湖南省长沙市中考数学模拟试卷(一)(含解析)
2023年湖南省长沙市重点中学联考中考数学一模试卷(含解析)
2023年湖南省长沙市重点中学联考中考数学一模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 计算3×(−2)的结果等于( )A. 1B. −1C. −6D. 62. 下列运算一定正确的是( )A. 2a3⋅3a2=6a6B. (a3)2=a5C. 2a2+3a2=5a4D. a4⋅a2=a63.如图是由4个相同的小正方体组成的几何体,它的俯视图是( )A.B.C.D.4. 一个盒子里装有仅颜色不同的10张红色和若干张蓝色卡片,随机从盒子里摸出1张卡片记下颜色后再放回,经过多次的重复试验,发现摸到蓝色卡片的频率稳定在0.8附近,则估计盒子中蓝色卡片有( )A. 50张B. 40张C. 36张D. 30张5. 在平面直角坐标系中,点A(2,3)关于x轴对称的点的坐标是( )A. (−2,−3)B. (2,−3)C. (−2,3)D. (−3,−2)6. 菲尔兹奖是数学领域的一项国际大奖,被视为数学界的诺贝尔奖,其规定获奖数学家年龄不得超过40岁.截止目前,菲尔兹奖得主中最年轻的8位数学家获奖时年龄分别为:29,27,31,31,31,29,29,31,则该组由年龄组成的数据的众数和中位数是( )A. 29,31B. 29,29C. 31,30D. 31,317.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中《均输》卷记载了一道有趣的数学问题:“今有凫(注释:野鸭)起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”译文:“野鸭从南海起飞,7天飞到北海;大雁从北海起飞,9天飞到南海.现野鸭与大雁分别从南海和北海同时起飞,问经过多少天相遇.”设野鸭与大雁经过x天相遇,根据题意,下面所列方程正确的是( )A. x7+x9=1 B. x7−x9=1 C. (7+9)x=1 D. (9−7)x=18. 图1是一地铁站入口的双翼闸机,双翼展开时示意图如图2所示,它是一个轴对称图形,A C=40cm,则双翼边缘端点C与D之间的距离为( )A. (60−40cosα)cmB. (60−40sinα)cmC. (60−80cosα)cmD. (60−80sinα)cm9.如图,点A,B,C均在⊙O上,若∠A=48°,∠C=15°,则∠B=( )A. 48°B. 78°C. 63°D. 49°10. 若三条长度分别为a,b,c的线段能构成三角形,我们就把(a,b,c)称为三角数组,已知(p ,q,r)是三角数组,则下列说法正确的是( )①(p,q,r)一定是三角数组;②(p,q,r)不一定是三角数组;③(p2,q2,r2)一定是三角数组;④(p2,q2,r2)不一定是三角数组;A. ①③B. ①④C. ②③D. ②④二、填空题(本大题共6小题,共18.0分)11. 分解因式:3x2+6xy+3y2=______.12. 计算:2b+aa +a−2ba=______ .13. “碧玉妆成一树高,万条垂下绿丝绦”.每到春天,人们流连于柳绿桃红之间的同时也被漫天飞舞的柳絮所烦扰.据测定,柳絮纤维的直径约为0.0000105m,该数值用科学记数法表示为______ .14. 若m是方程x2+x−1=0的一个根,则代数式2023−m2−m的值为______ .15.如图,用一个半径为12cm的定滑轮拉动重物上升,滑轮旋转了150°,假设绳索粗细不计,且与轮滑之间没有滑动,则重物上升的高度为______ cm.(结果保留π)16. 如图,平行四边形ABCD中,在AD上截取AF=AB,分别以点B、F为圆心,大于12BF的长为半径画弧,两弧交于点P,连接AP交BC于E,若AB=5,BF=6,则AE的长为______ .三、解答题(本大题共9小题,共72.0分。
2024年湖南省长沙市雅礼集团中考模拟数学预测卷(一)
2024年湖南省长沙市雅礼集团中考模拟数学预测卷(一)一、单选题1.4的算术平方根是( )A .2±B .16±C .2D .2-2.下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅= 3.如图所示的几何体是由一个正方体和一个圆柱组成的,它的左视图是( )A .B .C .D .4.方程211x x =+的解为( ) A .2x =- B .2x = C .4x =- D .4x =5.下列有关四边形的命题正确的是( )A .两组邻边分别相等的四边形是菱形B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .正方形的对角线相等且互相平分6.甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x (单位:环)及方差2S (单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择() A.甲B.乙C.丙D.丁7.如图,将矩形ABCD对折,使边AB与DC,BC与AD分别重合,展开后得到四边形EFGH.若2AB=,4BC=,则四边形EFGH的面积为()A.2 B.4 C.5 D.68.2023年6月4日,我省“神十五”航天员张陆和他的两位战友安全回到地球家园,“神十六”的三位航天员已在中国空间站开始值守,空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱,现在要从这三名航天员中选2人各进入一个实验舱开展科学实验,假设“神十六”甲、乙、丙三名航天员从核心舱进入问天实验舱和梦天实验舱开展实验的机会均等,则甲、乙两人同时被选中的概率为()A.12B.13C.14D.159.汉代初期的《淮南万毕术》是中国古代有关科技的重要文献,书中记载了我国古代学者在科技领域做过的一些探索及成就.如图1中记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,在如图2所示的井口放置一面平面镜可改变光路,当太阳光线AB与地面CD 所成夹角50ABC ∠=︒时,要使太阳光线经反射后刚好垂直于地面射入深井底部,则需要调整平面镜EF 与地面的夹角EBC ∠=( )A .70︒B .75︒C .80︒D .85︒10.观察下边的数表(横排为行,竖排为列),按数表中的规律,分数242024若排在第a 行b 列,则a b -的值为( )A .2025B .2024C .2023D .2022二、填空题11.因式分解:22ax ax a -+=.12x 应满足的条件是.13.如图,BD 是等边ABC V 的边AC 上的高,以点D 为圆心,DB 长为半径作弧交BC 的延长于点E ,则DEC ∠=.14.据长沙晚报消息:2023年一季度长沙全市实现地区生产总值3801.8亿元,同比增长4.5%.数据“3801.8亿”用科学记数法表示为.15.湖南是全国13个粮食主产省之一,水稻播种面积、总产量均居全国第一.2024年3月19日,习近平总书记来到常德市鼎城区谢家铺镇港中坪村,走进当地粮食生产万亩综合示范片区,察看秧苗培育和春耕备耕进展.如图为某农户家的圆锥形粮仓示意图,已知其底面周长为3π米,高度为3.6米,则此粮仓的侧面积为2m .(结果保留π)16.如图,点A ,B 分别在函数()0a y a x =>图像的两支上(A 在第一象限),连结AB 交x 轴于点C .点D ,E 在函数()0,0b y b x x=<<图像上,AE x P 轴,BD y ∥轴,连结DE ,BE .若2A C B C =,ABE V 的面积为12,四边形ABDE 的面积为15,则a b -的值为.三、解答题17.计算: 1011cos30|22-⎛⎫-⋅︒+ ⎪⎝⎭.18.先化简后求值:22222244a b a b a b a b a b a ab b +---÷+--+.其中2 1a b =. 19.如图1,某人的一器官后面A 处长了一个新生物,现需检测到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离.方案如下:请你根据上表中的测量数据,计算新生物A处到皮肤的距离.(结果精确到0.1cm)(参考数据:sin350.57︒≈,cos350.82︒≈,tan350.70︒≈,sin220.37︒≈,cos220.93︒≈,tan220.40︒≈)20.宁波象山作为杭州亚运会分赛区,积极推进各项准备工作.某校开展了亚运知识的宣传教育活动,为了解这次活动的效果,从全校1200名学生中随机抽取部分学生进行知识测试(测试满分为100分,得分x均为不小于60的整数),并将测试成绩分为四个等第;合格(6070x≤<),一般(7080x≤<),良好(8090x≤<),优秀(90100x≤≤),制作了如下统计图(部分信息未给出)由图中给出的信息解答下列问题:(1)求测试成绩为一般的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校测试成绩为良好和优秀的学生共有多少人?21.已知图中ABC V 和BDE V 都是等边三角形,点C 可沿AD 边翻折至BD 边上的点F .(1)求证:AE CD =;(2)试用等式写出线段AD ,BD ,DF 三者之间的数量关系,并说明理由;22.某校与当地国防大学联合开展红色之旅研学活动,如地图1,上午7:00,国防大学官兵乘坐军车从营地出发,同时学校师生乘坐大巴从学校出发,沿公路到红军抗战纪念基地进行研学.上午8:00,军车在离营地60km 的地方追上大巴并继续前行,到达仓库后,国防大学官兵下车领取研学物资,然后乘坐军车继续按原速前行,最后和师生同时到达基地,图2为军车和大巴离营地的路程()km s 与所用时间()h t 的函数关系.(1)求国防大学官兵在仓库领取物资所用的时间.(2)求大巴离营地的路程s 与所用时间t 的函数表达式及a 的值.(3)请直接写出军车领先大巴4km 时对应的大巴离营地的路程.23.如图所示,O e 外接于锐角ABC V ,D 为边BC 的中点,连接AD 并延长交O e 于点E ,过C 作AC 的垂线交AE 于点F ,点G 为AD 上一点,已知BC 平分EBG ∠且BCG AFC ∠=∠.(1)试求BGC ∠的度数.(2)①证明:AF BC =.②若AG DF =,求tan GBC ∠的值.24.定义:对于函数图像上任意一点(1x ,1y ),当1x 满足1m x n ≤≤(m 、n 为正实数)时,函数图像上都存在唯一的点(2x ,2y ),其中2m x n ≤≤,使得124y y ⋅=成立,则称该函数在m x n ≤≤时为“依赖函数”.(1)判断函数4y x=在34x ≤≤时是否为“依赖函数”,并说明理由; (2)若函数2y kx =+(0k ≠)在15x ≤≤时是“依赖函数”,求k 的值;(3)已知函数()2y x a =-(3a ≥)在34x ≤≤时是“依赖函数”,且在34x ≤≤时不等式()()2225x a t s t x -≥-+-+对于任意实数t 都成立,求实数s 的取值范围.25.定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形ABCD 中,,90AD BC A ∠=︒∥,对角线BD 平分ADC ∠.求证:四边形ABCD 为邻等四边形.(2)如图2,在6×5的方格纸中,A ,B ,C 三点均在格点上,若四边形ABCD 是邻等四边形,请画出所有符合条件的格点D .(3)如图3,四边形ABCD 是邻等四边形,90DAB ABC ∠=∠=︒,BCD ∠为邻等角,连接AC ,过B 作BE AC ∥交DA 的延长线于点E .若8,10AC DE ==,求四边形EBCD 的周长.。
初中数学湖南省长沙市中考模拟数学考试题(含解析)
xx学校xx学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:﹣2的相反数是()A.﹣2 B.﹣ C.2 D.试题2:据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A.0.102×105 B.10.2×103 C.1.02×104 D.1.02×103试题3:下列计算正确的是()A.a2+a3=a5 B.3 C.(x2)3=x5 D.m5÷m3=m2试题4:下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm试题5:下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.试题6:不等式组的解集在数轴上表示正确的是()A. B. C. D.试题7:将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A. B. C. D.试题8:下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件试题9:估计+1的值是()A.在2和3之间 B.在3和4之间 C.在4和5之间 D.在5和6之间试题10:小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min试题11:我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米 B.15平方千米 C.75平方千米 D.750平方千米试题12:若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()A.有且只有1个 B.有且只有2个 C.有且只有3个 D.有无穷多个试题13:化简:=试题14:某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为度.试题15:在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是试题16:掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是试题17:已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为试题18:如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB= 度.试题19:计算:(﹣1)2018﹣+(π﹣3)0+4cos45°试题20:先化简,再求值:(a+b)2+b(a﹣b)﹣4ab,其中a=2,b=﹣.试题21:)为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分)请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?试题22:为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈141,≈1.73)试题23:随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?试题24:如图,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点E,BC=8,AD=3.(1)求CE的长;(2)求证:△ABC为等腰三角形.(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.试题25:如图,在平面直角坐标系xOy中,函数y=(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上的一个动点,过点M分别作x轴和y轴的垂线,垂足分别为A,B.(1)求∠OCD的度数;(2)当m=3,1<x<3时,存在点M使得△OPM∽△OCP,求此时点M的坐标;(3)当m=5时,矩形OAMB与△OPQ的重叠部分的面积能否等于4.1?请说明你的理由.试题26:我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.试题1答案:C【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2的相反数是2,故选:C.试题2答案:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:10200=1.02×104,故选:C.试题3答案:D【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、3﹣2=,故此选项错误;C、(x2)3=x6,故此选项错误;D、m5÷m3=m2,正确.故选:D.试题4答案:B分析】结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.试题5答案:A【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.试题6答案:C分析】先求出各不等式的解集,再求出其公共解集即可.【解答】解:解不等式x+2>0,得:x>﹣2,解不等式2x﹣4≤0,得:x≤2,则不等式组的解集为﹣2<x≤2,将解集表示在数轴上如下:故选:C.试题7答案:D【分析】根据面动成体以及圆台的特点进行逐一分析,能求出结果.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.试题8答案:C分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【解答】解:A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选:C.试题9答案:C【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵32=9,42=16,∴,∴+1在4到5之间.故选:C.试题10答案:B【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.试题11答案:A【分析】直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.【解答】解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:×5×500×12×500=7500000(平方米)=7.5(平方千米).故选:A.试题12答案:B【分析】根据题意可以得到相应的不等式,然后根据对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),即可求得点P的坐标,从而可以解答本题.【解答】解:∵对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),∴x02﹣16≠a(x0﹣3)2+a(x0﹣3)﹣2a∴(x0﹣4)(x0+4)≠a(x0﹣1)(x0﹣4)∴(x0+4)≠a(x0﹣1)∴x0=﹣4或x0=1,∴点P的坐标为(﹣7,0)或(﹣2,﹣15)故选:B.试题13答案:1 .【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减,分母不变,把分子相加减计算即可.【解答】解:原式==1.故答案为:1.试题14答案:90分析】根据圆心角=360°×百分比计算即可;【解答】解:“世界之窗”对应扇形的圆心角=360°×(1﹣10%﹣30%﹣20%﹣15%)=90°,故答案为90.试题15答案:(1,1).【分析】直接利用平移的性质分别得出平移后点的坐标得出答案.【解答】解:∵将点A′(﹣2,3)向右平移3个单位长度,∴得到(1,3),∵再向下平移2个单位长度,∴平移后对应的点A′的坐标是:(1,1).故答案为:(1,1).试题16答案:.【分析】先统计出偶数点的个数,再根据概率公式解答.【解答】解:正方体骰子共六个面,点数为1,2,3,4,5,6,偶数为2,4,6,故点数为偶数的概率为=,故答案为:.试题17答案:2 .【分析】设方程的另一个根为m,根据两根之和等于﹣,即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=2.故答案为:2.试题18答案:50【分析】由圆周角定理易求∠BOC的度数,再根据切线的性质定理可得∠OBC=90°,进而可求出求出∠OCB的度°°【解答】解:∵∠A=20°,∴∠BOC=40°,∵BC是⊙O的切线,B为切点,∴∠OBC=90°,∴∠OCB=90°﹣40°=50°,故答案为:50.试题19答案:解:原式=1﹣2+1+4×=1﹣2+1+2=2.试题20答案:解:原式=a2+2ab+b2+ab﹣b2﹣4ab=a2﹣ab,当a=2,b=﹣时,原式=4+1=5.试题21答案:【解答】解:(1)共抽取:4+10+15+11+10=50(人),故答案为50;(2)平均数=(4×6+10×7+15×8=11×9+10×10)=8.26;众数:得到8分的人最多,故众数为8.中位数:由小到大排列,知第25,26平均分为8分,故中位数为8分;(3)得到10分占10÷50=20%,故500人时,需要一等奖奖品500×20%=100(份).试题22答案:【解答】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×(千米),AC=(千米),AC+BC=80+40≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走的路程为27.2千米.试题23答案:【解答】解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:,解得:.答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)80×40+100×120﹣80×0.8×40﹣100×0.75×120=3640(元).答:打折后购买这批粽子比不打折节省了3640元.试题24答案:【解答】(1)解:∵AD是边BC上的中线,∴BD=CD,∵CE∥AD,∴AD为△BCE的中位线,∴CE=2AD=6;(2)证明:∵BD=CD,∠BAD=∠CAD,AD=AD,∴△ABD≌△CAD,∴AB=AC,∴△ABC为等腰三角形.(3)如图,连接BP、BQ、CQ,在Rt△ABD中,AB==5,设⊙P的半径为R,⊙Q的半径为r,在Rt△PBD中,(R﹣3)2+42=R2,解得R=,∴PD=PA﹣AD=﹣3=,∵S△ABQ+S△BCQ+S△ACQ=S△ABC,∴•r•5+•r•8+•r•5=•3•8,解得r=,即QD=,∴PQ=PD+QD=+=.答:△ABC的外接圆圆心P与内切圆圆心Q之间的距离为.试题25答案:【解答】解:(1)设直线PQ的解析式为y=kx+b,则有,解得,∴y=﹣x+m+!,令x=0,得到y=m+1,∴D(0,m+1),令y+0,得到x=m+1,∴C(m+1,0),∴OC=OD,∵∠COD=90°,∴∠OCD=45°.(2)设M(a,),∵△OPM∽△OCP,∴==,∴OP2=OC•OM,当m=3时,P(3,1),C(4,0),OP2=32+12=10,OC=4,OM=,∴=,∴10=4,∴4a4﹣25a2+36=0,(4a2﹣9)(a2﹣4)=0,∴a=±,a=±2,∵1<a<3,∴a=或2,当a=时,M(,2),PM=,CP=,≠(舍弃),当a=2时,M(2,),PM=,CP=,∴==,成立,∴M(2,).(3)不存在.理由如下:当m=5时,P(5,1),Q(1,5),设M(x,),OP的解析式为:y=x,OQ的解析式为y=5x,①当1<x<5时,如图1中,∴E(,),F(x,x),S=S矩形OAMB﹣S△OAF﹣S△OBE=5﹣•x•x﹣••=4.1,化简得到:x4﹣9x2+25=0,△<O,∴没有实数根.②当x≤1时,如图2中,S=S△OGH<S△OAM=2.5,∴不存在,③当x≥5时,如图3中,S=S△OTS<S△OBM=2.5,∴不存在,综上所述,不存在.试题26答案:【解答】解:(1)①∵菱形,正方形的对角线互相垂直,∴菱形,正方形是:“十字形”,∵平行四边形,矩形的对角线不一定垂直,∴平行四边形,矩形不是“十字形”,故答案为:菱形,正方形;②如图,当CB=CD时,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵AB=AD,∴AC⊥BD,∴当CB≠CD时,四边形ABCD不是“十字形”,故答案为:不是;(2)∵∠ADB+∠CBD=∠ABD+∠CDB,∠CBD=∠CDB=∠CAB,∴∠ADB+∠CAD=∠ABD+∠CAB,∴180°﹣∠AED=180°﹣∠AEB,∴∠AED=∠AEB=90°,∴AC⊥BD,过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,∴OA=OD=1,OM2=OA2﹣AM2,ON2=OD2﹣DN2,AM=AC,DN=BD,四边形OMEN是矩形,∴ON=ME,OE2=OM2+ME2,∴OE2=OM2+ON2=2﹣(AC2+BD2),∵6≤AC2+BD2≤7,∴2﹣≤OE2≤2﹣,∴≤OE2≤,∴(OE>0);(3)由题意得,A(,0),B(0,c),C(,0),D(0,﹣ac),∵a>0,c<0,∴OA=,OB=﹣c,OC=,OD=﹣ac,AC=,BD=﹣ac﹣c,∴S=AC•BD=﹣(ac+c)×,S1=OA•OB=﹣,S2=OC•OD=﹣,S3=OA×OD=﹣,S4=OB×OC=﹣,∵=+,=+,∴+=+,∴=2,∴a=1,∴S=﹣c,S1=﹣,S4=﹣,∵,∴S=S1+S2+2,∴﹣c=﹣+2,∴﹣=﹣c•,∴=,∴b=0,∴A(﹣,0),B(0,c),C(,0),d(0,﹣c),∴四边形ABCD是菱形,∴4AD=12,∴AD=3,即:AD2=90,∵AD2=c2﹣c,∴c2﹣c=90,∴c=﹣9或c=10(舍),即:y=x2﹣9.。
初中数学 湖南省长沙市中考模拟数学考试卷考试题及答案word解析版
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:-3相反数是()A. B.-3 C. - D.3试题2:下列平面图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.试题3:甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定试题4:一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()评卷人得分A. B. C.D.试题5:下列四边形中,对角线一定不相等的是()A.正方形 B.矩形 C.等腰梯形 D.直角梯形试题6:下列四个角中,最有可能与70°角互补的是()试题7:小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()试题8:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC且交BC于E,AD=6cm,则OE的长为()A、6cmB、4cmC、3cmD、2cm试题9:某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图表示的是该电路中电流I与电阻R之间函数关系的图像,则用电阻R表示电流I的函数解析式为()A.I=B. I=C. I=D. I=-试题10:现有3㎝,4㎝,7㎝,9㎝长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A. 1个B. 2个C. 3个D.4个试题11:已知函数关系式:y=则自变量x的取值范围是__________试题12:如图,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD= 度.试题13:若实数a,b满足:,则= .试题14:如果一次函数y=mx+3的图象经过第一、二、四象限,则m的取值范围是试题15:任意抛掷一枚硬币,则“正面朝上”是事件试题16:在半径为1cm的圆中,圆心角为120°的扇形的弧长是 cm;试题17:如图,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF= 度;试题18:如图,等腰梯形ABCD中,AD//BC,AB=AD=2,∠B=60°,则BC的长为;试题19:计算:试题20:先化简,再求值:,其中=-2,b=1;试题21:某班数学科代表小华对本班上期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率统计表和频数分布直方图,请你根据图表提供的信息,解答下列问题:根据上述信息,完成下列问题:(1) 频数、频率统计表中,a=;b= ;(2)请将频数分布直方图补充完整;(3)小华在班上任选一名同学,该同学成绩不低于80分的概率是多少?分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~1.5合计频数2 a2164 5频率0.4.16.4.32b 1试题22:如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD;试题23:以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省内境外投资合作项目多51个。
湖南省长沙市2024年中考模拟数学试题
湖南省长沙市2024年中考模拟数学试题一、单选题1.3-的倒数为( ) A .3B .3-C .13D .13-2.苏州地铁4号线,2017年上半年通车试运营,主线全程长约为42000m ,北起相城区荷塘月色公园,南至吴江同津大道站,共设31站.将42000用科学记数法表示应为( ) A .0.42×105B .4.2×104C .44×103D .440×1023.下列等式成立的是( ) A .1232a a a+=B .11111a a a a a ++=--- C .1111x x x +=++ D .()()()222112222m m m m m ---=---4.下列图形中,不是轴对称图形的是( ) A .B .C .D .5.下列长度的三根木棒首尾相接,不能做成三角形框架的是( ) A .5cm ,7cm ,10cm B .5cm ,7cm ,13cm C .7cm ,10cm ,13cmD .5cm ,10cm ,13cm6.某市教育体育局想要了解本市初二年级8万名学生的期中数学成绩,从中抽取了2000名学生的数学成绩进行统计分析,以下说法正确的是( ) A .2000名学生是总体的一个样本 B .每位学生的数学成绩是个体 C .8万名学生是总体D .2000名学生是样本的容量7.如图所示,已知正方形ABCD 的面积是8平方厘米,正方形EFGH 的面积是62平方厘米,BC 落在EH 上,ACG V 的面积是4.9平方厘米,则ABE V 的面积是( )A .0.5平方厘米B .2平方厘米CD .0.9平方厘米8.如图,在V ABC 中,∠B =30°,若AB ∥CD ,CB 平分∠ACD ,则∠ACD 的度数为( )A .30°B .40°C .60°D .90°9.一次函数y kx b =+与正比例函数y kbx =(k ,b 为常数,且0kb ≠)在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.张浩有红牌和蓝牌各75张,已知张浩能在一个摊位上用2张红牌换1张银牌和1张蓝牌,还能在另一个摊位上用3张蓝牌换1张银牌和1张红牌,若他按照上述方法继续换下去,直到手中的牌无法交换为止,则张浩手中最后有银牌( )张A .62B .26C .102D .103二、填空题11.因式分解:21x -=.12.若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2009()a b +=.13.在x 2+( )+4=0的括号中添加一个关于x 的一次项...,使方程有两个相等的实数根. 14.如图,双曲线ky (k 0)x=>与⊙O 在第一象限内交于P 、Q 两点,分别过P 、Q 两点向x 轴和y 轴作垂线,已知点P 坐标为(1,3),则图中阴影部分的面积为.15.如图,OA 是O e 的半径,BC 是O e 的弦,OA BC ⊥于点D ,AE 是O e 的切线,AE 交OC 的延长线于点E .若45AOC ∠=︒,2BC =,则线段AE 的长为.16.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为150°,AB 的长为32cm ,BD的长为14cm ,则»DE的长为cm .三、解答题17.(1)计算:())121--+﹣sin30°(2)化简:2a 11a a a++-. 18.(1)计算:()()21122x x x ⎛⎫--+- ⎪⎝⎭;(2)先化简,再求值:()()()23366a a a a +---+,其中1a =-.19.位于河南省郑州市的炎黄二帝巨型塑像,是为代表中华民族之创始、之和谐、之统一.塑像由山体CD 和头像AD 两部分组成.某数学兴趣小组在塑像前50米处的B 处测得山体D 处的仰角为45°,头像A 处的仰角为70.5°,求头像AD 的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)20.为了加强对青少年防溺水安全教育,5月底某校开展了“远离溺水,珍爱生命”的防溺水安全知识比赛.下面是从参赛学生中随机收集到的20名学生的成绩(单位:分): 87 99 86 89 91 91 95 96 87 97 91 97 96 86 96 89 100 91 99 97 整理数据:分析数据:解决问题:(1)直接写出上面表格中的a ,b ,c ,d 的值;(2)若成绩达到95分及以上为“优秀”等级,求“优秀”等级所占的百分率; (3)请估计该校1500名学生中成绩达到95分及以上的学生人数.21.如图,已知点B E C F ,,,在一条直线上,BE CF =,AC DE ∥,A D ∠=∠. 求证:ABC DFE △≌△.22.某游船先顺流而下,然后逆流返回.已知水流速度是每小时3千米,游船在静水中的速度是每小时18千米.为使游船在4小时内(含4小时)返回出发地,则游船顺流最远可行多少千米?23.如图,在ABC V 中,AB AC =,30B ∠=︒,线段AB 的垂直平分线MN 交BC 于D ,连接AD .(1)求DAC ∠的度数; (2)若2BD =,求BC 的长.24.在平面直角坐标系xOy 中,对于直线l 及点P 给出如下定义:过点P 作y 轴的垂线交直线l 于点Q ,若PQ ≤1,则称点P 为直线l 的关联点,当PQ =1时,称点P 为直线l 的最佳关联点,当点P 与点Q 重合时,记PQ =0.例如,点P (1,2)是直线y =x 的最佳关联点.根据阅读材料,解决下列问题.如图,在平面直角坐标系xOy 中,已知直线1l :y =﹣x +3,2l :y =2x +b .(1)已知点A (0,4),3(,1)2B ,C (2,3),上述各点是直线1l 的关联点是;(2)若点D (﹣1,m )是直线1l 的最佳关联点,则m 的值是;(3)点E 在x 轴的正半轴上,点A (0,4),以OA 、OE 为边作正方形AOEF .若直线l 2与正方形AOEF 相交,且交点中至少有一个是直线1l 的关联点,则b 的取值范围是.25.如图,⊙O为△ABC的外接圆,AC=BC,D为OC与AB的交点,E为线段OC延长线上一点,且∠EAC=∠ABC.(1)求证:直线AE是⊙O的切线.(2)若D为AB的中点,CD=6,AB=16,求⊙O的半径;(3)在(2)的基础上,点F在⊙O上,且»»,△ACF的内心点G在AB边上,求BGBC BF的长.。
2024年中考数学第一次模拟试卷(湖南长沙卷)(全解全析)
2024年中考第一次模拟考试(湖南长沙卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列四个实数中,最小的是()A.2-B.4C.1D.5-【答案】D【分析】此题主要考查了实数大小比较的方法.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.>,【详解】解:∵54∴52>,∴52-<-,∴5214-<-<<,∴最小的数是5-,故选:D.2.在以下回收、绿色食品、节能、节水四个标志中,是中心对称图形的是()A.B.C.D.【答案】C【分析】根据中心对称图形的概念:一个图形沿某个点旋转180度后能与原图完全重合的;由此问题可求解.【详解】解:选项A、B、D不能找到一个点绕其旋转180度后能与原图完全重合,所以都不是中心对称图形,而C选项可以找到一个点绕其旋转180度后能与原图完全重合,所以是中心对称图形;故选C.【点睛】本题主要考查中心对称图形,熟练掌握中心对称图形的概念是解题的关键.3.下列计算中,正确的是()A .()326x x -=-B .()2211x x =++C .632x x x=D .235+=【答案】A 【分析】根据积的乘方,完全平方公式,同底数幂的除法,二次根式的加法对各选项进行判断即可.【详解】解:由题意知,()326x x -=-,正确,故A 符合要求;()2221211x x x x +=++≠+,错误,故B 不符合要求;6432x x x x=≠,错误,故C 不符合要求;235+≠,错误,故D 不符合要求;故选:A .【点睛】本题考查了积的乘方,完全平方公式,同底数幂的除法,二次根式的加法.熟练掌握积的乘方,完全平方公式,同底数幂的除法,二次根式的加法是解题的关键.4.据共青团中央2023年5月3日发布的中国共青团团内统计公报,截至2022年12月底,全国共有共青团员7358万.数据7358万用科学记数法表示为()A .7.358×107B .7.358×103C .7.358×104D .7.358×106【答案】A【分析】本题主要考查了科学记数法,表示较大的数,利用科学记数法的法则解答即可.【详解】解:7358万77.3581735800000=⨯=,故选:A .5.如图,把一个含有45︒角的直角三角板放在两条平行线m ,n 上,若123α∠=︒,则∠β的度数是()A .48︒B .88︒C .78︒D .75︒【答案】C 【分析】可求1123α∠=∠=︒,178ACB B ∠=∠-∠=︒,即可求解.【详解】解:如图:m n ∥,1123α∴∠=∠=︒,1∠ 是ABC 的一个外角,45B ∠=︒,178ACB B ∴∠=∠-∠=︒,78ACB β∴∠=∠=︒,故选:C .【点睛】本题考查了平行线的性质,三角形外角的性质,掌握性质是解题的关键.6.如图,AB 是O 的直径,42D ∠=︒,则CAB ∠=()A .52︒B .58︒C .48︒D .42︒【答案】C 【分析】本题考查圆周角的性质.由AB 是O 的直径可得90ACB ∠=︒,又由“同弧或等弧所对圆周角相等”可得42B D ∠=∠=︒,从而可求得CAB ∠.【详解】∵AB 是O 的直径,∴90ACB ∠=︒,∵ AC AC=∴42B D ∠=∠=︒,∴90904248CAB B ∠=︒-∠=︒-︒=︒.故选:C7.一元一次方程不等式组11112x x +≥-⎧⎪⎨<⎪⎩的解在数轴上表示正确的是()A .B .C .D .【答案】D 【分析】本题考查的是一元一次不等式组的解法及在数轴上表示解集,在数轴上表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.熟练掌握不等式组的解法是解题的关键.先分别解出两个不等式,然后找出解集,表示在数轴上即可.【详解】解:11112x x +≥-⎧⎪⎨<⎪⎩①②,由①得,x ≥−2,由②得,2x <,故原不等式组的解集为:22x -≤<.在数轴上表示为:故答案为:D .8.如图,在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法错误的是()A .众数是90分B .方差是10C .平均数是91分D .中位数是90分【答案】B 【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【详解】解:A 、∵90出现了5次,出现的次数最多,∴众数是90;故此选项不符合题意;B 、方差是:()()()()2222128591295915909110091191010⎡⎤⨯⨯-+⨯-+-+-=≠⎣⎦;故此选项符合题意;C 、平均数是(85×2+100×1+90×5+95×2)÷10=91;故此选项不符合题意;D 、∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故此选项不符合题意.故选:B .【点睛】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,能从统计图中获得有关数据,求出众数、中位数、平均数、方差是解题的关键.9.在同一平面直角坐标系中,函数y ax =和()0y x a a =+≠的图象可能是()A .B .C .D .【答案】D【分析】本题主要考查正比例函数的系数和一次函数常数项决定图象所过象限的知识点.【详解】解:A .由函数y ax =得0a >,与()0y x a a =+≠图象的a<0矛盾,故本选项不符合题意;B .函数()0y x a a =+≠所过象限错误,故本选项不符合题意;C .函数()0y x a a =+≠所过象限错误,故本选项不符合题意;D .由函数y ax =得a<0,与()0y x a a =+≠图象的a<0一致,故本选项符合题意.故选:D .10.“千门万户瞳瞳日,总把新桃换旧符”.春节是中华民族的传统节日,古人常用写“桃符”的方式来祈福避祸,而现在,人们常用贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿.某商家在春节期间开展商品促销活动,顾客凡购物金额满100元,就可以从“福”字、春联、灯笼这三类礼品中免费领取一件.礼品领取规则:顾客每次从装有大小、形状、质地都相同的三张卡片(分别写有“福”字、春联、灯笼)的不透明袋子中,随机摸出一张卡片,然后领取一件与卡片上文字所对应的礼品.现有2名顾客都只领取了一件礼品,那么他们恰好领取同一类礼品的概率是()A .19B .16C .13D .12【答案】C【分析】分别用,,A B C 表示写有“福”字、春联、灯笼的三张卡片,利用列表法求出概率即可.【详解】解:分别用A ,B ,C 表示写有“福”字、春联、灯笼的三张卡片,列表如下:AB C AA ,A A ,B A ,C BB ,A B ,B B ,C C C ,A C ,B C ,C共有9中等可能的结果,其中他们恰好领取同一类礼品有3种等可能的结果,∴3193P ==;故选C .【点睛】本题考查列表法求概率,解题的关键是正确的列出表格.第Ⅱ卷二、填空题(本大题共6个小题,每小题3分,共18分)11.若22x -在实数范围内有意义,则x 的取值范围是.【答案】2x ≥【分析】此题主要考查了二次根式有意义的条件,正确掌握相关定义是解题关键.直接利用二次根式有意义则被开方数大于或等于零即可得出答案.【详解】解:22x -在实数范围内有意义,故20x -≥,解得:2x ≥.故答案为:2x ≥.12.分式方程422x x =-的解是.【答案】2x =-【分析】先去分母,再解出整式方程,然后检验,即可求解.【详解】解:去分母得:()224x x -=,解得:2x =-,检验:当2x =-时,()20x x -≠,∴原方程的解为2x =-.故答案为:2x =-【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.解分式方程注意要检验.13.若关于x 的一元二次方程220x x m -+=有两个不相等的实数根,实数m 的取值范围是.【答案】1m </1m>【分析】利用方程有两个不相等的实数根时,0∆>,建立关于m 的不等式,求出m 的取值范围.【详解】解: 关于x 的一元二次方程220x x m -+=有两个不相等的实数根,∴()2240m ∆=-->,即440m ->,解得:1m <,故答案为:1m <.【点睛】本题考查了根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键.14.如图,扇形OAB 的半径为1,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧相交于点P ,35BOP ∠=︒,则 AB 的长l =(结果保留π).【答案】718π/718π【分析】先求解223570AOB BOP ∠=∠=⨯︒=︒,再利用弧长公式计算即可.【详解】解:由作图知:OP 垂直平分AB ,∵OA OB =,∴223570AOB BOP ∠=∠=⨯︒=︒,∵扇形的半径是1,∴ AB 的长70π17π18018⨯==.故答案为:7π18.【点睛】本题考查的是线段的垂直平分线的作图,等腰三角形的性质,弧长的计算,熟记弧长公式是解本题的关键.15.如图,反比例函数k y x=的图象经过ABCD Y 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD DC ⊥,ABCD Y 的面积为16,则k =.【答案】8-【分析】由平行四边形面积转化为矩形BDOA 面积,在得到矩形PDOE 面积,应用反比例函数比例系数k 的意义即可.【详解】解:如图,过点P 做PE y ⊥轴于点E .四边形ABCD 为平行四边形,AB CD ∴=,又BD x ⊥Q 轴,ABDO ∴为矩形,AB DO ∴=,16ABCD ABDO S S ∴== 矩形,P 为对角线交点,PE y ⊥轴,∴四边形PDOE 为矩形面积为8,即8DO EO ⋅=,∴设P 点坐标为(,)x y ,8k xy ==-.故答案为:8-.【点睛】本题考查了反比例函数k 的几何意义以及平行四边形的性质,理解等底等高的平行四边形与矩形面积相等是解题的关键.16.《九章算术》是中国古代的数学专著,书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt ABC △的两条直角边的长分别为5和12,则它的内接正方形CDEF 的边长为.【答案】6017/9317【分析】先设正方形的边长为x ,再表示出DE ,AD ,然后说明ADE V ∽ACB △,并根据对应边成比例得出答案.【详解】根据题意可知=5AC ,=12BC .设正方形的边长为x ,则=DE CD x =,5AD x =-.∵四边形CDEF 是正方形,∴==90C ADE ∠∠︒.∵A A ∠=∠,∴ADE V ∽ACB △,∴AD DE AC BC =,即5512x x -=,解得6017x =.所以正方形的边长为6017.故答案为:6017.【点睛】本题主要考查了正方形的性质,相似三角形的性质和判定,相似三角形的对应边成比例是求线段长的常用方法.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每题9分,第24、25每题10分,共72分)17.计算:()2012sin60π2133-⎛⎫︒--++- ⎪⎝⎭【答案】237+【分析】本题考查实数的混合运算,先计算特殊角三角函数值,零次幂,负整数次幂,绝对值,再进行加减运算即可,正确计算是解题的关键.【详解】解:()2012sin60π2133-⎛⎫︒--++- ⎪⎝⎭2312131213=⨯-++-⎛⎫ ⎪⎝⎭31931=-++-237=+18.先化简,再求值:2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中3a =.【答案】21-a a ,336+【分析】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.先根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.【详解】解:原式22212111a a a a a ---+=÷-+()()()21112a a a a a a -+=⋅+--21a a =-当3a =时,原式133633+==-.19.如图,从水平面看一山坡上的通讯铁塔PC ,在点A 处用测角仪测得塔顶端点P 的仰角是45︒,向前走9米到达B 点,用测角仪测得塔顶端点P 和塔底端点C 的仰角分别是60︒和30︒.(1)求BPC ∠的度数;(2)求该铁塔PC 的高度.(结果精确到0.1米;参考数据:3 1.73≈,2 1.41≈)【答案】(1)30︒(2)14.3米【分析】本题考查了仰角的定义、解直角三角形、三角函数;(1)延长PC 交直线AB 于点F ,根据直角三角形两锐角互余求得即可;(2)设PC x =米,根据AF PF =,构建方程求出x 即可.【详解】(1)延长PC 交直线AB 于点F ,则AF PF ⊥,依题意得:45PAF ∠=︒,60PBF ∠=︒,∴906030BPC ∠=-=︒︒︒.(2)设PC x =米,∵60PBF ∠=︒,30CBF ∠=︒,∴30PBC ∠=︒,∴PBC BPC ∠=∠,∴PC CB x ==米,在Rt CBF △中,3cos302BF CB x =︒=,1sin 302CF CB x =︒=,在Rt PAF △中,45PAF APF ∠=∠=︒,∴PF AF =,∴3139222x x x x +=+=,∴933x =+,∴93393 1.7314.3PC =+≈+⨯≈(米),即该铁塔PC 的高度约为14.3米.20.为了进一步加强中小学国防教育,教育部研究制定了《国防教育进中小学课程教材指南》.某中学开展了形式多样的国防教育培训活动.为了解培训效果,该校组织七、八年级全体学生参加了国防知识竞赛(百分制),并规定90分及以上为优秀,8089~分为良好,6079~分为及格,59分及以下为不及格.该学校七、八两个年级各有学生300人,现随机抽取了七、八年级各20名学生的成绩进行了整理与分析,下面给出了部分信息.a .抽取七年级20名学生的成绩如下:65875796796789977710083698994589769788188b .抽取七年级20名学生成绩的频数分布直方图如图1所示(数据分成5组:5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100)x ≤≤)c .抽取八年级20名学生成绩的扇形统计图如图2所示.d .七年级、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表:年级平均数中位数方差七年级81m 167.9八年级8279.5108.3请根据以上信息,回答下列问题:(1)补全七年级20名学生成绩的频数分布直方图,写出表中m 的值;(2)估计七、八两个年级此次竞赛成绩达到优秀的学生共有多少人;(3)若本次竞赛成绩达到81分及以上的同学可以获得参加挑战赛的机会,请根据样本数据估计,七、八两个年级中哪个年级获得参加挑战赛的机会的学生人数更多?并说明理由.【答案】(1)补全条形统计图见解析;82m =(2)七、八两个年级此次竞赛成绩达到优秀的学生共有165人(3)七年级获得参加挑战赛的机会的学生人数更多;理由见解析【分析】(1)根据题意可得七年级成绩位于6070x ≤<的有4人;七年级成绩位于第10位和第11位的是81和83,即可求解;(2)先求出八年级成绩优秀的所占的百分比,再分别用300乘以各自的百分比,即可求解;(3)分别求出七、八两个年级获得参加挑战赛的机会的学生人数,然后进行比较即可.【详解】(1)解:根据题意得:七年级成绩位于6070x ≤<的有4人,补全图形如下:七年级成绩位于第10位和第11位的是81和83,∴七年级成绩的中位数8183822m +==;(2)解:根据题意得:八年级成绩良好的所占的百分比为72100%20%360︒⨯=︒∴八年级成绩优秀的所占的百分比为120%45%5%30%---=,∴八年级成绩达到优秀的学生有30030%90⨯=(人),七年级成绩达到优秀的学生有53007520⨯=人,9075165+=(人),答:七、八两个年级此次竞赛成绩达到优秀的学生共有165人.(3)解:八年级获得参加挑战赛的机会的学生人数约为:()30020%30%150⨯+=(人),七年级获得参加挑战赛的机会的学生人数约为:1130016520⨯=(人),∵150165<,∴七年级获得参加挑战赛的机会的学生人数更多.【点睛】本题主要考查了条形统计图和扇形统计图,求中位数,用样本估计总体,明确题意,准确从统计图中获取信息是解题的关键.21.如图,在Rt ABC 中,32AC BC ==,点D 在AB 边上,连接CD ,将CD 绕点C 逆时针旋转90︒得到CE ,连接BE ,DE .(1)求证:CAD CBE ≌;(2)若2AD =时,求CE 的长;(3)点D 在AB 上运动时,试探究22AD BD +的值是否存在最小值,如果存在,求出这个最小值;如果不存在,请说明理由.【答案】(1)见解析(2)10(3)存在,18【分析】(1)由S AS 即可证明CAD CBE ≌;(2)证明CAD CBE ≌(SAS ),勾股定理得到DE ,在Rt CDE 中,勾股定理即可求解;(3)证明2222AD BD CD +=,即可求解.【详解】(1)解:由题意,可知90ACB DCE ∠=∠=︒,CA CB =,CD CE =.ACB DCB DCE DCB ∴∠-∠=∠-∠.即ACD BCE ∠=∠.()SAS CAD CBE ∴ ≌.(2) 在Rt ABC 中,32AC BC ==,45,26CAB CBA AB AC ∴∠=∠=︒==.624BD AB AD ∴=-=-=.CAD CBE ≌,2BE AD ∴==,45CBE CAD ∠=∠=︒.90ABE ABC CBE ∴∠=∠+∠=︒.2225DE BD BE ∴=+=.∴在Rt CDE △中,102DE CE CD ===.(3)由(2)可知,2222222AD BD BE BD DE CD ===++.∴当CD 最小时,有22AD BD +的值最小,此时CD AB ⊥.ABC 为等腰直角三角形,116322CD AB ∴==⨯=.∴222222318AD BD CD =≥⨯=+.即22AD BD +的最小值为18.【点睛】本题主要考查了图形的几何变换,涉及到等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,熟练掌握以上知识是解题的关键.22.某服装店老板到厂家选购A 、B 两种型号的服装,若购进A 种型号服装9件与B 种型号服装10件共需要1810元;若购进A 种型号服装12件与B 种型号服装8件共需要1880元.(1)A 、B 两种型号的服装每件分别为多少元?(2)若销售1件A 型服装可获利18元,销售1件B 型服装可获利30元,根据市场需求,服装店老板决定购进A 型服装的数量要比购进B 型服装的数量的2倍还多4件,这样服装全部售出后可使总的获利不少于732元,问至少购进B 型服装多少件?【答案】(1)A 种型号服装每件90元,B 种型号服装每件100元.(2)至少购进B 型服装10件.【分析】本题考查了一元一次不等式的应用、一元一次方程的应用,准确地找到等量关系并用方程组表示出来是解题的关键.(1)根据题意可知,本题中的相等关系是“A 种型号服装9件,B 种型号服装10件,需要1810元”和“A 种型号服装12件,B 种型号服装8件,需要1880元”,列方程组求解即可.(2)利用两个不等关系列不等式,结合实际意义求解.【详解】(1)设A 种型号服装每件x 元,B 种型号服装每件y 元.依题意可得:91018101281880x y x y +=⎧⎨+=⎩,解得:90100x y =⎧⎨=⎩,答:A 种型号服装每件90元,B 种型号服装每件100元.(2)设B 型服装购进m 件,则A 型服装购进()24m +件.根据题意得:()182430732m m ++≥,解不等式得10m ≥,答:至少购进B 型服装10件.23.如图,四边形ABCD 为矩形,点E 在边AD 上,AE CD =,连接CE ,过点E 作EF CE ⊥交AB 于点F ,分别过点C 、F 作CG EF ∥、FG CE ∥且CG 、GF 相交于点G .(1)求证:EF CE =;(2)连接GE ,若4CD =,点F 是AB 的中点,求GE 的长.【答案】(1)见解析;(2)210.【分析】(1)根据CE EF ⊥即余角的性质得到,可得∠=∠AFE CED ,根据矩形的性质可得90A D ∠=∠=︒,可证明(AAS)AEF DCE ≌ ,由此即可求证FE CE =;(2)根据题意可证四边形EFGC 是正方形,在Rt AEF 中由勾股定理求出的长,且EFG 是等腰直角三角形,根据其性质得到.【详解】(1)证明:∵CE EF ⊥,∴90CEF ∠=︒,∵四边形ABCD 是矩形,∴90A D ∠=∠=︒,AB CD =,∴90AEF AFE AEF CED ∠+∠=∠+∠=︒,∴∠=∠AFE CED ,∵AE CD =,∴(AAS)AEF DCE ≌ ,∴EF CE =.(2)解:如图所示,连接GE ,∵CG EF ∥,FG CE ∥,∴四边形CEFG 是平行四边形,∵90CEF ∠=︒,∴四边形CEFG 是矩形,∵EF CE =,∴四边形CEFG 是正方形,∵4AB CD ==,点F 是AB 的中点,∴122AF AB ==,∵4AE CD ==,在Rt AEF 中,90A ∠=︒,∴2225EF AF AE =+=,∵四边形CEFG 是正方形,∴EFG 是等腰直角三角形,∴2210EG EF ==.【点睛】此题考查了全等三角形的判定和性质,矩形的性质,正方形的性质,勾股定理,解题的关键是证明(AAS)AEF DCE ≌ ,由勾股定理求出FE 的长,由等腰直角三角形的性质即可得到2EG EF =.24.如图,A ,B ,C 是O 上的三点,且AB AC =,8BC =,点D 为优弧BDC 上的动点,且4cos 5ABC ∠=.(1)如图1,若BCD ACB ∠=∠,延长DC 到F ,使得CF CA =,连接AF ,求证:AF 是O 的切线;(2)如图2,若BCD ∠的角平分线与AD 相交于E ,求O 的半径与AE 的长;(3)如图3,将ABC 的BC 边所在的直线1l 绕点A 旋转得到2l ,直线2l 与O 相交于M ,N ,连接AM AN ,.2l 在运动的过程中,AM AN ⋅的值是否发生变化?若不变,求出其值;若变化,说明变化规律.【答案】(1)见解析(2)O 的半径为256,5AE =(3)2l 在运动的过程中,AM AN ⋅的值不发生变化,其值为25【分析】(1)连接AO ,先证BCD ABC ∠=∠,推出AB DF ∥,得到四边形ABCF 是平行四边形,AF BC ∥,再得到OA AF ⊥,即可证得结论;(2)连接AO 交BC 于H ,连接OB ,由垂径定理得142BH CH BC ===,根据4cos 5BH ABC AB ∠==,求出5AB =,设O 的半径为x ,则OA OB x ==,3OH x =-,在Rt BOH 中,由勾股定理求出256x =,O 的半径为256,根据角平分线定义及同弧所对圆周角相等得到AEC ACB BCE ACE ∠=∠+∠=∠,由此得到5AE AC AB ===;(3)连接AO ,并延长AO 交O 于Q ,连接NQ ,过点A 作2AP l ⊥于P ,证明AQM ANP △∽△,得到AM AN AP AQ ⋅=⋅,由(2)可知,点A 到直线1l 的距离为3,直线1l 绕点A 旋转得到2l ,A 到直线2l 的距离始终等于3,不会发生改变,由此得到253253AM AN AP AQ ⋅=⋅=⨯=.【详解】(1)证明:连接AO ,如图1所示:∵AB AC =,∴A ABC CB =∠∠,∵BCD ACB ∠=∠,∴BCD ABC ∠=∠,∴AB DF ∥,∵CF CA =,∴CF AB =,∴四边形ABCF 是平行四边形,∴AF BC ∥,∵AB AC =,∴»»AB AC =,∴OA BC ⊥,∴OA AF ⊥,∵OA 是O 的半径,∴AF 是O 的切线;图1(2)解:连接AO 交BC 于H ,连接OB ,如图2所示:∵OA BC ⊥,∴142BH CH BC ===,∵4cos 5BH ABC AB ∠==,∴554544AB BH ==⨯=,在Rt AHB 中,由勾股定理得:2222543AH AB BH =-=-=,设O 的半径为x ,则OA OB x ==,3OH x =-,在Rt BOH 中,由勾股定理得:()22234x x =-+,解得:256x =,∴O 的半径为256,∵CE 平分BCD ∠,∴BCE DCE ∠=∠,∵ABC ADC ∠=∠,∴AEC ADC DCE ABC DCE ACB BCE ACE ∠=∠+∠=∠+∠=∠+∠=∠,∴5AE AC AB ===;图2(3)解:连接AO ,并延长AO 交O 于Q ,连接NQ ,过点A 作2AP l ⊥于P ,如图3所示:则AQ 是O 的直径,∴90AMQ ∠=︒,∵2AP l ⊥,∴90APN ∠=︒,∴AMQ APN ∠=∠,∵AQM ANP ∠=∠,∴AQM ANP △∽△,∴AM AQ AP AN=,∴AM AN AP AQ ⋅=⋅,由(2)可知,点A 到直线1l 的距离为3,直线1l 绕点A 旋转得到2l ,∴点A 到直线2l 的距离始终等于3,不会发生改变,∴3AP =,∵25252263AQ OA ==⨯=,∴253253AM AN AP AQ ⋅=⋅=⨯=,∴2l 在运动的过程中,AM AN ⋅的值不发生变化,其值为25.图3【点睛】此题考查锐角三角函数,证明直线是圆的切线,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理,垂径定理,等知识,熟练掌握各知识点并综合应用是解题的关键.25.定义:在平面直角坐标系中,抛物线()20y ax bx c a =++≠与y 轴的交点坐标为()0,c ,那么我们把经过点()0,c 且平行于x 轴的直线称为这条抛物线的极限分割线.【特例感知】(1)抛物线221y x x =++的极限分割线与这条抛物线的交点坐标为______.【深入探究】(2)经过点()2,0A -和(),0(2)B x x >-的抛物线21142y x mx n =-++与y 轴交于点C ,它的极限分割线与该抛物线另一个交点为D ,请用含m 的代数式表示点D 的坐标.【拓展运用】(3)在(2)的条件下,设抛物线21142y x mx n =-++的顶点为P ,直线EF 垂直平分OC ,垂足为E ,交该抛物线的对称轴于点F .①当45CDF ∠=︒时,求点P 的坐标.②若直线EF 与直线MN 关于极限分割线对称,是否存在使点P 到直线MN 的距离与点B 到直线EF 的距离相等的m 的值?若存在,直接写出m 的值;若不存在,请说明理由.【答案】(1)()0,1和()2,1-(2)点D 的坐标为()2,1m m +(3)①顶点为91,4P ⎛⎫ ⎪⎝⎭或顶点为125,336P ⎛⎫- ⎪⎝⎭;②存在,0m =或222m =+或222m =-【分析】(1)根据定义,确定c 值,再建立方程组求解即可.(2)把点()2,0A -代入解析式,确定1n m =+,根据定义建立方程求解即可.(3)①根据等腰直角三角形的性质,得到等线段,再利用字母表示等线段建立绝对值等式计算即可.②设MN 与对称轴的交点为H ,用含m 的式子表示出点P 的坐标,分别写出极限分割线CD 、直线EF 及直线MN 的解析式,用含m 的式子分别表示出点B 到直线EF 的距离和点P 到直线MN 的距离,根据点P 到直线MN 的距离与点B 到直线EF 的距离相等,得出关于m 的绝对值方程,解方程即可.【详解】(1)∵抛物线221y x x =++的对称轴为直线=1x -,极限分割线为1y =,∴极限分割线与这条抛物线的一个交点坐标为()0,1,则另一个交点坐标为()2,1-.故答案为:()0,1和()2,1-.(2)抛物线经过点()2,0A -,∴()()21102242m n =-⨯-+⨯⨯-+∴1n m =+∴2111142x mx m m -+++=+,解得120,2x x m==∴点D 的坐标为()2,1m m +.(3)①设CD 与对称轴交于点G ,若45CDF ∠=︒,则DG GF =.∵点C 的坐标为()0,1m +,点D 的坐标为()2,1m m +..∴1,2OC m CD m =+=,∴11,22DG CD GF OC ==,∴112m m =+,解得1211,3m m ==-.∵抛物线21142y x mx n =-++的顶点为P ,∴抛物线()2211144y x m m m =--+++的顶点为21,14m m m P ⎛⎫++ ⎪⎝⎭,∴当1m =时,219144m m ++=,故顶点为91,4P ⎛⎫ ⎪⎝⎭;∴当13m =-时,21111251112511144933649336m m ++=⨯-+=⨯-+=,故顶点为125,336P ⎛⎫- ⎪⎝⎭;∴顶点为91,4P ⎛⎫ ⎪⎝⎭或顶点为125,336P ⎛⎫- ⎪⎝⎭.②存在,0m =或222m =+或222m =-.如图,设MN 与对称轴的交点为H .由()2知,1n m =+,抛物线()2211144y x m m m =--+++的顶点为21,14m m m P ⎛⎫++ ⎪⎝⎭,∴抛物线21142y x mx n =-++的极限分割线CD :1y m =+, 直线EF 垂直平分OC ,∴直线EF :12m y +=,∴点B 到直线EF 的距离为12m +; 直线EF 与直线MN 关于极限分割线CD 对称,∴直线MN :()312m y +=,∵21,14m m m P ⎛⎫++ ⎪⎝⎭,∴点P 到直线MN 的距离为()()()2213111114242m m m m m ++-+=-+,点P 到直线MN 的距离与点B 到直线EF 的距离相等,∴()()211111422m m m -+=+,∴()()211111422m m m -+=+或()()211111422m m m -+=-+,解得0m =或222m =+或222m =-,故0m =或222m =+或222m =-.【点睛】.查了抛物线与坐标轴的交点坐标和直线与抛物线的交点坐标等知识点,明确题中的定义、熟练掌握二次函数的图像与性质及绝对值方程是解题的关键.。
2021年湖南省长沙市中考数学模拟试卷(一)(含解析)
2021年湖南省长沙市中考数学模拟试卷(一)一、选择题(共12小题).1.计算的结果等于()A.±2B.2C.﹣2D.42.在平面直角坐标系中,点(4,﹣3)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.下列计算正确的是()A.B.(a﹣b)2=a2﹣b2C.3m•m=6m D.(﹣n3)2=n64.某正方体的每个面上都有一个汉字.它的一种平面展开图如图所示,那么在原正方体中,与“筑”字所在面相对的面上的汉字是()A.抗B.疫C.长D.城5.疫情期间,口罩的原材料提价,因而厂家决定对口罩进行提价,现有三种方案:(1)第一次提价5%,第二次提价10%;(2)第一次提价10%,第二次提价5%;(3)第一、二次提价均为7.5%,三种方案哪种提价最多,下列说法正确的是()A.方案(1)B.方案(2)C.方案(3)D.三种方案相同6.下列尺规作图,能确定AD是△ABC的中线的是()A.B.C.D.7.下列说法正确的是()A.为了解湖南省中学生的心理健康情况,宜采用普查的方式B.商场抽奖促销,中一等奖的概率是1%,则做100次这样的游戏一定会中一等奖C.一组数据1,3,3,3,4,8的中位数和众数都是3D.若甲、乙两个射击选手的平均成绩相同,且s甲2=0.01,s乙2=0.1,则应该选乙参赛8.关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6B.﹣3C.3D.69.如图,已知AB是⊙O的切线,切点为A,OA=3,,则扇形OAC的面积为()A.B.3πC.πD.10.如图,一块等腰直角三角形板如图摆放,点E,G分别在AB,CD上,且AB∥CD,如果∠AEF=25°,那么∠CGF的大小为()A.25°B.65°C.30°D.45°11.《九章算术》中有一问题,“今有善行者一百步,不善行者六十步.今不善行者先行一百步,善行者追之.问:几何步几之?”其意思是:有一个善于走路的人和一个不善于走路的人.善于走路的人走100的同时,不善于走路的人只能走60步.现在不善于走路的人先走100步,善于走路的人追他,需要走多少步才能追上他?根据题意,可以求得答案为()A.250步B.200步C.160步D.320步12.如图,已知△ABC的三个顶点A(a,0)、B(b,0)、C(0,2a)(b>a>0),作△ABC关于直线AC的对称图形△AB′C,若点B′恰好落在y轴上,则的值为()A.B.C.D.二、填空题(共4个小题,每小题3分,共12分)13.分解因式:3ab2﹣3a=.14.某地区中考,将学生的初二的生物中考卷面成绩(满分100分)乘40%,加上初三的物理、化学卷面成绩(满分200分)乘80%作为该生的最后理科综合最终成绩.某学生生物成绩为90分,若该生理科综合最终成绩想不低于160分,则该生物理、化学卷面成绩至少是分.15.如图,在Rt△ABC,∠B=90°,∠ACB=50°.将Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,连接CC'.若AB∥CC',则旋转角的度数为°.16.如图,已知△ABC是等边三角形,点D,E,F分别是AB,AC,BC边上的点,∠EDF =120°,设.(1)若n=1,则=;(2)若,则n=.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分。
2023年湖南省长沙市中考数学模拟试卷(一)及答案解析
2023年湖南省长沙市中考数学模拟试卷(一)一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.(3分)﹣2023的倒数是()A.2023B.﹣2023C.D.2.(3分)下列立体图形中,三视图都一样的是()A.B.C.D.3.(3分)为起草党的二十大报告,党中央开展了深入的调查研究,有关部门组织了党的二十大相关工作网络征求意见活动,收到留言约8542000条.数据8542000用科学记数法表示为()A.854.2×104B.8.542×106C.85.24×106D.0.8542×107 4.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=4a2D.5a2÷a2=5a 5.(3分)在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)某班六名同学体能测试成绩(分)如下:80,90,75,75,80,80,对这组数据表述错误的是()A.众数是80B.方差是25C.平均数是80D.中位数是75 7.(3分)我国明代数学读本《算法统宗》中有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,还差8两.问客人有几人?设客人有x人,则可列方程为()A.7x+4=9x﹣8B.7x﹣4=9x+8C.D.8.(3分)如图,把一个直角三角尺的直角顶点放在直尺的一边上.若∠1=56°,则∠2的度数为()A.14°B.28°C.30°D.34°9.(3分)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=30°,AB=12,则BD的长为()A.6B.C.10D.10.(3分)如图,在△ABC中,∠BAC=90°,以点A为圆心、AC长为半径作弧交BC于点D,再分别以点C,D为圆心、大于的长为半径作弧,两弧交于点F,作射线AF 交BC于点E.若AC=6,AB=8,连接AD,则△ABD的面积为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)若代数式有意义,则x的取值范围是.12.(3分)当x=时,分式的值等于.13.(3分)兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为m.14.(3分)如果关于x的方程x2﹣6x+k=0有两个相等的实数根,那么实数k的值为.15.(3分)生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉50只雀鸟,给它们做上标记后放回山林;一段时间后,再从山林中随机捕捉100只,其中有标记的雀鸟有2只.请你帮助工作人员估计这片山林中雀鸟的数量为只.16.(3分)有四张卡片,每张卡片上分别写了一个代数式:①a2+2ab+b2;②﹣x2+6x﹣10;③;④2a3b﹣5ab+3.甲、乙、丙、丁四位同学每人拿到一张卡片并作如下描述:甲:我拿到的是个四次三项式;乙:不管字母取何值,我拿到的这个式子的值总是负数;丙:我拿到的式子的值为整数时,字母有6个不同的值;丁:我拿到的式子可以写成一个整式的平方.请问甲、乙、丙、丁对应的卡片序号分别是.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:.18.(6分)先化简,再求值:(x+y)(x﹣y)+(4x3y﹣2xy3)÷2xy,其中x=2,y=﹣1.19.(6分)如图,AB,CD为两栋建筑物,两建筑物底部之间的水平距离BD的长度为18m,从建筑物AB的顶部A点测得建筑物CD的顶部C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求建筑物AB的高度;(2)求建筑物CD的高度(结果保留根号).20.(8分)我市某校准备成立四个活动小组:A.声乐,B.体育.c.舞蹈,D.书画.为了解学生对四个活动小组的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中必须选择而且只能选择一个小组,根据调查结果绘制如图所示两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次抽样调查共抽查了名学生,扇形统计图中的m值是.(2)请补全条形统计图.(3)喜爱“书画”的学生中有2名男生和2名女生表现特别优秀,现从这4人中随机选取2人参加比赛,请用列表或叫树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.21.(8分)如图,在四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.(1)求证:四边形ABCD是平行四边形;(2)若AC=BD=10,AD=6,求四边形ABCD的面积.22.(9分)如图,在△ABC中,D是BC延长线上一点,满足CD=BA,过点C作CE∥AB,且CE=BC,连接DE并延长,分别交AC,AB于点F,G.(1)求证:△ABC≌△DCE;(2)若BD=12,AB=8,求BC的长度.23.(9分)近年来,湖南省积极推进农村危房改造工作,帮助农村地区脱贫攻坚.某地区2022年共完成危房改造1.2万户,地方财政拨款6000万元用于补贴危房改造,加上国家专项拨款后,危房改造户每户可获得补贴12000元,已知地方财政和国家专项拨款按一定标准补贴到每户.(1)判断:正确的打“√”,错误的打“×”.①国家专项拨款标准为每户5000元.;②2022年该地区用于危房改造的国家专项拨款共8400万元.;(2)预计2023年该地区用于危房改造的地方财政拨款可增加20%,国家专项拨款增加10%,如果每户补贴金额不变,2023年该地区最多能完成危房改造多少万户?24.(10分)定义:有一个内角等于另外两个内角之和的四边形称为“和谐四边形”.(1)已知∠A=100°,∠B=60°,∠C=α,请直接写出一个α的值,使四边形ABCD为“和谐四边形”.(2)如图1,在△ABC中,D,E分别是边AB,AC上的点,AE=DE.求证:四边形DBCE为“和谐四边形”.(3)在(2)的条件下,如图2,过D,E,C三点作⊙O,与边AB交于点F,与边BC 交于点G,连接FG,EG是⊙O的直径.①求证:BF=FC;②若AE=1,,∠BGF﹣∠B=45°,求“和谐四边形”DBCE的面积.25.(10分)如图,抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(3,﹣2).(1)请直接写出A,B两点的坐标及直线l的函数解析式;(2)若点P是抛物线上的点,点P的横坐标为m,过点P作直线PM⊥x轴,垂足为M,PM与直线l交于点N,当P,M,N其中一点是另外两点所连线段的中点时,求点P的坐标;(3)若点Q是对称轴上的点,且△ADQ为直角三角形,求点Q的坐标.2023年湖南省长沙市中考数学模拟试卷(一)参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.【分析】根据倒数的定义解答即可.【解答】解:﹣2023的倒数是﹣.故选:D.【点评】此题考查的是倒数的定义,乘积是1的两数互为倒数.2.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答即可.【解答】解:A、圆柱的主视图和左视图是矩形,俯视图是圆,故本选项不合题意;B、圆锥的主视图和左视图是三角形,俯视图是带有圆心的圆,故本选项不合题意;C、球的三视图都是圆,故本选项符合题意;D、三棱柱的主视图和俯视图是矩形,左视图是三角形,故本选项不合题意.故选:C.【点评】本题考查的是几何体的三视图,理解主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形是解题的关键.3.【分析】科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法,由此即可得到答案.【解答】解:8542000用科学记数法表示为8.542×106.故选:B.【点评】本题考查科学记数法—表示较大的数,关键是掌握用科学记数法表示数的方法.4.【分析】根据同底数幂的乘法的运算方法,幂的乘方与积的乘方的运算方法,以及整式的除法的运算方法,逐项判断即可.【解答】解:∵a2•a3=a5,∴选项A不符合题意;∵(a2)3=a6,∴选项B不符合题意;∵(2a)2=4a2,∴选项C符合题意;∵5a2÷a2=5,∴选项D不符合题意.故选:C.【点评】此题主要考查了同底数幂的乘法的运算方法,幂的乘方与积的乘方的运算方法,以及整式的除法的运算方法:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.5.【分析】根据各象限内点的坐标特征解答.【解答】解:点P(2,﹣3)在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.【分析】根据众数,方差、平均数,中位数的概念逐项分析即可.【解答】解:A、80出现的次数最多,所以众数是80,正确,不符合题意;B、方差是:×[3×(80﹣80)2+(90﹣80)2+2×(80﹣75)2]=25,正确,不符合题意;C、平均数是(80+90+75+75+80+80)÷6=80,正确,不符合题意;D、把数据按大小排列,中间两个数都为80,80,所以中位数是80,错误,符合题意.故选:D.【点评】本题为统计题,考查方差、众数、平均数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.【分析】若每人7两,还剩4两,则银子共有(7x+4)两;若每人9两,还差8两,则银子共有(9x﹣8)两.根据银子数量不变,即可得出关于x的一元一次方程,此题得解.【解答】解:根据题意,得7x+4=9x﹣8.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.8.【分析】利用平行线的性质可得∠3的度数,再利用平角定义可得答案.【解答】解:如图,∵AB∥CD,∴∠1=∠3=56°,∴∠2=180°﹣90°﹣56°=34°,故选:D.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.9.【分析】连接AD,如图,先根据切线的性质得到∠OAC=90°,再利用互余计算出∠AOC =60°,接着根据圆周角定理得到∠B=30°,∠ADB=90°,然后根据含30度角的直角三角形三边的关系计算BD的长度.【解答】解:连接AD,如图,∵OC交⊙O于点D,∴OA⊥AC,∴∠OAC=90°,∵∠C=30°,∴∠AOC=90°﹣∠C=60°,∵∠B=AOC=30°,∵AB为直径,∴∠ADB=90°,在Rt△ABD中,∵∠B=30°,∴AD=AB=×12=6,∴BD=AD=6.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.10.【分析】根据题意可知AF垂直平分CD,然后根据勾股定理可以得到BC的长,再根据等面积法可以求得AE的长,再根据勾股定理即可得到CE的长,从而可以得到CD的长,进而得到BD的长,然后即可求得△ABD的面积.【解答】解:由题意可得,AF垂直平分CD交CD于点E,∴AD=AC,∵∠BAC=90°,AC=6,AB=8,∴BC===10,∵,∴,解得AE=,∵∠AEC=90°,AC=6,∴CE===,∴CD=2CE=,∴BD=BC﹣CD=10﹣=,∴△ABD的面积为==,故选:C.【点评】本题考查勾股定理、等面积法,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】根据二次根式中的被开方数是非负数,可得:3﹣x≥0,据此求出x的取值范围即可.【解答】解:∵代数式有意义,∴3﹣x≥0,∴x≤3.故答案为:x≤3.【点评】此题主要考查了二次根式有意义的条件,解答此题的关键是要明确:二次根式中的被开方数是非负数.12.【分析】根据题意得出分式方程,再方程两边都乘2(5+x)得出2(7﹣x)=5+x,求出方程的解,再进行检验即可.【解答】解:根据题意得=,方程两边都乘2(5+x),得2(7﹣x)=5+x,解得:x=3,检验:当x=3时,2(5+x)≠0,所以x=3是所列方程的解.故答案为:3.【点评】本题考查了分式方程,能把分式方程转化成整式方程是解此题的关键.13.【分析】根据图可知OC⊥AB,由垂径定理可知∠ADO=90°,AD=AB=8,在Rt△AOD中,利用勾股定理可求OD,进而可求CD.【解答】解:∵OC⊥AB,∴∠ADO=90°,AD=AB=8,在Rt△AOD中,OD2=OA2﹣AD2,∴OD==6,∴CD=10﹣6=4(m).故答案是4.【点评】本题考查了垂径定理、勾股定理,解题的关键是先求出OD.14.【分析】由方程根的个数,根据根的判别式可得到关于k的方程,则可求得k的值.【解答】解:∵关于x的方程x2﹣6x+k=0有两个相等的实数根,∴Δ=0,即(﹣6)2﹣4×1×k=0,解得k=9.故答案为:9.【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.15.【分析】由题意可知:随机捕捉100只,其中带标记的有2只,可以知道,在样本中,有标记的占到.而在总体中,有标记的共有50只,根据比例即可解答.【解答】解:根据题意得:50÷=2500(只),答:估计这片山林中雀鸟的数量为2500只.故答案为:2500.【点评】本题考查了用样本估计总体的知识,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.16.【分析】根据完全平方公式,配方法,分式的值,多项式的含义即可确定答案.【解答】解:①a2+2ab+b2=(a+b)2,是一个整式的平方;②﹣x2+6x﹣10=﹣(x2﹣6x+9)﹣1=﹣(x﹣3)2﹣1,∵(x﹣3)2≥0,∴﹣(x﹣3)2﹣1<0,∴不管字母取何值,﹣x2+6x﹣10的值总是负数;③为整数时,x+1=±1或x+1=±2或x+1=±4,∴x=0或﹣2或1或﹣3或3或﹣5,x有6个不同的取值;④2a3b﹣5ab+3是四次三项式,故答案为:④②③①.【点评】本题考查了完全平方式,配方法,分式的值,多项式等,熟练掌握这些知识是解题的关键.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17.【分析】首先计算乘方、负整数指数幂和特殊角的三角函数值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:=1+3﹣2×+2=1+3﹣1+2=5.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.18.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:(x+y)(x﹣y)+(4x3y﹣2xy3)÷2xy=x2﹣y2+2x2﹣y2=3x2﹣2y2,当x=2,y=﹣1时,原式=3×22﹣2×(﹣1)2=12﹣2=10.【点评】本题考查了整式的混合运算﹣化简求值,准确熟练地进行计算是解题的关键.19.【分析】(1)过点C作CF⊥AB于点F,由题意可知:∠EAD=∠ADB=45°,从而可知AB=18(m).(2)由题可知:∠EAC=∠ACF=30°,在Rt△ACF中,所以tan∠ACF=,从而可求出AF的长度,再根据BF=AB﹣AF的长度.【解答】解:(1)过点C作CF⊥AB于点F,由题意可知:∠EAD=∠ADB=45°,∴BD=AB=18m.答:建筑物AB的高度是18m.(2)∵四边形BFCD是矩形,∴BD=CF=18m,CD=BF,由题可知:∠EAC=∠ACF=30°,在Rt△ACF中,tan∠ACF=,∴AF=18×=6m,∴BF=AB﹣AF=(18﹣6)m,∴CD=(18﹣6)m.答:建筑物CD的高度(18﹣6)m,【点评】本题考查解直角三角形的应用,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.20.【分析】(1)用D小组的人数除以对应的百分数,可求出调查的总人数,用C组的人数除以总人数,再乘100%就是C小组对应的百分数,由此解答;(2)用调查的总人数减去其余三个小组的人数,得出B小组人数,从而补全条形统计图;(3)用列表法列出所有可能的情况,再用所选的2人恰好是1名男生和1名女生的情况数除以总情况数即可求出概率.【解答】解:(1)共抽查的学生人数为:10÷20%=50,×100%=32%,所以m=32.故答案为:50,32;(2)喜爱活动小组B的学生人数为:50﹣6﹣16﹣10=18.补全条形统计图为:(3)记2名女生为A1,A2,2名男生为B1,B2,根据题意列表如下:A1A2B1B2 A1(A2,A1)(B1,A1)(B2,A1)A2(A1,A2)(B1,A2)(B2,A2)B1(A1,B1)(A2,B1)(B2,B1)B2(A1,B2)(A2,B2)(B1,B2)由表格可知,共有12种结果,且每种结果出现的可能性相同,其中所选的2人恰好是1名男生和1名女生的结果共有8种,所以P(1名男生和1名女生)==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果数n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.【分析】(1)证△AOD≌△COB(AAS),由全等三角形的性质得OD=OB,即可解决问题;(2)证明四边形ABCD是矩形,即可解决问题.【解答】(1)证明:∵AD∥BC,∴∠ADO=∠CBO,∵O是AC的中点,∴OA=OC,在△AOD和△COB中,∵,∴△AOD≌△COB(AAS),∴OD=OB,又∵OA=OC,∴四边形ABCD是平行四边形;(2)解:由(1)得:四边形ABCD是平行四边形,又∵AC=BD,∴平行四边形ABCD是矩形.∴∠DAB=90°.在直角△DAB中,BD=10,AD=6,由勾股定理知:AB===8.=AD•AB=48.则S四边形ABCD即四边形ABCD的面积是48.【点评】本题考查平行四边形的判定和性质、全等三角形的判定与性质、矩形的判定与性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)根据SAS证明△ABC与△DCE全等即可;(2)根据全等三角形的性质解答即可.【解答】(1)证明:∵CE∥AB,∴∠B=∠ECD,在△ABC与△DCE中,,∴△ABC≌△DCE(SAS);(2)解:∵△ABC≌△DCE,∴AB=CD=8,∴BC=BD﹣CD=12﹣8=4.【点评】此题考查全等三角形的判定和性质,关键是根据SAS证明△ABC与△DCE全等解答.23.【分析】(1)①危房改造户每户可获得补贴﹣地方财政每户可获得补贴=国家专项拨款每户标准,依此计算即可求解;②2022年该地区用于危房改造的国家专项拨款=2022年该地区用于危房改造的地方财政和国家专项拨款﹣地方财政拨款,依此计算即可求解;(2)先求出2023年该地区用于危房改造的地方财政和国家专项拨款,再除以危房改造户每户可获得补贴即可求解.【解答】解:(1)①12000﹣6000÷1.2=12000﹣5000=7000(元).故国家专项拨款标准为每户7000元.题干的说法是错误的.故答案为:×;②12000×1.2﹣6000=14400﹣6000=8400(万元).故2022年该地区用于危房改造的国家专项拨款共8400万元.题干的说法是正确的.故答案为:√;(2)[6000×(1+20%)+8400×(1+20%)]÷12000=(7200+10080)÷12000=17280÷12000=1.4(万户).故2023年该地区最多能完成危房改造1.4万户.【点评】本题考查了有理数的混合运算,关键是理解题意,正确得到地方财政和国家专项拨款的标准.24.【分析】(1)先根据四边形的内角和为360°表示∠D的度数,根据“和谐四边形”的定义分8种情况列方程可得结论;(2)根据条件证明∠BDE=∠B+∠C,由“和谐四边形”的定义可得结论;(3)①根据圆周角定理及直角三角形的性质推出,∠ACF+∠BCF=90°,∠A+∠B=90°,根据圆内接四边形的性质和等腰三角形的性质推出∠ADE=∠FGE,∠ADE=∠A,进而得出∠A=∠ACF,根据等式的性质求解即可;②如图3,作辅助线,构建相似三角形,证明△AHE∽△ACB,根据勾股定理和相似三角形的性质求解即可.【解答】(1)解:∵∠A=100°,∠B=60°,∠C=α,∴∠D=360°﹣100°﹣60°﹣α=200°﹣α,若∠A=∠B+∠D,则100°=50°+(200°﹣α),解得:α=150°,若∠A=∠C+∠B,则100°=α+60°,解得:α=40°,若∠A=∠C+∠D,则100°=α+(200°﹣α),无解,若∠B=∠D+∠C,则60°=200°﹣α+α,无解,若∠C=∠B+∠A,则α=160°,若∠C=∠B+∠D,则α=60°+(200°﹣α),α=130°,综上,α的值是150°或40°或160°或130°(写一个即可),故答案为:150°或40°或160°或130°(写一个即可);(2)证明:设∠A=x,∠C=y,则∠B=180°﹣x﹣y,∵AE=DE,∴∠ADE=∠A=x,∴∠BDE=180°﹣x,在四边形DBCE中,∠BDE=∠B+∠C,∴四边形DBCE为“和谐四边形”;(3)①证明:∵EG是⊙O的直径,∴∠GCE=90°,∴∠ACF+∠BCF=90°,∠A+∠B=90°,∵AE=DE,∴∠ADE=∠A,∵D、F、G、E四点都在⊙O上,∴∠ADE=∠FGE,∴∠FGE=∠A,∵∠FGE=∠ACF,∴∠A=∠ACF,∴∠B=∠BCF,∴BF=CF;②解:连接DE、DG、FG,过E作EH⊥AB于H,连接DG,∵BF=CF,∴∠B=∠BCF=∠BDG,∴BG=DG,∵EG是⊙O的直径,∴∠GDE=90°,∵DE=AE=1,EG=5,∴DG==7=BG,∵∠BGF﹣∠B=45°,∠BGF﹣∠BCF=∠CFG,∴∠CFG=∠CEG=45°,∴△ECG是等腰直角三角形,∴CE=CG=EG=5,∴BC=7+5=12,AC=5+1=6,∴AB===6,∵∠AHE=∠ACB=90°,∠A=∠A,∴△AHE∽△ACB,∴=,=,∵==,∴AH=,=,∴EH==,=AH•EH=××=,∴S△AHE==36,∴S△ACB∵DE=AE,EH⊥AD,=2S△AHE=,∴S△ADE﹣S△ADE=36﹣=.∴“和谐四边形”DBCE的面积=S△ACB【点评】本题是圆的综合题,考查圆周角定理,圆内接四边形的性质,相似三角形的性质和判定,新定义:“和谐四边形”的理解和运用,勾股定理等知识,解题的关键是学会理解新定义,正确作辅助线解决问题,属于中考压轴题.25.【分析】(1)在y=x2﹣x﹣2中,令y=0可得A(﹣1,0),B(4,0);设直线l的函数解析式为y=kx+b,用待定系数法得直线l的函数解析式为y=﹣x﹣;(2)由点P的横坐标为m,知P(m,m2﹣m﹣2),N(m,﹣m﹣),M(m,0),①若P为MN中点,则2(m2﹣m﹣2)=﹣m﹣+0,②若N为PM的中点,则2(﹣m﹣)=m2﹣m﹣2+0,③若M为PN中点,则m2﹣m﹣2﹣m﹣=0,分别解方程可得答案;(3)由y=x2﹣x﹣2得抛物线对称轴为直线x=,设Q(,t),有AQ2=+t2,DQ2=+(t+2)2,AD2=20,①若AQ为斜边,则+t2=+(t+2)2+20,②若DQ为斜边,则+t2+20=+(t+2)2,③若AD为斜边,则+t2++(t+2)2=20,分别解方程可得答案.【解答】解:(1)在y=x2﹣x﹣2中,令y=0得:x2﹣x﹣2=0,解得x=﹣1或x=4,∴A(﹣1,0),B(4,0);设直线l的函数解析式为y=kx+b,将A(﹣1,0),D(3,﹣2)代入得:,解得,∴直线l的函数解析式为y=﹣x﹣;(2)∵点P的横坐标为m,∴P(m,m2﹣m﹣2),N(m,﹣m﹣),M(m,0),①若P为MN中点,则2(m2﹣m﹣2)=﹣m﹣+0,解得m=或m=﹣1(三点重合,舍去),∴P(,﹣);②若N为PM的中点,则2(﹣m﹣)=m2﹣m﹣2+0,解得m=2或m=﹣1(舍去),∴P(2,﹣3);③若M为PN中点,则m2﹣m﹣2﹣m﹣=0,解得m=5或m=﹣1(舍去),∴P(5,3);综上所述,P的坐标为(,﹣)或(2,﹣3)或(5,3);(3)由y=x2﹣x﹣2得抛物线对称轴为直线x=,设Q(,t),又A(﹣1,0),D(3,﹣2),∴AQ2=+t2,DQ2=+(t+2)2,AD2=20,①若AQ为斜边,则+t2=+(t+2)2+20,解得t=﹣5,∴Q (,﹣5);②若DQ 为斜边,则+t2+20=+(t+2)2,解得t=5,∴Q (,5);③若AD为斜边,则+t2++(t+2)2=20,解得t =或t =,∴Q (,)或(,);综上所述,Q 的坐标为(,﹣5)或(,5)或(,)或(,).【点评】本题考查二次函数综合应用,涉及待定系数法,中点坐标公式,直角三角形性质等知识,解题的关键是用含字母的代数式表示相关点坐标和相关线段的长度。
【中考冲刺】2023年湖南省长沙市中考模拟数学试卷(附答案)
2023年湖南省长沙市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,属于轴对称图形的是( )A .B .C .D .2.函数y =12x-自变量x 的取值范围是( ) A .全体实数 B .x ≠0 C .x <2 D .x ≠2 3.如图,AB ∥CD ,且被直线l 所截,若∥1=54°,则∥2的度数是( )A .154°B .126°C .116°D .54° 4.下列计算正确的是( )A .()222a b a b -=-B .()232622ab a b =C .235ab ab ab +=D .248a a a ⋅= 5.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示:则这15名运动员成绩的中位数、众数分别是( )A .4.65,4.70 B .4.65,4.75 C .4.70,4.70, D .4.70,4.75 6.如图,在Rt∥ABC 中,∥ACB=90°,∥A=α,将∥ABC 绕点C 按顺时针方向旋转后得到∥DEC ,此时点E 在AB 边上,则旋转角的大小为( )A.αB.2αC.90α︒-D.1802α︒-7.在一个不透明的盒子中装有2个白球,若干个黄球,它们除了颜色不同外,其余均相同.若从中随机摸出一个白球的概率是13,则黄球的个数为()A.2B.3C.4D.68.在平面直角坐标系中,将抛物线y=x2向上平移2个单位长度,再向右平移1个单位长度,得到的抛物线的解析式是()A.y=(x﹣1)2+2B.y=(x﹣1)2﹣2C.y=(x+1)2﹣2D.y=(x+1)2+29.如图,在∥ABC中,D,E,F分别是AB,AC,BC上的点,且DE∥BC,EF∥AB,若CF:BC=3:5,AB=15,则BD=()A.6B.9C.10D.1210.已知二次函数2y-x+x6=+,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数的图像(如图所示),当直线y x m=+与新图象有3个或4个交点时,m的取值范围是()A.2524m-≤<-B.2534m-≤<-C.62m-≤≤-D.73m-≤≤-二、填空题11.“学中共党史,庆建党百年”,截至4月26日,某市党员群众参与答题次数达8420000次,掀起了党史学习竞赛的热潮,数据“8420000”用科学记数法可表示为___. 12.因式分解2242x x -+=______.13.如图,∥ABC 中,AB =5,AC =4,以点A 为圆心,任意长为半径作弧,分别交AB 、AC 于D 和E ,再分别以点D 、E 为圆心,大于二分之一DE 为半径作弧,两弧交于点F ,连接AF 并延长交BC 于点G ,GH ∥AC 于H ,GH =2,则∥ABG 的面积为________.14.一个扇形的圆心角为150°,弧长20cm π,则此扇形的半径是________cm .15.如图,CD 是∥O 的直径,弦AB ∥CD 于点H ,若∥D =30°,AD =,则AB =________cm .16.如图,直线CE 是平行四边形ABCD 的边AB 的垂直平分线,垂足为点O ,CE 与DA 的延长线交于点E .连接AC ,BE ,DO ,DO 与AC 交于点F ,则下列结论: ∥四边形ACBE 是菱形; ∥∥ACD=∠BAE ; ∥AF :FC=1:2;其中正确的结论有________.(填写所有正确结论的序号)三、解答题17.计算:1024cos 45(2022)π-︒+-18.先化简22213111-+⎛⎫÷- ⎪-+⎝⎭x x x x ,再从-1,2,3三个数中选一个合适的数作为x 的值代入求值.19.如图,在平面直角坐标系xOy中,一次函数152y x=+和2y x=-的图象相交于点A,反比例函数kyx=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数152y x=+的图象与反比例函数kyx=的图象的另一个交点为B,连接OB,求ABO∆的面积.20.某市教育局实施对口帮扶活动中,准备为部分农村学校的小学生捐赠一批课外读物,为了解学生课外读物阅读的喜好情况,现对该市农村学校中随机抽取部分小学生进行问卷调查,调查要求每人只选一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计,图(1)与图(2)是整理后绘制的两幅不完整的统计图.(1)本次调查抽取的人数是________人;在扇形统计图中,“漫画”所在扇形的圆心角为________度.(2)本次调查中喜欢“小说”的人数是________人;若该市农村小学有25000名学生,则由这两个统计图可估计喜爱“科普常识”的小学生约有________人.(3)现在有一种漫画书,发到最后只剩一本但小丽和小芳都想要,于是她们设计了一种游戏,规则是:现有4张卡片上分别写有7,8,9,10四个整数,先让小丽随机抽取一张后不放回...,再由小芳随机抽取一张,若抽取的两张卡片上的数字之和是2的倍数则小丽得到这本书,若抽取的两张卡片上的数字之和是3的倍数则小芳得到这本书.用列表法或树状图分析这种方法对二人是否公平?AC ,连接AE 交OD 于点F ,连接OE 、CE .(1)求证:四边形OCED 为矩形;(2)已知AB =2,DE =1,求OD 的长.22.甲、乙两人加工某种机器零件,已知甲比乙每小时少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等.(1)甲、乙两人每小时各加工多少个零件?(2)现有一批这种零件需要加工,已知由甲单独完成比由乙单独完成多花费2个小时,这批零件共有多少个?23.已知,如图,AB 是∥O 的直径,点C 为∥O 上一点,作弦BD ∥OC 于点F ,交AC 于点G .过点B 作直线交OC 的延长线于点E ,且∥OEB =∥AC D .(1)求证:BE 是∥O 的切线;(2)求证:2CD CG CA =⋅;24.我们不妨约定:在平面直角坐标系中,若点M 的横坐标与纵坐标之和等于点N 的横坐标与纵坐标之和,则称M ,N 两点同为“郡系点”.(1)己知点A 的坐标为(2,6),B 是反比例函数16y x=图象上的一点,且A ,B 两点同为“郡系点”,求点B 的坐标;(2)若点C (2-,1y ),D (4,2y )在直线3y kx =-(0k ≠)上,且C ,D 两点同为“郡系点”,求k 的值;(3)若点E 是直线132y x =-+上第一象限内的一点,若在抛物线212y x x c =++(1322x -≤≤)上总存在点F ,使得E ,F 两点同为“郡系点”,求c 的取值范围. 25.如图,CD 与∥O 相切于点D ,CB 与∥O 相交于A 、B 两点,且圆心O 在AB 上.(1)若1tan2C∠=,OD=2.求CD的长;(2)若点E在∥O上运动,连接DE,当弦DE平分∥ADB且与AB交于点F时:∥若AF=7,EF=13,求此时∥O的直径;∥设DE长为x,直径AB长为t(0t>,t为常数),求∥ABD的面积S关于x的函数解析式(不要求写x的取值范围).参考答案:1.B【解析】【分析】根据轴对称图形的概念求解.【详解】解:A 、不是轴对称图形,故本选项不符合;B 、是轴对称图形,故本选项符合;C 、不是轴对称图形,故本选项不符合;D 、不是轴对称图形,故本选项不符合.故选:B .【点睛】本题考查了轴对称图形的概念,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.D【解析】【分析】函数右边为分式,分式有意义的条件是分母不等于零,由此进行计算即可得到正确答案.【详解】解:∥当20x -≠时,分式12x -有意义 ∥函数y =12x-自变量x 的取值范围是:2x ≠ 故选:D【点睛】本题考查函数自变量的取值范围,牢记相关知识点并灵活应用是解题关键.3.B【解析】【分析】由平行线的性质得到∥2与∥3的关系,再根据对顶角的性质得到∥1与∥3的关系,最后求出∥2.解:∥AB∥CD,∥∥2+∥3=180°.∥∥3=∥1=54°,∥∥2=180°-∥3=180°-54°=126°.故选:B.【点睛】本题考查了平行线的性质,掌握“对顶角相等”和“两直线平行,同旁内角互补”是解决本题的关键.4.C【解析】【分析】根据展开式是三项不是两项,2平方是4不是2,合并同类项、同底数幂乘法法则计算即可判断.【详解】A、∥()222a b a ab b-=-+,此选项错误,不符合题意;2B、∥()2326=,此选项错误,不符合题意;24ab a bC、∥2ab+3ab=5ab,此选项正确,符合题意;D、∥246⋅=,此选项错误,不符合题意.a a a故选:C.【点睛】本题主要考查了整式的运算,解题的关键是熟练掌握完全平方公式计算、积的乘方法则、合并同类项、同底数幂乘法法则计算.5.D【分析】根据中位数、众数的定义即可解决问题.【详解】解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选D.【点睛】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题. 6.B【解析】【分析】先根据互余得到∥B=90°-α,再根据旋转的性质得CB=CE,∥BCE等于旋转角,再根据等腰三角形的性质得∥CEB=∥B=90°-α,然后根据三角形的内角和定理计算出∥BCE=180°-2∥B=2α,于是得到旋转角为2α.【详解】∥∥ACB=90°,∥A=α,∥∥B=90°-α,∥∥ABC绕点C按顺时针方向旋转后得到△DEC,∥CB=CE,∥BCE等于旋转角,∥∥CEB=∥B=90°-α,∥∥BCE=180°-2∥B=2α,∥旋转角为2α.故选:B.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角,等腰三角形的性质.7.C【解析】【详解】试题分析:设黄球的个数为x个,根据题意得:1212x+=13,解得:x=24,经检验:x=24是原分式方程的解;∥黄球的个数为24.故选C.考点:概率公式.8.A【解析】【分析】根据图象的平移规律,可得答案.【详解】解:将抛物线2y x向上平移2个单位长度,再向右平移1个单位长度,得到的抛物线的解析式是()212y x=-+.故选:A.【点睛】本题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.9.B【解析】【分析】先证明CEF CAB∆∆,由相似三角形的性质求出EF=9,再证明四边形BFED是平行四边形即可得到结论.【详解】解:∥EF //AB,∥CEF CAB∆∆,∥EF CF AB CB=,∥3155CFABCB==,∥3, 155 EF=∥9,EF=∥DE∥BC,EF∥AB,∥四边形BFED是平行四边形,∥9,BD EF ==故选B .【点睛】本题主要考查了相似三角形的判定与性质,平行四边形的判定与性质,求出EF =9是解答本题的关键.10.D【解析】【分析】解方程-x 2+x +6=0得A (-2,0),B (3,0),再利用折叠的性质求出折叠部分的解析式为y =(x +2)(x -3),即y =x 2-x -6(-2≤x ≤3),然后求出直线y =x +m 经过点B (3,0)时m 的值和当直线y =x +m 与抛物线y =x 2-x -6(-2≤x ≤3)有唯一公共点时m 的值,从而得到当直线y =x +m 与新图象有3个或4个交点时,m 的取值范围.【详解】解:如图,当0y =时,260x x -++=,解得122,3x x =-=,∥A (-2,0),B (3,0),将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,则下方对应的解析式为2(2)(3)6(23)=+-=---≤≤y x x x x x ,∥y=x 为第一、三象限的角平分线,直线y =x +m 可以看成是y=x 上下平移m 个单位得到, ∥当直线y =x +m 刚好经过B 点时,此时新函数图像与y =x +m 恰好有3个交点,如上图中的 直线y =x +m 1所示,∥10=3+m ,解得13m =-;当直线y =x +m 刚好经过C 点时,此时新函数图像与y =x +m 恰好有3个交点,如上图中的 直线y =x +m 2所示,∥联立方程组226⎧=--⎨=+⎩y x x y x m ,整理得到:22260---=x x m , ∥直线y =x +m 2和y =x 2-x -6(-2≤x ≤3)有唯一公共点C ,∥方程22260---=x x m 有两个相等的实数根,∥22=444(6)0∆-=-⨯--=b ac m ,解得:27m =-,当新函数图像与y =x +m 有4个交点时,73m -<<-,综上所述:直线y =x +m 与新图象有3个或4个交点时,m 的取值范围是73m -≤≤-.【点睛】本题考查了抛物线与坐标轴的交点坐标的求法及二次函数的图像和性质,考查了二次函数图像的坐标变化,本题的关键是求出2y -x +x 6=+沿x 轴翻折后对应的解析式.11.68.4210⨯【解析】【分析】科学记数法的表示形式为10n a ⨯ 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数【详解】解:8420000=68.4210⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.22(1)x -.【解析】【详解】解:2242x x -+=22(21)x x -+=22(1)x -,故答案为22(1)x -.13.5【解析】【分析】根据ADF AEF ≌,得出AG 为BAC ∠的角平分线,得到GM =GH 即可求出∥ABG 的面积.【详解】连接DF 、EF ,过点F 作GM ∥AB ,交AB 于点M∥在以A为圆心的圆中,AD=AE,以D、E为圆心的半径DF=EF∥AD AE DF EF AF AF=⎧⎪=⎨⎪=⎩∥ADF AEF≌∥DAF FAE∠=∠∥ AG为BAC∠的角平分线∥ GM∥AB,GH∥AC∥ GM=GH=2∥1152522ABGAB GM=⨯=⨯⨯=△S故答案为:5.【点睛】本题考查全等三角形和角平分线的性质,解题的关键是熟练掌握角平分线的相关知识.14.24【解析】【分析】根据弧长公式即可得到关于扇形半径的方程即可求解.【详解】解:设扇形的半径是R,则15020 180Rππ=解得:R=24.故答案为24.【点睛】题主要考查了扇形的弧长,正确理解公式是解题的关键.15.【解析】【分析】根据∥D=30°,直角三角形中30°角对应的直角边等于斜边的一半计算出AH,再根据垂直于弦的直径平分弦得到AB=2AH计算出AB.【详解】在Rt AHD中,∥D=30°∥2AD AH=∥AH∥弦AB∥CD∥2==AB AH故答案为:【点睛】本题考查直角三角形和圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.16.∥∥∥【解析】【分析】根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可.【详解】∥四边形ABCD是平行四边形,∥AB CD∥,AB=CD,∥EC垂直平分AB,∥OA=OB=12AB=12DC,CD∥CE,∥OA CD∥,∥EA EO OAED EC CD===12,∥AE=AD,OE=OC,∥OA=OB,OE=OC,∥四边形ACBE是平行四边形,∥AB∥EC,∥四边形ACBE是菱形,故∥正确,∥∥DCE=90°,DA=AE,∥AC=AD=AE,∥∥ACD=∥ADC=∥BAE,故∥正确,∥OA CD ∥, ∥12AF OA CF CD ==,故∥正确, 故答案是:∥∥∥.【点睛】此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题.17.32【解析】【分析】直接利用负指数幂、特殊角的三角函数值、二次根式的化简和零指数幂分别计算,然后根据实数的混合运算法则计算即可求解.【详解】解:原式1412=+ 32=+32=. 【点睛】本题主要考查负指数幂、特殊角的三角函数值、二次根式的化简和零指数幂,熟记相关运算法则和特殊角的三角函数值是解题的关键.18.12x x --,2. 【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可.【详解】解:原式=2(1)13()(1)(1)11x x x x x x -+÷-+-++ =1211x x x x --÷++=1112x x x x -+⋅+- =12x x -- , ∥x≠±1且x≠2,∥x=3,则原式=3132--=2. 【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.19.(1)反比例函数的表达式为8y x-=;(2)ABO ∆的面积为15. 【解析】【分析】(1)联立两一次函数解出A 点坐标,再代入反比例函数即可求解;(2)联立一次函数与反比例函数求出B 点坐标,再根据反比例函数的性质求解三角形的面积.【详解】 (1)由题意:联立直线方程1522y x y x⎧=+⎪⎨⎪=-⎩,可得24x y =-⎧⎨=⎩,故A 点坐标为(-2,4) 将A (-2,4)代入反比例函数表达式k y x=,有42k =-,∥8k =- 故反比例函数的表达式为8y x =-(2)联立直线152y x =+与反比例函数8y x=-, 1528x y x y ⎧=+⎪⎪⎨⎪=-⎪⎩解得122,8x x =-=-,当8x =-时,1y =,故B (-8,1)如图,过A ,B 两点分别作x 轴的垂线,交x 轴于M 、N 两点,由模型可知S 梯形AMNB =S △AOB ,∥S 梯形AMNB =S △AOB =12121()()2y y x x +-⨯=1(14)[(2)(8)]2+⨯---⨯=156152⨯⨯= 【点睛】此题主要考查一次函数与反比例函数综合,解题的关键是熟知一次函数与反比例函数的图像与性质.20.(1)300、72(2)120、7500(3)公平,理由见解析【解析】【分析】(1)用“其他”种类人数除以“其他”种类人数所占百分比即可求出本次调查抽取的人数;用“漫画”种类人数除以本次调查抽取的人数乘360°即可求出“漫画”所在扇形的圆心角度数; (2)先求出“科普常识”人数,再用本次调查抽取的人数减去“漫画”“科普常识”“其他”的人数,即可求出本次调查中喜欢“小说”的人数;用25000乘“科普常识”所占的百分比,即可求出该市农村25000名学生,估计喜爱“科普常识”的小学生人数;(3)画出树状图,根据树状图求出所有情况,找到符合抽得的数字之和是2的倍数的情况数、是3的倍数的情况数,再分别除以总情况数,即可求出数字之和是2的倍数的概率,数字之和是3的倍数的概率,即可判断是否公平.(1)解:30÷10%=300(人)60÷300×360°=72°故答案为:300,72(2)解:300×30%=90(人)300-90-60-30=120(人)25000×30%=7500(人)故答案为:120,7500(3)解:树状图如下:由树状图可知,共有12种等可能的结果,其中,抽得的数字之和是2的倍数的有4种,是3的倍数的有4种;则书给小丽的概率是41123=,给小亮的概率是41123= 答:这种方法是公平的.【点睛】本题考查了结合扇形统计图和条形统计图获取相关信息,包括利用样本百分比估计总体数量,根据树状图或列表法计算概率等知识点,理解题意,综合运用这些知识点是解题的关键.21.(1)见解析【解析】【分析】(1)根据菱形的性质先证,即有DE =OC ,即有四边形OCED 都是平行四边形,再结合AC ∥BD ,即可证明四边形OCED 是矩形;(2)在Rt ∥OCD 中利用勾股定理即可求出OD .(1)证明∥四边形ABCD 是菱形,∥OA =OC 12AC =,AC ∥BD∥DE AC ∥且DE 12AC =, ∥DE =OC ,又DE AC ∥,∥四边形OCED 都是平行四边形,∥AC ∥BD ,∥四边形OCED 是矩形;(2)∥四边形OCED 为矩形,DE =1,∥OC =DE =1,∥COD =90°,又∥四边形ABCD 是菱形,AB =2,∥CD =AB =2,又∥∥COD =90°,∥在Rt ∥OCD 中,∥OD【点睛】本题考查了菱形的性质、平行四边形的判定与性质、矩形的判定与性质、勾股定理等知识,掌握菱形的性质是解答本题的关键.22.(1)甲每小时分别加工24个零件,乙每小时分别加工30个零件;(2)这批零件共有240个【解析】【分析】(1)设甲每小时加工x 个零件,则乙每小时加工()6x +个零件,根据题意列出分式方程,解方程即可解答;(2)设这批零件共有y 个,根据题意列出关于y 的一元一次方程,解方程即可解答(1)解:设甲每小时加工x 个零件,则乙每小时加工()6x +个零件,由题意得:2403006x x =+, 解得:24x =,检验:24x =是方程的解,且符合题意,630x +=,答:甲每小时分别加工24个零件,乙每小时分别加工30个零件.(2)设这批零件共有y 个,由题意得:22430y y -=, 解得:240y =,答:这批零件共有240个.【点睛】本题考查了分式方程的实际应用,一元一次方程的实际应用,解题关键是读懂题意正确列出方程,熟练掌握分式方程和一元一次方程的解法.23.(1)见解析(2)见解析【解析】【分析】(1)根据BD∥OC,可得∥OBF+∥BOF=90°,又根据∥OEB=∥ACD,∥ACD=∥ABD,即有∥OEB=∥ABD,则∥OEB+∥BOF=90°,即OB∥BE问题得证;(2)连接AD,证明出∥DCG∥∥ACD即可.(1)证明:∥BD∥OC,∥∥OBF+∥BOF=90°,又∥∥OEB=∥ACD,∥ACD=∥ABD,∥∥OEB=∥ABD,∥∥OEB+∥BOF=90°,∥∥OBE=90°,即OB∥BE,∥OB是∥O的半径,∥BE是∥O的切线;(2)证明:连接AD,如图,∥OC是∥O的半径,BD∥OC,∥CD BC=,∥∥DAC=∥BDC,∥∥DCA=∥DCA,∥∥DCG∥∥ACD,∥CG CD CD CA=.∥ 2•CD CG CA=.【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、相似三角形的判定与性质等知识,掌握垂径定理是解答本题的关键.24.(1)(4,4)(2)1k=-(3)1531 88c≤≤【解析】【分析】(1)设点B的坐标为(b,16b),由A,B两点同为“郡系点”得1626bb+=+,解分式方程即可;(2)根据一次函数图象上点的坐标的特征求出1y,2y,利用C,D两点横坐标与纵坐标之和相等列方程即可求解;(3)先根据点E在直线132y x=-+上第一象限内,求出点E的横、纵坐标之和N的取值范围,再根据二次函数图象的性质求出点F的横、纵坐标之和M的取值范围,N的取值范围在M的取值范围之内,列一元一次不等式组,即可求解.(1)解:∥点B是反比例函数16yx=图象上的一点,∥设点B的坐标为(b,16b),∥点A的坐标为(2,6),A,B两点同为“郡系点”,∥16 26bb+=+,整理得28160b b-+=,解得4b =,经验证4b =是分式方程1626b b+=+的解, ∥164b =, ∥点B 的坐标为(4,4).(2)解:∥点C (2-,1y ),D (4,2y )在直线3y kx =-(0k ≠)上,∥123y k =--,243y k =-,∥C ,D 两点同为“郡系点”,∥223443k k ---=+-,整理得66k =-,∥1k =-.(3) 解:对于一次函数图象132y x =-+, 令0x =,得3y =;令0y =,得6x =.∥点E 是直线132y x =-+上第一象限内的一点, ∥设点E 的坐标为(n ,132n -+),其中06n <<,∥点E 的横、纵坐标之和为:113322N n n n =-+=+,∥06n <<,N 随n 的增大而增大, ∥11036322N ⨯+<<⨯+,即36N <<.∥点F 在抛物线212y x x c =++(1322x -≤≤)上, ∥设点F 的坐标为(m ,212m m c ++),其中1322m -≤≤, ∥点F 的横、纵坐标之和为:2211222M m m m c m m c =+++=++, ∥二次函数2122M m m c =++的图象开口向上,对称轴为22122m -==-⨯, ∥当1322m -≤≤时,M 随m 的增大而增大,∥2211113322222222c M c ⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+<<⨯+⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,即73388c M c -+<<+, ∥抛物线212y x x c =++(1322x -≤≤)上总存在点F ,使得E ,F 两点同为“郡系点”, ∥7383368c c ⎧-+≤⎪⎪⎨⎪+≥⎪⎩, 解得153188c ≤≤. 【点睛】本题借新定义考查一次函数、二次函数图象的性质,解一元一次不等式组等知识点,第3问有一定难度,求出点E 及点F 的横、纵坐标之和的取值范围是解题的关键. 25.(1)4(2)∥24;∥221124S x t =- 【解析】【分析】(1)连接OD ,在Rt COD 中,利用tan OD C CD∠=即可求得 (2)∥将EBD △绕E 点逆时针旋转,至EB 与EA 重合,易知AEB △和D ED '△等腰直角三角形,且AFD EFB ∽△△,设AD a =,BD b =,OB r =,由Rt ADB 和相似三角形得对应边成比例,列三个等式,解三个未知数,即可算出r∥设AD a =,BD b =,OB r =,由Rt ADB 和等腰直角三角形D ED '△,列出两个关于a ,b ,r 的等式,得到ab 的表达式,即可(1)连接OD∥CD 为切线∥90CDO ∠=︒在Rt COD 中:1tan 2OD C CD ∠== 解得:4CD =(2)∥连接AE ,BE∥AB 为直径∥90AEB =︒∠∥DE 平分ADB ∠,90ADB ∠=︒∥45ADE BDE ∠=∠=︒∥AE BE =,AE BE =∥AEB △是等腰直角三角形将EBD △绕E 点逆时针旋转,至EB 与EA 重合,D 点对应点为D∥180DBE DAE ∠+∠=︒,DBE D AE '∠=∠∥180D AE DAE '∠+∠=︒即D ,A ,D 三点共线∥90DEB AED ∠+∠=︒,DEB D EA '∠=∠∥90D EA AED '∠+∠=︒又∥D E DE '=∥D ED '△是等腰直角三角形设AD a =,BD b =,OB r =则BE =,DD a b '=+,)2DE a b =+ ∥ADE ABE ∠=∠,AFD EFB ∠=∠,∥AFD EFB ∽△△ ∥AD AF DF BE EF BF== 即: 222(2)a b r +=①713== 将∥式拆成两个:713713=④ 由∥得:a =将a =代入∥式得:b =将a =,b =代入∥式 解得:24r =∥设AD a =,BD b =,由∥知:222a b a b t ⎧+⎪⎨+=⎪⎩①② 2-①②化简得:2212ab x r =- 2211112224ABD S AD BD ab x t =⋅==-△ 【点睛】本题是几何综合题,考查了圆的基本性质,相似三角形,旋转,特殊直角三角形三边关系.第一小问注意利用切线的特点做辅助线构造直角三角形,第二小问∥旋转构造等腰直角三角形是难点,相似是重点,第二小问∥注意利用方程组算出目标代数式即可.。
2024年湖南省长沙市教科院中考数学模拟试卷及参考答案
2024年湖南省长沙市教科院中考数学模拟试卷一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)2023年10月23日,湖南某中学举办了“观书画之美,品文化之姿”书法优秀作品展览,下面是学生湘湘临摹的著名书法家邓石如的《弟子职》的部分图片,据此,回答问题.下面哪个函数与该图片最相似?()A.x2+y2=2024B.y=﹣x2025C.y=x2023D.y=﹣x2024 2.(3分)如图,已知,在△ABC中,∠B=60°,延长BC至点M,过点C作CN平分∠ACM,且AB∥CN.在BC上取点D,CN上取点E,使BD=CE,连接AD,DE,AE,过B点作BH∥DE,分别交AD,AC,AE于点G,F,H,连接HC交DE于点K.若BG2﹣2•BG•DG﹣3DG2=0,GF=5,DE=8,则KE的长为()A.1B.C.3D.集合论是现代数学的重要分支.萧文灿在《集合论初步》一书中写道:“吾人直观或思维之对象,如为相异而确定之物,其总括之全体即谓之集合,其组成此集合之物谓之集合之元素.”阅读下列材料,回答第3,4题.一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合.我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c表示集合中的元素.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的,记作A=B.1.如果a是集合A中的元素,我们则读作a属于A,记作a∈A,反之,读作a不属于A,记作a∉A.2.集合的表示方法:①列举法:把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合;②描述法:一般地,设A是一个集合,我们把集合A中所有具有共同特征的P(x)的元素x所组成的集合表示为{x∈A|P(x)}.(注:R为实数集);3.子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集.4.交集:一般地,由所有属于集合A且属于集合B的元素组成的集合,称为集合A与集合B的交集,记作A∩B.3.(3分)对于集合{x∈R|a≤x≤b},我们把b﹣a称为它的长度.设集合A={x∈R|a+43≤x+43≤a+2024},B={x∈R|b+1010≤x+2024≤b+2024},且A,B都是U={x∈R|12≤x+12≤2024}的子集,则A∩B的长度的最小值是()A.2024B.983C.981D.20234.(3分)对于集合{+b|1≤a≤b≤2}中的最大元素和最小元素分别为m,n,则4mn4﹣856的值为()A.2024B.2023C.2022D.20215.(3分)如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线和的一个分支上,分别过点A、C作x轴的垂线段,垂足分别为点M和点N,先给出如下四个结论:①;②阴影部分的面积是;③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则k1+k2=0,以上结论正确的是()A.①③B.①②③C.②③④D.①④6.(3分)已知正方形ABCD的边长为4,点E是线段CD上一点,作点C关于BE的垂线交BE于点F,以F为圆心,CF为半径的圆交BE于点P,M在AB上,N在AC上,则C△PMN的最小值为()A.B.C.D.7.(3分)已知二次函数y=ax2+bx+c(a≠0)满足:(1)当x=﹣1时,y=0,(2)对一切x的值有成立.则该二次函数的解析式为()A.B.C.D.8.(3分)“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马A1,B1,C1,田忌也有上、中、下三匹马A2,B2,C2,且这6匹马在比赛中的胜负可以用不等式表示如下A1>A2>B1>B2>C1>C2(注:A>B表示A马与B 马比赛,A马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,并借助对阵(C2A1,A2B1,B2C1)取得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,回答问题.如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?获胜的概率是多少?()A.上:B.中:C.下:D.下:9.(3分)如图,已知抛物线与x轴交于点A与点B(4,0),与y轴交于C (0,2).点P为第一象限抛物线上的点(图中未标出),点D在y轴负半轴上,且满足OD=OB,点Q为抛物线上一点,使得∠QBD=90°,点E,F分别为△BDQ的边DQ、DB上的动点,满足QE=DF,记BE+QF的最小值为m,△PCB的面积为S,若,则k的取值范围是()A.13≤k<17B.13≤k≤17C.13<k<17D.不确定10.(3分)设S是xOy平面上的一个正n边形,中心在原点O处,顶点依次为P1,P2,…,P n,有一个顶点在正y轴上.又设变换σ是将S绕原点O旋转一个角度使得旋转后的图形与原图形重合,σ﹣1表示σ的反变换(即旋转角度大小和σ相同但方向相反),变换φ是将S作关于y轴的对称变换(即将(x,y)变为(﹣x,y)),σφ表示先作变换σ再作变换φ,以此类推,则有()A.φσφ=σB.φσφ=σ﹣1C.φσ=σφD.φσφσ=σσ二、填空题:本题共5小题,每题3分,共18分.11.(3分)分解因式:(x2+4xy+3y2)(4x2+20xy+21y2)﹣15y4=.12.(3分)设x>0,y<1,则如下式子中u的最小值为.13.(3分)如图,∠ACB=45°,半径为2的⊙O与角的两边相切,点P是⊙O上任意一点,过点P向角的两边作垂线,垂足分别为E,F,设t=PE+PF,则t的取值范围是.14.(3分)在△ABC中AB=7,BC=3,∠C=90°,点D在边AC上,点E在CA延长线上,且CD=DE,如果⊙B过点A,⊙E过点D,若⊙B与⊙E有公共点,那么⊙E半径r的取值范围是.15.(6分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+b经过点,点,与y轴交于点C.(1)如图1,点D在该抛物线上,点D的横坐标为﹣2,过点D向y轴作垂线,垂足为点E.点P是y轴负半轴上的一个动点,连接DP,设点P的纵坐标为t,△DEP的面积为S,则S关于t的函数解析式为.(不要求写出自变量t的取值范围)(2)如图2,在(1)的条件下,连接OA,点F在OA上,过点F向y轴作垂线,垂足为点H,连接DF交y轴于点G,点G为DF的中点,过点A作y轴的平行线与过P点所作的x轴的平行线相交于点N,连接CN,PB,延长PB交AN于点M,点R在PM上,连接RN,若3CP=5GE,∠PMN+∠PDE=2∠CNR,则直线RN的解析式为.三、解答题:本题共9小题,共72分,解答时应写出文字说明、证明过程或演算步骤.16.先化简,再求值:,其中.17.在“双减”政策实施两个月后,某市“双减办”面向本市城区学生,就“‘双减’前后参加校外学科补习班的情况”进行了一次随机问卷调查(以下将“参加校外学科补习班”简称“报班”),根据问卷提交时间的不同,把收集到的数据分两组进行整理,分别得到统计表1和统计图1:整理描述表1:“双减”前后报班情况统计表(第一组)报班数01234及以上合计人数类别“双减”前10248755124m“双减”后2551524n0m(1)根据表1,m的值为,的值为;分析处理(2)请你汇总表1和图1中的数据,求出“双减”后报班数为3的学生人数所占的百分比;(3)“双减办”汇总数据后,制作了“双减”前后报班情况的折线统计图(如图2).请依据图表中的信息回答以下问题:①本次调查中,“双减”前学生报班个数的中位数为,“双减”后学生报班个数的众数为;②请对该市城区学生“双减”前后报班个数变化情况作出对比分析(用一句话来概括).18.图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知AB∥CD∥FG,A,D,H,G四点在同一直线上,测得∠FEC=∠A=72.9°,AD=1.6m,EF=6.2m.(结果保留小数点后一位)(1)求证:四边形DEFG为平行四边形;(2)求雕塑的高(即点G到AB的距离).(参考数据:sin72.9°≈0.96,cos72.9°≈0.29,tan72.9°≈3.25)19.正弦定理在高中数学中有很广泛的运用,据此,回答问题.(1)在△ABC中,顶点A,B,C所对的边分别为a,b,c,记△ABC的外接圆半径为R,求证:.(本题图未给出)(2)在等边三角形ABC中,D,E分别为边AC,BC上的点,且满足AE=CD,过B作AD的垂线交AD于点F,设AD与BE交于点G,若GF=x,GE=y,求△ACD的外接圆半径.(用x,y表示)20.有一个工程,甲完成需规定时间多5天,乙完成需规定时间的一半多两天,丙完成需规定时间的多1天,丁完成需规定时间的多天,戊完成需规定时间的一半多半天,己恰好在规定时间完成,且甲,乙,戊,己的工作效率之和恰等于丙,丁的工作效率之和.问:是否存在满足题意的规定时间(量纲:天)?如果有,求出具体数值,如果没有,说明理由.21.跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为h m(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为;(2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;②若a=﹣时,运动员落地点要超过K点,则b的取值范围为;(3)若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.22.设点H是△ABC的垂心,以AC为直径的圆与△ABH的外接圆交于点K,求证:CK平分BH.23.在平面直角坐标系中,点O为坐标系的原点,抛物线y=ax2+bx经过A(10,0),B(,6)两点,直线y=2x﹣4与x轴交于点C,与y轴交于点D,点P为直线y=2x﹣4上的一个动点,连接PA.(1)求抛物线的解析式;(2)如图1,当点P在第一象限时,设点P的横坐标为t,△APC的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);(3)如图2,在(2)的条件下,点E在y轴的正半轴上,且OE=OD,连接CE,当直线BP交x轴正半轴于点L,交y轴于点V时,过点P作PG∥CE交x轴于点G,过点G 作y轴的平行线交线段VL于点F,连接CF,过点G作GQ∥CF交线段VL于点Q,∠CFG的平分线交x轴于点M,过点M作MH∥CF交FG于点H,过点H作HR⊥CF于点R,若FR+MH=GQ,求点P的坐标.24.阅读材料,回答下列小题.阅读材料1:调和是射影几何重要不变量交比的一种特殊形式,早在古希腊,数学家们便发现了一组具有特殊比例关系的点列:调和点列.我们定义:若一直线上依次存在四点A,B,C,D,满足AB•CD=BC•AD,则称A,B,C,D为调和点列.从直线外一点P引射线PA,PB,PC,PD,则称PA,PB,PC,PD 为调和线束.(1)如图1,过圆Q外一点P作圆Q的切线PA,PB,并引圆Ω的割线PCD,设PD与A交于点E.①求证:P,C,E,D是调和点列.②求证:AC•BD=BC•AD.阅读材料2:阿波罗尼斯圆:对于平面上的两定点A,B和平面上一动点P,若P到A和B的距离之比为定值,则点P的轨迹是一个圆,我们称该圆是点P关于AB的“阿氏圆”.(2)根据阅读材料1,2,回答①②小题.(本题图未给出)①证明阿波罗尼斯圆,并确定该圆圆心的位置.②若点P关于AB的“阿氏圆”交AB于C,D,求证:A,C,B,D为调和点列.(3)如图2,ABCD是平行四边形,G是三角形ABD的重心,点P,Q在直线BD上,满足GP与PC垂直,GQ与QC垂直.求证:AG平分∠PAQ.2024年湖南省长沙市教科院中考数学模拟试卷(3月份)参考答案一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D;2.B;3.B;4.A;5.D;6.A;7.B;8.C;9.A;10.B二、填空题:本题共5小题,每题3分,共18分.11.(2x+y)(x+4y)(2x2+9xy+12y2);12.;13.2≤t≤4+2;14.;15.S=﹣t+;y=﹣三、解答题:本题共9小题,共72分,解答时应写出文字说明、证明过程或演算步骤.16.﹣.;17.300;0.02;1;0;18.(1)证明见解答;(2)7.5m.;19.(1)证明见解答;(2)△ACD 的外接圆半径为.;20.不存在满足题意的规定时间,理由见解答过程.;21.66;b >;22.答案见解答过程.;23.(1)y=﹣x2+x.(2)S=8t﹣16.(3)P(,5).;24.(1)①见解答;②见解答;(2)①见解答;②见解答;(3)见解答.第1页(共1页)。
【3套试卷】长沙市中考第一次模拟考试数学精选含答案
中考模拟考试数学试题含答案一、选择题(本大题共12小题,共36.0分)1.2019的倒数是()A. 2019B.C.D.2.要使二次根式在实数范围内有意义,则实数x的取值范围是()A. B. C. D.3.如图,由三个相同小正方体组成的立体图形的左视图是()A. B. C. D.4.2018年10月24日港珠澳大桥全线通车,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,大桥总长度55000米.数字55000用科学记数法表示为()A. B. C. D.5.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A. B. C. D.6.如图,△ABC与△DEF关于y轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D的坐标为()A. B. C. D.7.分式方程=的解是()A. B. C. D. 或8.若反比例函数y=的图象经过点(3,1),则它的图象也一定经过的点是()A. B. C. D.9.不等式组的解集是()A. B. C. D. 或10.如图,△ABC中,AC=8,BC=5,AB的垂直平分线MN交AC于点D,则△DBC的周长为()A. 13B. 12C. 10D. 911.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,已知BD=6,CD=2,则AD的长为()A. B. C. 3 D.12.如图,△ABC的三条中线AD,BE,CF交于同一点G,若S△ABC=12,则图中阴影部分面积是()A. 3B. 4C. 5D. 6二、填空题(本大题共4小题,共16.0分)13.因式分解3x2-3y2=______.14.小燕和小敏在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,搅匀后再轮到下一个人摸球.她们两人摸到的球颜色不相同的概率是______.15.如图,AB为⊙O的直径,CD是⊙O的弦,∠ACD=25°,则∠BAD=______°.16.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是______.三、计算题(本大题共1小题,共12.0分)17.计算:(1)4×(-)+|-|-+;(2)化简:(a+2b)2-a(a+b);四、解答题(本大题共5小题,共56.0分)18.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,该店在“五一”节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元,求铅笔、圆珠笔各卖出多少支?19.中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:(1)a=______,b=______;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在______分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?20.在社会实践课上,小聪所在小组要测量一条小河的宽度,如图9,河岸EF∥MN,小聪在河岸MN上的点A处测得河对岸小树C位于东北方向,然后向东沿河岸走了30米,到达B处测得河对岸小树D位于北偏东30°的方向,又有同学测得CD=10米(1)∠EAC=______度,∠DBN=______度;(2)求小河的宽度AE.(结果精确到0.1米,参考数据:≈1.414,≈1.732)21.如图,在正方形ABCD中,点E、F分别在边BC和CD上,且BE=CF,连接AE、BF,其相交于点G,将△BCF沿BF翻折得到△BC′F,延长FC′交BA延长线于点H.(1)①求证:AE=BF;②猜想AE与BF的位置关系,并证明你的结论;(2)若AB=3,EC=2BE,求BH的长.22.如图,已知抛物线y=x2+bx+c与x轴相交于点A(1,0)和点B,与y轴交于点C(0,-3)顶点为D(1)求抛物线的函数关系式;(2)判断△BCD的形状,并说明理由;(3)点P在抛物线上,点Q在直线y=x上,是否存在点P、Q 使以点P、Q、C、O为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:2019的倒数是:.故选:C.直接利用倒数的定义:乘积是1的两数互为倒数,进而得出答案.此题主要考查了倒数,正确把握相关定义是解题关键.2.【答案】D【解析】解:∵二次根式在实数范围内有意义,∴x+2≥0,解得:x≥-2,则实数x的取值范围是:x≥-2.故选:D.直接利用二次根式的概念.形如(a≥0)的式子叫做二次根式,进而得出答案.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.3.【答案】D【解析】解:从左边看竖直叠放2个正方形.故选:D.细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.本题主要考查了几何体的三种视图和学生的空间想象能力,难度适中.4.【答案】B【解析】解:数字55000用科学记数法表示为5.5×104.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】D【解析】解:如图,∵直线a∥b,∴∠3=∠1=60°.∵AC⊥AB,∴∠3+∠2=90°,∴∠2=90°-∠3=90°-60°=30°,故选:D.根据平行线的性质,可得∠3与∠1的关系,根据两直线垂直,可得所成的角是90°,根据角的和差,可得答案.本题考查了平行线的性质,利用了平行线的性质,垂线的性质,角的和差.6.【答案】B【解析】解:∵△ABC与△DEF关于y轴对称,A(-4,6),∴D(4,6).故选:B.根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(-x,y),进而得出答案.此题主要考查了关于y轴对称点的性质,准确记忆横纵坐标的关系是解题关键.7.【答案】C【解析】解:在方程两边同乘x-2得:2x-5=-3,解得:x=1,检验:当x=1时,x-2≠0,∴分式方程的解为:x=1.故选:C.根据解分式方程的步骤,最后一定进行检验即可解答.本题考查了分式方程的解,解决本题的关键是解分式方程.8.【答案】D【解析】解:∵反比例函数y=的图象经过点(3,1),∴y=,把点一一代入,发现只有(-1,-3)符合.故选:D.由反比例函数y=的图象经过点(3,1),可求反比例函数解析式,把点代入解析式即可求解.本题运用了待定系数法求反比例函数解析式的知识点,然后判断点是否在反比例函数的图象上.9.【答案】C【解析】解:,解①得x>-1,解②得x<5,所以不等式组的解集为-1<x<5.故选:C.分别解两个不等式得到x>-1和x<5,然后根据大于小的小于大的取中间确定不等式组的解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.10.【答案】A【解析】解:∵DM垂直平分AB,∴DA=DB,∴△DBC的周长=DC+DB+BC=DC+DA+BC=AC+BC=8+5=13.故选:A.根据线段垂直平分线的性质得到DA=DB,然后利用等线段代换得到△DBC的周长=AC+BC.本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.11.【答案】A【解析】解:由射影定理得,AD2=BD•CD=6×2=12,解得,AD=2,故选:A.根据射影定理计算即可.本题考查的是射影定理,直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.12.【答案】B【解析】解:方法1:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,∴S阴影=S△CGE+S△BGF=4.设△AFG,△BFG,△BDG,△CDG,△CEG,△AEG的面积分别为S1,S2,S3,S4,S5,S6,根据中线平分三角形面积可得:S1=S2,S3=S4,S5=S6,S1+S2+S3=S4+S5+S6①,S2+S3+S4=S1+S5+S6②,由①-②可得S1=S4,所以S1=S2=S3=S4=S5=S6=2,故阴影部分的面积为4.故选:B.根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.考查了三角形的重心,三角形的面积,根据三角形的中线把三角形的面积分成相等的两部分,该图中,△BGF的面积=△BGD的面积=△CGD的面积,△AGF的面积=△AGE的面积=△CGE的面积.13.【答案】3(x+y)(x-y)【解析】解:3x2-3y2=3(x2-y2)=3(x+y)(x-y).故答案为:3(x+y)(x-y).先提取公因式3,再对余下的多项式利用平方差公式继续分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】解:由题意可得,树状图如下图所示,她们两人摸到的球颜色不相同的概率是:,故答案为:.根据题意可以画出相应的树状图,从而可以求得相应的概率,本题得以解决.本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.15.【答案】65【解析】解:∵∠ACD=25°,∴∠ABD=∠ACD=25°,∵AB为⊙O的直径,∴∠ADB=90°,则∠DAB=90°-∠ABD=65°,故答案为:65.由圆周角定理得出∠ABD=∠ACD=25°,再根据AB为⊙O的直径知∠ADB=90°,由∠DAB=90°-∠ABD可得答案.本题考查了圆周角定理,解答本题的关键是掌握圆周角定理中在同圆或等圆中,同弧或等弧所对的圆周角相等.16.【答案】+1【解析】解:如图,连接AM,由题意得:CA=CM,∠ACM=60°,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60°;∵∠ABC=90°,AB=BC=,∴AC=2=CM=2,∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=AC=1,OM=CM•sin60°=,∴BM=BO+OM=1+,故答案为:1+.如图,连接AM,由题意得:CA=CM,∠ACM=60°,得到△ACM为等边三角形根据AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=AC=1,OM=CM•sin60°=,最终得到答案BM=BO+OM=1+.本题考查了图形的变换-旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.17.【答案】解:(1)4×(-)+|-|-+=-2+-2+2=-;(2)(a+2b)2-a(a+b)=a2+4ab+4b2-a2-ab=3a+4b2.【解析】(1)先算负整数指数幂,二次根式的化简,绝对值,再算加减法即可求解;(2)先算完全平方公式、单项式乘多项式,再去括号、合并同类项即可求解.考查了负整数指数幂,二次根式,绝对值,完全平方公式,单项式乘多项式,合并同类项,关键是熟练掌握计算法则正确进行计算.18.【答案】解:设铅笔卖出x支,圆珠笔卖出y支,依题意,得:,解得:.答:铅笔卖出25支,圆珠笔卖出35支.【解析】设铅笔卖出x支,圆珠笔卖出y支,根据两种笔共卖出60支且卖得金额87元,即可得出关于x,y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.【答案】60 0.15 80≤x<90【解析】解:(1)样本容量是:10÷0.05=200,a=200×0.30=60,b=30÷200=0.15;(2)补全频数分布直方图,如下:(3)一共有200个数据,按照从小到大的顺序排列后,第100个与第101个数据都落在第四个分数段,所以这次比赛成绩的中位数会落在80≤x<90分数段;(4)3000×0.40=1200(人).即该校参加这次比赛的3000名学生中成绩“优”等的大约有1200人.故答案为60,0.15;80≤x<90;1200.(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得a的值,用第三组频数除以数据总数可得b的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.20.【答案】45 60【解析】解:(1)由题意得:∠BAC=∠EAC=45°,∠DBN=90°-30°=60°;故答案为:45,60;(2)如图,作BH⊥EF于H,CK⊥MN于K,垂足分别为H、K,则四边形BHCK是矩形,AE=HB,设CK=HB=x,∵∠CKA=90°,∠CAK=45°,∴∠CAK=∠ACK=45°,∴AK=CK=x,BK=HC=AK-AB=x-30,∴HD=x-30+10=x-20,在Rt△BHD中,∵∠BHD=90°,∠HBD=30°,∴tan30°=,∴=,解得x=30+10≈47.3,∴AE=HB≈47.3米;答:河的宽度AE约为47.3米.(1)由题意即可得出结果;(2)作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,根据tan30°=列出方程,即可解决问题.本题考查解直角三角形的应用、方向角、三角函数等知识,解题的关键是添加辅助线构造直角三角形,学会利用三角函数的定义,列出方程解决问题,属于中考常考题型.21.【答案】(1)①证明:∵四边形ABCD是正方形,∴BA=BC,∠ABC=∠BCD=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴AE=BF;②解:AE⊥BF,理由如下:∵△ABE≌△BCF,∴∠BAE=∠CBF,∵∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠CBF+∠AEB=90°,即AE⊥BF;(2)解:∵BC=AB=3,EC=2BE,∴EC=2,BE=1,∴C′F=CF=1,由折叠的性质可知,∠C′BF=∠CBF,∠BC′F=∠BCF=90°,∵∠C′FB+∠C′BF=90°,∠HBF+∠FBC=90°,∴∠C′FB=∠HBF,∴HB=HF,∴HC′=HF-C′F=HB-C′F=3+AH-1=2+AH,在Rt△HBC′中,HB2=C′B2+C′H2,即(3+AH)2=32+(2+AH)2,解得,AH=2,∴BH=AH+AB=5.【解析】(1)①根据正方形的性质得到BA=BC,∠ABC=∠BCD=90°,利用SAS定理证明△ABE≌△BCF,根据全等三角形的性质证明结论;②根据全等三角形的性质得到∠BAE=∠CBF,根据垂直的定义证明;(2)根据折叠的性质得到∠C′BF=∠CBF,∠BC′F=∠BCF=90°,证明HB=HF,根据勾股定理列式计算即可.本题考查的是正方形的性质、全等三角形的判定和性质、折叠的性质、勾股定理的应用,掌握全等三角形的判定定理和性质定理、正方形的性质定理是解题的关键.22.【答案】解:(1)把点A、C坐标代入抛物线表达式得:,解得:,抛物线的表达式为:y=x2+2x-3,顶点D的坐标为(-1,-4);(2)y=x2+2x-3,令y=0,则x=1或-3,故点B(-3,0),而C、D的坐标分别为:(0,-3)、(-1,-4),则BD=,CD=,BC=,故:BD2=CD2+BC2,故△BCD为直角三角形;(3)存在,理由:①当OC是平行四边形的一条边时,设:点P(m,m2+2m-3),点Q(m,m),则PQ=OC=3,PQ=|m2+2m-3-m|=3,解得:m=-1或2或0或-3(舍去0、-3),故m=-1或2;②当CO是平行四边形的对角线时,设点P(m,m2+2m-3),点Q(n,n),由中线定理得:,解得:m=0或-1(舍去0);故m=-1或2,则点P(-1,4)或(2,5).【解析】(1)把点A、C坐标代入抛物线表达式,即可求解;(2)BD=,CD=,BC=,即可求解;(3)分OC是平行四边形的一条边、CO是平行四边形的对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、勾股定理运用等,其中(3),要主要分类求解,避免遗漏.中考一模数学试卷及答案一.选择题1.气温由﹣2℃上升了3℃时的气温是()A.﹣1℃B.1℃C.5℃D.﹣5℃【考点】19:有理数的加法.【专题】511:实数;66:运算能力.【分析】根据题意列出算式,计算即可求出值.【解答】解:根据题意得:﹣2+3=1,则气温由﹣2℃上升了3℃时的气温是1℃,故选:B.2.若代数式在实数范围内有意义,则实数x的取值范围是()A.x>﹣1 B.x=﹣1 C.x≠0 D.x≠﹣1 【考点】62:分式有意义的条件.【专题】513:分式.【分析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:由题意得x+1≠0,解得x≠﹣1,故选:D.3.下列运算计算正确的是()A.2x•x2=2x2B.6x6÷2x2=3x3C.3x2﹣2x2=x2D.2x+3x=5x2【考点】4I:整式的混合运算.【专题】512:整式;66:运算能力.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2x3,不符合题意;B、原式=3x4,不符合题意;C、原式=x2,符合题意;D、原式=5x,不符合题意,故选:C.4.下表记录了一名球员在罚球线上投篮的结果,这么球员投篮一次,投中的概率约是()10 50 100 150 200 250 300 500投篮次数4 35 60 78 104 123 152 251投中次数0.40 0.70 0.60 0.52 0.52 0.49 0.51 0.50投中频率A.0.7 B.0.6 C.0.5 D.0.4【考点】X8:利用频率估计概率.【专题】54:统计与概率.【分析】计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.【解答】解:根据频率估计概率的规律,当实验次数越来越大时,频率接近概率,故这名球员投篮一次,投中的概率约为:0.5.故选:C.5.计算(a﹣2)2的结果是()A.a2﹣4 B.a2﹣2a+4 C.a2﹣4a+4 D.a2+4【考点】4C:完全平方公式.【分析】利用完全平方公式判断即可.【解答】解:(a﹣2)2=a2﹣4a+4.故选:C.6.以原点为中心,把点A(1,2)顺时针旋转90°得到的点B的坐标是()A.(﹣2,1)B.(1,﹣2)C.(2,﹣1)D.(﹣1,2)【考点】R7:坐标与图形变化﹣旋转.【专题】531:平面直角坐标系;64:几何直观.【分析】根据点A的坐标为(1,2),然后根据旋转变换只改变图形的位置,不改变图形的形状与大小,可得OD=AC=2,BD=OC=1,据此求出点B的坐标即可.【解答】解:如图,过点A作AC⊥x轴于点C,过B作BD⊥x轴于点D,∵点A(1,2),∴AC=2,OC=1,∵点A(1,2)绕着原点顺时针旋转90°得到点B,∴OD=AC=2,BD=OC=1,∴点B的坐标是(2,﹣1).故选:C.7.下列哪个几何体,它的主视图、左视图、俯视图都相同()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据几何体的三视图,可得答案.【解答】解:A主视图、左视图都是矩形,俯视图是三角形,故A不符合题意;B、主视图、左视图、俯视图都是圆,故B符合题意;C、主视图、左视图是三角形,俯视图是圆,故C不符合题意;D、主视图俯视图都是矩形,左视图是正方形,故D不符合题意;故选:B.8.某车间20名工人日加工零件数如表所示:这些工人日加工零件数的众数、中位数分别是()日加工零件数 4 5 6 7 8人数 2 x 5 6 4 A.7、5.5 B.6、5 C.7、6 D.7、6.5【考点】W4:中位数;W5:众数.【专题】541:数据的收集与整理;542:统计的应用;65:数据分析观念;69:应用意识.【分析】根据样本容量可求出x的值,根据众数的意义,求出加工零件的件数出现次数最多的数即为众数,从小到大排列后,计算第10、11位的两个数的平均数即为中位数,计算后作出选择即可.【解答】解:x=20﹣2﹣5﹣6﹣4=3工人日加工零件数出现最多是7件,因此,众数是7件;处在第10、11位的两个数的平均数为:(6+7)÷2=6.5件,因此中位数是6.5件,故选:D.9.如图,在正方形ABCD所在的平面内找一点P,使其与正方形中的每一边所构成的三角形均是等腰三角形,这样的点共有()A.9个B.8个C.7个D.5个【考点】KI:等腰三角形的判定;LE:正方形的性质.【专题】556:矩形菱形正方形;64:几何直观.【分析】先画出图形,点P1符合P1D=DC=P1A=AB,P1B=P1C,同理得出P2、P3、P4点;点P5符合P5A=P5D=DC=AB,P5B=P5C,同理可求出P6,P7,P8点,连接AC和BD的交点也符合.【解答】解:P点有9处,如图,以正方形的各边为边向正方形的内或外作等边三角形,则这些等边三角形的顶点为所作的P点,还有正方形的对角线的交点也满足条件.故选:A.10.如图,在△ABC中,AB=12,AC=9,点D是BC边上的一点,AD=BD=2DC.设△ABD与△ACD的内切圆半径分别为r1、r2,则r1:r2的值为()A.2 B.C.D.【考点】MI:三角形的内切圆与内心.【专题】55C:与圆有关的计算;66:运算能力;67:推理能力.【分析】根据切线长定理可得AE=AG,BE=BF,DG=DF,根据已知条件可得AE=AG=BE =BF=6,再根据三角形的面积即可求解.【解答】解:如图,设⊙O与△ABD内切于E、F、G.∵DA=DB,DG=DF,∴BF=AG=BE=AE,∵AB=12,∴AE=BE=BF=AG=6,设DF=DG=m,∵AD=2DC,∴CD=(m+6),∵S△ABD:S△ADC=BD:DC=2:1,∴(24+2m)•r1 :(18+m)•r2=2:1,∴r1:r2=3:2故选:B.二.填空题11.计算2﹣(+)的结果是﹣.【考点】78:二次根式的加减法.【专题】514:二次根式;62:符号意识.【分析】直接利用二次根式的加减运算法则计算得出答案.【解答】解:原式=2﹣﹣=﹣.故答案为:﹣.12.计算+的结果是﹣x﹣1 .【考点】6B:分式的加减法.【专题】513:分式;66:运算能力.【分析】首先通分,然后根据同分母分式加减法法则计算即可.【解答】解:+=﹣==﹣x﹣1故答案为:﹣x﹣1.13.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.【考点】X6:列表法与树状图法.【专题】11:计算题.【分析】先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【解答】解:如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,所有两次摸出的小球标号的和等于4的概率=.故答案为:.14.如图,在四边形ABCD中,AD∥BC,AC、BD交于点E.若AB=AC,且BC=BE=EA,则∠ADB的度数为36°.【考点】JA:平行线的性质;KH:等腰三角形的性质.【专题】554:等腰三角形与直角三角形;67:推理能力.【分析】根据等腰三角形的性质求得∠EBC的度数,然后利用平行线的性质求得∠ADB 的度数即可.【解答】解:设∠BAC=x°,∵AE=BE,∴∠ABE=∠BAE=x°,∴∠BEC=2∠BAE=2x°,∵BE=BC,∴∠ACB=∠BEC=2x°,∵AB=AC,∴∠ABC=∠ACB=2x°,∴x+2x+2x=180,解得:x=36,∴∠ABC=2x=72°,∴∠EBC=36°,∵AD∥BC,∴∠ADB=∠EBC=36°,故答案为:36°.15.以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是b≥.【考点】H4:二次函数图象与系数的关系.【专题】535:二次函数图象及其性质;66:运算能力.【分析】当△≤0,抛物线在x轴下方无点,此时满足题意;当△>0时,必须同时满足当x=0时,y>0,对称轴x=b﹣2>0,才能满足题意,此时b无解.【解答】解:当△≤0,4(b﹣2)2﹣4(b2﹣1)≤0,∴b≥,此时抛物线在x轴下方无点,∴当b≥时,图象不经过第三象限;当△>0时,4(b﹣2)2﹣4(b2﹣1)>0,∴b<,当x=0时,y>0,∴b2﹣1>0,∴b>1或b<﹣1,对称轴x=b﹣2>0,∴b>2,∴此时b无解;故答案为b≥.16.如图,在矩形ABCD中,AB=8cm,AD=9cm,动点M从点C出发,在CB边上以每秒1cm的速度向点B匀速运动,同时动点N从点C出发,在CD边上以每秒1cm的速度向点D 匀速运动.设运动时间为t秒(0<t<8),若∠MAN=45°,则t的值为 5 .【考点】LB:矩形的性质;S9:相似三角形的判定与性质.【专题】556:矩形菱形正方形;55D:图形的相似;69:应用意识.【分析】作GN⊥AN交AM的延长线于点G,过点G作GF⊥DC,GE⊥BC,则△ADN≌△NFG,推出GF=DN=EC=8﹣t,EG=CF=9﹣t,ME=2t﹣8,证明△MEG∽△MBA,利用相似三角形的性质构建方程即可解决问题.【解答】解:作GN⊥AN交AM的延长线于点G,过点G作GF⊥DC,GE⊥BC,则△ADN≌△NFG,∴GF=DN=EC=8﹣t,EG=CF=9﹣t,∴ME=2t﹣8,∵△MEG∽△MBA,∴,∴,∴t=5.故答案为5.三.解答题17.解方程组.【考点】98:解二元一次方程组.【分析】两个方程组利用加减消元法即可求出x和y的值.【解答】解:,②﹣①得3x=﹣9,解得x=﹣3,把x=﹣3代入x+y=1中,求出y=4,即方程组的解为.18.如图,点B、E、C、F在一条直线上,AB=DF,∠B=∠F,BE=FC,求证:AC∥ED.【考点】KD:全等三角形的判定与性质.【专题】553:图形的全等;67:推理能力.【分析】由“SAS”可证△ABC≌△DFE,可得∠ACB=∠DEF,可证AC∥DE.【解答】证明:∵BE=CF,∴BC=EF,且∠B=∠F,AB=DF,∴△ABC≌△DFE(SAS),∴∠ACB=∠DEF,∴AC∥DE.19.秋季新学期开学时,某校对七年级新生掌握“中学生日常规范”的情况进行了知识测试,测试成绩全部合格.现学校随机选取了部分学生的成绩,整理并制作成如下的图表(注:A组成绩为60≤x<70,B组成绩70≤x<80,C组成绩为80≤x<90,D组成绩为90≤x ≤100).请根据上述统计图表,解答下列问题:(1)本次调查共抽查了90 名学生,在扇形统计图中,成绩为“90≤x≤100”所在扇形的圆心角是72 度.(2)如果测试成绩不低于80分为“优秀”等次,请估计全校七年级的800名学生中“优秀”等次的学生约有多少人?(3)请估计选取的七年级学生测试成绩的平均成绩.【考点】V2:全面调查与抽样调查;V5:用样本估计总体;V8:频数(率)分布直方图;VB:扇形统计图;W2:加权平均数.【专题】542:统计的应用;69:应用意识.【分析】(1)根据表格中的数据可以求得抽查的学生数,从而求得成绩为“90≤x≤100”所在扇形的圆心角;(2)根据表格中的数据可以求得“优秀”等次的学生数;(3)根据平均数的定义和表格中的数据可以求得七年级学生的平均成绩.【解答】解:(1)抽查的学生数:36÷0.4=90,成绩为“90≤x≤100”所在扇形的圆心角是360°×=72°,故答案为:90,72;(2)800×=800×0.5=400,即“优秀”等次的学生约有400人;(3)=81,即七年级学生的平均成绩是81分.20.某学校要印刷一批艺术节的宣传资料,在需要支付制版费60元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别对学生提出了不同的优惠方案:甲印刷厂提出:需支付制版费,长期客户活动免付版费,所有资料的印刷费按9折收费;乙印刷厂提出:所有资料的印刷费按8折收费.(1)在没有任何优惠方案的情况下,求该学生付费300元可印刷资料多少份?(2)在有优惠方案的情况下,应该选择哪家印刷厂比较优惠?【考点】32:列代数式.【专题】512:整式;66:运算能力.【分析】(1)根据可印刷资料的份数=(印刷费﹣制版费)÷印制每份资料的印刷费,即可求出结论;(2)设该单位需要印刷资料x份,根据甲、乙两家印刷厂的优惠政策,可用含x的代数式表示出需支付的印刷费,比较后即可得出结论.【解答】解:(1)(300﹣60)÷0.3=800(张).答:在没有任何优惠方案的情况下,求该学生付费300元可印刷资料800份.(2)设该单位需要印刷资料x份,选择甲印刷厂需支付费用为60+0.3×0.9x=(0.27x+60)元,选择乙印刷厂需支付费用为0.3×0.8x=0.24x元.∵0.24<0.27,∴无论x为何值,选择乙印刷厂比较优惠.答:选择乙印刷厂比较优惠.21.已知△ABC的外角∠EAC的平分线AD交其外接圆⊙O于点D,连接DB,DC.(1)如图1,求证BD=CD;(2)如图2,若AC是⊙O的直径,sin∠BDC=,求tan∠DBA的值.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质;M5:圆周角定理;MA:三角形的外接圆与外心;T7:解直角三角形.【专题】559:圆的有关概念及性质.【分析】(1)根据圆周角定理可证∠DAC=∠DBC,根据圆内接四边形的性质可证∠EAD=∠DCB,又已知∠EAD=∠DAC,即∠DCB=∠DBC得证,进而证明即可;(2)如图2,连接DO并延长交BC于F,连接OB,根据圆周角定理得到∠ABC=90°,求得sin∠BAC==,设BC=3a,AC=5a,则AB=4a,推出OD是BC的垂直平分线,得到BF=CF=a,根据三角形中位线定理得到OF=AB=2a,求得DF=DO+OF=a+2a =a,根据三角函数的定义即可得到结论.【解答】(1)证明:∵AD是∠EAC的平分线,∴∠EAD=∠DAC,∵∠EAD是圆内接四边形ABCD的外角,∴∠EAD=∠DCB(圆内接四边形外角等于内对角),又∵∠DAC=∠DBC,∴∠DCB=∠DBC,∴DB=DC;(2)如图2,连接DO并延长交BC于F,连接OB,∵AC是⊙O的直径,∴∠ABC=90°,∵∠BDC=∠BAC,sin∠BDC=,∴sin∠BAC==,设BC=3a,AC=5a,则AB=4a,∵OB=OC,BD=CD,∴OD是BC的垂直平分线,∴BF=CF=a,∵AO=CO,∴OF是△ABC的垂直平分线,∴BF=CF=a,∵AO=CO,∴OF是△ABC的中位线,∴OF=AB=2a,∴DF=DO+OF=a+2a=a,∵∠DBA=∠ACD,OD=OC,∴∠ACD=∠FDC,∴∠DBA=∠FDC,∴tan∠DBA=tan∠FDC===.22.如图,已知:A(0,2)、B(4,0)(1)①画出线段AB关于x轴对称的线段A1B,并写出直线A1B的解析式;②若反比例函数y=(k<0)的图象与直线A1B有两个不同的公共点M、N,作ME⊥x轴于E,NF⊥x轴于F,求k的取值范围及ME+NF的值;(2)将线段AB绕点P旋转180°得到线段CD(点C与点A对应),且点C、D在反比例函数y=的图象上,直接写出所有符合条件的点C所在图象的函数解析式.【考点】GB:反比例函数综合题.【专题】151:代数综合题;67:推理能力.【分析】(1)①∵线段AB关于x轴对称的线段A1B,得到A1(0.﹣2),设A1B的解析式为:y=kx+b,解方程组即可得到结论;。
【3套试卷】长沙市中考模拟考试数学精选含答案
中考模拟考试数学试题含答案一.选择题(共10小题)1.﹣的相反数是()A.9 B.﹣9 C.D.﹣2.下列运算正确的是()A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2=6x2C.3x+x2=3x D.x8÷x2=x43.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.如图的几何体的左视图是()A.B.C.D.5.如图,若等边△ABC的内切圆⊙O的半径是2,则△ABC的面积是()A.4B.6C.8D.12 6.下列关于抛物线y=(x+2)2+6的说法,正确的是()A.抛物线开口向下B.抛物线的顶点坐标为(2,6)C.抛物线的对称轴是直线x=6D.抛物线经过点(0,10)7.方程=0的解为()A.﹣2 B.2 C.5 D.无解8.如图,菱形ABCD的对角线AC=6,BD=8,AE⊥BC于点E,则AE的长是()A.5 B.C.D.9.已知直线y=x+1与反比例函数y=的图象的一个交点为P(a,2),则ak的值为()A.2 B.C.﹣2 D.﹣10.如图,在△ABC中,点D、E分别为AB、AC边上的点,连接DE,且DE∥BC,点F为BC 边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=二.填空题(共10小题)11.数据0.0007用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.分解因式5a3b﹣10a2b+5ab=.14.计算:=.15.不等式组的整数解是.16.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是度.17.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.18.△ABC的面积为,AB=3,BC=10,AH⊥BC于点H,点E为BC中点,则HE=.19.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,AD+CD =20,则平行四边形ABCD的面积为.20.如图,△ABC中,∠ACB=90°,∠B=60°,AB=4,D为AB中点,CE平分∠ACB,∠DEC=30°,则CE=.三.解答题(共7小题)21.先化简再求值,其中x=3tan30°﹣4cos60°.22.如图,在小正方形的边长均为1的方格纸中有线段AB,BC,点A,B,C均在小正方形的顶点上.(1)在图1中画出凸四边形ABCD,使四边形ABCD是轴对称图形,点D在小正方形的顶点上;(2)在图2中画出凸四边形ABCE,点E在小正方形的顶点上,∠AEC=90°,EC>EA;直接写出四边形ABCE的周长.23.某中学围绕“哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?(每名学生必选且只选一座山)的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图的不完整的统计图:(1)求本次调查的样本容量;(2)求本次调查中,最喜欢凤凰山的学生人数,并补全条形统计图;(3)若该中学共有学生1200人,请你估计该中学最喜欢香炉山的学生约有多少人?24.已知:如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、AC的中点,点F在BC 延长线上,连接EF,且∠CEF=∠BAC.(1)如图1,求证:四边形CDEF是平行四边形;(2)如图2,连接AF、BE,在不添加任何辅助线的情况下,请直接写出图2中所有与△AED面积相等的三角形.25.王叔叔决定在承包的荒山上种苹果树,第一次用1000元购进了一批树苗,第二次又用了1000元购进该种树苗,但这次每棵树苗的进价是第一次进价的2倍,购进数量比第一次少了100棵.(1)求第一次每棵树苗的进价是多少元?(2)一年后,树苗的成活率为85%,每棵果树平均产苹果30斤,王叔叔将两批果树所产苹果按同一价格全部销售完毕后获利不低于89800元,求每斤苹果的售价至少是多少元?26.如图,△ABC中,AB=AC,AD⊥BC于D,E是AC边上一点,⊙O过B、D、E三点,分别交AC、AB于点F、G,连接EG、BF分别与AD交于点M、N;(1)求证:∠AMG=∠BND;(2)若点E为AC的中点,求证:BF=BC;(3)在(2)的条件下,作EH⊥EG交AD于点H,若EH=EG=4,过点G作GK⊥BF 于点K,点P在线段GK上,点Q在线段BK上,连接BP、GQ,若∠KGQ=2∠GBP,GQ=15,求GP的长度.27.如图,直线y=x+6与x轴、y轴交于A、B两点,点C在第四象限,BC⊥AB,且BC =AB;(1)如图1,求点C的坐标;(2)如图2,D是BC的中点,过D作AC的垂线EF交AC于E,交直线AB于F,连接CF,点P为射线AD上一动点,求PF2﹣PC2的值;(3)如图3,在(2)的条件下,在第二象限过点A作线段AM⊥AB于点A,在线段AB 上取一点N,连接MN,使MN=BN,在第三象限取一点Q,使∠NMQ=90°,连接QC,若QC∥AB,且QC=6AM,设点P的横坐标为t,△PMQ的面积为s,求s与t的函数关系式.参考答案与试题解析一.选择题(共10小题)1.﹣的相反数是()A.9 B.﹣9 C.D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:C.2.下列运算正确的是()A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2=6x2C.3x+x2=3x D.x8÷x2=x4【分析】分别根据去括号法则、积的乘方法则、合并同类项法则以及同底数幂相除法则逐一判断即可.【解答】解:A.﹣3(x﹣4)=﹣3x+12,故本选项符合题意;B.(﹣3x)2=9x2,故本选项不合题意;C.3x与x2不是同类项,故不能合并,故本选项不合题意;D.x8÷x2=x6,故本选项不合题意.故选:A.3.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,也是轴对称图形,故本选项错误;B、是中心对称图形,但不是轴对称图形,故本选项正确;C、不是中心对称图形,但是轴对称图形,故本选项错误;D、不是中心对称图形,但是轴对称图形,故本选项错误.故选:B.4.如图的几何体的左视图是()A.B.C.D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看去,左边是3个正方形,右边是2个正方形.故选:A.5.如图,若等边△ABC的内切圆⊙O的半径是2,则△ABC的面积是()A.4B.6C.8D.12【分析】连接OB,OD,根据⊙O是等边△ABC的内切圆,求出∠OBD=30°,求出OB=2OD =4,根据勾股定理求出BD,同理求出CD,得到BC,求出AD,即可得出答案.【解答】解:连接OB,OD,OA,∵⊙O是等边△ABC的内切圆,∴∠OBD=30°,∠BDO=90°,∴OB=2OD=4,由勾股定理得:BD==2,同理CD=2,∴BC=BD+CD=4,∵△ABC是等边三角形,A,O,D三点共线,∴AD=6,∴S△ABC=BC•AD=12.6.下列关于抛物线y=(x+2)2+6的说法,正确的是()A.抛物线开口向下B.抛物线的顶点坐标为(2,6)C.抛物线的对称轴是直线x=6D.抛物线经过点(0,10)【分析】根据抛物线的解析式可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:∵y=(x+2)2+6=x2+4x+10,∴a=1,该抛物线的开口向上,故选项A错误,抛物线的顶点坐标是(﹣2,6),故选项B错误,抛物线的对称轴是直线x=﹣2,故选项C错误,当x=0时,y=10,故选项D正确,故选:D.7.方程=0的解为()A.﹣2 B.2 C.5 D.无解【分析】根据解分式方程的步骤依次计算可得.【解答】解:两边都乘以x﹣5,得:2﹣x+3=0,解得:x=5,检验:当x=5时,x﹣5=0,所以方程无解.故选:D.8.如图,菱形ABCD的对角线AC=6,BD=8,AE⊥BC于点E,则AE的长是()A.5 B.C.D.【分析】根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=AC•BD=×6×8=24,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=.故选:C.9.已知直线y=x+1与反比例函数y=的图象的一个交点为P(a,2),则ak的值为()A.2 B.C.﹣2 D.﹣【分析】根据图象上的点满足函数解析式,可求得a,从而求得点P的坐标,根据待定系数法,可得k值,进而求得ak的值.【解答】解:一次函数y=x+1的图象过点(a,2),∴a+1=2,∴a=1∵y=的图象过点(1,2)∴2=,解得k=2,∴ak=2.故选:A.10.如图,在△ABC中,点D、E分别为AB、AC边上的点,连接DE,且DE∥BC,点F为BC 边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=【分析】根据平行线分线段成比例定理即可判断;【解答】解:∵DE∥BC,∴=,∴=,故选:C.二.填空题(共10小题)11.数据0.0007用科学记数法表示为7×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4.故答案为:7×10﹣4.12.在函数y=中,自变量x的取值范围是x≠6 .【分析】根据分式的意义即分母不等于0,可以求出x的范围.【解答】解:依题意得x﹣6≠0,∴x≠6.故答案为:x≠6.13.分解因式5a3b﹣10a2b+5ab=5ab(a﹣1)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=5ab(a2﹣2a+1)=5ab(a﹣1)2,故答案为:5ab(a﹣1)214.计算:=.【分析】直接化简二次根式进而计算得出答案.【解答】解:原式=2﹣18×=﹣.故答案为:﹣.15.不等式组的整数解是0 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:解不等式①得:x>﹣1,解不等式②得:x≤0,∴不等式组的解集为﹣1<x≤0,∴不等式组的整数解为0,故答案为0.16.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是150 度.【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.【解答】解:扇形的面积公式=lr=240πcm2,解得:r=24cm,又∵l==20πcm,∴n=150°.故答案为:150.17.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.18.△ABC的面积为,AB=3,BC=10,AH⊥BC于点H,点E为BC中点,则HE=.【分析】根据题意画出图形,由勾股定理求出BH的长,则HE可求出.【解答】解:如图1,当AH在△ABC内时,∵△ABC的面积为,BC=10,∴.∴.∴=.∴.如图2,当AH在△ABC外时,同理可得AH=,BH=,∴.故答案为:或.19.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,AD+CD =20,则平行四边形ABCD的面积为48 .【分析】已知平行四边形的高AE、AF,设BC=AD=x,则CD=20﹣x,根据“等面积法”列方程,求BC,从而求出平行四边形的面积.【解答】解:设BC=AD=x,则CD=20﹣x,根据“等面积法”得4x=6(20﹣x),解得x=12,∴平行四边形ABCD的面积=4x=4×12=48.故答案为:48.20.如图,△ABC中,∠ACB=90°,∠B=60°,AB=4,D为AB中点,CE平分∠ACB,∠DEC=30°,则CE=2.【分析】连接CD,作CH⊥DE于H,由直角三角形的性质可得CD=BD=AD=2,∠A=30°,可得HD=HC=,由直角三角形的性质可得CE=2HC=2.【解答】解:连接CD,作CH⊥DE于H∵∠ACB=90°,∠B=60°,AB=4,D为AB中点,∴CD=BD=AD=2,∠A=30°∴∠ACD=∠A=30°,∵CE平分∠ACB∴∠ACE=45°∴∠DCE=15°∴∠HDC=∠DEC+∠DCE=45°,且CH⊥DE∴∠HCD=∠HDC=45°,且CD=2∴HD=HC=∵∠DEC=30°,CH⊥DE∴CE=2CH=2故答案为:2三.解答题(共7小题)21.先化简再求值,其中x=3tan30°﹣4cos60°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=,∵x=3×﹣4×=﹣2,∴原式=.22.如图,在小正方形的边长均为1的方格纸中有线段AB,BC,点A,B,C均在小正方形的顶点上.(1)在图1中画出凸四边形ABCD,使四边形ABCD是轴对称图形,点D在小正方形的顶点上;(2)在图2中画出凸四边形ABCE,点E在小正方形的顶点上,∠AEC=90°,EC>EA;直接写出四边形ABCE的周长6+4.【分析】(1)根据轴对称图形的性质作出只有一条对称轴的图形即可求解;(2)作出四边形ABCE即为所求四边形ABCE,进而利用周长解答即可.【解答】解:(1)如图1所示:凸四边形ABCD即为所求;(2)如图2所示,凸四边形ABCE即为所求,四边形ABCE的周长=6+4.故答案为:6+4.23.某中学围绕“哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?(每名学生必选且只选一座山)的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图的不完整的统计图:(1)求本次调查的样本容量;(2)求本次调查中,最喜欢凤凰山的学生人数,并补全条形统计图;(3)若该中学共有学生1200人,请你估计该中学最喜欢香炉山的学生约有多少人?【分析】(1)由帽儿山的人数及其所占百分比可得总人数;(2)根据各部分人数之和等于总人数可得凤凰山的人数;(3)利用样本估计总体思想求解可得.【解答】解:(1)20÷25%=80(名),答:本次抽样调查共抽取了80名学生.(2)最喜欢凤凰山的学生人数为80﹣24﹣8﹣20﹣12=16(名),补全条形统计图(3)1200×=360(名),由样本估计总体得该中学最喜欢香炉山的学生约有360名.24.已知:如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、AC的中点,点F在BC 延长线上,连接EF,且∠CEF=∠BAC.(1)如图1,求证:四边形CDEF是平行四边形;(2)如图2,连接AF、BE,在不添加任何辅助线的情况下,请直接写出图2中所有与△AED面积相等的三角形.【分析】(1)利用三角形中位线定理证明DE∥CF,再证明EF∥CD即可;(2)利用等高模型即可解决问题;【解答】(1)证明:∵点D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°,AD=DB,∴CD=AD=DB,∴∠A=∠DCA,∵∠CEF=∠A,∴∠CEF=∠ECD,∴EF∥CD,∴四边形CDEF是平行四边形.(2)如图2中,与△AED面积相等的三角形有:△AEF,△ECF,△EDC,△EDB.理由:∵四边形CDEF是平行四边形,∴△EFC与△DEC的面积相等,∵AE=ED,DE∥BC,∴△ADE与△EDC,△EDC与△EDB的面积相等,∴与△AED面积相等的三角形有:△AEF,△ECF,△EDC,△EDB.25.王叔叔决定在承包的荒山上种苹果树,第一次用1000元购进了一批树苗,第二次又用了1000元购进该种树苗,但这次每棵树苗的进价是第一次进价的2倍,购进数量比第一次少了100棵.(1)求第一次每棵树苗的进价是多少元?(2)一年后,树苗的成活率为85%,每棵果树平均产苹果30斤,王叔叔将两批果树所产苹果按同一价格全部销售完毕后获利不低于89800元,求每斤苹果的售价至少是多少元?【分析】(1)首先设第一次每棵树苗的进价是x元,则第二次每棵树苗的进价是2x元,依题意得等量关系:第一购进树苗的棵数﹣第二次购进树苗的棵树=100,由等量关系列出方程即可;(2)设每斤苹果的售价是a元,依题意得等量关系:两次购进树苗的总棵树×成活率为85%×每棵果树平均产苹果30斤﹣两次购进树苗的成本≥89800元,根据不等关系代入相应的数值,列出不等式.【解答】解:(1)设第一次每棵树苗的进价是x元,依题意得:﹣=100,解得:x=5,经检验x=5是原分式方程的解,∴第一次每棵树苗的进价是5元.(2)设每斤苹果的售价是a元,依题意得:(+)×85%×30a﹣1000×2≥89800,解得:a≥12,答:每斤苹果的售价至少是12元.26.如图,△ABC中,AB=AC,AD⊥BC于D,E是AC边上一点,⊙O过B、D、E三点,分别交AC、AB于点F、G,连接EG、BF分别与AD交于点M、N;(1)求证:∠AMG=∠BND;(2)若点E为AC的中点,求证:BF=BC;(3)在(2)的条件下,作EH⊥EG交AD于点H,若EH=EG=4,过点G作GK⊥BF 于点K,点P在线段GK上,点Q在线段BK上,连接BP、GQ,若∠KGQ=2∠GBP,GQ=15,求GP的长度.【分析】(1)由等腰三角形的性质和圆的内接四边形的性质可得结论;(2)可证出BD=CD,可得∠FBC=∠BAC,证出∠BFC=∠ABC=∠C,结论得证;(3)取AB中点P,连接MH、GH、DE,可得平行四边形BDEM、等边△MHE,可得出∠GAH =∠GHA=15°,求出GA=GH=•EH=,求出AE=,可求出AB和BG长,Rt△BGK中,可得∠GBK=45°,求出GK=BK=,Rt△QGK中勾股定理可得QK=,延长BK到T使KT=PK,连接GK则△BKP≌△GKT,得出∠KGT=∠KBP,可得QG=QT=15,则PK可求出,GP=GK﹣PK=.【解答】(1)证明:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵四边形BFEG内接于⊙O,∴∠BGE+∠BFE=180°∵∠BGE+∠AGE=180°,∴∠BFE=∠AGE,∵△AGM中,∠BAD+∠AGE+∠AMG=180°,△ANF中,∠CAD+∠BFE+∠ANF=180°,∴∠AMG=∠ANF,∵∠ANF=∠BND,∴∠AMG=∠BND;(2)证明:如图,连接DE,∵AB=AC,AD⊥BC,∴BD=CD,∵AE=CE,∴DE是△ABC的中位线,∴DE∥AB,∴∠DEC=∠BAC,∵∠DEC=∠FBC,∴∠FBC=∠BAC,∵AB=AC,∴∠ABC=∠C,∴∠BFC=∠ABC=∠C,∴BF=BC;(3)解:如图,取AB中点M,连接MH、GH、DE,∵AE=CE,∴四边形BDEM是平行四边形,∴ME∥BD,∴∠GME=∠ABC,∵∠ABC=∠C,∠C=∠EDC=∠BGE,∴∠MGE=∠GME,∴GE=ME,∵MH=ME,EH=EG,∴△MHE是等边三角形,∵AD垂直平分BC,∴AH垂直平分ME,∴∠GAH=∠GHA=15°,∴GA=CH=•EH==,∴在△AGE中,AE=,∴AB=AC=,∴BG=AB﹣AG=,∵Rt△BGK中,可得∠GBK=45°,∴GK=BK=,∴Rt△QGK中,QK==,延长BK到T使KT=PK,连接GK,∵∠BKP=∠GKT,∴△BKP≌△GKT(SAS),∴∠KGT=∠KBP,∴∠BPK=∠GTK,∵∠QGT=∠KGQ+∠KGT=∠KGQ+∠PBK,∠KGQ=2∠GBP,∴∠QGT=2∠GBP+∠PBK,∵∠PBK=45°﹣∠GBP,∴∠QGT=45°+∠PBG=∠BPK,∴∠QGT=∠GTK,∴QG=QT=15,∴PK=KT=QT﹣QK=,∴GP=GK﹣PK=12=.27.如图,直线y=x+6与x轴、y轴交于A、B两点,点C在第四象限,BC⊥AB,且BC =AB;(1)如图1,求点C的坐标;(2)如图2,D是BC的中点,过D作AC的垂线EF交AC于E,交直线AB于F,连接CF,点P为射线AD上一动点,求PF2﹣PC2的值;(3)如图3,在(2)的条件下,在第二象限过点A作线段AM⊥AB于点A,在线段AB 上取一点N,连接MN,使MN=BN,在第三象限取一点Q,使∠NMQ=90°,连接QC,若QC∥AB,且QC=6AM,设点P的横坐标为t,△PMQ的面积为s,求s与t的函数关系式.【分析】(1)过C作CH⊥y轴于H,则∠BCH+∠CBH=90°,证明△BHC≌△AOB(AAS)即可解决问题.(2)(2)如图2中,设射线AD交CF于G.证明△ABD≌△CBF(SAS),利用勾股定理解决问题即可.(3)如图3中,连接BM,BQ,过B作BK⊥QM延长线于点K,延长MA交QC于点T,可得正方形ABCT.证明△BKM≌△BAM(ASA),推出BA=BK=BC,MK=MA,证明Rt△BKQ≌Rt△BCQ(HL),推出QK=QC,设AM=a,则QK=QC=6a,在Rt△QMT中,MQ=5a,MT=a+10,QT=6a﹣10,勾股定理可得a=,由tan∠MNA=tan∠QMT=tan∠BAO=,推出QT=10,MQ=,MT=,作PS⊥MQ于点S,根据,计算即可.【解答】解:(1)如图1中,在y=x+6中,令y=0,得x=﹣8;令x=0,得y=6 ∴A(﹣8,0),B(0,6),∴OA=8,OB=6,过C作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵BC⊥AB,∴∠ABO+∠CBH=90°,∴∠BCH=∠ABO,又∠BHC=∠AOB=90°,BC=AB,∴△BHC≌△AOB(AAS),∴HC=OB=6,BH=OA=8,OH=8﹣6=2,∴C(6,﹣2).(2)如图2中,设射线AD交CF于G.∵BC⊥AB,BC=AB,∴∠BAC=45°∵EF⊥AC,∴∠AFE=45°∴△BDF是等腰直角三角形,∴BD=BF,又∠ABD=∠CBF=90°,AB=CB∴△ABD≌△CBF(SAS),∴∠BAD=∠BCF,∵∠BDA=∠CDG,∴∠CGD=∠ABD=90°,即AD⊥CF,∵OA=8,OB=6,∴AB==10,∴BC=10,∴BF=BD=5,∴PF2﹣PC2=(PG2+FG2)﹣(PG2+CG2)=FG2﹣CG2=(DF2﹣DG2)﹣(DC2﹣DG2)=DF2﹣DC2=DF2﹣BD2=BF2=25(3)如图3中,连接BM,BQ,过B作BK⊥QM延长线于点K,延长MA交QC于点T,可得正方形ABCT.∵MN=BN,∴∠NMB=∠NBM,∵BK⊥QK,NM⊥QK,∴BK∥MN,∴∠KBM=∠BMN,∴∠KBM=∠MBA,∵MB=MB,∠K=∠BAM=90°∴△BKM≌△BAM(ASA),∴BA=BK=BC,MK=MA,∴Rt△BKQ≌Rt△BCQ(HL),∴QK=QC,设AM=a,则QK=QC=6a,在Rt△QMT中,MQ=5a,MT=a+10,QT=6a﹣10,勾股定理可得a=,∵tan∠MNA=tan∠QMT=tan∠BAO=,∴QT=10,MQ=,MT=∴MN∥x轴,MQ∥y轴,作PS⊥MQ于点S,∴,设MQ与x轴交于点I,Rt△MAI中,AI=2,作AL⊥PS于点L,得矩形ALSI,∴PS=PL+LS=t+10,∴,∴.中考模拟考试数学试题一.选择题(共10小题)1.在﹣1,﹣3,0,1中最小的数与最大的数的差是()A.﹣2 B.﹣4 C.﹣1 D.﹣32.如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°3.把代数式xy2﹣16x分解因式,结果正确的是()A.x(y+4)(y﹣4)B.x(y+16)(y﹣16)C.x(y2﹣16)D.x(y﹣4)24.国家统计局于2018年1月18日公布2017年国内生产总值(GDP)等重磅经济数据.初步核算,2017年国内生产总值为827122亿元,按可比价格计算,比上年增长6.9%.数据827122亿元用科学记数法表示为()A.827122×108元B.827122×109元C.827.122×1011元D.8.27122×1013元5.下列计算正确的是()A.a2+a3=a5B.(2a)2=4a C.a2•a3=a5D.a6÷a3=a26.施工队要铺设一段全长2000米的管道,因在中考期间需停工三天,实际每天施工需比原计划多50米才能按时完成任务,求原计划每天施工多少米?设原计划每天施工x米,则根据题意所列方程正确的是()A.B.C.D.7.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A.116°B.32°C.58°D.64°8.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分9.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为,点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为()A.B.C.2 D.10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10 B.C.10或D.10或二.填空题(共5小题)11.计算的结果为.12.如图,从一张矩形纸片ABCD的宽AD上找一点E,过点E剪下两个正方形,它们的边长分别为AE,DE,要使剪下的两个正方形的面积和为9,点E应选在何处?若AD=6,设AE=x,则可列方程为.13.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,……,按此规律排列下去,第⑨个图形中菱形的个数为.14.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB 上,点E在OB的延长线上,当正方形CDEF的边长为2时,阴影部分的面积为.15.如图是由边长为1的小正方形组成的网格图,线段AB,BC,BD,DE的端点均在格点上,线段AB和DE交于点F,则DF的长度为.三.解答题(共8小题)16.(1)计算:(2)化简求值:,其中.17.直线y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.18.尺规作图任务一:下面是小希设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:直线l及直线外一点P.求作:直线PQ,使得PQ∥l.作法:如图①在直线l上取一点O,连接OP,以点O为圆心,OP为半径画圆,交直线l与点A和点B;②连接AP,以点B为圆心,AP长为半径在直线l上方画弧交⊙O于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小希设计的尺规作图步骤完成下列问题:(1)在图1中使用直尺和圆规,补全图形;(保留作图痕迹)(2)证明:PQ∥l任务二:已知:直线l及直线l外一点M.请根据下列提供的数学原理,选择其一,在图2中使用直尺和圆规作直线MN,使得MN ∥l.(保留作图痕迹,不写作法)19.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.20.如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC 于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.21.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.22.综合与实践:矩形的旋转问题情境:在综合与实践课上,老师让同学们以“矩形的旋转”为主题开展数学活动.具体要求:如图1,将长与宽都相等的两个矩形纸片ABCD和EFGH叠放在一起,这时对角线AC和EG 互相重合.固定矩形ABCD,将矩形EFGH绕AC的中点O逆时针方向旋转,直到点E与点B重合时停止,在此过程中开展探究活动.操作发现:(1)雄鹰小组初步发现:在旋转过程中,当边AB与EF交于点M,边CD与GH交于点N,如图2、图3所示,则线段AM与CN始终存在的数量关系是.(2)雄鹰小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形QMRN 时,如图3所示,四边形QMRN为菱形,请你证明这个结论.(3)雄鹰小组还发现在问题(2)中的四边形QMRN中∠MQN与旋转角∠AOE存在着特定的数量关系,请你写出这一关系,并说明理由.实践探究:(4)在图3中,随着矩形纸片EFGH的旋转,四边形QMRN的面积会发生变化.若矩形纸片的长为,宽为,请你帮助雄鹰小组探究当旋转角∠AOE为多少度时,四边形QMRN的面积最大?最大面积是多少?(直接写出答案)23.如图,在平面直角坐标系xOy,已知二次函数y=﹣x2+bx的图象过点A(4,0),顶点为B,连接AB、BO.(1)求二次函数的表达式;(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CQ的对称点为B',当△OCB'为等边三角形时,求BQ的长度;(3)若点D在线段BO上,OD=2DB,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标.参考答案与试题解析一.选择题(共10小题)1.在﹣1,﹣3,0,1中最小的数与最大的数的差是()A.﹣2 B.﹣4 C.﹣1 D.﹣3【分析】先找出最小数和最大数,再求出差即可.【解答】解:在﹣1,﹣3,0,1这四个数中,最小的数是﹣3,最大的数是1,差为﹣3﹣1=﹣4.故选:B.2.如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°【分析】欲证AB∥CD,在图中发现AB、CD被一直线所截,且已知∠1=70°,故可按同旁内角互补两直线平行补充条件.【解答】解:∠1=70°,要使AB∥CD,则只要∠2=180°﹣70°=110°(同旁内角互补两直线平行).故选:C.3.把代数式xy2﹣16x分解因式,结果正确的是()A.x(y+4)(y﹣4)B.x(y+16)(y﹣16)C.x(y2﹣16)D.x(y﹣4)2【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣16)=x(y+4)(y﹣4),故选:A.4.国家统计局于2018年1月18日公布2017年国内生产总值(GDP)等重磅经济数据.初步核算,2017年国内生产总值为827122亿元,按可比价格计算,比上年增长6.9%.数据827122亿元用科学记数法表示为()A.827122×108元B.827122×109元C.827.122×1011元D.8.27122×1013元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:827122亿元用科学记数法表示为8.27122×1013.故选:D.5.下列计算正确的是()A.a2+a3=a5B.(2a)2=4a C.a2•a3=a5D.a6÷a3=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(2a)2=4a2,故此选项错误;C、a2•a3=a5,正确;D、a6÷a3=a3,故此选项错误;故选:C.6.施工队要铺设一段全长2000米的管道,因在中考期间需停工三天,实际每天施工需比原计划多50米才能按时完成任务,求原计划每天施工多少米?设原计划每天施工x米,则根据题意所列方程正确的是()A.B.C.D.【分析】设原计划每天施工x米,实际每天施工(x+50)米,根据工作时间=工作总量÷工作效率结合实际比原计划少用3天,即可得出关于x的分式方程,此题得解.【解答】解:设原计划每天施工x米,实际每天施工(x+50)米,依题意,得:﹣=3.故选:C.7.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()。
【2022】湖南省长沙市中考数学模拟检测试卷(含答案)
湖南省长沙市中考数学模拟试卷(含答案)(时间:120分钟分数:120分)一.选择题(共8小题,满分24分)1.若|a|=2,则a的值是()A.﹣2B.2C.D.±22.下列式子成立的是()A.2x﹣5=﹣(5﹣2x)B.7a+3=7(a+3)C.﹣a﹣b=﹣(a﹣b)D.2x﹣5=﹣(2x﹣5)3.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.4.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6B.8C.14D.165.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°6.如图,在⊙O的内接△ABC中,∠ABC=30°,AC的延长线与过点B的⊙O的切线相交于点D,若⊙O的半径OC=1,BD∥OC,则CD的长为()A.1+B.C.D.7.如图,从位于O处的某海防哨所发现在它的北偏东60°的方向,相距600米的A处有一艘快艇正在向正南方向航行,经过若干时间快艇要到达哨所东南方向的B处,则A、B间的距离是()米.A.300+300B.300+300C.150+150D.150+150 8.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是()A.9999B.10000C.10001D.10002二.填空题(共8小题,满分24分,每小题3分)9.已知(x﹣1)3=64,则x的值为.10.分解因式:x2y﹣y=.11.函数y=的定义域为.12.分式方程﹣x=3的解是.13.如图,在Rt△ABC中,∠ABC=90°,AB=12cm,BC=5cm,AC=13cm,若BD 是AC边上的高,则BD的长为cm.14.如图,△ABC中,∠BAC=75°,BC=7,△ABC的面积为14,D为BC边上一动点(不与B,C重合),将△ABD和△ACD分别沿直线AB,AC翻折得到△ABE与△ACF,那么△AEF的面积最小值为.15.小青在八年级上学期的数学成绩如下表所示.平时测验期中考试期末考试成绩869081如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是分.16.如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A ﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在点.三.解答题(共9小题,满分72分)17.(6分)先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.18.(6分)如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.19.(6分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=,b=;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?20.(7分)某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.1.设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)2.请问至少需要补充多少名新工人才能在规定期内完成总任务?21.(7分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>的x的取值范围;=,求点P的坐标.(3)若点P在x轴上,且S△ACP22.(8分)如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.(1)求证:ED为⊙O的切线;(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF 的面积.23.(10分)一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:(1)二次函数和反比例函数的关系式.(2)弹珠在轨道上行驶的最大速度.24.(10分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).25.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC 上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.答案一.选择题1.D.2.A.3.B.4.C.5.B.6.B.7.A.8.A.二.填空题9.5.10.y(x+1)(x﹣1).11.x>﹣3.12.x=6.13..14.4.15.84.2.16.B.三.解答题(共9小题,满分72分)17.(6分)先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.【分析】由x满足x2+7x=0,求出x的值.注意x的取值需使分式有意义.化简多项式后,代入求值.【解答】解:原式=÷(﹣)==×=﹣∵x2+7x=0x(x+7)=0∴x1=0,x2=﹣7当x=0时,除式(﹣x+1)=0,所以x不能为0,所以x=﹣7.当x=﹣7时,原式=﹣=﹣=【点评】本题考查了一元二次方程的解法,分式的化简求值.本题化简后代入时,确定x的值是关键.18.(6分)如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【分析】(1)欲证明∠CEB=∠CBE,只要证明∠CEB=∠ABD,∠CBE=∠ABD即可.(2)先证明四边形CEDB是平行四边形,再根据BC=BD即可判定.【解答】证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∴CE=BD∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.【点评】本题考查全等三角形的性质、菱形的判定、平行四边形的判定等知识,熟练掌握全等三角形的性质是解题的关键,记住平行四边形、菱形的判定方法,属于中考常考题型.19.(6分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=20%,b=12%;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?【分析】(1)根据“15~40”的百分比和频数可求总数,进而求出b和a的值.利用总数和百分比求出频数再补全条形图;(2)用样本估计总体即可;(3)首先设甲组得x分,则乙组得(110﹣x)分,由题意得不等关系:甲组得x分≥乙组得x分×1.5,根据不等关系列出不等式,解不等式即可.【解答】解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.【点评】此题主要考查了扇形统计图与条形统计图,以及一元一次不等式的应用,正确读图,能从图中得到正确的信息是解决问题的关键.20.(7分)某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.1.设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)2.请问至少需要补充多少名新工人才能在规定期内完成总任务?【分析】(1)设x人加工G型装置,y人加工H型装置,利用每个工人每天能加工6个G型装置或3个H型装置得出等式求出答案;(2)利用每天加工的G、H型装置数量正好全部配套组成GH型产品得出等式表示出x的值,进而利用不等式解法得出答案.【解答】(1)解:设x人加工G型装置,y人加工H型装置,由题意可得:解得:,6×32÷4=48(套),答:按照这样的生产方式,工厂每天能配套组成48套GH型电子产品.(2) 由题意可知:3(6x+4m)=3(80﹣x)×4,解得:.‚×4=240(个),6x+4m≥2406×+4m≥240.解得:m≥30.答:至少需要补充30名新工人才能在规定期内完成总任务.【点评】此题主要考查了一元一次方程的应用以及一元一次不等式的应用,根据题意正确得出等量关系是解题关键.21.(7分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>的x的取值范围;=,求点P的坐标.(3)若点P在x轴上,且S△ACP【分析】(1)把点A、B的坐标分别代入反比例函数解析式中,求出m、n的值,得到点A、B的坐标,再将点A、B的坐标分别代入一次函数解析式中即可确定出一次函数解析式;(2)结合图象,根据两函数的交点横坐标,找出一次函数图象在反比例图象上方时x的范围即可;=求出CP的长,进而得到点P (3)先求出△BOC的面积,再根据S△ACP的坐标.【解答】解:(1)将A(m,3)代入反比例解析式得:m=2,则A(2,3),将B(﹣6,n)代入反比例解析式得:n=﹣1,则B(﹣6,﹣1),将A与B的坐标代入y=kx+b得:,解得:,则一次函数解析式为y=x+2;(2)由图象得:x+2>的x的取值范围是:﹣6<x<0或x>2;(3)∵y=x+2中,y=0时,x+2=0,解得x=﹣4,则C(﹣4,0),OC=4∴△BOC的面积=×4×1=2,==×2=3.∴S△ACP=CP×3=CP,∵S△ACP∴CP=3,∴CP=2,∵C(﹣4,0),∴点P的坐标为(﹣2,0)或(﹣6,0).【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.函数图象上点的坐标特征,待定系数法求一次函数的解析式,三角形的面积,利用了数形结合思想.22.(8分)如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.(1)求证:ED为⊙O的切线;(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF 的面积.【分析】(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得△COE≌△DOE,即可得∠ODE=∠OCE=90°,则可证得ED为⊙O的切线;(2)连接CD,根据直径所对的圆周角是直角,即可得∠CDA=90°,利用勾股定理即可求得OE的长,又由OE∥AB,证得△COE∽△CAB,根据相似三角形的对应边成比例,即可求得AB的长,然后利用三角函数的知识,求得CD与AD的长,=S梯形ABEF﹣S梯形DBEF求得答案.然后利用S△ADF【解答】解:(1)证明:连接OD,∵OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD,交OE于M,在Rt△ODE中,∵OD=,DE=2,∴OE===,∵OE∥AB,∴△COE∽△CAB,∴=,∴AB=5,∵AC是直径,∴∠ADC=90°,∴cos∠BAC===,∴AD=,∴CD==,∵EF∥AB,∴,∴CM=DM=CD=,∴EF=OE+OF=4,BD=AB﹣AD=5﹣=,=S梯形ABEF﹣S梯形DBEF=(AB+EF)•DM﹣(BD+EF)•DM=×(5+4)×∴S△ADF﹣×(+4)×=.∴△ADF的面积为.【点评】此题考查了圆的切线的判定与性质,直角三角形的性质,相似三角形的判定与性质以及全等三角形的判定与性质等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想的应用,注意辅助线的作法.23.(10分)一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:(1)二次函数和反比例函数的关系式.(2)弹珠在轨道上行驶的最大速度.【分析】(1)由图象可知前一分钟过点(1,2),后三分钟时过点(2,8),分别利用待定系数法可求得函数解析式;(2)(2)把t=2代入(1)中二次函数解析式即可.【解答】解:(1)v=at2的图象经过点(1,2),∴a=2.∴二次函数的解析式为:v=2t2,(0≤t≤2);设反比例函数的解析式为v=,由题意知,图象经过点(2,8),∴k=16,∴反比例函数的解析式为v=(2<t≤5);(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,∴弹珠在轨道上行驶的最大速度在2秒末,为8米/分.【点评】本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息:自变量的取值范围和图象所经过的点的坐标.24.(10分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【分析】(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=m°;【解答】(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC,∴BD=EC.(2)证明:如图2中,延长DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等边三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)解:如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=m°.【点评】本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.25.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC 上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.【分析】(1)先求得点C(0,3)的坐标,然后设抛物线的解析式为y=a(x+1)(x﹣),最后,将点C的坐标代入求得a的值即可;(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.先求得AC 的解析式,然后再求得BM的解析式,从而可求得点M的坐标,依据两点间的距离公式可求得MC=BM,最后,依据等腰直角三角形的性质可得到∠ACB的度数;(3)如图2所示:延长CD,交x轴与点E.依据题意可得到∠ECD>45°,然后依据相似三角形的性质可得到∠CAO=∠ECD,则CE=AE,设点E的坐标为(a,0),依据两点间的距离公式可得到(a+1)2=32+a2,从而可得到点E的坐标,然后再求得CE的解析式,最后求得CE与抛物线的交点坐标即可.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、两点间距离公式的应用、相似三角形的性质、等腰三角形的判定,依据相似三角形的性质、等腰三角形的判定定理得到AF=CF 是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年湖南省长沙市中考数学模拟试卷(一)一、选择题(每题3分)1.给出四个数:0,,,1,其中最大的是()A.0 B.C.D.﹣12.下列各图中,∠1与∠2互为余角的是()A. B.C.D.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.平行四边形B.矩形 C.正方形D.圆4.据统计,2015年长沙市的常住人口约为7500000人,将数据7500000用科学记数法表示为()A.7.5×106B.0.75×107C.7.5×107D.75×1055.已知关于x的不等式ax﹣3x+2>5的一个解是﹣2,则a的取值范围为()A.a<B.a>C.a>﹣D.a<﹣6.下列说法中,正确的是()A.任何一个数都有平方根 B.任何正数都有两个平方根C.算术平方根一定大于0 D.一个数不一定有立方根7.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,908.已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条9.如图,C是线段AB的中点,D是线段CB的中点,下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.AC+BD=BC+CD D.CD=AB10.如图,已知A是反比例函数y=图象上的一点,过点A向x轴作垂线交x轴于点B,在点A从左往右移动的过程中,△ABO的面积将()A.越来越大 B.越来越小C.先变大,后变小D.不变11.如图,扇形AOB是圆锥的侧面展开图,已知圆锥的底面半径为2,母线长为6,则阴影部分的面积为()A.12π﹣B.4π﹣C.12π﹣9D.4π﹣912.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线m,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A.B.C.D.二、填空题(每题3d分)13.分解因式:2x2﹣8=______.14.如图所示,在▱ABCD中,∠BAD的角平分线AE交BC于点E,AB=4,AD=6,则EC=______.15.化简: +2=______.16.一个不透明的口袋中共放有3个红球和11个黄球,这两种球除颜色外没有其他任何区别,若从口袋中随机取出一个球,则取到黄球的概率是______.17.如图所示,在⊙O中,AB为⊙O的直径,AC=8,sinD=,则BC=______.18.规定一种新的运算:a⊗b=,则1⊗2=______.三、解答题19.计算:2cos30°﹣|﹣2|﹣+1.20.先化简,再求值:(2a﹣b)2﹣b(b﹣2a)﹣a2,其中3a=2b.21.长沙市中考体育分值已经提高到了60分,其中的必考项目就有男子引体向上和女子一分钟仰卧起坐,各校为此加强了对体育训练的重视.引体向上(男)和一分钟仰卧起坐(女)共16分单位:次数分值 16 15 14 13 12 10 8 6 3成绩男(次) 8 7 6 5 4 3 2 1 0.5 女(次) 45 40 36 32 28 25 22 20 <19注:0.5次是指考生从直臂悬垂开始,有正确的引体动作和下杠动作,但未完整完成一次某中学对全校学生这两项运动的成绩进行了统计,规定分值15分及以上为优秀,12分到14分为良好,6分到10分为合格,6分以下不合格,在全校800名初三学生中,随机抽取部分学生进行测试,并将测试成绩绘制成如下两幅不完整的统计图,求:(1)某女生说她得了12分,请问她一分钟做了多少次仰卧起坐;(2)请问一共抽取了多少名学生?并补全条形统计图;(3)根据抽样结果估计,本校项目由多少学生能够得优秀?22.如图,在Rt△PAD中,∠PAD=90°,∠APD的角平分线PO交AD于O点,以O为圆心,OA为半径作⊙O,交AD于点B,过D作DE⊥PO交PO的延长线于点E.(1)求证:PD是⊙O的切线;(2)若PA=6,tan∠PDA=,求半径OA及OE的长.23.某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元;(2)甲公司拟向该店购买A、B两种型号的新能源汽车共6辆,购车费不少于130万元,但不超过140万元.则有哪几种购车方案?并写出哪种方案所需的购车费用最低.24.已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD 的延长线上取点E,使DE=DC,连接AE、BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的度数.25.若x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1•x2=,我们把它们称为根与系数的关系定理,请你参考上述定理,解答下列问题:设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).抛物线的顶点为C,且△ABC为等腰三角形.(1)求A、B两点之间的距离(用字母a、b、c表示)(2)当△ABC为等腰直角三角形时,求b2﹣4ac的值;(3)设抛物线y=x2+kx+1与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=60°?26.如图,四边形OABC为直角梯形,OA∥BC,∠AOC=90°,OA=OC=4,BC=3.点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C 运动,当其中一个动点达到终点时,另一个动点也随之停止运动,过点N作NP垂直OA于点P,连接AC交NP于点Q,连接MQ.(1)当t为何值时,M和P两点重合;(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,及当t 为何值时,S的值最大;(3)是否存在点M,使得△AQM为直角三角形?若存在,求NQ的长;若不存在,请说明理由.2016年湖南省长沙市中考数学模拟试卷(一)参考答案与试题解析一、选择题(每题3分)1.给出四个数:0,,,1,其中最大的是()A.0 B.C.D.﹣1【考点】实数大小比较.【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可解答.【解答】解:∵>1,∴0<<1<,∴最大的数是,故选;B.2.下列各图中,∠1与∠2互为余角的是()A. B.C.D.【考点】余角和补角.【分析】如果两个角的和等于90°(直角),就说这两个角互为余角.依此定义结合图形即可求解.【解答】解:四个选项中,只有选项C满足∠1+∠2=90°,即选项C中,∠1与∠2互为余角.故选C.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.平行四边形B.矩形 C.正方形D.圆【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、平行四边形是中心对称图形但不是轴对称图形,故本选项正确;B、矩形是中心对称图形也是轴对称图形,故本选项错误;C、正方形是中心对称图形也是轴对称图形,故本选项错误;D、圆是中心对称图形也是轴对称图形,故本选项错误.故选A.4.据统计,2015年长沙市的常住人口约为7500000人,将数据7500000用科学记数法表示为()A.7.5×106B.0.75×107C.7.5×107D.75×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据7500000用科学记数法表示为7.5×106.故选A.5.已知关于x的不等式ax﹣3x+2>5的一个解是﹣2,则a的取值范围为()A.a<B.a>C.a>﹣D.a<﹣【考点】不等式的解集;解一元一次不等式.【分析】先将x=﹣2代入不等式,得到关于a的一元一次不等式,求得a的取值范围即可.【解答】解:∵不等式ax﹣3x+2>5的一个解是﹣2∴﹣2a+6+2>5∴﹣2a>﹣3∴a<故选A.6.下列说法中,正确的是()A.任何一个数都有平方根 B.任何正数都有两个平方根C.算术平方根一定大于0 D.一个数不一定有立方根【考点】立方根;平方根;算术平方根.【分析】根据平方根、算术平方根、立方根,即可解答.【解答】解:A、任何一个数都有平方根,错误,负数没有平方根;B、任何正数都有两个平方根,正确;C、算术平方根一定大于0,错误,0的算术平方根是0;D、任何数都有立方根,故错误;故选:B.7.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,90【考点】众数;中位数.【分析】首先找出这组数据中出现次数最多的数,则它就是这组数据的众数;然后把这组数据从小到大排列,则中间的数就是这组数据的中位数,据此解答即可.【解答】解:∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,∴这组数据的众数是80;把数据75,80,80,85,90从小到大排列,可得75,80,80,85,90,所以这组数据的中位数是80.故选:B.8.已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条【考点】多边形内角与外角.【分析】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.【解答】解:∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条.∴这个多边形的对角线有(6×3)=9条,故选D.9.如图,C是线段AB的中点,D是线段CB的中点,下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.AC+BD=BC+CD D.CD=AB【考点】两点间的距离.【分析】根据线段中点的性质,可得CD、BD与AB、BC的关系,可得答案.【解答】解:由C是线段AB的中点,D是线段CB的中点,得AC=CB,CD=DB.A、CD=CB﹣BD=AC﹣BD,故A正确;B、CD=CB﹣BD=AB﹣BD,故B正确;C、AC+BD=BC+CD,故C正确;D、CD=BC=AB,故D错误;故选:D.10.如图,已知A是反比例函数y=图象上的一点,过点A向x轴作垂线交x轴于点B,在点A从左往右移动的过程中,△ABO的面积将()A.越来越大 B.越来越小C.先变大,后变小D.不变【考点】反比例函数系数k的几何意义.【分析】由点A在反比例函数图象上以及AB⊥x轴于点B,结合反比例函数系数k的几何意义即可得出S△ABO=|k|,由此即可得出结论.【解答】解:∵点A是反比例函数y=图象上的一点,且AB⊥x轴于点B,∴S△ABO=|k|,∴点A从左往右移动的过程中,△ABO的面积不变.故选D.11.如图,扇形AOB是圆锥的侧面展开图,已知圆锥的底面半径为2,母线长为6,则阴影部分的面积为()A.12π﹣B.4π﹣C.12π﹣9D.4π﹣9【考点】圆锥的计算.【分析】首先求得展开扇形的圆心角的度数,从而求得圆心到线AB的长,用扇形的面积减去三角形的面积即可求得阴影部分的面积.【解答】解:由题意知:弧长=圆锥底面周长=2×2π=4πcm,扇形的圆心角=弧长×180÷母线长÷π=4π×180÷6π=120°.作OC⊥AB于点C,∴OC=OA=3,AB=2AC=2×3=6,∴S阴影=S扇形﹣S△AOB=﹣×3×6=12π﹣9,故选C.12.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线m,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据已知得出S与x之间的函数关系式,进而得出函数是二次函数,当x=﹣=2时,S取到最小值为: =0,即可得出图象.【解答】解:∵A点在半径为2的⊙O上,过线段OA上的一点P作直线m,与⊙O过A点的切线交于点B,且∠APB=60°,∴AO=2,OP=x,则AP=2﹣x,∴tan60°==,解得:AB=(2﹣x)=﹣x+2,∴S△ABP=×PA×AB=(2﹣x)••(﹣x+2)=x2﹣2x+2,故此函数为二次函数,∵a=>0,∴当x=﹣=2时,S取到最小值为: =0,根据图象得出只有D符合要求.故选:D.二、填空题(每题3d分)13.分解因式:2x2﹣8= 2(x+2)(x﹣2).【考点】因式分解-提公因式法.【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).14.如图所示,在▱ABCD中,∠BAD的角平分线AE交BC于点E,AB=4,AD=6,则EC= 2 .【考点】平行四边形的性质.【分析】根据平行四边形的性质得到AD=BC=6,DC=AB=4,AD∥BC,推出∠DAE=∠BEA,根据AE平分∠BAD,能证出∠BAE=∠BEA,根据等腰三角形的判定得到AB=BE=4,根据EC=BC﹣BE,代入即可.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=6,DC=AB=4,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE=4,∴EC=BC﹣BE=6﹣4=2,故答案为:2.15.化简: +2= .【考点】分式的加减法.【分析】原式通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=,故答案为:16.一个不透明的口袋中共放有3个红球和11个黄球,这两种球除颜色外没有其他任何区别,若从口袋中随机取出一个球,则取到黄球的概率是.【考点】概率公式.【分析】用黄球的个数除以球的总个数可得.【解答】解:∵不透明的袋中有除颜色外没有其他任何区别的3个红球和11个黄球,共14个球,其中黄球有11个,∴从口袋中随机取出一个球,则取到黄球的概率是,故答案为:.17.如图所示,在⊙O中,AB为⊙O的直径,AC=8,sinD=,则BC= 6 .【考点】圆周角定理;解直角三角形.【分析】根据圆周角定理得到∠D=∠A,设BC=3x,根据正弦的定义得到AB=5x,根据勾股定理计算即可.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,由圆周角定理得,∠D=∠A,又sinD=,∴sinA=,即=,设BC=3x,则AB=5x,由勾股定理得,(5x)2﹣(3x)2=82,解得,x=2,则BC=6,故答案为:6.18.规定一种新的运算:a⊗b=,则1⊗2= ﹣.【考点】有理数的混合运算.【分析】根据2大于1,利用题中的新定义计算即可得到结果.【解答】解:∵2>1,∴1⊗2=﹣1=﹣,故答案为:﹣三、解答题19.计算:2cos30°﹣|﹣2|﹣+1.【考点】实数的运算;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,绝对值的代数意义,以及二次根式性质计算即可得到结果.【解答】解:原式=2×﹣2+﹣2+1=﹣1.20.先化简,再求值:(2a﹣b)2﹣b(b﹣2a)﹣a2,其中3a=2b.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,将已知等式代入计算即可求出值.【解答】解:原式=4a2﹣4ab+b2﹣b2+2ab﹣a2=3a2﹣2ab,由3a=2b,得到a=b,则原式=b2﹣b2=0.21.长沙市中考体育分值已经提高到了60分,其中的必考项目就有男子引体向上和女子一分钟仰卧起坐,各校为此加强了对体育训练的重视.引体向上(男)和一分钟仰卧起坐(女)共16分单位:次数分值 16 15 14 13 12 10 8 6 3成绩男(次) 8 7 6 5 4 3 2 1 0.5 女(次) 45 40 36 32 28 25 22 20 <19注:0.5次是指考生从直臂悬垂开始,有正确的引体动作和下杠动作,但未完整完成一次某中学对全校学生这两项运动的成绩进行了统计,规定分值15分及以上为优秀,12分到14分为良好,6分到10分为合格,6分以下不合格,在全校800名初三学生中,随机抽取部分学生进行测试,并将测试成绩绘制成如下两幅不完整的统计图,求:(1)某女生说她得了12分,请问她一分钟做了多少次仰卧起坐;(2)请问一共抽取了多少名学生?并补全条形统计图;(3)根据抽样结果估计,本校项目由多少学生能够得优秀?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由表格即可知答案;(2)根据“优秀”的人数及其占被调查学生的百分比可得总人数,总人数乘以“不合格”的百分比可得对应人数,由个等级人数之和等于总人数可得“良好”的人数,补全条形图;(3)用样本中“优秀”的人数所占百分比乘以全校总人数可得.【解答】解:(1)由表可知,她一分钟做了28次仰卧起坐;(2)一共抽取学生有:10÷20%=50(人),“不合格”的学生有50×10%=5(人),“良好”的学生有50﹣10﹣15﹣5=20(人),补全统计图如图:(3)800×20%=160(人),答:根据抽样结果估计,全校有160名学生能够取得优秀.22.如图,在Rt△PAD中,∠PAD=90°,∠APD的角平分线PO交AD于O点,以O为圆心,OA为半径作⊙O,交AD于点B,过D作DE⊥PO交PO的延长线于点E.(1)求证:PD是⊙O的切线;(2)若PA=6,tan∠PDA=,求半径OA及OE的长.【考点】切线的判定.【分析】(1)作OC⊥PD于C,根据角平分线的性质得出OC=OA,即可判定PD是⊙O的切线;(2)根据已知求得AD,PC,根据勾股定理求得PD,得出CD,设半径为x,则OD=8﹣x,在RT△ODC中,根据勾股定理得出(8﹣x)2=x2+42,解得半径为3,然后根据勾股定理求得OP,进而证得△POA∽△DOE,根据相似三角形的性质即可求得.【解答】(1)证明:作OC⊥PD于C,∵OP是∠APD的角平分线,OA⊥PA,OC⊥PD,∴OC=OA,∴PD是⊙O的切线;(2)解:∵PA=6,tan∠PDA==,∴AD=8,∴PD==10,∵PA⊥OA,∴PA是⊙O的切线,∵PD是⊙O的切线,∴PC=PA=6,∴CD=PD﹣PC=4,设半径为x,则OD=8﹣x,在RT△ODC中,OD2=OC2+CD2,∴(8﹣x)2=x2+42,解得x=3,∴半径OA=3,∴OD=8﹣3=5,在RT△AOP中,OP==3,∵∠PAO=∠E=90°,∠POA=∠DOE,∴△POA∽△DOE,∴=,即=,∴OE=.23.某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元;(2)甲公司拟向该店购买A、B两种型号的新能源汽车共6辆,购车费不少于130万元,但不超过140万元.则有哪几种购车方案?并写出哪种方案所需的购车费用最低.【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.【解答】解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得 2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.方案二:购买3辆A型车和3辆B型车所需的购车费用最低.24.已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD 的延长线上取点E,使DE=DC,连接AE、BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的度数.【考点】全等三角形的判定;等边三角形的性质.【分析】(1)根据SAS判定△AGE和△DAB全等;(2)证明四边形DEFB是平行四边形,△AEF是个等边三角形.【解答】(1)证明:∵△ABC是等边三角形,DG∥BC,∴∠AGD=∠ABC=60°,∠ADG=∠ACB=60°,且∠BAC=60°,∴△AGD是等边三角形,AG=GD=AD,∠AGD=60°.∵DE=DC,∴GE=GD+DE=AD+DC=AC=AB,∴在△AGE与△DAB中,,∴△AGE≌△DAB(SAS);(2)解:由(1)知AE=BD,∠ABD=∠AEG.∵EF∥DB,DG∥BC,∴四边形BFED是平行四边形.∴EF=BD,∴EF=AE.∵∠DBC=∠DEF,∴∠ABD+∠DBC=∠AEG+∠DEF,即∠AEF=∠ABC=60°.∴△AFE是等边三角形,∠AFE=60°.25.若x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1•x2=,我们把它们称为根与系数的关系定理,请你参考上述定理,解答下列问题:设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).抛物线的顶点为C,且△ABC为等腰三角形.(1)求A、B两点之间的距离(用字母a、b、c表示)(2)当△ABC为等腰直角三角形时,求b2﹣4ac的值;(3)设抛物线y=x2+kx+1与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=60°?【考点】二次函数综合题.【分析】(1)令二次函数解析式中y=0,根据根与系数的关系可得出“x1+x2=﹣,x1•x2=”,利用配方法即可求出|x2﹣x1|的值,由此即可得出结论;(2)利用配方法将二次函数解析式转化成顶点式,由此即可求出点C的坐标,再根据等腰直角三角形的性质可得出2×||=,利用换元解方程即可求出b2﹣4ac的值;(3)由(2)的结论即可得出关于k的方程,解方程即可得出抛物线的解析式,画出函数图象,由此可得出若要使∠ACB=60°,则需把抛物线往下平移,设平移的距离为n(n>0),则平移后的抛物线的解析式为y=x2﹣2x+1﹣n,结合(1)(2)的结论即可得出关于n的一元二次方程,解方程即可得出结论.【解答】解:(1)令y=ax2+bx+c(a≠0)中y=0,则有ax2+bx+c=0,∵二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0),∴x1+x2=﹣,x1•x2=,∴|x2﹣x1|===.(2)∵二次函数y=ax2+bx+c=a+,∴点C的坐标为(﹣,),∵△ABC为等腰直角三角形,∴2×||=,令=m,则有m2﹣2m=0,解得:m=2,或m=0,∵二次函数与x轴有两个不相同的交点,∴m==2,∴b2﹣4ac=4.(3)∵∠ACB=90°,∴b2﹣4ac=k2﹣4=4,解得:k=±2.选k=﹣2,画出图形,如图所示.若要使∠ACB=60°,则需把抛物线往下平移,设平移的距离为n(n>0),则平移后的抛物线的解析式为y=x2﹣2x+1﹣n,由(1)可知AB==2,由(2)可知点C(﹣,),即(,﹣1﹣n),∵△ABC为等腰三角形,且∠ACB=60°,∴﹣y C=AB,即1+n=,解得:n=﹣1(舍去),或n=2.故将抛物线往下平移2个单位长度,能使∠ACB=60°.26.如图,四边形OABC为直角梯形,OA∥BC,∠AOC=90°,OA=OC=4,BC=3.点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C 运动,当其中一个动点达到终点时,另一个动点也随之停止运动,过点N作NP垂直OA于点P,连接AC交NP于点Q,连接MQ.(1)当t为何值时,M和P两点重合;(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,及当t 为何值时,S的值最大;(3)是否存在点M,使得△AQM为直角三角形?若存在,求NQ的长;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)用t可表示出BN、OM,则可表示出CN,又由△OAC为等腰直角三角形,MN⊥OA,可得到CN=NQ,AP=PQ,当M、P重合时,则有AM=PQ,可得到关于t的方程,可求得t;(2)由(1)可用t分别表示出AM、PQ,可表示出△AQM的面积,再利用二次函数的性质可求得其最大值;(3)由于∠OAC=45°,故当△AQM为直角三角形只能有QM⊥OA和MQ⊥AQ两种情况,当QM ⊥OA时,则M、P重合,由(1)可得到t的值,当MQ⊥AQ时,则有MP=PQ,可得到关于t 的方程可,可求得t的值.【解答】解:(1)∵OA=OC=4,∠AOC=90°,∴∠OAC=45°,∵OA∥BC,∴∠BCA=∠OAC=45°,∵NP⊥OA,∴CN=NQ,PQ=AP,当运动t秒时,则有BN=t,OM=2t,且BC=3,∴CN=NQ=BC﹣BN=3﹣t,AP=PQ=PN﹣NQ=4﹣(3﹣t)=t+1,AM=OA﹣OM=4﹣2t,当M和P重合时,则有AM=PQ,即t+1=4﹣2t,解得t=1,∴当t的值为1秒时,M和P两点重合;(2)当运动时间为t秒时,由(1)可知PQ=t+1,AM=4﹣2t,∴S=AM•PQ=(t+1)(4﹣2t)=﹣(t﹣)2+,∵OA=4,∴M点的运动时间最大为2秒,∴0≤t≤2,∴当t=时,S max=,综上可知S=﹣(t﹣)2+(0≤t≤2),当t=时S有最大值;(3)∵∠OAC=45°∴当△AQM为直角三角形只能有QM⊥OA和MQ⊥AQ两种情况,①当QM⊥OA时,则M、P重合,由(1)可得到t=1,此时NQ=3﹣t=2;②当MQ⊥AQ时,则有MP=PQ,由(1)可知AM=4﹣2t,AP=t+1,∴PM=AM﹣AP=(4﹣2t)﹣(t+1)=3﹣3t,又PQ=t+1,∴3﹣3t=t+1,解得t=,此时NQ=3﹣t=;综上当t的值为1秒或秒时,△AQM为直角三角形,NQ的长分别为2或.。