全国初中数学竞赛辅导(八年级)教学案全集第05讲 恒等式的证明
八年级数学培优.竞赛资料(共24讲)
B AC D EF 第01讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同; 2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC (HL )故选C . 【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等A F C E DB 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF 在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( ) A .2 B .3 C .4 D .5A B C D O FE A CEFBD02.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. \ 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠FAC =∠CDF∵∠AOD =∠FAC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCAB (E )OC F 图③DAAE第1题图A BCDEBCDO第2题图AFECB D【变式题组】 01.(绍兴)如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C落在AB 边上的点P 处.若∠CDE =48°,则∠APD 等于( ) A .42° B .48° C .52° D .58° 02.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是( )A .△ABC ≌△DEFB .∠DEF =90°C . AC =DFD .EC =CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵若PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21届江苏竞赛试题)已知,如图,BD 、CE 分别是△ABC 的边A C 和AB 边上的高,点P 在BD 的延长线,BP =AC ,点Q 在CE 上,CQ =AB. 求证:⑴ AP =AQ ;⑵AP ⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP =AQ ,也就是证△APD 和△AQE ,或△APB 和△QAC 全等,由已知条件BP =AC ,CQ =AB ,应该证△APB ≌△QAC ,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP ⊥AQ ,即证∠PAQ =90°,∠PAD +∠QAC =90°就可以.证明:⑴∵BD 、CE 分别是△ABC 的两边上的高,∴∠BDA =∠CEA =90°, ∴∠1+∠BAD =90°,∠2+∠BAD =90°,∴∠1=∠2. 在△APB 和△QAC 中, 2AB QC BP CA =⎧⎪=⎨⎪=⎩∠1∠ ∴△APB ≌△QAC ,∴AP =AQEFB ACDG第2题图21ABCPQE F D⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠PAD =90° ∵∠CAQ +∠PAD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:02.直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40° 03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( )第1题图a αcca50° b72° 58°AECBA 75° C45° BNM第2题图第3题图DA .SASB .ASAC .AASD .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB=AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .DA C .Q P.BA E FB DC 12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC 的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略); 对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.ABCDA 1B 1C 1D 1D B A C EF A E B F D CAEF C DB 培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______.06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE=AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCEF第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFCD 第1题图B第2题图第3题图ABE D CAB C DEAEBDC=90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。
初二数学竞赛辅导资料(共12讲)
初二数学竞赛辅导资料(共12讲)目录本内容适合八年级学生竞赛拔高使用重点落实在奥赛方面的基础知识和基本技能培训和提高本内容难度适中讲练结合由浅入深讲解与练习同步重在提高学生的数学分析能力与解题能力另外在本次培训中内容的编排和讲解可以根据学生的具体状况由任课教师适当的调整顺序和增删内容其中《因式分解》为初二下册内容但是考虑到它的重要性和工具性将在本次培训进行具体解读注有标注的为选做内容本次培训具体计划如下以供参考第一讲实数一第二讲实数二第三讲平面直角坐标系函数第四讲一次函数一第五讲一次函数二第六讲全等三角形第七讲直角三角形与勾股定理第八讲株洲市初二数学竞赛模拟卷未装订在内另发第九讲竞赛中整数性质的运用第十讲不定方程与应用第十一讲因式分解的方法第十二讲因式分解的应用第十三讲考试未装订在内另发第十四讲试卷讲评第1讲实数一知识梳理一非负数正数和零统称为非负数1几种常见的非负数1实数的绝对值是非负数即a≥0在数轴上表示实数a的点到原点的距离叫做实数a的绝对值用a来表示设a为实数则绝对值的性质①绝对值最小的实数是0②若a与b互为相反数则a=ba=ba=b③对任意实数a则a≥a a≥-a④a·b=ab b≠0⑤a-b≤a±b≤a+b2实数的偶次幂是非负数如果a为任意实数则≥0n为自然数当n=1≥03算术平方根是非负数即≥0其中a≥0算术平方根的性质 a≥0 =2非负数的性质1有限个非负数的和积商除数不为零是非负数2若干个非负数的和等于零则每个加数都为零3若非负数不大于零则此非负数必为零3对于形如的式子被开方数必须为非负数4推广到的化简5利用配方法来解题开平方或开立方时将被开方数配成完全平方式或完全立方例题精讲◆专题一利用非负数的性质解题例1已知实数xyz满足求x+y+z的平方根巩固1已知则的值为______________2若的值拓展设abc是实数若求abc的值◆专题二对于的应用例2已知xy是实数且例3已知适合关系式求的值巩固1已知b=且的算术平方根是的立方根是试求的平方根和立方根2已知则拓展在实数范围内设=求的个位数字◆专题三的化简及应用常用方法利用配方法将被开方数配成完全平方式或者立方式例4化简例5若实数x满足方程那么巩固1若且则2已知实数a满足a+=03设1求y的最小值2求使6<y<7的x的取值范围拓展若求的值课后练习1如果a 0 那么2已知和是数的平方根则求的值3设abc是△ABC的三边的长则=4已知xy是实数且则=5若0 a 1 且则为6代数式的最小值是7已知实数满足=则=8已知△ABC的三边长为和满足求的取值范围9已知求的值10实数满足求的值第2讲实数二知识梳理一实数的性质1设x为有理数y为无理数则x+yx-y都为无理数当x≠0时xy都是无理数当x=0xy 就是有理数了2若xy都是有理数是无理数则要使=0x=y=03xymn都是有理数都是无理数则要使成立须使x=ym=n常用方法直接法利用数轴比较平方法同次根式下比较被开方数法作差法作商法三证明一个数是有理数的方法证明这个数是一个有限小数或无限循环小数或可表示成几个有理数的和差积商的形式例题精讲◆例1比较下列两数的大小1 2 34 5 6巩固设◆例2若的小数部分为的小数部分为则的值为巩固1已知为的整数部分是9的平方根且求的值2设的整数部分为小数部分为试求的值拓展已知的整数部分为m小数部分为n的整数部分为a小数部分为b试计算的值◆例3已知是有理数且求的值巩固1已知ab是有理数且求ab的值2已知是有理数并且满足求的值◆例4设试用的代数式表示巩固已知试用的代数式表示◆例5求证是有理数◆例6a与b是两个不相等的有理数试判断实数是有理数还是无理数并说明理由拓展证明是无理数◆例5若ab满足的取值范围巩固已知求x和y的取值范围课后练习1比较大小2设ab是正有理数且满足求ab的值3设的整数部分为小数部分为试求的值4已知与的小数部分分别是ab求ab-3a+4b+8的值5已知ab为有理数xy分别表示的整数部分和小数部分且求a+b的值6证明是无理数第3讲平面直角坐标系函数知识梳理1平面直角坐标系是在数轴的基础上为了实际问题的需要而建立起来的是学习函数的基础数形结合是本节最显著的特点2坐标平面内任意一点P都有唯一的一对有序实数xy和它对应反过来对于任何一对有序实数xy在平面内都有唯一的点P和它对应与点P相对应的有序实数对xy叫做点P的坐标3平面直角坐标系内的点的特征1若点Pxy在第一象限内2若点Pxy在第二象限内3若点Pxy在第三象限内 4若点Pxy在第四象限内5若点Pxy在x轴上 6若点Pxy在y轴上4对称点的坐标特征1点Pxy关于x轴对称或成轴反射的点的坐标为Px-y2点Pxy关于y轴对称或成轴反射的点的坐标为P-xy3点Pxy关于原点对称的点的坐标为P-x-y5函数的有关定义1函数的定义在一个变化过程中如果有两个变量x与y并且对于每一个x确定的值y都有唯一确定的值与其对应则x是自变量y是的函数2函数关系式用来表示函数关系的等式叫函数关系式也称函数解析式6函数自变量的取值范围自变量的取值范围必须使含自变量的代数式都有意义所以1使分母不为零2开平方时被开方数为非负数3为整式时其自变量的范围是全体实数另外当函数关系表示实际问题时自变量的取值必须使实际问题有意义例题精讲◆例1若点M1+a2b-1在第二象限则点N a-11-2b 在第象限巩固1点Q3-a5-a在第二象限则=2若点P2a+43-a关于y的对称点在第三象限求a的取值范围为◆例2方程组的解在平面直角坐标系中对应的点在第一象限内求m的取值范围巩固已知点Mab在第四象限且ab是二元一次方程组的解求点M关于坐标原点的对称点的坐标◆例3在直角坐标系中已知A11在轴上确定点P使△AOP为等腰三角形则符合条件的点P共有个A1 B2 C3 D4拓展在平面直角坐标系中有一个正方形ABCD它的4个顶点为A100B 010C -100D 0-10 则该正方形内及边界上共有_______个整点即横纵坐标都是整数的点◆例4求下列函数中自变量的取值范围◆例5如图在靠墙墙长为18m的地方围建一个矩形的养鸡场另三边用竹篱笆围成如果竹篱笆总长为35m求鸡场的一边长y m与另一边长x m的函数关系式并求自变量的取值范围巩固1求下列函数中自变量的取值范围①②③2周长为10cm的等腰三角形腰长y cm 与底边长x cm 之间的函数关系式是______________自变量x的取值范围为_________________.拓展若函数y=的自变量x的取值范围为一切实数求c的取值范围◆例6已知函数的图像如图所示求点AB的坐标巩固若点P在函数的图象上那么点P应在平面直角坐标系中的A.第一象限 B.第二象限 C.第三象限 D.第四象限升又知单开进水管20分钟可把空水池注满若同时打开进出水管20分钟可把满水池的水放完现已知水池内有水升先打开进水管分钟再打开出水管两管同时开放直至把水池中的水放完则能确定反映这一过程中水池的水量升随时间分钟变化的函数图象是巩固如图小亮在操场上玩一段时间内沿的路径匀速散步能近似刻画小亮到出发点的距离与时间之间关系的函数图象是课后练习1汽车由北京驶往相距120千米的天津它的平均速度是30千米时•则汽车距天津的路程S千米与行驶时间t时的函数关系及自变量的取值范围是 • AS=120-30t0≤t≤4 BS=30t0≤t≤4CS=120-30tt 0 DS=30tt=42图1是韩老师早晨出门散步时离家的距离与时间之间的函数图象.若用黑点表示韩老师家的位置则韩老师散步行走的路线可能是3函数自变量的取值范围为___________________4如图水以恒速即单位时间内注入水的体积相同注入下图的四种底面积相同的容器中下面那种方案能准确体现各容器所对应的水高度和时间的函数关系图象A.1~甲2~乙3~丁4~丙 B.1~乙2~甲3~丁4~丙C.1~乙2~甲3~丙4~丁 D.1~丁2~甲3~乙4~丙5平面直角坐标系内点An1-n一定不在A第一象限 B第二象限 C第三象限 D第四象限6若P a+b-5 与Q 13a-b 关于原点对称则a+b a-b 的值为6已知点P3p-153-p在第三象限如果其坐标为整数点求点M的坐标第4讲一次函数一姓名知识梳理一一次函数和正比例函数的概念若两个变量xy间的关系式可以表示成y=kx+bkb为常数k≠0的形式则称y是x的一次函数x为自变量特别地当b=0时称y是x的正比例函数二一次函数的图象由于一次函数y=kx+bkb为常数k≠0的图象是一条直线所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线因此在今后作一次函数图象时只要描出适合关系式的两点再连成直线即可一般选取两个特殊点直线与y轴的交点0b直线与x轴的交点-0但也不必一定选取这两个特殊点画正比例函数y=kx的图象时只要描出点001k即可三一次函数y=kx+bkb为常数k≠0的性质1k的正负决定直线的倾斜方向①k>0时y的值随x值的增大而增大②k<O时y的值随x值的增大而减小.2k大小决定直线的倾斜程度即k越大直线与x轴相交的锐角度数越大直线陡k越小直线与x轴相交的锐角度数越小直线缓3b的正负决定直线与y轴交点的位置①当b>0时直线与y轴交于正半轴上②当b<0时直线与y轴交于负半轴上③当b=0时直线经过原点是正比例函数.4由于kb的符号不同直线所经过的象限也不同①如图11-181所示当k>0b>0时直线经过第一二三象限直线不经过第四象限②如图11-182所示当k>0b>O时直线经过第一三四象限直线不经过第二象限③如图11-183所示当k<Ob>0时直线经过第一二四象限直线不经过第三象限④如图11-184所示当k<Ob<O时直线经过第二三四象限直线不经过第一象限.5由于k决定直线与x轴相交的锐角的大小k相同说明这两个锐角的大小相等且它们是同位角因此它们是平行的.另外从平移的角度也可以分析例如直线y =x+1可以看作是正比例函数y=x向上平移一个单位得到的.四正比例函数y=kxk≠0的性质1正比例函数y=kx的图象必经过原点2当k>0时图象经过第一三象限y随x的增大而增大3当k<0时图象经过第二四象限y随x的增大而减小.五用函数的观点看方程与不等式1方程2x+20=0与函数y=2x+20观察思考二者之间有什么联系从数上看方程2x+20=0的解是函数y=2x+20的值为0时对应自变量的值从形上看函数y=2x+20与x轴交点的横坐标即为方程2x+20=0的解关系由于任何一元一次方程都可转化为kx+b=0kb为常数k≠0的形式.所以解一元一次方程可以转化为当一次函数值为0时求相应的自变量的值从图象上看这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.2解关于xy的方程组从数的角度看•相当于考虑当自变量为何值时两个函数的值相等以及这个函数值是多少从形的角度看相当于确定两条直线y=kx+b与y=mx+n的交点坐标两条直线的交点坐标•就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解3解一元一次不等式可以看作是当一次函数值大于或小于0时求自变量相应的取值范围.解关于x的不等式kx+b mx+n可以转化为当自变量x取何值时直线y=k-mx+b-n上的点在x轴的上方或2求当x 取何值时直线y=kx+b上的点在直线y=mx+n上相应的点的上方.不等号为时是同样的道理例题精讲◆例1已知一次函数则这样的一次函数的图象必经过第象限巩固1一次函数的图象如图则下面结论正确的是A BC D2若直线经过点Am-1B1m其中则这条直线不经过第象限拓展已知≠并且那么一定经过A第一二象限 B第二三象限 C第三四象限 D第一四象限◆例2若直线y=kx+6与两坐标轴所围成的三角形面积是24求常数k的值是多少巩固过点P3作直线使它与两坐标轴围成的三角形面积为5这样的直线可以作几条拓展设直线是正整数与两坐标轴所围成的图形的面积为则◆例3如图所示直线y=x+2与x轴交于点A直线y=-2x+6与x轴交于点B且两条直线的交点为P试求出△PAB的面积巩固1如图在直角坐标系中长方形OABC的顶点B的坐标为 156 直线恰好将长方形OABC分成面积相等的两部分那么2如图所示已知直线y=x+3的图象与x轴y轴交于AB两点直线l经过原点与线段AB交于点C把△AOB的面积分为21的两部分求直线l的解析式.拓展若直线和直线k是正整数及x轴围成的三角形面积为则值为___________◆例4一次函数与一次函数在同一平面直角坐标系中的图象如图所示则下列结论①k1>0b<0②k2>0③关于x的不等式的解集是④关于xy的二元一次方程组的解为其中正确的结论有____________巩固1已知关于x的不等式kx-2 0k≠0的解集是x -3则直线y=-kx+2与x 轴的交点是_______.2如右图直线与直线在同一平面直角坐标系中的图象如图所示则关于的不等式的解集为◆例5一个一次函数的图像与直线平行与轴轴的交点分别为AB并且过点-1-25则线段AB上包括端点AB横坐标纵坐标都是整数的点有几个巩固如图一次函数的图象经过点和则的值为◆例6如图直线的解析式为且与轴交于点D直线经过点AB直线交于点C1求直线的解析式2求△ADC的面积3在直线上存在异于点C的另一点P使得△ADP与△ADC的面积相等请直接写出点P的坐标课后练习1点A为直线上的一点点A到两坐标轴的距离相等则点A的坐标为________ 2直线经过一二四象限那么直线经过象限3一次函数是常数的图象如图所示则不等式的解集是A.B.C.D.4如图一直线L经过不同三点AabB ba C那么直线L经过A.第二四象限 B.第一三象限 C.第二三四象限 D.第一三四象限5设直线为自然数与两坐标轴围成的三角形面积为=1232000 则1+2+3++2000的值为A B C D6如图直线与轴轴分别交于AB两点以线段AB为直角边在第一象限内作等腰直角△ABC∠BAC=90°如果在第二象限内有一点P且△ABP的面积与△ABC的面积相等求a的值第5讲一次函数二知识梳理一次函数的应用就是从给定的材料中抽象出函数关系构建一次函数模型再利用一次函数的性质求出问题的解例题精讲◆例1我市一种商品的需求量y1万件供应量y2万件与价格x元/件分别近似满足下列函数关系式y1=x+60y2=2x36需求量为时即停止供应当y1 = y2 1求该商品的稳定价格与稳定需求量2价格在什么范围该商品的需求量低于供应量3当需求量高于供应量时政府常通过对供应方提供价格补贴来提高供货价格以提高供应量现若要使稳定需求量增加4万件政府应对每件商品提供多少元补贴才能使供应量等于需求量巩固图11-30表示甲乙两名选手在一次自行车越野赛中路程y千米随时间x分变化的图象全程根据图象回答下列问题.1当比赛开始多少分时两人第一次相遇2这次比赛全程是多少千米3当比赛开始多少分时两人第二次相遇◆例2在购买某场足球赛门票时设购买门票数为张总费用为元.现有两种购买方案方案一若单位赞助广告费10000元则该单位所购门票的价格为每张60元总费用=广告赞助费+门票费方案二购买门票方式如图所示.解答下列问题1方案一中与的函数关系式为方案二中当时与的函数关系式为当时与的函数关系式为2如果购买本场足球赛超过100张你将选择哪一种方案使总费用最省请说明理由3甲乙两单位分别采用方案一方案二购买本场足球赛门票共700张花去总费用计58000元求甲乙两单位各购买门票多少张.元一月用水超过10吨的用户10吨水仍按每吨元收费超过10吨的部分按每吨元收费设一户居民月用水吨应收水费元与之间的函数关系如图13所示1求的值某户居民上月用水8吨应收水费多少元2求的值并写出当时与之间的函数关系式3已知居民甲上月比居民乙多用水4吨两家共收水费46元求他们上月分别用水多少吨◆例3抗震救灾中某县粮食局为了保证库存粮食的安全决定将甲乙两个仓库的粮食全部转移到具有较强抗震功能的AB两仓库已知甲库有粮食100吨乙库有粮食80吨而A库的容量为70吨B库的容量为110吨从甲乙两库到AB两库的路程和运费如下表表中元吨·千米表示每吨粮食运送1千米所需人民币1若甲库运往A库粮食吨请写出将粮食运往AB两库的总运费元与吨的函数关系式2当甲乙两库各运往AB两库多少吨粮食时总运费最省最省的总运费是多少巩固我市某乡两村盛产柑桔村有柑桔200吨村有柑桔300吨.现将这些柑桔运到两个冷藏仓库已知仓库可储存240吨仓库可储存260吨从村运往两处的费用分别为每吨20元和25元从村运往两处的费用分别为每吨15元和18元.设从村运往仓库的柑桔重量为吨两村运往两仓库的柑桔运输费用分别为元和元.1请填写下表并求出与之间的函数关系式总计吨200吨300吨总计240吨260吨500吨2试讨论两村中哪个村的运费较少3考虑到村的经济承受能力村的柑桔运费不得超过4830元.在这种情况下请问怎样调运才能使两村运费之和最小求出这个最小值.◆例4我国铁路第六次大提速在甲乙两城市之间开通了动车组高速列车.已知每隔1h有一列速度相同的动车组列车从甲城开往乙城.如图所示OA是第一列动车组列车离开甲城的路程s 单位在km 与运行时间t 单位h 的函数图象BC 是一列从乙城开往甲城的普通快车距甲城的路程s 单位km 与运行时间t 单位h 的函数图象.请根据图中信息解答下列问题1点B的横坐标05的意义是普通快车发车时间比第一列动车组列车发车时间_________h点B的纵坐标300的意义是_______________________ 2请你在原图中直接画出第二列动车组列车离开甲城的路程s与时间t的函数图象3若普通快车的速度为100 kmh①求BC的解析式并写出自变量t的取值范围②求第二列动车组列车出发后多长时间与普通列车相遇③直接写出这列普通列车在行驶途中与迎面而来的相邻两列动车组列车相遇的间隔时间.巩固某物流公司的快递车和货车每天往返于AB两地快递车比货车多往返一趟图中表示快递车距离A地的路程y 单位千米与所用时间x 单位时的函数图象.已知货车比快递车早1小时出发到达B地后用2小时装卸货物然后按原路原速返回结果比快递车最后一次返回A地晚1小时.1请在图中画出货车距离A地的路程y 千米与所用时间x 时的函数图象2求两车在途中相遇的次数直接写出答案3求两车最后一次相遇时距离A地的路程和货车从A地出发了几小时课后练习1某车站客流量大旅客往往需长时间排队等候购票.经调查统计发现每天开始售票时约有300名旅客排队等候购票同时有新的旅客不断进入售票厅排队等候购票新增购票人数人与售票时间分的函数关系如图所示每个售票窗口票数人与售票时间分的函数关系如图所示.某天售票厅排队等候购票的人数人与售票时间分的函数关系如图所示已知售票的前分钟开放了两个售票窗口.1求的值2求售票到第60分钟时售票厅排队等候购票的旅客人数3该车站在学习实践科学发展观的活动中本着以人为本方便旅客的宗旨决定增设售票窗口.若要在开始售票后半小时内让所有排队购票的旅客都能购到票以便后来到站的旅客能随到随购请你帮助计算至少需同时开放几个售票窗口2如图工地上有AB两个土墩洼地E和河滨F两个土墩的土方数分别是781方1584方洼地E填上1025方河滨F可填上1390方要求挖掉两个土墩把这些土先填平洼地E余下的图填入河滨F填入F实际只有1340方如何安排运土方案才能使劳力最省提示把土方米作为运土花费劳力的单位第6讲全等三角形知识梳理1全等三角形全等三角形能够完全重合的两个三角形2全等三角形的判定方法有SASASAAASSSSHL3 全等三角形的性质1全等三角形的对应角相等对应线段边高中线角平分线相等2全等三角形的周长面积相等4全等三角形常见辅助线的作法有以下几种遇到等腰三角形可作底边上的高利用三线合一的性质解题思维模式是全等变换中的对折.遇到三角形的中线倍长中线使延长线段与原中线长相等构造全等三角形利用的思维模式是全等变换中的旋转.遇到角平分线可以自角平分线上的某一点向角的两边作垂线利用的思维模式是三角形全等变换中的对折所考知识点常常是角平分线的性质定理或逆定理.过图形上某一点作特定的平分线构造全等三角形利用的思维模式是全等变换中的平移或翻转折叠截长法与补短法具体做法是在某条线段上截取一条线段与特定线段相等或是将某条线段延长是之与特定线段相等再利用三角形全等的有关性质加以说明.这种作法适合于证明线段的和差倍分等类的题目.特殊方法在求有关三角形的定值一类的问题时常把某点到原三角形各顶点的线段连接起来利用三角形面积的知识解答.例题精讲◆例1已知如图△ABC中AB=5AC=3则中线AD的取值范围是_________巩固如图所示已知在△ABC中AD是BC边上的中线E是AD上一点且BE=AC 延长BE交AC于F求证 AF=EF◆例2已知等腰直角三角形ABC中AC=BCBD平分∠ABC求证AB=BC+CD巩固1已知△ABC中AD平分∠BACAB>AC求证AB-AC=BD-DC2如图所示已知四边形ABCD中AB=AD∠BAD=60°∠BCD=120°求证 BC+DC=AC◆例3如图已知在△ABC中∠B=60°△ABC的角平分线ADCE相交于点O求证OE=OD◆例4如图在△ABC中∠BAC的平分线与BC的垂直平分线PQ的垂直平分线PQ相交于点P过点P分别作PN⊥AB于NPM ⊥AC于点M求证BN=CM◆例5AD为△ABC的角平分线直线MN⊥AD于AE为MN上一点△ABC周长记为△EBC周长记为求证>拓展正方形ABCD中E为BC上的一点F为CD上的一点BE+DF=EF求∠EAF 的度数课后练习1如图∠BAC=60°∠C=40°AP平分∠BAC交BC于PBQ平分∠ABC交AC于Q求证AB+BP=BQ+AQ2如图△ABC中EF分别在ABAC上DE⊥DFD是中点试比较BE+CF与EF的大小3如图△ABC中AD平分∠BACDG⊥BC且平分BCDE⊥AB于EDF⊥AC于F1说明BE=CF的理由2如果AB=AC=求AEBE的长第7讲直角三角形与勾股定理知识梳理一直角三角形的判定1有两个角互余的三角形是直角三角形2勾股定理逆定理二直角三角形的性质1直角三角形两锐角互余.2直角三角形中30°所对的直角边等于斜边的一半.。
八年级数学竞赛辅导讲义
八年级数学竞赛辅导讲义第一讲实数的概念及性质一.知识链接:1、实数的分类正有理数有理数零有限小数和无限循环小数(q,这里p、q是互质的整数,且0 p.)p实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一特点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的π+8等;数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等3.有理数和无理数对加、减、乘、除的封闭的特性:⑴有理数对加、减、乘、除是封闭的,即任何两个有理数的和、差、积、商还是有理数;⑵无理数对加、减、乘、除不具有封闭性,即两个无理数的和、差、积、商不一定是无理数.二.经典例题【例1】解答以下各选择题:(1). (99年武汉市选拔赛试题) 设a是一个无理数,且a、b满足ab-a-b+1=0,则b是一个( )A.小于0的有理数 B.大于0的有理数C.小于0的无理数 D.大于0的无理数(2).(93年河北初中数学联赛)若a,).A.二者均为有理数B.二者均为无理数C. 一个为有理数,另一个为无理数D.以上三种情况均有可能(3).(95年湖北初中数学竞赛)今有四个命题:⑴.若两实数的和与积都是奇数,则这两数都是奇数; ⑵.若两实数的和与积都是偶数,则这两数都是偶数; ⑶.若两实数的和与积都是有理数,这两数都是有理数; ⑷.若两实数的和与积都是无理数,这两数都是无理数. 其中正确命题的个数为( ). A. 0 B. 1 C. 2 D.3⑷.( 9 9年全国初中数学联赛) 有下列三个命题: ①若βα,是不相等的无理数,则βααβ-+是无理数;②若βα,是不相等的无理数,则βαβα+-是无理数; ③若βα,是不相等的无理数,则3βα+是无理数。
其中正确命题的个数是( ).(A )0; (B )1; (C )2; (D )3。
初中数学竞赛精品标准教程及练习:代数恒等式的证明
初中数学比赛精选标准教程及练习(20)代数恒等式的证明一、内容概要证明朝数恒等式,在整式部分常用因式分解和乘法两种相反的恒等变形,要特别注意运用乘法公式和等式的运算法例、性质。
详细证法一般有以下几种1.从左侧证到右侧或从右侧证到左侧,其原则是化繁为简。
变形的过程中要不停注意结论的形式。
2.把左、右两边分别化简,使它们都等于第三个代数式。
3 .证明:左侧的代数式减去右侧代数式的值等于零。
即由左侧-右侧=0 可得左侧=右边。
4,由己知等式出发,经过恒等变形达到求证的结论。
还能够把己知的条件代入求证的一边证它能达到另一边,二、例题例 1 求证: 3 n+2- 2 n+2+ 2× 5 n+2+ 3 n-2 n= 10(5 n+1+3 n- 2 n-1)证明:左侧=2× 5× 5 n+1+( 3 n+2+3 n)+(- 2 n+2- 2 n)=10× 5 n+1+ 3 n(3 2+1) - 2 n-1(23+ 2)=10( 5 n+1+3 n- 2 n-1) =右侧又证:左侧= 2×5 n+2+ 3 n(32+ 1)- 2 n(22+1)=2× 5 n+2+ 10×3 n- 5× 2 n右侧= 10× 5 n+1+10 × 3 n-10× 2 n-1=2× 5 n+2+ 10× 3 n-5× 2 n∴左侧=右侧例 2 己知 :a+b+c=0求证:a3+b3+c3=3abc证明:∵ a3+b3+c 3- 3abc=( a+b+c)( a2+b2+c2- ab- ac-bc) (见 19 例 1)∵:a+b+c=0∴ a3+b3+c 3- 3abc= 0即 a3+b3+c3 =3abc又证:∵ :a+b+c=0∴ a=-( b+c)两边立方a3=-( b3+3b 2c+3bc 2+c3)333移项 a +b +c =- 3bc(b+c) = 3abc(- b- c)3+ b3+c3=-( b3+3b 2c+3bc 2+c 3)+b 3+c3=- 3bc(b+c)= - 3bc(-a)=3abc例 3 己知 a+1b1c1,a≠ b≠ c求证: a2b2c2=1b c a证明:由己知a-b= 11bc∴ bc=bc c b bc a bb-c=11c a∴ ca=ca同理 ab=aba c cabc c a∴ ab bc ca=a b bc c a =1即 a2b2c2=1 c a a b b c例 4 己知 :ax2+bx+c 是一个完整平方式(a,b,c 是常数)求证: b2- 4ac=0证明:设 :ax 2+bx+c =( mx+n )2, m,n 是常数那么 :ax2+bx+c = m2x2+2mnx+n 2a m 2依据恒等式的性质得 b22- 4m22 2mn∴: b-4ac=(2mn)n =0c n 2三、练习 2022-22= 8ab1.求证:①(a+b+c) +(a+b-c)(a-b-c) - (a-b-c)②( x+y)4+x 4 +y4=2(x 2 +xy+y 2)2③ (x-2y)x 3- (y-2x)y 3=(x+y)(x-y)3④3 n+2+5 n+2― 3 n― 5 n=24(5 n+3 n-1) ⑤ a5n+a n+1=(a3 n- a2 n+1)(a 2 n+a n+1)2.己知: a2+b 2=2ab求证: a=b3.己知: a+b+c=0求证:① a3+a2c+b2c+b3=abc② a4+b4+c4=2a2b2+2b2c2+2c2a24.己知: a2=a+1求证: a5=5a+35.己知: x+ y- z=0333求证: x +8y =z - 6xyz6.己知: a2+b2+c2=ab+ac+bc求证: a=b=c7.己知: a∶ b=b ∶ c 求证:( a+b+c)2+a2+b 2+c2=2(a+b+c)(a+c)8.己知: abc≠ 0, ab+bc=2ac1111求证:b b cx y za求证: x+y+z=09.己知:b c ca b a210.求证:( 2x- 3)( 2x+1 )(x - 1)+ 1 是一个完整平方式32211 己知: ax +bx +cx+d 能被 x +p 整除求证:ad=bc练习 20 参照答案:n2-1)+3n-13n+3n-1注意右侧有3n-11. ④左侧= 5 (5(3 -3)= 24(5)2.左侧-右侧=( a-b)23.②左侧-右侧=( a2+b 2-c2)2-4a2 b2=4.∵ a5=a2a2a,用 a2=a+1 代入5.用 z=x+2y 代入右侧6.用已知的(左-右)× 27.用 b2 =ac 分别代入左侧,右侧化为同一个代数式8.在已知的等式两边都除以 abc9.设三个比的比值为 k,10. (2x 2-x-2) 211. 用待定系数法。
全国初中数学竞赛辅导(初二分册) - 副本
初二数学竞赛班讲义第一讲因式分解(一) (1)第二讲因式分解(二) (10)第三讲实数的若干性质和应用 (17)第四讲分式的化简与求值 (26)第五讲恒等式的证明 (34)第六讲代数式的求值 (44)第七讲根式及其运算 (52)第八讲非负数 (63)第九讲一元二次方程 (73)第十讲三角形的全等及其应用 (81)第十一讲勾股定理与应用 (90)第十二讲平行四边形 (101)第十三讲梯形 (108)第十四讲中位线及其应用 (116)第十五讲相似三角形(一) (124)第十六讲相似三角形(二) (132)第十八讲归纳与发现 (153)第十九讲特殊化与一般化 (162)第二十讲类比与联想 (171)第二十一讲分类与讨论 (180)第二十二讲面积问题与面积方法 (188)第二十三讲几何不等式 (197)第二十六讲含参数的一元二次方程的整数根问题 (222)第二十七讲列方程解应用问题中的量与等量 (230)第二十八讲怎样把实际问题化成数学问题(一) (239)第二十九讲生活中的数学(一) (247)第三十讲生活中的数学(二) (254)复习题 (260)自测题 (268)自测题一 (268)自测题二 (270)自测题三 (271)自测题四 (273)自测题五 (274)复习题解答 (276)自测题解答 (304)自测题一 (304)自测题二 (309)自测题三 (314)自测题四 (321)自测题五 (327)第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.第二讲因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x 的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9.第三讲实数的若干性质和应用实数是高等数学特别是微积分的重要基础.在初中代数中没有系统地介绍实数理论,是因为它涉及到极限的概念.这一概念对中学生而言,有一定难度.但是,如果中学数学里没有实数的概念及其简单的运算知识,中学数学也将无法继续学习下去了.例如,即使是一元二次方程,只有有理数的知识也是远远不够用的.因此,适当学习一些有关实数的基础知识,以及运用这些知识解决有关问题的基本方法,不仅是为高等数学的学习打基础,而且也是初等数学学习所不可缺少的.本讲主要介绍实数的一些基本知识及其应用.用于解决许多问题,例如,不难证明:任何两个有理数的和、差、积、商还是有理数,或者说,有理数对加、减、乘、除(零不能做除数)是封闭的.性质1 任何一个有理数都能写成有限小数(整数可以看作小数点后面为零的小数)或循环小数的形式,反之亦然.例1分析要说明一个数是有理数,其关键要看它能否写成两个整数比的形式.证设两边同乘以100得②-①得99x=261.54-2.61=258.93,无限不循环小数称为无理数.有理数对四则运算是封闭的,而无理是说,无理数对四则运算是不封闭的,但它有如下性质.性质2 设a为有理数,b为无理数,则(1)a+b,a-b是无理数;有理数和无理数统称为实数,即在实数集内,没有最小的实数,也没有最大的实数.任意两个实数,可以比较大小.全体实数和数轴上的所有点是一一对应的.在实数集内进行加、减、乘、除(除数不为零)运算,其结果仍是实数(即实数对四则运算的封闭性).任一实数都可以开奇次方,其结果仍是实数;只有当被开方数为非负数时,才能开偶次方,其结果仍是实数.例2分析证所以分析要证明一个实数为无限不循环小数是一件极难办到的事.由于有理数与无理数共同组成了实数集,且二者是矛盾的两个对立面,所以,判定一个实数是无理数时,常常采用反证法.证用反证法.所以p一定是偶数.设p=2m(m是自然数),代入①得4m2=2q2,q2=2m2,例4 若a1+b1a=a2+b2a(其中a1,a2,b1,b2为有理数,a为无理数),则a1=a2,b1=b2,反之,亦成立.分析设法将等式变形,利用有理数不能等于无理数来证明.证将原式变形为(b1-b2)a=a2-a1.若b1≠b2,则反之,显然成立.说明本例的结论是一个常用的重要运算性质.是无理数,并说明理由.整理得由例4知a=Ab,1=A,说明本例并未给出确定结论,需要解题者自己发现正确的结有理数作为立足点,以其作为推理的基础.例6 已知a,b是两个任意有理数,且a<b,求证:a与b之间存在着无穷多个有理数(即有理数集具有稠密性).分析只要构造出符合条件的有理数,题目即可被证明.证因为a<b,所以2a<a+b<2b,所以说明构造具有某种性质的一个数,或一个式子,以达到解题和证明的目的,是经常运用的一种数学建模的思想方法.例7 已知a,b是两个任意有理数,且a<b,问是否存在无理数α,使得a<α<b成立?即由①,②有存在无理数α,使得a<α<b成立.b4+12b3+37b2+6b-20的值.分析因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这样涉及无理数小数部分的计算题,往往是先估计它的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法.14=9+6b+b2,所以b2+6b=5.b4+12b3+37b2+6b-20=(b4+2·6b3+36b2)+(b2+6b)-20=(b2+6b)2+(b2+6b)-20 =52+5-20=10.例9 求满足条件的自然数a,x,y.解将原式两边平方得由①式变形为两边平方得例10 设a n是12+22+32+…+n2的个位数字,n=1,2,3,…,求证:0.a1a2a3…a n…是有理数.分析有理数的另一个定义是循环小数,即凡有理数都是循环小数,反之循环小数必为有理数.所以,要证0.a1a2a3…a n…是有理数,只要证它为循环小数.因此本题我们从寻找它的循环节入手.证计算a n的前若干个值,寻找规律:1,5,4,0,5,1,0,4,5,5,6,0,9,5,0,6,5,9,0,0,1,5,4,0,5,1,0,4,…发现:a20=0,a21=a1,a22=a2,a23=a3,…,于是猜想:a k+20=a k,若此式成立,说明0.a1a2…a n…是由20个数字组成循环节的循环小数,即下面证明a k+20=a k.令f(n)=12+22+…+n2,当f(n+20)-f(n)是10的倍数时,表明f(n+20)与f(n)有相同的个位数,而f(n+20)-f(n)=(n+1)2+(n+2)2+…+(n+20)2=10(2n2+42·n)+(12+22+…+202).由前面计算的若干值可知:12+22+…+202是10的倍数,故a k+20=a k成立,所以0.a1a2…a n…是一个有理数.练习三1.下列各数中哪些是有理数,哪些是无理数?为什么?5.设α,β为有理数,γ为无理数,若α+βγ=0,求证:α=β=0.第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值.例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.=[(2a+1)-(a-3)-(3a+2)+(2a-2)]说明本题的关键是正确地将假分式写成整式与真分式之和的形式.例2 求分式当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),可将分式分步通分,每一步只通分左边两项.例3 若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.解法1 因为abc=1,所以a,b,c都不为零.解法2 因为abc=1,所以a≠0,b≠0,c≠0.例4 化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.例5 化简计算(式中a,b,c两两不相等):似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.解说明本例也是采取“拆项相消”法,所不同的是利用例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求分析本题字母多,分式复杂.若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解.解令x-a=u,y-a=v,z-a=w,则分式变为u2+v2+w2+2(uv+vw+wu)=0.由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化.例7 化简分式:适当变形,化简分式后再计算求值.(x-4)2=3,即x2-8x+13=0.原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10=10,原式分母=(x2-8x+13)+2=2,说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.解法1 利用比例的性质解决分式问题.(1)若a+b+c≠0,由等比定理有所以a+b-c=c,a-b+c=b,-a+b+c=a,于是有(2)若a+b+c=0,则a+b=-c,b+c=-a,c+a=-b,于是有说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.解法2 设参数法.令则a+b=(k+1)c,①a+c=(k+1)b,②b+c=(k+1)a.③①+②+③有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0.当k=1时,当a+b+c=0时,说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.练习四1.化简分式:2.计算:3.已知:(y-z)2+(z-x)2+(x-y)2=(x+y-2z)2+(y+z-2x)2+(z+x-2y)2,的值.第五讲恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)=(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)=xyz+xyz+xyz+xyz=4xyz=右边.说明本例的证明思路就是“由繁到简”.例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且证令1989x2=1991y2=1993z2=k(k>0),则又因为所以所以说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.2.比较法a=b(比商法).这也是证明恒等式的重要思路之一.例3 求证:分析用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证因为所以所以说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.全不为零.证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).说明本例采用的是比商法.3.分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.证要证a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证ab=ac+bc,只要证c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.说明本题采用的方法是典型的分析法.例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.证由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以a2-b2=c2-d2=ab-cd=0,所以(a+b)(a-b)=(c+d)(c-d)=0.又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以a=b,c=d.所以ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.说明本题采用的方法是综合法.4.其他证明方法与技巧求证:8a+9b+5c=0.a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即8a+9b+5c=0.说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.例8 已知a+b+c=0,求证2(a4+b4+c4)=(a2+b2+c2)2.分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=[a2-(b-c)2][a2-(b+c)2]=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.说明本题证明过程中主要是进行因式分解.分析本题的两个已知条件中,包含字母a,x,y和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.证由已知说明本题利用的是“消元”法,它是证明条件等式的常用方法.例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,①z+x-2y=b,②x+y-2z=c,③则要证的等式变为a3+b3+c3=3abc.联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且求证:x2y2z2=1.分析本题x,y,z具有轮换对称的特点,我们不妨先看二元的所以x2y2=1.三元与二元的结构类似.证由已知有①×②×③得x2y2z2=1.说明这种欲进先退的解题策略经常用于探索解决问题的思路中.总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.练习五1.已知(c-a)2-4(a-b)(b-c)=0,求证:2b=a+c.2.证明:(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3).3.求证:5.证明:6.已知x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=0.7.已知an-bm≠0,a≠0,ax2+bx+c=0,mx2+nx+p=0,求证:(cm-ap)2=(bp-cn)(an-bm).第六讲代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:。
全国初中数学竞赛辅导(八年级)教学案全集第05讲恒等式的证明
全国初中数学竞赛辅导(八年级)教学案全集第05讲恒等式的证明第一篇:全国初中数学竞赛辅导(八年级)教学案全集第05讲恒等式的证明全国初中数学竞赛辅导(八年级)教学案全集第五讲恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例 1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)=(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)=xyz+xyz+xyz+xyz=4xyz=右边.说明本例的证明思路就是“由繁到简”.例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且证令1989x2=1991y2=1993z2=k(k>0),则又因为所以所以说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.2.比较法a=b(比商法).这也是证明恒等式的重要思路之一.例3 求证:分析用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证因为所以所以说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.不为零.证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).全同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).说明本例采用的是比商法.3.分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.证要证 a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证ab=ac+bc,只要证 c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.说明本题采用的方法是典型的分析法.例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.证由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以a2-b2=c2-d2=ab-cd=0,所以(a+b)(a-b)=(c+d)(c-d)=0.又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以a=b,c=d.所以ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.说明本题采用的方法是综合法.4.其他证明方法与技巧求证:8a+9b+5c=0.a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即 8a+9b+5c=0.说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.例8 已知a+b+c=0,求证2(a4+b4+c4)=(a2+b2+c2)2.分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=[a2-(b-c)2][a2-(b+c)2]=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.说明本题证明过程中主要是进行因式分解.分析本题的两个已知条件中,包含字母a,x,y和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.证由已知说明本题利用的是“消元”法,它是证明条件等式的常用方法.例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,① z+x-2y=b,② x+y-2z=c,③则要证的等式变为a3+b3+c3=3abc.联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且求证:x2y2z2=1.分析本题x,y,z具有轮换对称的特点,我们不妨先看二元的所以x2y2=1.三元与二元的结构类似.证由已知有①×②×③得x2y2z2=1.说明这种欲进先退的解题策略经常用于探索解决问题的思路中.总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.练习五1.已知(c-a)2-4(a-b)(b-c)=0,求证:2b=a+c.2.证明:(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3).3.求证:5.证明:6.已知x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=0.7.已知an-bm≠0,a≠0,ax2+bx+c=0,mx2+nx+p=0,求证:(cm-ap)2=(bp-cn)(an-bm).第二篇:全国初中数学竞赛辅导(八年级)教学案全集第32讲自测题全国初中数学竞赛辅导(八年级)教学案全集第三十二讲自测题自测题一1.分解因式:x4-x3+6x2-x+15.2.已知a,b,c为三角形的三边长,且满足a2+b2+c2+338=10a+24b+26c,试确定这个三角形的形状.3.已知a,b,c,d均为自然数,且a5=b4,c3=d2,c-a=19,求d-b的值.4.a,b,c是整数,a≠0,且方程ax2+bx+c=0的两个根为a 和b,求a+b+c的值.5.设E,F分别为AC,AB的中点,D为BC上的任一点,P在BF上,DP∥CF,Q在CE上,DQ∥BE,PQ交BE于R,交6.四边形ABCD中,如果一组对角(∠A,∠C)相等时,另一组对角(∠B,∠D)的平分线存在什么关系?7.如图2-194所示.△ABC中,D,E分别是边BC,AB上的点,且∠1=∠2=∠3.如果△ABC,△8.如图2-195所示.△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,使得CN=BM,连AN,CM交于P 点.求∠APM的度数.9.某服装市场,每件衬衫零售价为70元,为了促销,采用以下几种优惠方式:购买2件130元;购满5件者,每件以零售价的九折出售;购买7件者送1件.某人要买6件,问有几种购物方案(必要时,可与另一购买2件者搭帮,但要兼顾双方的利益)?哪种方案花钱最少?自测题二1.分解因式:(x2+3x+5)2+2x3+3x2+1Ox.2.对于集合p={x丨x是1到100的整数}中的元素a,b,如果a除以b的余数用符号表示.例如17除以4,商是4,余数是1,就表示成<17,4>=1,3除以7,商是0,余数是3,即表示成<3,7>=3.试回答下列问题:(1)本集合{x丨<78,x>=6,x∈p}中元素的个数;(2)用列举法表示集合{x丨==5,x∈P}.3.已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求:(1)xyz的值;(2)x4+y4+z4的值.4.已知方程x2-3x+a+4=0有两个整数根.(1)求证:这两个整数根一个是奇数,一个是偶数;(2)求证:a是负偶数;(3)当方程的两整数根同号时,求a的值及这两个根.5.证明:形如8n+7的数不可能是三个整数的平方和.7.如图2-196所示.AD是等腰三角形ABC底边上的中线,BE 是角平分线,EF⊥BC,EG⊥BE且交BC于G.求证:8.如图2-197所示.AD是锐角△ABC的高,O是AD上任意一点,连BO,OC并分别延长交AC,AB于E,F,连结DE,DF.求证:∠EDO=∠FDO.9.甲校需要课外图书200本,乙校需要课外图书240本,某书店门市部A可供应150本,门市部B可供应290本.如果平均每本书的运费如下表,考虑到学校的利益,如何安排调运,才能使学校支出的运费最少?自测题三2.对于任意实数k,方程(k2+1)x2-2(a+k)2x+k2+4k+b=0总有一个根是1,试求实数a,b的值及另一个根的范围.4.如图2-198.ABCD为圆内接四边形,从它的一个顶点A引平行于CD的弦AP交圆于P,并且分别交BC,BD于Q,R.求证:5.如图2-199所示.在△ABC中∠C=90°,∠A的平分线AE交BA上的高CH于D点,过D引AB的平行线交BC于F.求证:BF=EC.6.如图2-200所示.△ABC中,AB>AC,作∠FBC=∠ECB=7.已知三角形的一边是另一边的两倍,求证:它的最小边在它的周8.求最大的自然数x,使得对每一个自然数y,x能整除7y+12y-1.9.某公园的门票规定为每人5元,团体票40元一张,每张团体票最多可入园10人.(1)现有三个单位,游园人数分别为6,8,9.这三个单位分别怎样买门票使总门票费最省?(2)若三个单位的游园人数分别是16,18和19,又分别怎样买门票使总门票费最省?(3)若游园人数为x人,你能找出一般买门票最省钱的规律吗?自测题四1.求多项式2x2-4xy+5y2-12y+13的最小值.2.设试求:f(1)+f(3)+f(5)+…+f(1999).3.如图2-201所示.在平行四边形ABCD的对角线BD上任取一点O,过O作边BC,AB的平行线交AB,BC于F,E,又在 EO上取一点P.CP与OF交于Q.求证:BP∥DQ.4.若a,b,c为有理数,且等式成立,则a=b=c=0 .5.如图2-202所示.△ABC是边长为1的正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB,AC于M,N,连接MN,求△AMN的周长.6.证明:由数字0,1,2,3,4,5所组成的不重复六位数不可能被11整除.7.设x1,x2,…,x9均为正整数,且x1<x2<…<x9,x1+x2+…+x9=220.当x1+x2+…+x5的值最大时,求x9-x1的值.8.某公司有甲乙两个工作部门,假日去不同景点旅游,总共有m 人参加,甲部门平均每人花费120元,乙部门每人花费110元,该公司去旅游的总共花去2250元,问甲乙两部门各去了多少人?9.(1)已知如图2-203,四边形ABCD内接于圆,过AD上一点E引直线EF∥AC交BA延长线于F.求证:FA·BC=AE·C D.(2)当E点移动到D点时,命题(1)将会怎样?(3)当E点在AD的延长线上时又会怎样?自测题五2.关于x的二次方程6x2-(2m-1)x-(m+1)=0有一根3.设x+y=1,x2+y2=2,求x7+y7的值.4.在三角形ABC内,∠B=2∠C.求证:b2=c2+ac.5.若4x-y能被3整除,则4x2+7xy-2y2能被9整除.6.a,b,c是三个自然数,且满足abc=a+b+c,求证:a,b,c只能是1,2,3中的一个.7.如图2-204所示.AD是△ABC的BC边上的中线,E是BD的中点,BA=BD.求证:AC=2AE.8.设AD是△ABC的中线,(1)求证:AB2+AC2=2(AD2+BD2);(2)当A点在BC上时,将怎样?按沿河距离计算,B离A的距离AC=40千米,如果水路运费是公路运费的一半,应该怎样确定在河岸上的D点,从B点筑一条公路到D,才能使A到B的运费最省?第三篇:全国初中数学竞赛辅导(八年级)教学案全集第31讲复习题全国初中数学竞赛辅导(八年级)教学案全集第三十一讲复习题1.分解因式:3x2+5xy-2y2+x+9y-4.2.分解因式:(x2+xy+y2)(x2+xy+2y2)-12y4.5.已知求ab+cd的值.为任意正数,证明1<s<2.7.设a,b是互不相等的正数,比较M,N的大小.8.求分式的值.9.已知:求证:px+qy+rz=(p+q+r)(x+y+z).11.已知实数x,y满足等式求x,y的值.12.若14(a2+b2+c2)=(a+2b+3c)2,求a∶b∶c.13.解方程:x2+2x-3丨x+1丨+3=0.14.已知三个二次方程x2-3x+a=0,2x2+ax-4=0,ax2+bx-3=0有公共解,试求整数a和整数b的值.15.如图2-178所示.在△ABC中,过点B作∠A的平分线的垂线,足为D.DE∥AC交AB于E点.求证:E是AB的中点.16.求证:直角三角形勾股平方的倒数和等于弦上的高的平方的倒数.17.如图2-179所示.在△ABC中,延长BC至D,使CD=BC.若BC中点为E,AD=2AE,求证:AB=BC.18.如图2-180所示.ABCD是平行四边形,BCGH及CDFE都是正方形.求证:AC⊥EG.19.证明:梯形对角线中点的连线平行于底,并且等于两底差的一半.20.如图2-181所示.梯形ABCD中,∠ADC=90°,∠AEC=3∠BAE,AB∥CD,E是 BC的中点.求证:CD=CE.21.如图2-182所示.梯形ABCD中,AD∥BC(AD<BC),AC 和BD交于M,EF过M且平行于AD,EC和FB交于N,GH过N且平行于AD.求证:22.如图2-183所示.在矩形ABCD中,M是AD的中点,N是BC的中点,P是CD延长线上的一点,PM交AC于Q.求证:∠QNM=∠MNP.23.在(凸)四边形ABCD中,求证:AC·BD≤AB·CD+AD·BC.24.如图2-184所示.AD是等腰△ABC底边BC上的高,BM与BN是∠B的三等分角线,分别交AD于M,N点,连CN并延长交AB 于E.求证:25.已知n是正整数,且n2-71能被7n+55整除,求n的值.26.求具有下列性质的最小正整数n:(1)它以数字6结尾;(2)如果把数字6移到第一位之前,所得的数是原数的4倍.27.求出整数n,它的2倍被3除余1,3倍被5除余2,5倍被7除余3.28.把1,2,3,…,81这81个数任意排列为:a1,a2,a3,…,a81.计算丨a1-a2+a3丨,丨a4-a5+a6丨,…,丨a79-a80+a81丨;再将这27个数任意排列为b1,b2,…,b27,计算丨b1-b2+b3丨,丨b4-b5+b6丨,…,丨b25-b26+b27丨.如此继续下去,最后得到一个数x,问x是奇数还是偶数?29.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,30.设凸四边形ABCD的对角线AC,BD相交于O,且AC⊥BD,已知OA>OC,OB>OD,求证:BC+AD>AB+CD.31.如图2-185.在梯形ABCD中,AD∥BC,E,F分别在AB和DC上,EF∥BC,EF平分梯形ABCD的面积,若AD=a,BC=b,求EF的长.32.四边形ABCD的面积为1,M为AD的中点,N为BC的中点,的面积.33.已知一元二次方程x2-x+1-m=0 的两实根x1,x2满足丨x1丨+丨x2丨≤5,求实数m的取值范围.34.求所有的正实数a,使得方程x2-ax+4a=0仅有整数根.35.求证:当p,q为奇数时,方程x2+px+q=0无整数根.36.如图2-186.已知圆中四弦AB,BD,DC,CA分别等于a,b,c,d(且cd>ab).过C引直线CE∥AD交AB的延长线于E,求BE之长.37.设A={2,x,y},B={2,x,y2},其中x,y是整数,并且A∩B={2,4},A∪B={2,x,2x,16x},求x,y的值.38.在梯形ABCD中,与两条平行底边平行的直线和两腰AB,CD交于P,Q(图2-187).如果AP∶PB=m∶n,那么PQ的值如何用m,n,AD,BC表示?39.在平行四边形ABCD中,设∠A,∠B,∠C,∠D的平分线两两相交的交点分别为P,Q,R,S,那么四边形PQRS是什么图形?如果原来的四边形ABCD是矩形,那么四边形PQRS又是什么图形?40.在直角三角形ABC中,以边AB,BC,AC为对应边分别作三个相似三角形,那么这三个相似三角形面积之间有什么关系?41.如果三角形的三边用m2+n2,m2-n2,2mn来表示,那么这个三角形的形状如何?如果m2+n2=4mn,又将怎样?42.在圆柱形容器中装水,当水的高度为6厘米时,重4.4千克,水高为10厘米时,重6.8千克,试用图像表示水高为0~10厘米时,水高与重量之间的关系,并预测当水高为8厘米时,水重为多少千克?43.有7张电影票,10个人抽签,为此先做好10个签,其中7个签上写“有票”,3个签上写“无票”,然后10个人排好队按顺序抽签.问第一人与第二人抽到的可能性是否相同?44.在直径为50毫米(mm)的铁板中,铳出四个互相外切,并且同样大小的垫圈(图2-188),那么垫圈的最大直径是多少?45.唐代诗人王之涣的著名诗篇:白日依山尽,黄河入海流.欲穷千里目,更上一层楼.按诗人的想象,要看到千里之外的景物,需要站在多高的建筑物上呢?试化成数学问题加以解释.46.在一个池塘中,一棵水草AC垂直水面,AB为水草在水面上的部分,如图2-189,问如何利用这根水草测出水深?47.在一条运河的两侧有两个村子A,B,河的两岸基本上是平行线.现在要在河上架一座桥与河岸垂直,以便使两岸居民互相往来,那么这座桥架在什么地方,才能使从A到B的路程最近呢(图2-190)?48.要在一条河边修一座水塔,以便从那里给A,B两个城市供水(设A,B在河岸EF的同侧),那么水塔应建在河岸EF的什么地方,才能使水塔到A,B两市供水管道总长度最短(图2-191)?49.三个同学在街头散步,发现一辆汽车违反了交通规则.但他们没有完全记住这辆汽车的车号(车号由4位数字组成),可是第一个同学记住车号的前两位数是相同的,第二个同学记得后两位数也相同,第三个同学记得这个四位数恰好是一个数的平方数.根据这些线索,能找出这辆汽车的车号吗?50.图2-192是一个弹簧秤的示意图,其中:图(a)表示弹簧称东西前的状况,此时刻度0齐上线,弹簧伸长的初始长度为b.图(b)表示弹簧秤上挂有重物时,弹簧伸长的状况.如果弹簧秤上挂上不同重量的砝码,那么弹簧秤的长度也相应地伸长.现获得如下一组数据:(1)以x,y的对应值(x,y)为点的坐标,画出散点图;(2)求出关于x的函数y的表达式,(3)求当x=500克时,y的长度.第四篇:全国初中数学竞赛辅导(八年级)教学案全集第08讲平行四边形全国初中数学竞赛辅导(八年级)教学案全集第八讲平行四边形平行四边形是一种极重要的几何图形.这不仅是因为它是研究更特殊的平行四边形——矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的研究上有着广泛的应用.由平行四边形的定义决定了它有以下几个基本性质:(1)平行四边形对角相等;(2)平行四边形对边相等;(3)平行四边形对角线互相平分.除了定义以外,平行四边形还有以下几种判定方法:(1)两组对角分别相等的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.例1 如图2-32所示.在EF与MN互相平分.ABCD中,AE⊥BC,CF⊥AD,DN=BM.求证:分析只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手.证因为ABCD是平行四边形,所以ADBC,ABCD,∠B=∠D.又AE⊥BC,CF⊥AD,所以AECF是矩形,从而AE=CF.所以Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以△BEM≌△DFN(SAS),ME=NF.①又因为AF=CE,AM=CN,∠MAF=∠NCE,所以△MAF≌△NCE(SAS),所以 MF=NF.②由①,②,四边形ENFM是平行四边形,从而对角线EF与MN 互相平分.例2 如图2-33所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF.分析AE与CF分处于不同的位置,必须通过添加辅助线使两者发生联系.若作GH⊥BC于H,由于BG是∠ABC的平分线,故AG=GH,易知△ABG≌△HBG.又连接EH,可证△ABE≌△HBE,从而AE=HE.这样,将AE“转移”到EH位置.设法证明EHCF为平行四边形,问题即可获解.证作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而△ABG≌△HBG(AAS),所以 AB=HB.①在△ABE及△HBE中,∠ABE=∠CBE,BE=BE,所以△ABE≌△HBE(S AS),所以 AE=EH,∠BEA=∠BEH.下面证明四边形EHCF是平行四边形.因为AD∥GH,所以∠AEG=∠BGH(内错角相等).②又∠AEG=∠GEH(因为∠BEA=∠BEH,等角的补角相等),∠AGB=∠BGH(全等三角形对应角相等),所以∠AGB=∠GEH.从而EH∥AC(内错角相等,两直线平行).由已知EF∥HC,所以EHCF是平行四边形,所以FC=EH=AE.说明本题添加辅助线GH⊥BC的想法是由BG为∠ABC的平分线的信息萌生的(角平分线上的点到角的两边距离相等),从而构造出全等三角形ABG与△HBG.继而发现△ABE≌△HBE,完成了AE的位置到HE 位置的过渡.这样,证明EHCF是平行四边形就是顺理成章的了.人们在学习中,经过刻苦钻研,形成有用的经验,这对我们探索新的问题是十分有益的.例3 如图2-34所示.∠EMC=3∠BEM.ABCD中,DE⊥AB于E,BM=MC=DC.求证:分析由于∠EMC是△BEM的外角,因此∠EMC=∠B+∠BEM.从而,应该有∠B=2∠BEM,这个论断在△BEM内很难发现,因此,应设法通过添加辅助线的办法,将这两个角转移到新的位置加以解决.利用平行四边形及M为BC中点的条件,延长EM与DC延长线交于F,这样∠B=∠MCF及∠BEM=∠F,因此,只要证明∠MCF=2∠F即可.不难发现,△EDF为直角三角形(∠EDF=90°)及M为斜边中点,我们的证明可从这里展开.证延长EM交DC的延长线于F,连接DM.由于CM=BM,∠F=∠BEM,∠MCF=∠B,所以△MCF≌△MBE(AAS),所以M是EF的中点.由于AB∥CD及DE⊥AB,所以,DE⊥FD,三角形DEF是直角三角形,DM为斜边的中线,由直角三角形斜边中线的性质知∠F=∠MDC,又由已知MC=CD,所以∠MDC=∠CMD,则∠MCF=∠MDC+∠CMD=2∠F.从而∠EMC=∠F+∠MCF=3∠F=3∠BEM.例4 如图2-35所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF.分析只要证明△CAF是等腰三角形,即∠CAF=∠CFA即可.由于∠CAF=45°-∠CAD,所以,在添加辅助线时,应设法产生一个与∠CAD相等的角a,使得∠CFA=45°-a.为此,延长DC交AF于H,并设AF与BC交于G,我们不难证明∠FCH=∠CAD.证延长DC交AF于H,显然∠FCH=∠DCE.又在Rt△BCD中,由于CE⊥BD,故∠DCE=∠DBC.因为矩形对角线相等,所以△DCB≌△CDA,从而∠DBC=∠CAD,因此,∠FCH=∠CAD.①又AG平分∠BAD=90°,所以△ABG是等腰直角三角形,从而易证△HCG也是等腰直角三角形,所以∠CHG=45°.由于∠CHG是△CHF 的外角,所以∠CHG=∠CFH+∠FCH=45°,所以∠CFH=45°-∠FCH.②由①,②∠CFH=45°-∠CAD=∠CAF,于是在三角形CAF中,有CA=CF.例5 设正方形ABCD的边CD的中点为E,F是CE的中点(图2-36).求证:分析作∠BAF的平分线,将角分为∠1与∠2相等的两部分,设法证明∠DAE=∠1或∠2.证如图作∠BAF的平分线AH交DC的延长线于H,则∠1=∠2=∠3,所以FA=FH.设正方形边长为a,在Rt△ADF中,从而所以Rt△ABG≌Rt△HCG(AAS),从而Rt△ABG≌Rt△ADE(SAS),例6 如图2-37所示.正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G.求证:△GHD是等腰三角形.分析准确地画图可启示我们证明∠GDH=∠GHD.证因为DEBD=FD,所以BC,所以四边形BCED为平行四边形,所以∠1=∠4.又所以 BC=GC=CD.因此,△DCG为等腰三角形,且顶角∠DCG=45°,所以又所以∠HDG=∠GHD,从而GH=GD,即△GHD是等腰三角形.练习十二1.如图2-38所示.DE⊥AC,BF⊥AC,DE=BF,∠ADB=∠DBC.求证:四边形ABCD是平行四边形.2.如图2-39所示.在平行四边形ABCD中,△ABE和△BCF都是等边三角形.求证:△DEF是等边三角形.3.如图2-40所示.CB于E.求证:BE=CF.ABCD中,AF平分∠BAD交BC于F,DE⊥AF交4.如图2-41所示.矩形ABCD中,F在CB延长线上,AE=EF,CF=CA.求证:BE⊥DE.5.如图2-42所示.在正方形ABCD中,CE垂直于∠CAB的平分第五篇:全国初中数学竞赛辅导(八年级)教学案全集第23讲几何不等式全国初中数学竞赛辅导(八年级)教学案全集第二十三讲几何不等式平面图形中所含的线段长度、角的大小及图形的面积在许多情形下会呈现不等的关系.由于这些不等关系出现在几何问题中,故称之为几何不等式.在解决这类问题时,我们经常要用到一些教科书中已学过的基本定理,本讲的主要目的是希望大家正确运用这些基本定理,通过几何、三角、代数等解题方法去解决几何不等式问题.这些问题难度较大,在解题中除了运用不等式的性质和已经证明过的不等式外,还需考虑几何图形的特点和性质.几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式.下面先给出几个基本定理.定理1 在三角形中,任两边之和大于第三边,任两边之差小于第三边.定理2 同一个三角形中,大边对大角,小边对小角,反之亦然.定理3 在两边对应相等的两个三角形中,第三边大的,所对的角也大,反之亦然.定理4 三角形内任一点到两顶点距离之和,小于另一顶点到这两顶点距离之和.定理5 自直线l外一点P引直线l的斜线,射影较长的斜线也较长,反之,斜线长的射影也较长.说明如图2-135所示.PA,PB是斜线,HA和HB分别是PA和PB在l上的射影,若HA>HB,则PA>PB;若PA>PB,则HA>HB.事实上,由勾股定理知PA2-HA2=PH2=PB2-HB2,所以PA2-PB2=HA2-HB2.从而定理容易得证.定理6 在△ABC中,点P是边BC上任意一点,则有PA≤max{AB,AC},当点P为A或B时等号成立.说明max{AB,AC}表示AB,AC中的较大者,如图2-136所示,若P在线段BH上,则由于PH≤BH,由上面的定理5知PA≤BA,从而PA≤max{AB,AC}.同理,若P在线段HC上,同样有PA≤max{AB,AC}.例1 在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC内一点,证明:PB>PC(图2-137).证在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,由定理3知,∠AMB>∠AMC,所以∠AMC<90°.过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则BH>BM=MC>HC.如果H在线段MC的延长线上,显然BH>HC,所以PB>PC.例2 已知P是△ABC内任意一点(图2-138).(1)求证:<a+b+c;(2)若△ABC为正三角形,且边长为1,求证:PA+PB+PC<2.证(1)由三角形两边之和大于第三边得PA+PB>c,PB+PC>a,PC+PA>b.把这三个不等式相加,再两边除以2,便得又由定理4可知PA+PB<a+b,PB+PC<b+c,PC+PA<c+a.把它们相加,再除以2,便得PA+PB+PC<a+b+c.所以(2)过P作DE∥BC交正三角形ABC的边AB,AC于D,E,如图2-138所示.于是PA<max{AD,AE}=AD,PB<BD+DP,PC<PE+EC,所以PA+PB+PC<AD+BD+DP+PE+EC=AB+AE+EC=2.例3 如图2-139.在线段BC同侧作两个三角形ABC和DBC,使得AB=AC,DB>DC,且AB+AC=DB+DC.若AC与BD相交于E,求证:AE>DE.证在DB上取点F,使DF=AC,并连接AF和AD.由已知2DB>DB+DC=AB+AC=2AC,所以 DB>AC.由于DB+DC=AB+AC=2AC,所以DC+BF=AC=AB.在△ABF中,AF>AB-BF=DC.在△ADC和△ADF中,AD=AD,AC=DF,AF>CD.由定理3,∠1>∠2,所以AE>DE.例4 设G是正方形ABCD的边DC上一点,连结AG并延长交BC 延长线于K,求证:分析在不等式两边的线段数不同的情况下,一般是设法构造其所为边的三角形.证如图2-140,在GK上取一点M,使GM=MK,则在Rt△GCK中,CM是GK边上的中线,所以∠GCM=∠MGC.而∠ACG=45°,∠MGC>∠ACG,于是∠MGC>45°,所以∠ACM=∠ACG+∠GCM>90°.由于在△ACM中∠ACM>∠AMC,所以AM>AC.故例5 如图2-141.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO分别交对边于A′,B′,C′.证明:(1)OA′+OB′+OC′<BC;(2)OA′+OB′+OC′≤max{AA′,BB′,CC′}.证(1)过点O作OX,OY分别平行于边AB,AC,交边BC于X,Y点,再过X,Y分别作XS,YT平行于CC′和BB′交AB,AC于S,T.由于△OXY∽△ABC,所以XY是△OXY的最大边,所以OA′<max{OX,OY}≤XY.又△BXS∽△BCC′,而BC是△BCC′中的最大边,从而BX也是△BXS 中的最大边,而且SXOC′是平行四边形,所以BX>XS=OC′.同理CY>OB′.所以OA′+OB′+OC′<XY+BX+CY=BC.所以OA′+OB′+OC′=x·AA′+y·BB′+z·CC′≤(x+y+z)max{AA′,BB′,CC′}=max{AA′,BB′,CC′}下面我们举几个与角有关的不等式问题.例6 在△ABC中,D是中线AM上一点,若∠DC B>∠DBC,求证:∠ACB>∠ABC(图2-142).证在△BCD中,因为∠DCB>∠DBC,所以BD>CD.在△DMB与△DMC中,DM为公共边,BM=MC,并且BD>CD,由定理3知,∠DMB>∠DMC.在△AMB与△AMC中,AM是公共边,BM=MC,且∠AMB>∠AMC,由定理3知,AB>AC,所以∠ACB>∠ABC.说明在证明角的不等式时,常常把角的不等式转换成边的不等式.证由于AC>AB,所以∠B>∠C.作∠ABD=∠C,如图2即证BD∠CD.因为△BAD∽△CAB,即 BC>2BD.又 CD>BC-BD,所以BC+CD>2BD+BC-BD,所以 CD>BD.从而命题得证.例8 在锐角△ABC中,最大的高线AH等于中线BM,求证:∠B <60°(图2-144).证作MH1⊥BC于H1,由于M是中点,所以于是在Rt△MH1B中,∠MBH1=30°.延长BM至N,使得MN=BM,则ABCN为平行四边形.因为AH为最ABC中的最短边,所以AN=BC<AB,从而∠ABN<∠ANB=∠MBC=30°,∠B=∠ABM+∠MBC<60°.。
初中数学竞赛培训讲义-第五讲-全等三角形
ODCBA21FEDCBAFEDCBA初中数学竞赛培训讲义第四讲 三角形及全等三角形二 赛题精讲 1 三角形中的边角关系例1 周长为30,各边长互不相等且都是整数的三角形有几个?练习 在ABC D 中,5AC =,4AD =中线,求边AB 的取值范围.2 全等三角形的性质例 2 在ABC D 中和ABD D 中,,AC BD 交于点O ,90ACBADB ?? ,请再添加一个条件使ABC D ≌ABD D ,并证明你所提出的命题.练习 如图, 90,,,EF B C AE AF ?靶=?给出下列结论:①12? ,②BE CF =,③ACN D ≌ABM D ,④CD DN =,其中正确的结论是 (把你认为所有正确的结论的序号填上)3 构造全等证明几何问题 (1)直接连线添加辅助线例3 如图,点C 在线段AB 上,,,,DA AB EB AB FC AB ^^^且DA BC =,EB AC =,FC AB =,51AFB? ,求DFE Ð的度数.321EDC B A GNM EDC B AQPF EDCBA练习 1、如图,A 在DE 上,F 在AB 上,且AC CE =,123??,求DE 的长等于( ).....A D C B B C C A B D A E A C+2、如图,点C 在线段AB 上,分别以AC 和BC 为边向线段AB 同侧作等边三角形ACD D 和BCE D ,,,M N G 分别是,;,;,AE BD BD CE AE CD 的交点.(1) 找出图中的所有全等三角形,并予以证明. (2) 求AMB Ð的度数. (3) 判断CNG D 的形状.3、如图,,BD CE 分别是ABC D 的边,AC AB 上的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =.求证:(1)AP AQ =,(2)AP AQ ^.(2)与中点有关的辅助线构造例 4 如图,在ABC D 和A B C ⅱD 中,,AB A B AC A C ⅱⅱ==,AM 和A M ⅱ分别是ABC D 和DCBAM /C /B /A /MCBAFEDCBABA B C ⅱ D 的中线,且AM =A M ⅱ,求证: ABC D ≌A B C ⅱD .练习 ABC D 中,D 是BC 的中点,DE DF ^,判断BE CF +与EF 的大小关系,并证明你的结论.(2)与角平分线有关的辅助线构造例5 如图,在四边形ABCD 中,BC BA >,AD CD =,BD 平分ABC Ð, 求证 180A C ??例6 ABC D 中,60ABC ? ,,AD CE 分别平分,BAC ACB 行,求证:AC AE CD =+.DCB AE DCBADCBAFDA练习 1、如图,在ABC D 中,AD 平分BAC Ð,BD CD =,求证:AB AC =2、 如图,在ABC D 中,90BAC ? ,AB AC =,BE 平分ABC Ð,CE BE ^,求证:12CE BD =.3、 如图,在ABC D 中,,100AB AC A =? ,ABC Ð的平分线交AC 于D .求证:AD BD BC +=(3)截长不短法+旋转式全等的构造例7 如图,正方形ABCD 中,,E F 分别是边,BC CD 上的点,若BE DF EF +=, 求EAF Ð的度数.QPDC BAEDCBA MDCBADCBA练习 1、 在正方形ABCD 中,P 是上一点,AQ 平分PAD Ð交DC 于Q . 求证:PA PB QD =+2、如图,90,,C AC BC AD ?是BAC Ð的角平分线,求证:AC CD AB +=.3、如图,已知2,90AB CD AE BC DE ABCAED===+=?? ,求五边形ABCDE 的面积.练习题 (每道20分)1、如图,90BC ? ,M 是BC 的中点,DM 平分ADC Ð,求证:AM 平分DAB Ð.NMCBAD CBAFECBAD FEADCB2 如图,ABC D 中,过点A 分别作,ABC ACB 行 外角的平分线的垂线,垂足分别为,M N 设ABC D 的三边长,,BC CA AB 分别为,,a b c ,求线段MN 的长.3 如图,四边形ABCD 中,,60,120AB AD BAD BCD =?靶= ,求证:BC CD AC +=4 在ABC D 中,45ABC? ,AD 是BAC Ð的平分线,EF 的垂直平分线AD 交BC 的延长线于F ,试求CAF Ð的大小.5 如图,D 是ABC D 的BC 边的中点,分别以,AB AC 为斜边向ABC D 外作直角三角形ABE D 和ACF D ,若ABEACF ? ,求证:DE DF =1. 上帝对人说道:“我医治你,所以要伤害你;我爱你,所以要惩罚你。
全国初中数学竞赛辅导(八年级)教学案全集第23讲 几何不等式
全国初中数学竞赛辅导(八年级)教学案全集第二十三讲几何不等式平面图形中所含的线段长度、角的大小及图形的面积在许多情形下会呈现不等的关系.由于这些不等关系出现在几何问题中,故称之为几何不等式.在解决这类问题时,我们经常要用到一些教科书中已学过的基本定理,本讲的主要目的是希望大家正确运用这些基本定理,通过几何、三角、代数等解题方法去解决几何不等式问题.这些问题难度较大,在解题中除了运用不等式的性质和已经证明过的不等式外,还需考虑几何图形的特点和性质.几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式.下面先给出几个基本定理.定理1在三角形中,任两边之和大于第三边,任两边之差小于第三边.定理2同一个三角形中,大边对大角,小边对小角,反之亦然.定理3在两边对应相等的两个三角形中,第三边大的,所对的角也大,反之亦然.定理4三角形内任一点到两顶点距离之和,小于另一顶点到这两顶点距离之和.定理5自直线l外一点P引直线l的斜线,射影较长的斜线也较长,反之,斜线长的射影也较长.说明如图2-135所示.PA,PB是斜线,HA和HB分别是PA和PB在l 上的射影,若HA>HB,则PA>PB;若PA>PB,则HA>HB.事实上,由勾股定理知PA2-HA2=PH2=PB2-HB2,所以PA2-PB2=HA2-HB2.从而定理容易得证.定理6 在△ABC中,点P是边BC上任意一点,则有PA≤max{AB,AC},当点P为A或B时等号成立.说明 max{AB,AC}表示AB,AC中的较大者,如图2-136所示,若P 在线段BH上,则由于PH≤BH,由上面的定理5知PA≤BA,从而PA≤max{AB,AC}.同理,若P在线段HC上,同样有PA≤max{AB,AC}.例1 在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC内一点,证明:PB>PC(图2-137).证在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,由定理3知,∠AMB>∠AMC,所以∠AMC<90°.过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则BH>BM=MC>HC.如果H在线段MC的延长线上,显然BH>HC,所以PB>PC.例2 已知P是△ABC内任意一点(图2-138).(1)求证:<a+b+c;(2)若△ABC为正三角形,且边长为1,求证:PA+PB+PC<2.证 (1)由三角形两边之和大于第三边得PA+PB>c,PB+PC>a,PC+PA>b.把这三个不等式相加,再两边除以2,便得又由定理4可知PA+PB<a+b, PB+PC<b+c,PC+PA<c+a.把它们相加,再除以2,便得PA+PB+PC<a+b+c.所以(2)过P作DE∥BC交正三角形ABC的边AB,AC于D,E,如图2-138所示.于是PA<max{AD,AE}=AD,PB<BD+DP,PC<PE+EC,所以PA+PB+PC<AD+BD+DP+PE+EC=AB+AE+EC=2.例3如图2-139.在线段BC同侧作两个三角形ABC和DBC,使得AB=AC,DB>DC,且AB+AC=DB+DC.若AC与BD相交于E,求证:AE>DE.证在DB上取点F,使DF=AC,并连接AF和AD.由已知2DB>DB+DC=AB+AC=2AC,所以 DB>AC.由于DB+DC=AB+AC=2AC,所以DC+BF=AC=AB.在△ABF中,AF>AB-BF=DC.在△ADC和△ADF中,AD=AD,AC=DF,AF>CD.由定理3,∠1>∠2,所以AE>DE.例4 设G是正方形ABCD的边DC上一点,连结AG并延长交BC延长线于K,求证:分析在不等式两边的线段数不同的情况下,一般是设法构造其所为边的三角形.证如图2-140,在GK上取一点M,使GM=MK,则在Rt△GCK中,CM是GK边上的中线,所以∠GCM=∠MGC.而∠ACG=45°,∠MGC>∠ACG,于是∠MGC>45°,所以∠ACM=∠ACG+∠GCM>90°.由于在△ACM中∠ACM>∠AMC,所以AM>AC.故例5如图2-141.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO分别交对边于A′,B′,C′.证明:(1)OA′+OB′+OC′<BC;(2)OA′+OB′+OC′≤max{AA′,BB′,CC′}.证 (1)过点O作OX,OY分别平行于边AB,AC,交边BC于X,Y点,再过X,Y分别作XS,YT平行于CC′和BB′交AB,AC于S,T.由于△OXY∽△ABC,所以XY是△OXY的最大边,所以OA′<max{OX,OY}≤XY.又△BXS∽△BCC′,而BC是△BCC′中的最大边,从而BX也是△BXS 中的最大边,而且SXOC′是平行四边形,所以BX>XS=OC′.同理CY>OB′.所以OA′+OB′+OC′<XY+BX+CY=BC.所以OA′+OB′+OC′=x·AA′+y·BB′+z·CC′≤(x+y+z)max{AA′,BB′,CC′}=max{AA′,BB′,CC′}下面我们举几个与角有关的不等式问题.例6在△ABC中,D是中线AM上一点,若∠DCB>∠DBC,求证:∠ACB>∠ABC(图2-142).证在△BCD中,因为∠DCB>∠DBC,所以BD>CD.在△DMB与△DMC中,DM为公共边,BM=MC,并且BD>CD,由定理3知,∠DMB>∠DMC.在△AMB与△AMC中,AM是公共边,BM=MC,且∠AMB >∠AMC,由定理3知,AB>AC,所以∠ACB>∠ABC.说明在证明角的不等式时,常常把角的不等式转换成边的不等式.证由于AC>AB,所以∠B>∠C.作∠ABD=∠C,如图2即证BD∠CD.因为△BAD∽△CAB,即 BC >2BD .又 CD >BC -BD ,所以BC +CD >2BD +BC -BD ,所以 CD >BD .从而命题得证.例8 在锐角△ABC 中,最大的高线AH 等于中线BM ,求证:∠B <60°(图2-144).证 作MH 1⊥BC 于H 1,由于M 是中点,所以于是在Rt △MH 1B 中,∠MBH 1=30°.延长BM 至N ,使得MN=BM ,则ABCN 为平行四边形.因为AH 为最ABC 中的最短边,所以AN=BC <AB ,从而∠ABN <∠ANB=∠MBC=30°,∠B=∠ABM+∠MBC <60°.下面是一个非常著名的问题——费马点问题.例9 如图2-145.设O 为△ABC 内一点,且∠AOB=∠BOC=∠COA=120°,P 为任意一点(不是O).求证:PA +PB+PC >OA+OB+OC .证 过△ABC 的顶点A ,B ,C 分别引OA ,OB ,OC 的垂线,设这三条垂线的交点为A 1,B 1,C 1(如图2-145),考虑四边形AOBC 1.因为∠OAC 1=∠OBC 1=90°,∠AOB=120°,所以∠C 1=60°.同理,∠A 1=∠B 1=60°.所以△A1B1C1为正三角形. 设P 到△A 1B 1C 1三边B 1C 1,C 1A 1,A 1B 1的距离分别为ha ,hb ,hc ,且△A 1B 1C 1的边长为a ,高为h .由等式S △A 1B 1C 1=S △PB 1C 1+S △PC 1A 1+S △PA 1B 1知所以 h=h a +h b +h c .这说明正△A 1B 1C 1内任一点P 到三边的距离和等于△A 1B 1C 1的高h ,这是一个定值,所以OA +OB +OC=h=定值.显然,PA +PB +PC >P 到△A1B1C1三边距离和,所以PA +PB +PC >h=OA +OB +OC .这就是我们所要证的结论.由这个结论可知O点具有如下性质:它到三角形三个顶点的距离和小于其他点到三角形顶点的距离和,这个点叫费马点.练习二十三1.设D是△ABC中边BC上一点,求证:AD不大于△ABC中的最大边.2.AM是△ABC的中线,求证:3.已知△ABC的边BC上有两点D,E,且BD=CE,求证:AB+AC>AD +AE.4.设△ABC中,∠C>∠B,BD,CE分别为∠B与∠C的平分线,求证:BD>CE.5.在△ABC中,BE和CF是高,AB>AC,求证:AB+CF≥AC+BE.6.在△ABC中,AB>AC,AD为高,P为AD上的任意一点,求证:PB-PC>AB-AC.7.在等腰△ABC中,AB=AC.(1)若M是BC的中点,过M任作一直线交AB,AC(或其延长线)于D,E,求证:2AB<AD+AE.(2)若P是△ABC内一点,且PB<PC,求证:∠APB>∠APC.。
八年级数学竞赛教案
八年级数学竞赛教案教案标题:八年级数学竞赛教案教学目标:1. 熟悉八年级数学竞赛的题型和要求。
2. 提高学生解题的思维能力和数学应用能力。
3. 培养学生的合作与竞争意识。
教学内容:1. 数的性质与变化2. 代数表达式3. 方程与不等式4. 几何图形的性质与变化5. 数据分析与统计教学步骤:第一课:数的性质与变化1. 导入:通过一个有趣的数学谜题引起学生的兴趣。
2. 讲解:复习数的性质,如整数的分类、有理数的性质等。
3. 练习:提供一些数的性质相关的练习题,让学生巩固理解。
第二课:代数表达式1. 导入:通过实际生活中的例子引出代数表达式的概念。
2. 讲解:介绍代数表达式的基本概念和运算规则。
3. 练习:提供一些代数表达式的练习题,让学生练习转化和简化代数表达式。
第三课:方程与不等式1. 导入:通过一个实际问题引出方程与不等式的概念。
2. 讲解:介绍方程与不等式的基本概念和解题方法。
3. 练习:提供一些方程与不等式的练习题,让学生练习解方程和不等式。
第四课:几何图形的性质与变化1. 导入:通过几何图形的变换引起学生的兴趣。
2. 讲解:介绍几何图形的基本性质和变换规律。
3. 练习:提供一些几何图形的性质和变换的练习题,让学生巩固理解。
第五课:数据分析与统计1. 导入:通过一个实际数据的分析引出数据分析与统计的概念。
2. 讲解:介绍数据分析与统计的基本方法和技巧。
3. 练习:提供一些数据分析与统计的练习题,让学生练习应用统计方法解决问题。
教学评估:1. 在每节课结束时进行小测验,检查学生对所学内容的掌握情况。
2. 设计一套模拟数学竞赛试题,让学生在课后完成,以评估他们的竞赛水平。
教学资源:1. 数学竞赛教材和习题集。
2. 数学竞赛模拟试题。
3. 多媒体投影仪和电脑。
教学建议:1. 鼓励学生积极参与课堂讨论和练习,提高他们的数学思维能力。
2. 组织学生进行小组合作学习,培养他们的合作与竞争意识。
3. 鼓励学生参加校内外的数学竞赛,提高他们的数学应用能力和竞赛技巧。
《中学数学教学参考》2008年第5~12、Z1、Z2期目
《中学数学教学参考》2008年第5~12、Z1、Z2期目录第5期数学教学方法的现代发展/章建跃//05,1-3+13向量与空间想象能力/王尚志等//05,4-6平衡:数学课堂教学改革的基本要义——一节省级优质课:“平均变化率”课例及其点评/张健//05,7-12关于新课程必修模块不同顺序教学安排的思考讨论/王尚志;张思明//05,13例谈数学教学目标的多维性设计/郭社会//05,14+21新课程高中数学课堂教学“过程与方法”目标探微/曹凤东//05,15-172007年高教数学陕西卷数列题的解题分析/罗增儒//05,18-21几何角正射影的定性与定量研究(续) /陈云烽//05,22-24例谈算法思想在中学数学中的渗透/赵军//05,25-26一道竞赛题的证法改进和结论推广/胡维欣//05,27-28一个三角形角的不等式的再思考/安振平//05,28回归课本——高考数学复习的公理/裴光亚//05,29-31函数、数列和不等式/孔峰等//05,31-34三角函数、平面向量、排列组合与概率统计/谢志庆等//05,34-37立体几何/陈炯生等//05,37-40解析几何/常晓兵等//05,41-43课本新增内容/丁尔法等//05,44-45应用向量解决平面几何问题/史义飞//05,46-48数学教学中形式化与非形式化的研究综述/罗静;王光明//05,49-50+59高中生数学认识信念的调查与思考/唐剑岚等//05,51-55“三割线定理”的再研究/赵临龙//05,56中国清代的数学教育/张雄//05,57-59正弦定理和余弦定理//05,60-61江苏省2008年高考方案简介及数学科《考试说明》变化分析/杨志文//05,62数学教育:国际比较的视角与方法——读吴晓红教授《数学教育国际比较的方法论研究》/秦岭//05,63-64第6期构建学生容易理解的数学教育形态——10个案例/张奠宙;路建英//06,1-3+6教材的重组与创新/裴光亚//06,4-6精彩,未曾预设——谈数学课堂的非预设生成/邵潇野//06,7-9关于课堂教学中数学探究活动的几点思考/金晔//06,10-12由一道最值问题引发的层层思考/蒋柏孟//06,13-14+32让激情与智慧共生——“探索直角三角形全等的条件”课例及其点评/江春;孙大勇//06,15-17 “反比例函数”内容分析及施教建议/韩春见//06,18-21“垂直”内容分析与教学建议/陈德前//06,22-24从一个假命题说起/闵耀明//06,25-27用联想法编题例说/蔡世英//06,28-29“垃圾桶”里的数学问题/黄金声//06,30从不同角度探求一道试题的本质/张宏政;郑伟君//06,30-32试题编拟的技术性建议/罗增儒//06,33-37命制二次函数中考题的实践与思考/朱宁文//06,37-39论数学试题的质量标准/孔凡哲;潘冠//06,40-42热点题型分类评析方案设计问题/朱建明//06,43-47分类讨论问题/易良斌//06,47-50初中数学竞赛专题讲练实数的计算/任志昌//06,51-52合理理解教育形态的数学知识——理解“角”的定义的启示/邝孔秀//06,53-54HPM视角下一元一次方程概念的教学设计/皇甫华;汪晓勤//06,55-57由《课程焦点》透视美国数学课程改革现状及其启示/龚玲;叶立军//06,58-60+64Inspiring Questions from the Sea of Examinations(题海拾贝) /张民欢//06,612~(1/2)的故事/陈丽英;杨之//06,62-63对名不副实的“数学猜想”说不/冯洪生;张生安//06,63第7期向量与空间想象能力(续) /王尚志等//07,1-2+6高中数学课程中的二分法——对“用二分法求方程的近似解”一堂课的思考/张劲松;郭豫//07,3-6“同课异构”的比较与反思——从“二分法”三节课说起/雷晓莉;王芝平//07,7-9新课程理念下的数学示错教学/谢全苗//07,10-13新课标下圆锥曲线定义的教学改进及反思/王修汤//07,14-16对苏教版高中数学教材中“旁白”的几点认识/董入兴//07,17-19对高中数学新课程《第一模块验收评价》之管见/李广修//07,20+28对高中数学新课程课时偏紧问题的一些认识/罗强//07,21-24内容削减要求降低功能增强——课例:两个平面平行的性质/黄安成//07,25-282007年高考数学陕西卷数列题的解题分析(续) /罗增儒//07,29-31轨迹求向量法/陈云烽//07,32-33一道高考题解法引发的思考/王强芳//07,34-35+38常规题改编为探究题的变式方法初探/王克亮//07,36-38审题新概念/曹丽鹏;罗增儒//07,39-45三角法在平面几何中的应用/刘东//07,46-49高中数学“拓展型知识”栏目的调查研究/黄加卫//07,50-52(-∞,0)∪(0,+∞)是一个区间吗? /吴有昌//07,53+57施泰纳—莱莫斯定理新证/汪玉生;唐录义//07,54一个不寻常的恒等式/石长伟;刘录平//07,54IB数学(高水平)与AP微积分(BC)的异同初探/马峰//07,55-57移盘游戏/张越//07,58-59代数与几何的结合/潘亦宁//07,60-61几何实验课的起源与现状/闫焱//07,61-62欢迎参加“我最满意的一节课”数学新课程教学课例大赛//07,63第8期教学的智慧/裴光亚//08,1-3且看高效课堂的“打造”——观台州市数学优质课评比有感/陈林香//08,3-5+11从数学化过程看中学数学教师专业素养——对一次省级评优课活动的注记/周建勋//08,6-7 反比例函数教学中的情境创设与学习迁移/程阳清//08,8-11用好用活教材中的主题情意图/郭文玲//08,12-13数理超战棋及其教学实践(一) 运用数理超战棋进行数学学法创新的尝试/高伟鹏//08,14-16 课例:问题解决的基本步骤/王一杰//08,17-19点评:彰显“解决问题”内涵的三个转变/周如建//08,19-20+60“平面直角坐标系”教学探讨/孙学东//08,21-22例析动态视角下几何解题思路的形成过程/张宏政;马力军//08,23-25由一道“希波克拉底月牙形”习题引发的思考/段春炳;邵文鸿//08,25-27新颖激趣平中见奇/潘建明//08,28-29一道彰显新理念的考题/邢成云//08,29+56试题编拟的技术性建议(续) /罗增儒//08,30-33论数学试题的质量标准(续) /孔凡哲;潘冠//08,34-36数与代数/刘婷;朱昌宝//08,37-42空间与图形/刘英英;郭杏好//08,42-46统计与概率/吴永刚;董建功//08,47-51恒等式的证明/桂文通//08,52-54对湘教版教材中“ASA”判定教学的商榷/王金萍;王劲松//08,55-56数学史教学的尝试——一堂数学活动课的教学实录与反思/袁银宗//08,57-60题海拾贝/梁春侠//08,61充分挖掘节前语内涵提高教学资源的有效性/金荣乐//08,62-63生成,让数学课堂绽放生命的光彩/羌建中//08,63-64数学史教学的尝试——一堂数学活动课的教学实录与反思/袁银宗//08,57-60题海拾贝/梁春侠//08,61充分挖掘节前语内涵提高教学资源的有效性/金荣乐//08,62-63生成,让数学课堂绽放生命的光彩/羌建中//08,63-64第9期向量的概念和应用/王尚志等//09,1-3再谈数学命题的教学策略/王光明;戴永//09,4-7返璞归真:从具体到抽象——对一则教学片断的解构/杨佩琼;王一杰//09,8-10“算法初步”一章内容分析与教学建议/杨志文;杜瑛//09,11-13线段的定比分点在教材中的编排/徐章韬//09,14-15+20用正弦线法作正弦曲线教学中的两个问题/楼文胜//09,16-17关于新课程必修模块不同顺序教学安排的实践与思考(之一) /陈小红//09,18-20关于新课程必修模块不同顺序教学安排的实践与思考(之二) /朱耀习//09,21-22两个定点相关联的轨迹问题讨论/陈云烽//09,23-26一道简单数列题的解题失误及其纠正/文晓宇//09,27一道课本例题的解法探究/周金国//09,28-29解三角形题时关键要抓住什么/周伟忠//09,29-312008年高考数学模拟试题(一) //09,32-352008年高考数学模拟试题(二) //09,36-39解析法及其应用/任楠;薛党鹏//09,40-43本刊第五届中学生数学智能通讯赛试题//09,44-46如何进行新课程选修模块中新增内容的教学——高中“矩阵与变换”内容教学行动研究/郗玲玲//09,47-50数阵的一种迭代/苏克义//09,50-51高中生对斜率概念的理解/张献峰//09,52-54+60美国高考及其数学考题特点浅探/王奋平//09,55-57几何问题运算化的倾向与思考/何继刚;方悟//09,58-60平面解析几何的产生(三)——笛卡儿与解析几何/汪晓勤//09,61-62向量/尧羽;安文娟//09,63-64第10期数学基础知识及其教学的再认识/章建跃//10,1-3从教学中问题看教师的知识高度/裴光亚//10,4-5剩余学习与有效减负/蔡碧//10,6-9新课程下数学理解与促进学生数学理解/王爱珍//10,10-13+48敢于舍弃课堂中的非本质活动/余献虎//10,14-16课堂革命:从“勾股定理是中国的?”说起——引导学生“再创造”的发现式教学研究与实践/符永平//10,17-20数理超战棋及其教学实践(二) 数理超战棋在“三角形”教学中的运用/高伟鹏//10,21-22+64 谈人教版“三角形”一章的教学/王赛英;赖玺艳//10,23-26二次函数教学探讨/李晋科;倪先德//10,27-30一道中考数学试题的分析/宫运生;齐荣惠//10,31-32解读与“面积”相关的试题/苑建广//10,33-36对一道数学试题的分析与反思/姜洋//10,37-38“文字表述”类中考题探微/吕小保//10,39-42以能力立意,为教学导航——谈一道中考模拟压轴题的编制策略及经历/陈林香//10,43-45方程(组)的解法/陈锋//10,46-48难得一见的好题为何引发争议/金绍鑫//10,49-50数学“分层自学辅导”教学实验与思考/王力//10,51-53HPM视角下激发数学兴趣的教学设计/黄桂青;董益飞//10,54-56Inspiring Questions from the Sea of Examinations/田枫//10,57本刊第五届中学生数学智能通讯赛试题/桂文通//10,58-61对一道课本例题的修改建议/卢占国//10,62课改实验状况与思考/史青山;王从珍//10,62-63第11期从数学知识教育到数学文化教育/胡典顺//11,1-3+8新课程中,函数应用难在哪/王嵘//11,4-5如何认识“十字相乘法”?(一) /王尚志等//11,6-8结合三节数学课堂实录反思问题情境的设置/马吉超//11,9-12数学讲评课应如何设计更科学合理/魏本义//11,13-15+31直线与平面垂直判定定理教学的讨论/俞求是//11,16-17“柯西不等式与排序不等式”单元教学建议/褚人统//11,18-20教育叙事——开放策略下的认识封闭/罗增儒//11,21-25两个定点相关联的轨迹问题讨论(续) /陈云烽//11,26-28解析几何中两条“伪直线”之探析/屠丰庆//11,29-31透过现象看本质——兼谈数学解题反思/高鹏//11,32-34别证与体悟/曹松青;曹友良//11,35+42六种数学思想,诱发一题多解/聂文喜//11,36-37本刊第五届中学生数学智能通讯赛参赛细则//11,37高中数学竞赛中常用的思想方法递推方法及其应用/刘康宁//11,38-42统计教学中教师教育发展的若干新理念——ICMI/IASE-2008研究评价/谢益民//11,43-44数学开放题的测试与影响因素分析/顾文军;郑广涛//11,45-48高中数学过程性评价的实践与反思/周鸿高//11,49-51一个有趣的数论定理/王凯成//11,51-52美国ACT高考及其数学考题特点浅探/王奋平//11,53-54+61向量与数的乘法/乔南//11,55+59平面解析几何的产生(四) /汪晓勤//11,56-59招聘高中数学教师专业测试题/李佑实//11,60-612008年高中数学教师解题基本功技能大赛试题//11,62-632008年高中数学教师解题基本功技能大赛参赛细则//11,63全国第九届数学方法论与数学教育学术研讨会(简称PMⅨ)通知//11,64第12期数学基础知识及其教学的再认识(续) /章建跃//12,1-2+5关于数学竞赛/裴光亚//12,3-5动手实践的教育要义与实践反思/张军荣;罗新兵//12,6-8数学课堂教学结尾方法设计/汪英//12,9-10构建促进课堂复习教学的过程评价体系/吴增生//12,11-12课堂革命:从“勾股定理是中国的?”说起(续)——引导学生“再创造”的发现式教学研究与实践/符永平//12,13-15数理超战棋及其教学实践(三) 数理超战棋在“四边形”教学中的运用/高伟鹏//12,16-18大班环境下个性化数学教学的实践与思考/周福群//12,18-21“一次函数图象和性质”教学回顾与点评/朱永瑛//12,22-24二元一次方程组教材分析与施教建议/周永红//12,25-28“相似”一章的教学分析与建议/张卫明//12,29-33“花开满堂”又未“圆”——三篇面积探究文章的延续/蔡卫兵//12,34-35对基于课标的高中招生考试数学试题的思考/余献虎//12,36-39一道颇有创意的中考题/张祥淳//12,40-41一道题的拓展/戴向阳//12,41-42初中数学竞赛专题讲练不等式的解法/邹守文//12,43-452008年全国初中数学联赛试题讲解/刘康宁//12,46-50把握本质揭示真知——读《数学评价数学素养数学哲学》一文的几点思考/王四宝//12,51-52对一教学片断的质疑与商榷/姜鸿雁;金绍鑫//12,53-54竞赛题数学史背景之管见/王尧兴//12,55-57题海拾贝/田枫//12,58对一道数学试题的再思考/刘旭亮//12,592008年全国中学数学教师解题基本功技能大赛参赛细则//12,60 2008年初中数学教师解题基本功技能大赛试题/向中军等//12,60-62 对第14题(2)的解题反思/李靖//12,62-63对第15题的解题反思/纪高峰//12,63-64第Z1期结构良好试题编拟的基本要求/罗增儒//Z1,1-3中考数学复习的战略决策/裴光亚//Z1,4-6+9中考复习中应注意的若干问题/袁银宗//Z1,7-9有理数/李树臣//Z1,10-14整式及其运算/朱光伟;薄守茂//Z1,14-18分式及其运算/巨泳;王玉成//Z1,18-22数的开方与二次根式/韩晓辉;张晓华//Z1,22-25一元一次方程、二元一次方程组/巨申文;郑兴科//Z1,26-30分式方程/邢成云//Z1,30-34一元二次方程/倪先德//Z1,35-38不等式与不等式组/闾炜//Z1,39-43函数及其图象:平面直角坐标系、一次函数/蔡建锋//Z1,44-47函数及其图象:反比例函数/安国钗//Z1,47-50函数及其图象:二次函数/白飞//Z1,51-55图形的认识/赵峰//Z1,55-59图形的变换/许永江//Z1,59-63图形的全等/魏贤志;张杰//Z1,63-67解直角三角形/马建//Z1,67-71四边形/王群业//Z1,71-75图形的相似/冯君柏//Z1,75-78圆/袁福臣//Z1,78-82统计知识/邢成云;郝恩滨//Z1,83-87概率知识/渤海风//Z1,88-91信息问题/曾庆丰;姜红成//Z1,92-95阅读理解问题/庆丰;王启超//Z1,96-99探究性问题/钱云祥//Z1,99-102运动型问题/黄世民;林顺民//Z1,102-106应用性问题/张锋//Z1,106-108开放性问题/周建勋//Z1,108-110怎样快速解答中考选择题/张建明//Z1,111-114怎样快速解答中考填空题/倪俊//Z1,114-117数学中考解题的宏观驾驭/惠州人//Z1,118-128第Z2期重视数学经典的传播/蔡上鹤//Z2,1-4+16高中数学课程中的几何(二)(续) /王尚志等//Z2,5-6如何做好高中数学课程的第一模块验收评价? /王尚志;张思明//Z2,7-9如此创设情境为哪般?——关于“二分法”的教学情境/杨佩琼;王一杰//Z2,10-12从直观到抽象:数学知识的生成过程——《数学1》(北师大版)教材的思考与分析/罗新兵;陈德裕//Z2,13-16发展学生数据分析能力的要领/王林全//Z2,17-20高中数学命题的反思性策略/戴永;王光明//Z2,20-21本不该发生的课堂“意外”/吕增锋//Z2,22-23高中数学实验教学创设的几种途径/王小红//Z2,24-26+37目标设计步骤及其注意问题/白改平;褚海峰//Z2,27-29对两则教学案例的反思/褚红英//Z2,30-31几何角正射影的定性与定量研究/陈云烽//Z2,32-35导数判断数列单调性的误区/丁伟//Z2,36-37一个面积问题的多角度审视/尉贵生//Z2,38-39横看成岭侧成峰——选取不同的样本空间和抽样方式计算摸球模型的概率/鲍为民;徐沥泉//Z2,39-42三角函数解题中隐含条件的挖掘/余锦银//Z2,43-44+120探究:在细节中萌生/权大学;安振平//Z2,45-46高考数学模拟新题集锦第一部分传统内容一、集合与常用逻辑用语/陈小鹏;毛仕理//Z2,47-50高考数学模拟新题集锦第一部分传统内容二、函数与导数/刘大鸣等//Z2,50-58高考数学模拟新题集锦第一部分传统内容三、平面向量与三角/陈柏良;陈云平//Z2,58-62高考数学模拟新题集锦第一部分传统内容四、数列与不等式/安振平等//Z2,62-70高考数学模拟新题集锦第一部分传统内容五、立体几何/岳铁旺;岳建良//Z2,70-75高考数学模拟新题集锦第一部分传统内容六、解析几何/张留杰;楼可飞//Z2,75-83高考数学模拟新题集锦第一部分传统内容七、计数原理与复数/侯有岐;曹凤山//Z2,83-85高考数学模拟新题集锦第一部分传统内容八、概率与统计/金良//Z2,85-89高考数学模拟新题集锦第二部分新增内容九、算法初步/徐加华;黄毅文//Z2,89-92高考数学模拟新题集锦第二部分新增内容十、推理与证明/董裕华等//Z2,92-96高考数学模拟新题集锦第二部分新增内容十一、三视图/王欣国;洪光华//Z2,96-101高考数学模拟新题集锦第二部分新增内容十二、数学选修系列4/黄桂君;郭键//Z2,101-105+110高中数学竞赛中常用的思想方法体积法及其应用/党效文//Z2,106-110课例反思时时有教师发展步步高(续)——教学应是一种学术活动/罗增儒//Z2,111-116课标教材《数学3》中“算法初步”教学情况的调查研究/杨开山等//Z2,117-118近似解落在“夹逼”所得的区间外,能刻画“二分法“的“逐步逼近”思想吗? /董入兴//Z2,119-120 Z 数再探/杨先义//Z2,121K数的对偶数再探/杨志明//Z2,121蝴蝶定理逆定理的一个证明/王建荣;上官军胜//Z2,121两个几何等式/丁遵标//Z2,121-122平面解析几何的产生(二)——费马与解析几何/汪晓勤;柳笛//Z2,122-123积极促进国际数学教育的交流和发展——纪念国际数学教育委员会成立100周年/孙宏安//Z2,124-125平面解析几何/乔南;安文娟//Z2,126-127。
八年级数学暑假竞赛培训讲义
第一讲:如何做几何证明题【知识梳理】1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2、掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
【例题精讲】【专题一】证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
【例1】已知:如图所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。
求证:DE =DFFEDCBA【巩固】如图所示,已知∆ABC 为等边三角形,延长BC 到D ,延长BA 到E ,并且使AE =BD ,连结CE 、DE 。
求证:EC =ED【例2】已知:如图所示,AB =CD ,AD =BC ,AE =CF 。
求证:∠E =∠F【专题二】证明直线平行或垂直在两条直线的位置关系中,平行与垂直是两种特殊的位置。
八年级数学竞赛辅导讲义(2021年整理)
八年级数学竞赛辅导讲义(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学竞赛辅导讲义(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学竞赛辅导讲义(word版可编辑修改)的全部内容。
全国初中数学联赛一全国初中数学联赛简介中国数学会所举办的全国高中数学联赛、全国初中数学联赛,以及小学数学奥林匹克,都是群众性的数学课外活动,是大众化、普及型的数学竞赛,目前,每年有12万名学生参加。
竞赛简介奖项名称:全国初中数学联合竞赛创办时间:1984年主办单位:由各省、市、自治区联合举办,轮流做庄竞赛介绍:同时,各地都提出了举行“全国初中数学联赛”的要求。
1984年,中国数学会普及工作委员会商定,委托天津市数学会举办一次初中数学邀请赛,有14个省、市、自治区参加,当时条件较简陋,准备时间也较仓促,天津数学会在南开大学数学系和天津师范大学数学系的大力支持下,极其认真负责地把这次活动搞得很成功,为后来举办“全国初中数学联赛”摸索了很多经验。
当年11月,在宁波召开的中国数学会第三次普及工作会议时,一致通过了举办“全国初中数学联赛”的决定,并详细商定了一些具体办法,规定每年四月的第一个星期天举行“全国初中数学联赛”。
会上湖北省数学会、山西省数学会、黑龙江省数学会分别主动承担了1985年、1986年、1987年的“全国初中数学联赛"承办单位,从此,“全国初中数学联赛”也形成了制度。
“全国初中数学联赛”原来不分一试、二试.为了更好地贯彻“在普及的基础上不断提高”的方针,1989年7月,在济南召开的“数学竞赛命题研讨会”上,各地的代表商定,初中联赛也分两试进行,并对一、二试各种题型的数目,以及评分标准作出明确的规定,使初中联赛的试卷走向规范化.中国数学会所举办的全国高中数学联赛、全国初中数学联赛,以及小学数学奥林匹克,都是群众性的数学课外活动,是大众化、普及型的数学竞赛,目前,每年有12万名学生参加。
初二数学最新教案-八年级数学证明 精品
第六章 证明(一)§6.1 你能肯定吗教学目标1.通过观察、探索,猜测得到的结论不一定正确,让学生初步了解数学中推理的重要性.2.让学生初步了解,要判定一个数学结论正确与否,需要进行有根有据的推理. 教学重点判定一个结论正确与否需进行推理. 教学难点理解数学推理的重要性. 教学目标一、巧设现实情境,引入新课在现实生活中,我们常采用观察的方法来了解世界.在数学学习中,我们通过观察、度量、猜测来得到一些结论.那这样得到的结论都是正确的吗?如果不是,那么用什么方法才能说明它的正确性呢?二、讲授新课我们来动手画一画,然后归纳、总结如图,四边形ABCD 四边的中点分别为E 、F 、G 、H .度量四边形EFGH 的边和角,你会发现什么结论?如果改变四边形ABCD 的形状,你还能得到类似的结论吗?大家再来动手画一画、量一量.由此可得:任意四边形的四条边的中点所围成的四边形都是平行四边形.在八年级上册我们已经知道:连接三角形的两边中点的线段是三角形的中位线.由于E 、F 、G 、H 是四边形ABCD 各边的中点,所以可把这个四边形变为两个三角形.即:可以连接AC ,也可以连接BD .把四边形ABCD 变为△ABC 与△ADC 或△ABD 与△BD C.现在我们来连接AC .如图.在△ABC 中,EF 是△ABC 的中位线,根据“三角形的中位线平行于第三边,并且等于第三边的一半”可得:EF 平行于AC 且等于AC 的一半.同样,在△ADC 中,GH 是△ADC 的中位线,则GH 平行于AC 且等于AC 的一半.由“两直线都与第三条直线平行,则这两条直线互相平行”可知:EF ∥GH .又因为:EF =21AC ,GH =21AC ,所以得EF =GH .这样由平行四边形的判定:一组对边平行且相等的四边形是平行四边形.可以得到:四边形EFGH 是平行四边形.即:连接AC连接任意四边形四边的中点所组成的图形是平行四边形.注:本题连接BD与连接AC的推理过程一样.通过观察、猜测、度量得到的结论是否正确,需要用推理过程得证. 下面我们来做一做当n=0、1、2、3、4、5时,代数式n2-n+11的值是质数吗?你能否得到结论:对于所有自然数n,n2-n+11的值都是质数?当n=0时,n2-n+11=11.当n=1时,n2-n+11=11.当n=2时,n2-n+11=13.当n=3时,n2-n+11=17.当n=4时,n2-n+11=23.当n=5时,n2-n+11=31.由此可知:当n=0、1、2、3、4、5时,代数式n2-n+11的值都是质数.得到结论:对于所有自然数n,n2-n+11的值都是质数.假如用一根比地球赤道长1m的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一颗红枣吗?能放进一个拳头吗?与同伴进行交流.要判断一个数学结论是否正确,仅仅依靠经验、观察或实验是不够的,必须一步一步、有根有据地进行推理. 那大家来想一想、议一议(1)在数学学习中,你用到过推理吗?举例说明.(2)在日常生活中,你用到过推理吗?举例说明.下面我们来通过练习熟悉本节课的内容.三、课堂练习(一)课本随堂练习.1、2、3.(二)课本P188读一读:“费马的失误”.(三)看课本P186~187,然后小结.四、课时小结本节课主要研究了:要判断一个数学结论是否正确,需要有根有据地进行推理.五、作业见作业本§6.2.1 定义与命题(一)教学目标1.从具体实例中,探索出定义,并了解定义在现实生活中的重要性.2.从具体实例中,了解命题的概念,并会区分命题.3.通过从具体例子中提炼数学概念,使学生体会数学与实践的联系.教学重点命题的概念教学难点命题的概念的理解教学过程一、巧设现实情境,引入新课随着时代的发展,电脑逐渐走进我们的生活,上过网或懂电脑的同学都知道什么是“黑客”.下面我们来看一段对话(电脑演示)小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了.”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼.”……一人说:“那因特网肯定是一张很大的网.”另一人说:“估计可能是英国造的特殊的网.”……(学生听后,大笑)同学们为什么笑呢?旁边那两个人的概念不清.“黑客”“因特网”等都是电脑中的专用名词.……由此可知:人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.这节课我们就要研究:定义与命题二、讲授新课在日常生活中,为了交流方便,我们就要对名称和术语的含义加以描述,作出明确的规定,也就是给他们下定义(definition).如:“具有中华人民共和国国籍的人,叫做中华人民共和国的公民”是“中华人民共和国公民”的定义.大家还能举出一些例子吗?“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义.……同学们举出了这么多例子.说明定义就是对名称和术语的含义加以描述,作出明确的规定.如图,某地区境内有一条大河,大河的水流入许多小河中,图中A、B、C、D、E、F、G、H、I、J、K处均有一个化工厂,如果它们向河中排放污水,下游河流便会受到污染.如果B处工厂排放污水,那么__________处便会受到污染;如果C处受到污染,那么__________处便受到污染;如果E处受到污染,那么__________处便受到污染;……如果环保人员在h处测得水质受到污染,那么你认为哪个工厂排放了污水?你是怎么想的?与同伴交流.如果B处工厂排放污水,那么a、b、c、d处便会受到污染.如果B处工厂排放污水,那么e、f、g处也会受到污染的.如果C处受到污染,那么a、b、c处便受到污染.如果C 处受到污染,那么d 处也会受到污染的. 如果E 处受到污染,那么a 、b 处便会受到污染.[如果h 处受到污染,我认为是A 处的那个工厂或B 处的那个工厂排放了污水.因为A 处工厂的水向下游排放,B 处工厂的污水也向下游排放.……在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如: 熊猫没有翅膀. 对顶角相等. 大家能举出这样的例子吗? 两直线平行,内错角相等.无论n 为任意的自然数,式子n 2-n +11的值都是质数. 任意一个三角形都有一个直角.如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 全等三角形的对应角相等. ……大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB =a . 平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题. 一般情况下:疑问句不是命题.图形的作法不是命题. 三、课堂练习(一)课本随堂练习 1、2. 1.你能列举出一些命题吗? 答案:能.举例略.2.举出一些不是命题的语句. 答案:如:①画线段AB =3 cm. ②两条直线相交,有几个交点? ③等于同一个角的两个角相等吗? ④在射线OA 上,任取两点B 、C.等等. (二)看课本P 190~192,然后小结. 四、课时小结本节课我们通过具体实例,说明了定义在生活中的重要性.在具体实例中,了解了命题的概念. 命题:判断一件事情的句子. 五、作业 见作业本 六、活动与探究1.现有正方形纸若干:假设正方形纸面积为1,你会折满足下列条件的正方形吗?(1)折面积为21的正方形 (2)折面积为31的正方形(3)折面积为51的正方形(4)折面积为71的正方形(5)折面积为91的正方形[过程]让学生在折纸过程中,体会数学的快乐、灵活,从而培养他们的动手、动脑能力.[结果]解:(1)折面积为21的正方形 方法:如图①将正方形两次对折,得到各边中点E 、F 、G 、H . ②连HE 、EF 、FG 和GH . 则正方形EFGH 即为所求.图②、③的方法可折得面积为41、81的正方形. (2)折面积为31的正方形. 方法:如图④①将正方形对折,得折痕EF .②将BC 折至BG ,使G 在EF 上,得折痕BH ,则以CH 为边长的正方形即为所求. 证明:易知△GBC 为正三角形,∠HBC =30°.CH =BC tan30°=33,所以S 正方形=CH 2=31.(3)折面积为51的正方形. 方法:如图⑤①将正方形两次对折,得各边中点E 、F 、G 、H .②以AF 、HC 、ED 和BG 为折痕,交点为O 、P 、Q 、R . 则正方形OPQR 即为所求.证明:易证:AF =25)21(122=+.又△ABF ∽△AP B.所以ABAFAP AB =即1251=AP 则:AP =52OP =55512==AP 故: S 正方形=OP 2=51(4)折面积为71的正方形 方法:如图⑥①先参照(2)中折法,折出CE =33 ②取CE 中点F ,再折EG =EF .③取BC 中点M ,折出MN ⊥BG ,N 为折痕BG 与MN 的交点,则以BN 为边长的正方形即为所求.证明:∵EG =EF =FC =63 ∴CG =23,BG =27)23(122=+由△BNM ∽△BCG .得BGBCBM BN =. 即:27121=BN ∴BN =77 S 正方形=BN 2=71(5)折面积为91的正方形 方法:如图⑦.①将正方形对折,得折痕EF . ②以AC 、BE 为折痕,交点为P . ③过点P 折出平行于AD 的折痕MN . 则以AM 为边长的正方形即为所求. 证明:由△P AE ∽△PC B.得21===CE AE PC AP MB AM 所以AM =31S 正方形=AM 2=91§6.3 为什么它们平行教学目标1.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.2.理解和掌握平行线的判定公理及两个判定定理.3.掌握应用数学语言表示平行线的判定公理及定理,逐步掌握规范的推理论证格式.4.通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.教学重点平行线的判定定理、公理.教学难点推理过程的规范化表达.教学过程一、巧设现实情境,引入新课前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢?在同一平面内,不相交的两条直线就叫做平行线.两条直线都和第三条直线平行,则这两条直线互相平行.同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实.“在同一平面内,不相交的两条直线叫做平行线”是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨第三节:为什么它们平行.二、讲授新课看命题:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为下列形式:如图,已知,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补,求证:a ∥b.那如何证明这个题呢?我们来分析分析.要证明直线a与b平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:∠1与∠3是同位角,所以只需证明∠1=∠3,则a与b即平行.因为从图中可知∠2与∠3组成一个平角,即∠2+∠3=180°,所以:∠3=180°-∠2.又因为已知条件中有∠2与∠1互补,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代换可以知道:∠1=∠3.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“∵”读作“因为”,“∴”读作“所以”)证明:∵∠1与∠2互补(已知)∴∠1+∠2=180°(互补的定义)∵∠1+∠2=180°∴∠1=180°-∠2(等式的性质)∵∠3+∠2=180°(1平角=180°)∴∠3=180°-∠2(等式的性质)∵∠1=180°-∠2,∠3=180°-∠2∴∠1=∠3(等量代换)∵∠1=∠3∴a∥b(同位角相等,两直线平行)这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理.这一定理可简单地写成:同旁内角互补,两直线平行.注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)方括号内的“∵∠1+∠2=180°”等,就是上面刚刚得到的“∴∠1+∠2=180°”,在这种情况下,方括号内的这一步可以省略.(3)证明中的每一步推理都要有根据,不能“想当然”.这些根据可以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内.小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?我认为他的作法对.他的作法可用右图来表示:∠CFE=45°,∠BEF=45°.因为∠BEF与∠FEA 组成一个平角,所以∠FEA=180°-∠BEF=180°-45°=135°.而∠CFE与∠FEA是同旁内角.且这两个角的和为180°,因此可知:CD∥A B.从图中可知:∠CFE与∠FEB是内错角.因此可知:“内错角相等,两直线平行”是真命题.下面我们来用规范的语言书写这个真命题的证明过程.已知,如图,∠1和∠2是直线a、b被直线c截出的内错角,且∠1=∠2.求证:a∥b证明:∵∠1=∠2(已知)∠1+∠3=180°(1平角=180°)∴∠2+∠3=180°(等量代换)∴∠2与∠3互补(互补的定义)∴a∥b(同旁内角互补,两直线平行).这样我们就又得到了直线平行的另一个判定定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.这一定理可以简单说成:内错角相等,两直线平行.刚才我们是应用判定定理“同旁内角互补,两直线平行”来证明这一定理的.下面大家来想一想借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?已知,如图,直线a⊥c,b⊥c.求证:a∥b.证明:∵a⊥c,b⊥c(已知)∴∠1=90°∠2=90°(垂直的定义)∴∠1=∠2(等量代换)∴b∥a(同位角相等,两直线平行)由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论.同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.三、课堂练习(一)课本随堂练习1.蜂房的底部由三个全等的四边形围成,每个四边形的形状如图所示,其中∠α=109°28′,∠β=70°32′,试确定这三个四边形的形状,并说明你的理由.解:这三个四边形的形状是平行四边形.理由是:∵∠α=109°28′∠β=70°32′∴∠α+∠β=180°(等式的性质)∴AB∥CD,AD∥BC(同旁内角互补,两直线平行)∴四边形ABCD是平行四边形(平行四边形的定义)四、课时小结这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角.注意:1.证明语言的规范化.2.推理过程要有依据.3.“两条直线都和第三条直线平行,这两条直线互相平行”这个真命题以后证.五、作业课本P203习题6.4 1、2六、活动与探究1.你能用圆规和直尺作出两条平行线吗?能证明你的作法吗?[过程]通过这个活动,一来复习用尺规作图,二来熟悉掌握证明的步骤.[结果]如图所示.用圆规和直尺能作出两条平行线.因为在作图中,作∠β=∠α.而∠α与∠β是同位角.由“同位角相等,两直线平行”可知:a ∥b.还可以作内错角,即:作一个角等于已知角α,使所作的角与∠α是内错角即可.§6.4 如果两条直线平行教学目标1.经历探索平行线的性质定理的证明.培养学生的观察、分析和进行简单的逻辑推理能力.2.结合图形用符号语言来表示平行线的三条性质的条件和结论.并能总结归纳出证明的一般步骤.3.通过师生的共同活动,培养学生的逻辑思维能力,熟悉综合法证明的格式.进而激发学生学习的积极主动性.教学重点证明的步骤和格式.教学难点理解命题、分清其条件和结论.正确对照命题画出图形.写出已知、求证.教学过程一、巧设现实情境,引入新课上节课我们通过推理得证了平行线的判定定理,知道它们的条件是角的大小关系.其结论是两直线平行.如果我们把平行线的判定定理的条件和结论互换之后得到的命题是真命题吗?这节课我们就来研究“如果两条直线平行”.二、讲授新课在前一节课中,我们知道:“两条平行线被第三条直线所截,同位角相等”这个真命题是公理,这一公理可以简单说成:两直线平行,同位角相等.议一议:利用这个公理,你能证明哪些熟悉的结论?利用“两条直线平行,同位角相等”可以证明:两条直线平行,内错角相等.还可以证明:两条直线平行,同旁内角互补.(1)根据“两条平行线被第三条直线所截,内错角相等”.你能作出相关的图形吗?(2)你能根据所作的图形写出已知、求证吗?(3)你能说说证明的思路吗?根据上述命题的文字叙述,可以作出相关的图形.如图因为“两条平行线被第三条直线所截,内错角相等”这个命题的条件是:两条平行线被第三条直线所截.它的结论是:内错角相等.所以我根据所作的图形.如图,把这个文字命题改写为符号语言.即:已知,如图,直线a∥b,∠1和∠2是直线a、b被直线c截出的内错角.求证:∠1=∠2..哪位同学上黑板来书写呢?(学生举手,请一位同学来)证明:∵a∥b(已知)∴∠3=∠2(两直线平行,同位角相等)∵∠1=∠3(对顶角相等)∴∠1=∠2(等量代换)同学们写得很好.通过证明证实了这个命题是真命题,我们可以把它称为定理.即平行线的性质定理.这样就可把它作为今后证明的依据.注意:(1)在课本中曾指出:随堂练习和习题中用黑体字给出的结论也可以作为今后证明的依据.所以像“对顶角相等”就可以直接应用.(2)这个性质定理的条件是:直线平行.结论是:角的关系.在应用时一定要注意.接下来我们来做一做由判定公理可以证明的另一命题两条平行线被第三条直线所截,同旁内角互补.来请一位同学上黑板来给大家板演,其他同学写在练习本上.已知,如图,直线a∥b,∠1和∠2是直线a、b被直线c截出的同旁内角.求证:∠1+∠2=180°.证明:∵a∥b(已知)∴∠3=∠2(两直线平行,同位角相等)∵∠1+∠3=180°(1平角=180°)∴∠1+∠2=180°(等量代换)直线平行的性质定理.(证明如下)证明:∵a∥b(已知)∴∠3=∠2(两直线平行,内错角相等)∵∠1+∠3=180°(1平角=180°)∴∠1+∠2=180°(等量代换)到现在为止,我们通过推理得证了两个判定定理和两个性质定理,那么你能说说证明的一般步骤吗?大家分组讨论、归纳.证明的一般步骤:第一步:根据题意,画出图形.先根据命题的条件即已知事项,画出图形,再把命题的结论即求证的内容在图上标出符号,还要根据证明的需要在图上标出必要的字母或符号,以便于叙述或推理过程的表达.第二步:根据条件、结论,结合图形,写出已知、求证.把命题的条件化为几何符号的语言写在已知中,命题的结论转化为几何符号的语言写在求证中.第三步,经过分析,找出由已知推出求证的途径,写出证明过程.一般情况下,分析的过程不要求写出来,有些题目中,已经画出了图形,写好了已知、求证,这时只要写出“证明”一项就可以了. 三、课堂练习(一)补充练习1.证明邻补角的平分线互相垂直.已知:如图,∠AOB 、∠BOC 互为邻补角,OE 平分∠AOB ,OF 平分∠BO C. 求证:OE ⊥OF .证明:∵OE 平分∠AO B. OF 平分∠BOC (已知) ∴∠EOB =21∠AOB ∠BOF =21∠BOC (角平分线定义) ∵∠AOB +∠BOC =180°(1平角=180°) ∴∠EOB +∠BOF =21(∠AOB +∠BOC )=90°(等式的性质) 即∠EOF =90° ∴OE ⊥OF (垂直的定义)(二)看课本P 204~205,然后小结 四、课时小结这节课我们主要研究了平行线的性质定理的证明,总结归纳了证明的一般步骤. 1.平行线的性质:公理:两直线平行,同位角相等 定理:两直线平行,内错角相等 定理:两直线平行,同旁内角互补 2.证明的一般步骤(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程. 五、作业 习题6.5 1、2、3 六、活动与探究1.已知,如图,AB ∥CD ,∠B =∠D ,求证:AD ∥B C.[分析]让学生在证明这个题时,可从多方面考虑,从而拓展了他们的思维,要证:AD ∥BC ,可根据平行线的五种判定方法,结合图形,可证同旁内角互补,内错角相等,同位角相等. 证法一:∵AB ∥DC (已知)∴∠B +∠C =180°(两直线平行,同旁内角互补)∵∠B =∠D (已知)∴∠D +∠C =180°(等量代换)∴AD ∥BC (同旁内角互补,两直线平行)证法二:如图,延长BA(构造一组同位角)∵AB∥CD(已知)∴∠1=∠D(两直线平行,内错角相等)∵∠B=∠D(已知)∴∠1=∠B(等量代换)∴AD∥BC(同位角相等,两直线平行)证法三:如图,连接BD(构造一组内错角)∵AB∥CD(已知)∴∠1=∠4(两直线平行,内错角相等)∵∠B=∠D(已知)∴∠B-∠1=∠D-∠4(等式的性质)∴∠2=∠3∴AD∥BC(内错角相等,两直线平行)已知,如图,直线a∥b,∠1和∠2是直线a、b被直线c截出的内错角.求证:∠1=∠2证明:∵a∥b()∴∠3=∠2()∵∠1=∠3()∴∠1=∠2()2.定理:两直线平行,同旁内角互补.已知,如图,直线a∥b,∠1和∠2是直线a、b被直线c截出的同旁内角.求证:∠1+∠2=180°§6.5 三角形内角和定理的证明教学目标(一)知识认知要求三角形的内角和定理的证明.(二)能力训练要求掌握三角形内角和定理,并初步学会利用辅助线证题,同时培养学生观察、猜想和论证能力.(三)情感与价值观要求通过新颖、有趣的实际问题,来激发学生的求知欲.教学重点三角形内角和定理的证明.教学难点三角形内角和定理的证明方法.教学过程一、巧设现实情境,引入新课大家来看一机器零件(投影)为什么铣刀偏转35°角,就能得到55°的燕尾槽底角呢?二、讲授新课为了回答这个问题,先观察如下的实验(电脑实验)用橡皮筋构成△ABC,其中顶点B、C为定点,A为动点,放松橡皮筋后,点A自动收缩于BC 上,请同学们考察点A变化时所形成的一系列的三角形:△A1BC、△A2BC、△A3BC……其内角会产生怎样的变化呢?当点A离BC越来越近时,∠A越来越接近180°,而其他两角越来越接近于0°.三角形各内角的大小在变化过程中是相互影响的.在三角形中,最大的内角有没有等于或大于180°的?三角形的最大内角不会大于或等于180°.看实验:当点A远离BC时,∠A越来越趋近于0°,而AB与AC逐渐趋向平行,这时,∠B、∠C逐渐接近为互补的同旁内角.即∠B+∠C→180°.猜一猜:三角形的内角和可能是多少?这一猜测是否准确呢?我们曾做过如下实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果.(1)(2)(3)(4)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起.由实验可知:我们猜对了!三角形的内角之和正好为一个平角.但观察与实验得到的结论,并不一定正确、可靠,这样就需要通过数学证明.那么怎样证明呢?请同学们再来看实验.这里有两个全等的三角形,我把它们重叠固定在黑板上,然后把三角形ABC的上层∠B剥下来,沿BC的方向平移到∠ECD处固定,再剥下上层的∠A,把它倒置于∠C与∠ECD之间的空隙∠ACE的上方.这时,∠A与∠ACE能重合吗?这样我们就可以证明了:三角形的内角和等于180°.接下来同学们来证明:三角形的内角和等于180°这个真命题.已知,如图,△AB C.求证:∠A+∠B+∠C=180°证明:作BC的延长线CD,过点C作射线CE∥AB.则∠ACE=∠A(两直线平行,内错角相等)∠ECD=∠B(两直线平行,同位角相等)∵∠ACB+∠ACE+∠ECD=180°∴∠A+∠B+∠ACB=180°(等量代换)即:∠A+∠B+∠C=180°.通过推理的过程,得证了命题:三角形的内角和等于180°是真命题,这时称它为定理.即:三角形的内角和定理.在证明三角形内角和定理时,小明的想法是把三个角“凑”到A处,他过点A作直线PQ∥BC.(如图)他的想法可行吗?你有没有其他的证法.小明的想法可行.因为:∵PQ∥BC(已作)∴∠P AB=∠B(两直线平行,内错角相等)∠QAC=∠C(两直线平行,内错角相等)∵∠P AB+∠BAC+∠QAC=180°∴∠B+∠BAC+∠C=180°(等量代换)也可以这样作辅助线.即:作CA的延长线AD,过点A作∠DAE=∠C也可以在三角形的一边上任取一点,然后过这一点分别作另外两边的平行线,这样也可证出定理.即:如图,在BC上任取一点D,过点D分别作DE∥AB交AC于E,DF∥AC交AB于F.∴四边形AFDE是平行四边形(平行四边形的定义)∠BDF=∠C(两直线平行,同位角相等)∠EDC=∠B(两直线平行,同位角相等)∴∠EDF=∠A(平行四边形的对角相等)∵∠BDF+∠EDF+∠EDC=180°(1平角=180°)。
三角恒等式的证明教案
三角恒等式的证明教案一、引言三角恒等式是解决三角函数方程和化简三角函数表达式中非常重要的工具。
本教案将介绍如何证明三角恒等式,以及在教学中如何教授学生正确的证明方法。
二、证明方法1. 直接证明法直接证明法是最常用的证明方法之一。
该方法的基本思路是在等式的两边逐步推导,直至两边相等。
对于三角恒等式的证明,可以利用三角函数的性质、平方公式、和角公式等进行逐步推导。
2. 间接证明法间接证明法常用于一些复杂的三角恒等式的证明,通过假设等式不成立,导出矛盾结果来证明等式是成立的。
这种方法需要一定的逻辑推理能力和数学技巧,适用于高中或大学阶段的学生教学。
3. 数学归纳法数学归纳法是一种特殊的证明方法,适用于某个命题在整数集上成立的情况。
对于涉及到三角恒等式的证明,可以通过数学归纳法来证明在特定条件下等式成立。
三、教学步骤1. 引入三角恒等式首先,教师可以通过示意图或实例引入三角恒等式的概念,解释其在三角函数方程和化简中的重要性。
同时,提醒学生在证明过程中要注意符号和步骤的准确性。
2. 例题演示选择一些简单的三角恒等式例题,通过直接证明法进行演示。
教师可以详细解答每个步骤的推导过程,并注重引导学生思考每一步的合理性和证明思路的连贯性。
3. 学生练习让学生进行一定数量的练习,巩固直接证明法的应用。
学生可以尝试自己推导一些已知的三角恒等式,或者解答一些简单的练习题,培养他们的证明能力和逻辑思维。
4. 引入间接证明法在学生掌握直接证明法后,引入间接证明法的概念。
结合一些较为复杂的三角恒等式,解释如何通过假设等式不成立来证明等式的正确性。
同时,提醒学生在间接证明过程中要注意逻辑推理和矛盾结果的呈现。
5. 举例演示选择一些具有挑战性的三角恒等式例题,通过间接证明法进行演示。
教师可以详细解答每个步骤的推导过程,引导学生通过假设不成立导出矛盾结果。
6. 学生练习让学生进行一定数量的练习,巩固间接证明法的应用。
学生可以尝试自己进行假设和推导,寻找矛盾结果,培养他们的逻辑推理能力和创造性思维。
初中数学竞赛——恒等式的证明
初中数学竞赛——恒等式的证明恒等式的证明是初中数学竞赛中常见的题型,也是考察学生逻辑思维能力和数学推理能力的重要手段。
本文将从基本概念、常见方法和示例三个方面进行阐述,帮助读者更好地理解和掌握恒等式的证明方法。
一、基本概念1.恒等式在初中数学中,我们通常所说的恒等式指的是在等式两边都有定义的条件下,等号两边的值总是相等的数学表达式。
例如:2x+5=3x-1这是一个恒等式,因为当x取任意实数时,等号两边的值总是相等的。
2.证明证明恒等式的过程,是通过逻辑推理和数学推导来证实等号两边的表达式总是相等的过程。
证明的目的是要通过逻辑推理,严密地推导出等号两边的式子是等价的。
常用的证明方法包括等价变形法、代入法、归纳法等。
二、常见方法1.等价变形法等价变形法是最常见且使用较多的证明方法,其基本思想是通过等价变形将原始的等式转化为一个易证的等式。
例如:证明:1+2+3+...+n=(n*(n+1))/2(其中n为正整数)等式左边是一个等差数列求和,可以利用求和公式将其转化为右边的表达式。
我们需要做的是将等式转化为一个易证的等式。
2.代入法代入法是通过代入数值来验证恒等式的正确性。
通常,我们可以选择一组特定的数值进行验证,如果在这组数值下恒等式成立,那么我们可以认为恒等式是正确的。
例如:证明:1^2+2^2+3^2+...+n^2=(n*(n+1)*(2n+1))/6我们可以代入一组具体的数值,如n=1,n=2等,通过计算验证等式的正确性。
3.归纳法归纳法是一种常用于证明数学命题的方法,它主要包括两个步骤:基础步骤和归纳步骤。
基础步骤是验证命题在一些特定的情况下是否成立,归纳步骤是假设命题在一些情况下成立,并推出下一个情况下命题也成立。
例如:证明:1+2+3+...+n=n*(n+1)/2基础步骤:当n=1时,等式左边为1,右边为1,两边相等。
归纳步骤:假设当n=k时等式成立,即1+2+3+...+k=k*(k+1)/2、我们要证明当n=k+1时等式也成立。
八年级数学上册第五章几何证明初步教案全
第五单元几何证明初步教学计划科目:八年级数学班级:执教人:一、单元教材分析本章是在学习了角、平行线、平面图形的认识,全等形三角形以及轴对称和轴对称图形等内容的基础上安排的。
在这之前,学生已经积累了一定的观察、实验、归纳、类比、猜测、说理和反思等数学活动经验,探索出了一些基本的平面图形的概念、性质和判定方法,具有了一定的识图、作图、表达的技能及合情推理、演绎推理的能力。
因此,学习命题和证明,体会证明的必要性,理解证明的基本过程和掌握证明基本格式已势在必然。
本章的主要知识有:定义与命题的概念、命题的题设和结论、“如果……,那么……”形式的命题、真命题与假命题、为什么要证明、什么是几何证明、证明平行线的性质定理与判定定理、证明三角形内角和定理、几何证明举例中证明的基本步骤、证明的方法和书写格式、三角形全等的条件、反证法的概念及证明过程。
二、单元教学目标1、了解定义、命题、定理、推论的意义,会区分命题的条件和结论,了解原命题及其逆命题的概念,识别两个互逆的命题,知道原命题成立,逆命题不一定成立。
2、知道证明的意义和证明的必要性,知道证明要合乎逻辑,知道证明的过程可以有不同的表达形式,学会综合法证明的格式。
3、了解反例的作用,知道利用反例可以判断一个命题是错误的。
体会反证法的含义。
4、掌握《标准》中列出的八条基本事实。
5、证明定理对顶角相等,同角(等角)的余角相等,同角(等角)的补角相等,6、证明平行线的判定定理。
证明平行线的性质定理。
7、证明三角形的内角和定理,掌握它的推论。
8、证明AAS定理:两角及其中一组等角的对边分别相等的两个三角形全等。
9、证明角平分线的性质定理及其逆定理。
10、证明线段垂直平分线的性质定理及其逆定理。
11、证明等腰三角形的性质定理及判定定理。
证明等边三角形的性质定理及判定定理。
12、探索并掌握直角三角形的性质定理、判定定理及判定直角三角形全等的“HL”定理。
13、会利用基本作图,已知一直角边和斜边作直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国初中数学竞赛辅导(八年级)教学案全集
第五讲恒等式的证明
代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.
两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.
把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.
证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.
1.由繁到简和相向趋进
恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).
例1 已知x+y+z=xyz,证明:
x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.
分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.
证因为x+y+z=xyz,所以
左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)
=(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2
=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)
=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)
=xyz+xyz+xyz+xyz
=4xyz=右边.
说明本例的证明思路就是“由繁到简”.
例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且
证令1989x2=1991y2=1993z2=k(k>0),则
又因为
所以
所以
说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.
2.比较法
a=b(比商法).这也是证明恒等式的重要思路之一.
例3 求证:
分析用比差法证明左-右=0.本例中,
这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.
证因为
所以
所以
说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.
全
不为零.证明:
(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).
同理
所以
所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).
说明本例采用的是比商法.
3.分析法与综合法
根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.
证要证 a2+b2+c2=(a+b-c)2,只要证
a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,
只要证 ab=ac+bc,
只要证 c(a+b)=ab,
只要证
这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.
说明本题采用的方法是典型的分析法.
例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.
证由已知可得
a4+b4+c4+d4-4abcd=0,
(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,
所以
(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.
因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以
a2-b2=c2-d2=ab-cd=0,
所以 (a+b)(a-b)=(c+d)(c-d)=0.
又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以
a=b,c=d.
所以
ab-cd=a2-c2=(a+c)(a-c)=0,
所以a=c.故a=b=c=d成立.
说明本题采用的方法是综合法.
4.其他证明方法与技巧
求证:8a+9b+5c=0.
a+b=k(a-b),b+c=2k(b-c),
(c+a)=3k(c-a).
所以
6(a+b)=6k(a-b),
3(b+c)=6k(b-c),
2(c+a)=6k(c-a).以上三式相加,得
6(a+b)+3(b+c)+2(c+a)
=6k(a-b+b-c+c-a),
即 8a+9b+5c=0.
说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.
例8 已知a+b+c=0,求证
2(a4+b4+c4)=(a2+b2+c2)2.
分析与证明用比差法,注意利用a+b+c=0的条件.
左-右=2(a4+b4+c4)-(a2+b2+c2)2
=a4+b4+c4-2a2b2-2b2c2-2c2a2
=(a2-b2-c2)2-4b2c2
=(a2-b2-c2+2bc)(a2-b2-c2-2bc)
=[a2-(b-c)2][a2-(b+c)2]
=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.
说明本题证明过程中主要是进行因式分解.
分析本题的两个已知条件中,包含字母a,x,y和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.
证由已知
说明本题利用的是“消元”法,它是证明条件等式的常用方法.
例10 证明:
(y+z-2x)3+(z+x-2y)3+(x+y-2z)3
=3(y+z-2x)(z+x-2y)(x+y-2z).
分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令
y+z-2x=a,①
z+x-2y=b,②
x+y-2z=c,③
则要证的等式变为
a3+b3+c3=3abc.
联想到乘法公式:
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,
所以 a3+b3+c3-3abc=0,
所以
(y+z-2x)3+(z+x-2y)3+(x+y-2z)3
=3(y+z-2x)(z+x-2y)(x+y-2z).
说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且
求证:x2y2z2=1.
分析本题x,y,z具有轮换对称的特点,我们不妨先看二元的
所以x2y2=1.三元与二元的结构类似.
证由已知有
①×②×③得x2y2z2=1.
说明这种欲进先退的解题策略经常用于探索解决问题的思路中.
总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.
练习五
1.已知(c-a)2-4(a-b)(b-c)=0,求证:2b=a+c.
2.证明:
(x+y+z)3xyz-(yz+zx+xy)3
=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3).
3.求证:
5.证明:
6.已知x2-yz=y2-xz=z2-xy,求证:
x=y=z或x+y+z=0.
7.已知an-bm≠0,a≠0,ax2+bx+c=0,mx2+nx+p=0,求证:(cm-ap)2=(bp-cn)(an-bm).。