,带电为q。
解:电场分布也应有球对称性,方向沿径向。
作同心且半径为r的高斯面
1)r R时 ,
E ds E ds
E 4r2
s
s
r
q
0
4 r3
3
0
q
4 R3
4 r3330E qr4 0R3
R
高斯面
高斯定理的应用
Φe前 Φe后 Φe下
s
E
dS
0
y
P
N
en
o
zM
en
E
en
Q
Rx
Φe左
s左
E
dS
ES左
cosπ
ES左
Φe右 s右E dS ES右 cos ES左
大学物理东南大学第七版上册第四章知识点总结
![大学物理东南大学第七版上册第四章知识点总结](https://img.taocdn.com/s3/m/cea7dd6332687e21af45b307e87101f69f31fb5d.png)
大学物理东南大学第七版上册第四章知识点总结一.静电场:1.真空中的静电场库仑定律→电场强度→电场线→电通量→真空中的高斯定理r适用范围:真空中静止的两个点电荷F⑵电场强度定义式:Eqo⑶电场线:是引入描述电场强度分布的曲线。
曲线上任一点的切线方向表示该点的场强方向,曲线疏密表示场强的大小。
静电场电场线性质:电场线起于正电荷或无穷远,止于负电荷或无穷远,不闭合,在没有电荷的地方不中断,任意两条电场线不相交。
⑷电通量:通过任一闭合曲面S的电通量为e S dS方向为外法线方向1E dS⑸真空中的高斯定理:e S o E dSqi1int只能适用于高度对称性的问题:球对称、轴对称、面对称应用举例:球对称:0均匀带电的球面E Q4r20(r R)(r R)均匀带电的球体Qr40R3E Q240r(r R)(r R)轴对称:无限长均匀带电线E2or0(r R)无限长均匀带电圆柱面E(r R)20r面对称:无限大均匀带电平面E E⑹安培环路定理:dl0l2o★重点:电场强度、电势的计算电场强度的计算方法:①点电荷场强公式+场强叠加原理②高斯定理电势的计算方法:①电势的定义式②点电荷电势公式+电势叠加原理电势的定义式:UA AP E dl(UP0)B电势差的定义式:UAB UA UB A电势能:Wp qo PP0E dlE dl(WP00)2.有导体存在时的静电场导体静电平衡条件→导体静电平衡时电荷分布→空腔导体静电平衡时电荷分布⑴导体静电平衡条件:Ⅰ.导体内部处处场强为零,即为等势体。
Ⅱ.导体表面紧邻处的电场强度垂直于导体表面,即导体表面是等势面⑵导体静电平衡时电荷分布:在导体的表面⑶空腔导体静电平衡时电荷分布:Ⅰ.空腔无电荷时的分布:只分布在导体外表面上。
Ⅱ.空腔有电荷时的分布(空腔本身不带电,内部放一个带电量为q的点电荷):静电平衡时,空腔内表面带-q电荷,空腔外表面带+q。
3.有电介质存在时的静电场⑴电场中放入相对介电常量为r电介质,电介质中的场强为:E⑵有电介质存在时的高斯定理:S D dS q0,int E0r各项同性的均匀介质D0rE⑶电容器内充满相对介电常量为r的电介质后,电容为C rC0★重点:静电场的能量计算①电容:②孤立导体的电容UU U举例:平行板电容器C圆柱形电容器 C4oR1R2os球形电容器CR2R1d2oL R2ln(R1Q211Q U C(U)2 ③ 电容器储能公式We2C22④静电场的能量公式We wedV E2dVVV12二.静磁场:1.真空中的静磁场磁感应强度→磁感应线→磁通量→磁场的高斯定理⑴磁感应强度:大小B F方向:小磁针的N极指向的方向 qvsin⑵磁感应线:是引入描述磁感应强度分布的曲线。
大学物理静电场的高斯定理
![大学物理静电场的高斯定理](https://img.taocdn.com/s3/m/3d8cf43e178884868762caaedd3383c4bb4cb48c.png)
高斯定理的数学表达形式简洁明了,是解决静电场问题的重要
03
工具。
高斯定理在物理中的重要性
高斯定理在物理学中具有广泛 的应用,不仅限于静电场。
它可用于分析恒定磁场、时 变电磁场以及相对论性电磁
场中的问题。
高斯定理是电磁学理论体系中 的重要基石,对于深入理解电 磁场的本质和规律具有不可替
代的作用。
THANKS FOR WATCHING
高斯定理的重要性
总结词
高斯定理是静电场理论中的基本定理之一,它揭示了电场与电荷之间的内在联 系。
详细描述
高斯定理的重要性在于它提供了一种计算电场分布的方法,特别是对于电荷分 布未知的情况。同时,它也揭示了电场线总是从正电荷出发,终止于负电荷, 或者穿过不带电的区域。
高斯定理的历史背景
总结词
高斯定理的发现和证明经历了漫长而曲折的历史过程。
VS
按空间位置分类
静电场可分为点电荷产生的电场、线电荷 产生的电场、面电荷产生的电场等类型。 这些不同类型的电场具有不同的分布规律 和性质。
05
高斯定理的推导过程
利用高斯定理推导电场强度与电通量的关系
总结词
通过高斯定理,我们可以推导出电场强度与 电通量之间的关系,即电场线穿过任意闭合 曲面的电通量等于该闭合曲面所包围的电荷 量与真空电容率的乘积。
静电场的电场强度与电势具有相对独立性
电场强度与电势之间没有直接关系,改变电场中某点的电势,不会影响该点的电场强度。
静电场的分类
按产生方式分类
静电场可分为感应起电和接触起电两种 方式。感应起电是由于带电体在接近导 体时,导体内部电荷重新分布而产生电 场;接触起电是两个不同物体相互接触 时,由于电子的转移而产生电场。
大学物理电磁学公式总结
![大学物理电磁学公式总结](https://img.taocdn.com/s3/m/28387eccbd64783e08122b7a.png)
普通物理学教程——大学物理电磁学公式总结(各种归纳差不多都一样)➢第一章(静止电荷的电场)1.电荷的基本性质:两种电荷,量子性,电荷守恒,相对论不变性。
2.库仑定律:两个静止的点电荷之间的作用力F ==3.电力叠加原理:F=ΣF i4.电场强度:E=,为静止电荷5.场强叠加原理:E=ΣE i用叠加法求电荷系的静电场:E=(离散型)E=(连续型)6.电通量:Φe=7.高斯定律:=Σq int8.典型静电场:1)均匀带电球面:E=0 (球面内)E=(球面外)2)均匀带电球体:E==(球体内)E=(球体外)3)均匀带电无限长直线:E=,方向垂直于带电直线4)均匀带电无限大平面:E=,方向垂直于带电平面9.电偶极子在电场中受到的力矩:M=p×E➢第三章(电势)1.静电场是保守场:=02.电势差:φ1–φ2=电势:φp=(P0是电势零点)电势叠加原理:φ=Σφi3.点电荷的电势:φ=电荷连续分布的带电体的电势:φ=4.电场强度E与电势φ的关系的微分形式:E=-gradφ=-▽φ=-(i+j+k)电场线处处与等势面垂直,并指向电势降低的方向;电场线密处等势面间距小。
5.电荷在外电场中的电势能:W=qφ移动电荷时电场力做的功:A12=q(φ1–φ2)=W1-W2电偶极子在外电场中的电势能:W=-p•E➢第四章(静电场中的导体)1.导体的静电平衡条件:E int=0,表面外紧邻处Es⊥表面或导体是个等势体。
2.静电平衡的导体上电荷的分布:Q int=0,σ=ε0E3.计算有导体存在时的静电场分布问题的基本依据:高斯定律,电势概念,电荷守恒,导体经典平衡条件。
4.静电屏蔽:金属空壳的外表面上及壳外的电荷在壳内的合场强总为零,因而对壳内无影响。
➢第五章(静电场中的电介质)1.电介质分子的电距:极性分子有固有电距,非极性分子在外电场中产生感生电距。
2.电介质的极化:在外电场中固有电距的取向或感生电距的产生使电介质的表面(或内部)出现束缚电荷。
大学物理——静电场
![大学物理——静电场](https://img.taocdn.com/s3/m/9fa9810ae87101f69e3195fc.png)
第七章静电场§7.1点电荷库仑定律一、点电荷和狄拉克d 函数❶点电荷:是一个理想模型,忽略带电体本身的大小和形状,而将其抽象成带电荷的质点。
❷电荷连续分布线分布:dl dq =λ面分布:ds dq =σ体分布:vd dq =ρ❸d 函数(),00⎩⎨⎧=∞≠=x x X d ()1=⎰∞∞-dx X d 二、库仑定律❶真空12f 1q 2q 12r 21ff1q 2q12f 21f ,12312211212r r q Kq f f =-=229cNm 100.9-⨯=K设,410πε=K 212120mN C 1085.8---⨯=ε则3120122121124r r q q f f επ =-=电介质312312441221012212112r r q q r r q q f f r πεεεπ ==-=εr 电介质的相对介电常数ε 电介质的介电常数§7.2电场电场强度一、电场电荷周围存在的一种特殊形态的物质,具有能量、动量等。
电场对外表现:其一:电场对引入其中的电荷有力的作用;其二:当电荷在电场中移动时,电场对它要做功。
电荷之间的作用是通过电场实现的。
电荷⇔⇔电荷电场二、电场强度为了描述电场对电荷的施力性质,引入一个基本物理量--电场强度,简称场强,用表示,其定义为EqF E=三、场强迭加原理处于由产生的电场中q 0n q q q ,,,21 ∑∑=====n i in i iE F FE q q 11四、场强的计算点电荷电场,430rrq q F πε =34r r q E πε =点电荷系电场∑∑==i i i ii i r r q E E 34πε任意带电体电场用积分求解.解体步骤:1.将带电体分成无数个电荷元(电荷元不一定是点电荷)电荷元dq 在空间某点的场强:r rdq E d341πε=2.选取适当的坐标系,写出的各个分量的表达式。
E dz y x dE dE E d ,,3.求zy x dE dE E d ,,,⎰=E d E x x ,⎰=E d E y y ⎰=E d E z z 此步最好利用电荷分布的对称性判断方向,减少计算.E4. 带电体的场强k E j E i E E z y x++=§7.3 电感强度高斯定理一、电感强度D在各向同性的均匀电介质中,任一点处的电感强度等于该点的电场强度和介电常数的乘积,即:D εEED ε=二、电力线和电感线电力线电力线在电场中任一点处,通过垂直于的单位面积的电力线条数等于该点处的量值。
大学物理(上册)_电相互作用和静电场(4)
![大学物理(上册)_电相互作用和静电场(4)](https://img.taocdn.com/s3/m/e3937e9451e79b89680226f6.png)
1.
2. 3.
均匀带电,线密度为
上半部带正电,下半部带负电,线密度为 非均匀带电,线密度为 0 sin
y
d
思路:叠加法
dq
R
dq dE E
x
o
dE
解:1)
dq Rd dq dE ;沿径向 2 4 0 R
dq
R
d
y
dE
用分量叠加,
o2
o1o2 a
(3) 思考:请总结获得均匀电场的方法
R1
o1
a
E
R2
o2
E
E
2 0
E
0
x
如图,由对称性:
o
dq
dE
E y dE y 0
sind E x dE x dE sin 4 0 R 2 0 R 0 i Eo 2 0 R
解:2)
d q Rd dq dE ; 沿径向 2 4 0 R
〈2〉选高斯面 ?
S
S
r
r o
R
同心球面 S (半径 r )
2 E d S E 4 r
s
( 3)
q
内
?
dr
k 4 3 q内 V r 3 r 对否 ?
S
r
o
r
R
k dq dV 4r 2dr r
r R:
q
?
第三篇 相互作用和场 第九章 电相互作用和静电场
第九章第四讲
本章共7讲
大学物理(下)03静电场3
![大学物理(下)03静电场3](https://img.taocdn.com/s3/m/e74c7b114431b90d6c85c752.png)
§11.3 电 势
静电场—电势 静电场 电势
1
§11.3 电 势
§11.3.1 §11.3.2 §11.3.3 §11.3.4 小结 电场力的功 电势能 电势 电势的计算
静电场—电势 静电场 电势
返回
2
§11.3
§11.3.1 电场力的功
1、在点电荷的电场中 、
电
+q
势
静电场—电势 静电场 电势
12
r+ ⋅ r− ≅ r
2
r− − r+ ≅ l cosθ
3. 连续带电体的电势 连续带电体的电势: (1). 电势积分法 电势积分法:
r dU
P
dq
UP = ∫
∞
dq 4πε0r
Q
Q
(2). 场强积分法 场强积分法:
UP = ∫
P
v v E ⋅ dL
特点: 计算场强对称分布带电体的电势方便。 特点: 计算场强对称分布带电体的电势方便。
W = qU
静电场—电势 静电场 电势
返回
9
§11.3.4 电势的计算
1、 点电荷的电势 、
UP
r ∞ r = ∫ E ⋅ dl
P
q
r
P
r dl
r 设 dr = d l
U
r E
∞
=
=
∫r
∞
E dr
∞
∫r 4πε 0
q 4πε0r
q
dr 2 r
q>0
r
o
=
q<0
静电场—电势 静电场 电势
10
2、电荷系的电势 、
(1). 当 P点 r > R2 : P = U1 1