刘占国《利息理论》第二章习题详解及提示

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=1+t
∫ ∫ v(0) = 14 (t2 −1)a−1(t)dt = 14 (t2 −1) 1 dt = 84.5
1
1
1+ t
48.解: a = 1− vt ,
a
1− vn =
t
δ
n
δ
∫ ∫ ( ) n a dt =
0t
n 1− vt 0δ
dt
=
1 δ
⎛ ⎜n ⎝
1− vn −
δ
⎞ ⎟ ⎠
=
1 δ
类似地, v11 = 1− ia = 1− iL, v18 = 1− ia = 1− iM
11
18
Q v7v11 = v18
∴(1− iK )(1− iL) = 1− iM 从而 i = L + K − M KL
31.解:
a(2) n
=
1− vn i(2)

a&&(12) n
1− vn =
d (12)
∫ 39.解: n (1− kt ) vtdt = f − g − h 0
1− vn 1
f = lim a = lim =
δ n→∞ n n→∞
δ
g = (1− kn) 1 ⋅ vn δ
40.解: a(t)
=
t 1 dr
e∫0 1+r
=1+t
∫ ∫ a = n a−1(t)dt = n 1 dt = ln(1+ n)
n−a n
= 1 × 4 = 40 10%
n
n a&& − tvt
∑ ( ) ∑ 49.解:1)
Ia = t
t =1
t =1
t
i
=
⎛ ⎜⎝
i
i
(12)
+
i 12
⎞ ⎟⎠
a n
( ) 32.解:
500
lim
n→∞
a&& n
i半
1+ i半
wenku.baidu.com−t
= 10000
( ) 1+ i = 1
1− d
=
1+ i半
2
⇒1+
i半
=
(1 −
d
)−1 2

i半
=
(1 −
d
)−1 2
−1
( ) ∴ 1+ i半 1−t = 20
i半
a&& − nvn
36.解: ( Ia) = n
i 4i 6i 8
iii
i − vd
45.解:
K&s& 25
1.022
−1
=
5
+
Ka&& 30
0.015
1 46.解: a
1 a+ a 120 i月
a
1.03−10 + x a
1.03−10 = 1
180 i月新
100000 180i月新
300 i月
300 i月
47.解: a(t)
=
t 1 dr
e∫0 1+r
第二章 年金
4.解:16000
=
A
1− +1000 ⋅
⎛⎜1 ⎝
+
0.087 12
0.087
−120
⎞ ⎟ ⎠
⎛⎜1 + ⎝
0.087 12
⎞ ⎟
⎛⎜1 +
⎠⎝
0.087 12
−1
⎞ ⎟ ⎠
12
a n
5.解:
=
1− (1+ i)−n
x= i
⇒ (1+ i)−n
= 1− xi
1− (1+ i)−2n 1− (1− xi)2
20
i
37.解:
1 1 1… 0 1 2 3…
∴95.36
=
a 20
(1 +
i)

n (1+
)i −20
i
1
该永续年金现值为
i
1
1
1…
0 1 2 3 4 5 6…
该永续年金现值为: (1+ )i −2 + (1+ )i −4 +L = 1
(2 + i)i
11
i+3
∴所求年金现值为: +
=
i (2 + i)i (2 + i)i
1 Ra
2n
=
R
⎛ ⎜ ⎝
1 i

a n
⎞ ⎟ ⎠
17.解:1500a = 100000 解得 m ≈ 95.6 即正常还款次数为 95 次 m 0.008
1500a + f (1+ 0.008)−95 = 100000 95 0.008
19.解:
解得 f = 965.74


1000
⎜⎜⎝
s
10
i( 2 2
n
0
0 1+t
42.解:后五年等比
( ) 1000 &s& − &s& 10 5
+ 1050
×
1

⎛ ⎜ ⎝
1+ k 1+ i
5
⎞ ⎟ ⎠
(1
+
i
)
(1
+
i
)5
i−k
43.解:
1
12
2
3
3…
0 … 4 5 6 7 8 9 10 …
1 − a + 1 − a + 1 − a +L = v4 + v6 + v8 +L = v4
1− (1+ i)−n
25.解: a =
n
i
∂a ∴n
∂i
n (1+ i)−n−1 i −1+ (1+ i)−n
=
i2
∂a
a −a
∴n ∂i
n=16.867 = L =
i = 0.1
n 0.102 n 0.1
0.002
其中 n 通过公式(2-76)得到
29.解:
a
1− v7 =
7
i
∴v7 = 1− i a = 1− iK 7
f (1.032) = −0.003186
23.解:
a 6
0.04
+
1

(1+
i
i
)−4
1.04−6
,1
+
i
=
⎛⎜⎝1 +
0.04 4
4
⎞ ⎟⎠
24.解:
R 1.1025R 1.205R
0 123 4
R ×1.054 +1.1025R1.053 +1.1025R1.052 +1.205R1.05 = 11000 得 R = 2212.147
)
− s5 i(2) 2
⎟⎟⎠
+
2000s
5
i
(2
2
)
= 17000
∴(1+ i)10 + (1+ i)5 −17 (1+ i) +15 = 0
令 f (t) = t10 + t5 −17t +15
0 − f (1.03) = f (1.035) − f (1.03)
i −1.03
1.035 −1.03
a =y=
=
(*)
2n
i
i
将 i = d 代入(*) 1− d
7.解:
1000 1000
1000
0 1 … 17 18
1000&s& 18
(1 +
) 0.08
−5 12
=
39169.84
8.解:5000&s&10
0.1
=
Ra&& 10
0.1
9.解:5000&s&10
0.1
=
Ra&& 10
0.15
14.解:永续年金每年支付 R
相关文档
最新文档