高中数学解析几何知识点总结大全

合集下载

(完整)高中数学解析几何知识点总结,推荐文档

(完整)高中数学解析几何知识点总结,推荐文档

§07. 直线和圆的方程 知识要点一、直线方程.1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是)0(1800παα ≤≤.注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+by a x .注:若232--=x y 是一直线的方程,则这条直线的方程是232--=x y ,但若)0(232≥--=x x y 则不是这条线.附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线.3. ⑴两条直线平行:1l ∥212k k l =⇔两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则1l ∥212k k l =⇔,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条件,且21C C ≠)推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=⇔l . ⑵两条直线垂直:两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=⇔⊥k k l l 这里的前提是21,l l 的斜率都存在. ②0121=⇔⊥k l l ,且2l 的斜率不存在或02=k ,且1l 的斜率不存在. (即01221=+B A B A 是垂直的充要条件)4. 直线的交角:⑴直线1l 到2l 的角(方向角);直线1l 到2l 的角,是指直线1l 绕交点依逆时针方向旋转到与2l 重合时所转动的角θ,它的范围是),0(π,当90≠θ时21121tan k k k k +-=θ.⑵两条相交直线1l 与2l 的夹角:两条相交直线1l 与2l 的夹角,是指由1l 与2l 相交所成的四个角中最小的正角θ,又称为1l 和2l 所成的角,它的取值范围是 ⎝⎛⎥⎦⎤2,0π,当90≠θ,则有21121tan k k k k +-=θ.5.过两直线⎩⎨⎧=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内)6. 点到直线的距离:⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200BA C By Ax d +++=.注:1.两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=.特例:点P(x,y)到原点O 的距离:||OP =2. 定比分点坐标分式。

(完整版)高中数学解析几何公式大全

(完整版)高中数学解析几何公式大全

(完整版)高中数学解析几何公式大全一、直线方程1. 点斜式:y y1 = m(x x1),其中m是直线的斜率,(x1, y1)是直线上的一个点。

2. 斜截式:y = mx + b,其中m是直线的斜率,b是直线在y轴上的截距。

3. 一般式:Ax + By + C = 0,其中A、B、C是常数。

二、圆的方程1. 标准式:(x a)2 + (y b)2 = r2,其中(a, b)是圆心的坐标,r是圆的半径。

2. 一般式:x2 + y2 + Dx + Ey + F = 0,其中D、E、F是常数。

三、椭圆的方程1. 标准式:((x h)2/a2) + ((y k)2/b2) = 1,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。

2. 一般式:((x h)2/a2) + ((y k)2/b2) 1 = 0,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。

四、双曲线的方程1. 标准式:((x h)2/a2) ((y k)2/b2) = 1,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。

2. 一般式:((x h)2/a2) ((y k)2/b2) 1 = 0,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。

五、抛物线的方程1. 标准式:y2 = 4ax,其中a是抛物线的焦点到准线的距离。

2. 一般式:y2 = 4ax + b,其中a是抛物线的焦点到准线的距离,b是抛物线在y轴上的截距。

六、直线与圆的位置关系1. 判定直线与圆的位置关系:计算直线到圆心的距离d与圆的半径r的关系。

如果d < r,直线与圆相交;如果d = r,直线与圆相切;如果d > r,直线与圆相离。

2. 直线与圆的交点:解直线方程和圆的方程,得到两个交点的坐标。

七、直线与椭圆的位置关系1. 判定直线与椭圆的位置关系:将直线方程代入椭圆方程,得到一个关于x的一元二次方程。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结一、平面解析几何在平面解析几何中,我们主要研究平面上的点、直线、圆、曲线等几何对象。

平面解析几何的基本思想是用代数方法研究几何问题,通过建立坐标系和引入坐标变量的方法,将几何问题转化为代数问题进行研究。

在平面解析几何中,有一些重要的知识点需要掌握,下面我们将逐一进行讲解。

1. 坐标系坐标系是平面解析几何的基本工具,它通过数轴的方式将平面上的点和几何对象进行了定位。

常见的坐标系有直角坐标系和极坐标系两种。

直角坐标系是由水平轴和垂直轴组成的,水平轴称为x轴,垂直轴称为y轴。

平面上的每个点通过它的横坐标x和纵坐标y来确定,就可以唯一确定一个点的位置。

例如,点A(x,y)表示了点A在坐标系中的位置。

极坐标系是以原点O和一条射线作为坐标轴,用点到原点的距离r和与射线的夹角θ来表示点的位置。

在极坐标系中,点的坐标表示为(r,θ)。

2. 直线的方程在直角坐标系中,直线可以用方程y=ax+b或者y=kx+b来表示,其中a、b、k为常数。

当a≠0时,直线的方程为y=ax+b,a称为直线的斜率,b称为直线的截距;当a=0时,直线的方程为y=b,其斜率为0,直线与y轴平行。

另外,直线还可以用斜截式、截距式、两点式等来表示,学生需要灵活掌握不同表示方法,并能够相互转化。

3. 圆的方程在平面解析几何中,圆是一个重要的几何对象,它的方程可以用不同的形式表示。

在直角坐标系中,圆的方程一般写为(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为圆的半径。

4. 曲线的方程除了直线和圆之外,学生还需要学习其他曲线的方程,如抛物线、椭圆、双曲线等。

这些曲线都有各自的方程形式,在解析几何中有着重要的应用。

5. 解析几何的基本性质和定理在学习平面解析几何时,学生还需要掌握一些基本的性质和定理,如两点间的距离公式、直线的斜率公式、直线与圆的位置关系、圆与圆的位置关系等。

高中数学解析几何知识点总结大全

高中数学解析几何知识点总结大全

高中数学解析几何知识点总结大全解析几何是高中数学的重要分支之一,通过运用代数和几何的方法来研究几何图形的性质和变换。

下面是高中数学解析几何的知识点总结,供参考:一、直线与平面的位置关系1.直线与平面的交点个数:直线和平面可以有0个、1个或无数个交点。

2.平面与平面的位置关系:两个平面可以相交、平行或重合。

二、向量及其代数运算1.向量的概念:向量是具有大小和方向的量。

2.向量的表示方法:向量可以用有向线段或坐标表示。

3.向量的加法:向量的加法满足平行四边形法则。

4.向量的数乘:向量的数乘是一个向量与一个实数的乘积。

5.向量的数量积:向量的数量积是两个向量之间的乘积,结果是一个实数。

6.向量的乘法运算法则:分配律、结合律和交换律。

三、直线及其方程1.平面直角坐标系:平面直角坐标系包括坐标轴、坐标原点和相应的正方向。

2.直线的方程:直线可以用一般式、点斜式、两点式或截距式表示。

3.直线的性质:平行、垂直、斜率、倾斜角等。

4.直线的位置关系:两条直线可以相交、平行或重合。

四、曲线及其方程1.圆的方程:圆可以用标准方程、一般方程或截距方程表示。

2.椭圆、双曲线和抛物线的方程:椭圆、双曲线和抛物线可以用一般式表示。

3.曲线的性质:焦点、准线、离心率等概念的理解。

4.曲线的位置关系:两条曲线可以相交、相切或没有交点。

五、空间直线及其方程1.空间直线的方程:空间直线可以用对称式、参数方程或直角坐标式表示。

2.空间直线的位置关系:两条空间直线可以相交、平行或重合。

3.空间直线与平面的位置关系:空间直线可以与平面相交、平行或测度为零。

六、空间曲线及其方程1.空间曲线的方程:空间曲线可以用参数方程或直角坐标式表示。

2.空间曲线与平面的位置关系:空间曲线可以与平面相交、触及或完全包含。

七、立体图形1.点、线、面、体的概念:点是没有长度、宽度和高度的,线是一系列相连的点,面是一系列相连的线,体是一系列相连的面。

2.立体图形的表面积:立方体、长方体、正方体、球体、圆柱体、圆锥体和棱锥体的表面积计算公式。

高中数学解析几何知识点归纳总结

高中数学解析几何知识点归纳总结

高中数学解析几何知识点归纳总结
1. 直线与平面的位置关系
- 直线与平面的交点可以有三种情况:交于一点、平行或重合。

- 直线与平面的夹角可以分为三种情况:直线在平面内、直线
与平面垂直或直线在平面外。

- 两个平面的位置关系可以分为三种情况:相交于一直线、平
行或重合。

2. 平面的方程
- 平面的方程有两种形式:点法式和一般式。

- 点法式方程:通过平面上一点和法向量来确定平面方程。

- 一般式方程:由平面的法向量和一个常数项确定平面方程。

3. 直线的方程
- 直线的方程也有两种形式:点向式和一般式。

- 点向式方程:通过直线上一点和方向向量来确定直线方程。

- 一般式方程:由直线的法向量和一个常数项确定直线方程。

4. 平面和直线的距离
- 平面和直线的距离可以使用点到平面的距离公式或点到直线
的距离公式。

5. 直线与直线的位置关系
- 直线与直线的位置关系可以分为三种情况:相交于一点、平
行或重合。

6. 空间中的球面与圆
- 空间中的球面方程与二维平面上的圆方程类似。

- 空间中的球面与圆的方程可以通过中心点和半径来确定。

7. 二次曲线
- 二次曲线包括椭圆、双曲线和抛物线。

- 二次曲线的方程可以通过焦点、直径等要素来确定。

以上是高中数学解析几何的一些主要知识点。

通过研究和掌握
这些知识,你将能够更好地理解和应用解析几何的相关概念和方法。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。

下面就让我们一起来详细梳理一下平面解析几何的相关知识点。

一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。

斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。

两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。

截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。

一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。

2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。

垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结1.直线方程直线和圆的方程是解析几何中的重要知识点之一。

在直线方程的研究中,我们需要掌握以下几个要点:1.1 直线的倾斜角直线的倾斜角是指一条直线向上的方向与x轴正方向所成的最小正角。

当直线与x轴平行或重合时,其倾斜角为0度或180度。

需要注意的是,当直线垂直于x轴时,其斜率不存在。

1.2 直线方程的几种形式直线方程可以表示为点斜式、截距式、两点式和斜截式。

其中,当直线经过两点时,即在x轴和y轴上的截距分别为a和b(a≠0,b≠0)时,直线方程为y = (-a/b)x + 1.1.3 直线系直线系是指斜截式方程y = kx + b中的k和b均为确定的数值时,所表示的一组直线。

当b为定值,k变化时,它们表示过定点(0,b)的直线束;当k为定值,b变化时,它们表示一组平行直线。

2.平行和垂直的直线在解析几何中,平行和垂直的直线是常见的情况。

判断两条直线是否平行或垂直,需要注意以下几点:2.1 两条直线平行的条件两条直线平行的条件是:它们是两条不重合的直线,且在它们的斜率都存在的前提下,斜率相等。

需要特别注意的是,抽掉或忽视其中任一个“前提”都会导致结论的错误。

2.2 两条直线垂直的条件两条直线垂直的条件是:它们的斜率之积为-1.同样需要注意的是,在判断两条直线是否垂直时,需要确保它们的斜率都存在。

以上是解析几何中直线方程和平行、垂直直线的基本知识点总结。

掌握这些知识点,对于研究和理解解析几何的其他内容将会有很大的帮助。

本文主要介绍了直线和圆的方程,其中包括直线的平行和垂直方程,过定点的直线方程以及过两条直线交点的直线方程等内容。

同时还介绍了关于点和直线对称的性质,以及圆的标准方程和特例。

下面对每个部分进行小幅度的改写和格式修正。

一、直线方程1.直线的平行和垂直方程直线的平行和垂直方程是很重要的概念,它们可以帮助我们更好地理解直线的性质和特点。

其中,与直线 Ax+By+C=0平行的直线方程是 Ax+By+m=0(m为实数,且C≠m);与直线Ax+By+C=0 垂直的直线方程是Bx-Ay+m=0(m为实数)。

解析几何知识点总结高中

解析几何知识点总结高中

解析几何知识点总结高中几何学是数学的一部分,涵盖了从平面到空间的所有形状和大小的研究。

解析几何是几何学的一个分支,它利用代数运算和坐标系来描述各种形状和位置。

在高中数学的学习中,解析几何是一个重要的知识点。

在本文中,将详细介绍一些高中解析几何的知识点。

1. 二元一次方程二元一次方程是运用解析几何的基本方法之一。

我们可以通过它来描述到两个物体之间的空间位置关系。

下面是二元一次方程的一般式子:ax + by + c = 0。

其中,a、b、和c是常数,x和y是未知数。

在解析几何中,二元一次方程代表一条直线。

该直线的斜率(k)和截距(b)可以得出如下公式:k = -a/b,b = -c/b。

直线的一般式子可以根据两个点或点与斜率之间的关系来确定。

如果已知直线上的两个点A(x1, y1)和B(x2, y2),可以通过计算斜率和截距来得出该直线的一般式子:k = (y2 – y1) / (x2 – x1),b = y – kx。

其中,k为直线的斜率,b为直线的截距。

另一种方法是给定点和斜率的值。

如果直线上有一个点P(x0, y0)和斜率k,可以使用如下公式:y – y0 = k(x – x0)。

这种表示形式称为点斜式。

2. 圆的方程在解析几何中,圆的方程描述了圆的位置和半径。

标准方程如下:(x – a)^2 + (y – b)^2 = r^2。

其中,a和b是圆心的坐标,r是圆的半径。

通过对圆的方程进行简单的变形,可以从常数中得出圆的标准方程。

该变形将方程写成如下形式:x^2 + y^2 + Dx + Ey + F = 0。

其中,D、E和F是常数。

该表达式描述的圆方程称为一般圆方程。

3. 空间几何解析几何不仅适用于平面几何,还可以用于空间几何。

在空间几何中,一个点由三个坐标表示。

直线可以通过两点或点和向量表示,而平面可以通过三个点或点和两条直线表示。

空间几何中的一些重要概念包括向量,对称和距离。

向量是大小和方向的量,可以使用两点之间的差值来描述。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结直线:倾斜角与斜率:定义:直线与x轴正向所成的角称为直线的倾斜角,其正切值即为直线的斜率。

范围:倾斜角的范围为0°到180°。

特殊情况:当直线垂直于x轴时,斜率不存在。

直线方程:点斜式:已知直线上一点P(x0,y0)及直线的斜率k,则直线方程为y-y0=k(x-x0)。

注意,当斜率不存在时,此形式不适用。

斜截式:已知直线在y 轴上的截距b和斜率k,则直线方程为y=kx+b。

圆:圆的标准方程:描述圆的基本形式。

圆心与半径:定义圆的中心和大小。

切线、弧长、扇形、弓形:描述圆上或圆周围的特定部分。

二次曲线:椭圆:定义、标准方程、焦点、准线等性质。

双曲线:定义、标准方程、焦点、准线等性质。

抛物线:定义、标准方程、焦点、准线等性质。

向量:向量的运算:包括向量的加减、数量积、向量积等。

向量的性质:如向量的模、方向余弦等。

向量的几何应用:平面向量:涉及平面上点的坐标表示、点和点之间的距离、线段的中点、向量共线与垂直、三角形的重心、内心、外心、垂心等概念。

空间向量:涉及空间向量的坐标表示、点和点之间的距离、平面的方程、直线与平面的位置关系、平面与平面的位置关系、球与球的位置关系等概念。

空间中的直线与平面:直线的参数方程和对称方程:描述直线在三维空间中的位置和方向。

平面的一般式和截距式方程:描述平面在三维空间中的位置和方向。

以上仅为高中数学解析几何部分的主要知识点概述,具体内容可能因教材版本和学校教学计划而有所差异。

在实际学习过程中,还需结合具体教材和课堂讲解来深入理解各个知识点。

高中解析几何知识点

高中解析几何知识点

解析几何知识点一、基本内容(一)直线的方程1、直线的方程确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围.2、两条直线的位置关系两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠外注意到角公式与夹角公式的区别.(2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断.(二)圆的方程(1)圆的方程1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化.2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标(,)22D E --,半径。

3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x r =条件时,能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切.4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ),1PA PB k k =-求出圆方程(x-x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式(三)曲线与方程(1)求曲线方程的五个步骤:(1)建立适当的直角坐标系,用(x ,y )表示曲线上任意一点M 的坐标;建标(2)写出适合条件P 的点M 的集合P ={M |P (M )}; 设点(3)用坐标表示条件P (M ),列出方程f (x ,y )=0 列式(4)化方程f (x ,y )=0为最简方程 化简(5)证明以化简后的方程的解为坐标的点都是这条曲线上的点.除个别情况外,化简过程都是同解变形过程,步骤(5)可以不写,也可以省略步骤(2),直接列出曲线方程.(2)求曲线方程主要有四种方法:(1)条件直译法:如果点运动的规律就是一些几何量的等量关系,这些条件简单、明确,易于表达,我们可以把这些关系直译成含“x ,y ”(或ρ,θ)的等式,我们称此为“直译法”.(2)代入法(或利用相关点法):有时动点所满足的几何条件不易求出,但它随另一动点的运动而运动,称之为相关点.如果相关点满足的条件简明、明确,就可以用动点坐标把相关的点的坐标表示出来,再用条件直译法把相关点的轨迹表示出来,就得到原动点的轨迹.(3)几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律.(4)参数法:有时很难直接找出动点的横纵坐标之间关系.如果借助中间参量(参数),使x,y之间的关系建立起联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程.(四)圆锥曲线(1)椭圆(1)椭圆的定义平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.这里应特别注意常数大于|F1F2|因为,当平面内的动点与定点F1,F2的距离之和等于|F1F2|时,其动点轨迹就是线段F1F2;当平面内的动点与定点F1,F2的距离之和小于|F1F2|时,其轨迹不存在.(2)椭圆的标准方程之所以称它为标准方程,是因为它的形式最简单,这与利用对称性建立直角坐标系有关.同时,还应注意理解下列几点,1)标准方程中的两个参数a和b,确定了椭圆的形状和大小,是椭圆的定形条件.2)焦点F1,F2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型.也就是说,知道了焦点位置,其标准方程只有一种形式,不知道焦点位置,其标准方程具有两种类型.3)任何一个椭圆,只需选择适当的坐标系,其方程均可以写成标准形式,当且仅当椭圆的中心在原点,其焦点在坐标轴上时,椭圆的方程才具有标准形式.1)范围:焦点在x轴时,椭圆位于直线x=±a和y=±b所围成的矩形里.2)对称性:椭圆关于x轴,y轴和原点都是对称的,这时坐标轴为椭圆的对称轴,原点是椭圆的对称中心.椭圆的对称中心叫做椭圆中心.3)顶点:椭圆与对称轴的交点为椭圆的顶点A1(-a,0)A2(a,0)B1(0,b)B2(0,-b)线段A1A2,B1B2分别叫做椭圆的长轴,短轴,长分别为2a,2b.<1.e越接近于1,则椭圆越扁,反之,e越接近于0,椭圆越接近于圆.5)焦半径:椭圆上任一点到焦点的距离为焦半径.如图所示,当焦点在x轴上时,任一点到左焦点的焦半径为r1=a+ex0.6)|A1F1|=a-c|A1F1|=a+c10)椭圆的第二定义:平面内的点到定点的距离和它到定直线的距离的比为常数e(e<1=的点的轨迹.。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结在高中数学的学习中,平面解析几何是一个重要的板块,它将代数与几何巧妙地结合在一起,为我们解决各种几何问题提供了有力的工具。

下面就让我们来详细总结一下这部分的知识点。

一、直线1、直线的倾斜角直线倾斜角的范围是0, π) 。

倾斜角为 0 时,直线与 x 轴平行或重合;倾斜角为π/2 时,直线与 x 轴垂直。

2、直线的斜率过两点 P(x₁, y₁),Q(x₂, y₂)(x₁ ≠ x₂)的直线的斜率 k =(y₂y₁) /(x₂ x₁) 。

当直线与 x 轴垂直时,斜率不存在。

3、直线的方程(1)点斜式:y y₁= k(x x₁) ,其中(x₁, y₁) 是直线上一点,k 是直线的斜率。

(2)斜截式:y = kx + b ,其中 k 是斜率,b 是直线在 y 轴上的截距。

(3)两点式:(y y₁) /(y₂ y₁) =(x x₁) /(x₂ x₁) ,其中(x₁, y₁),(x₂, y₂) 是直线上两点。

(4)截距式:x / a + y / b = 1 ,其中 a ,b 分别是直线在 x 轴和 y 轴上的截距。

(5)一般式:Ax + By + C = 0 (A,B 不同时为 0)。

4、两条直线的位置关系(1)平行:两条直线斜率相等且截距不同。

(2)垂直:两条直线斜率的乘积为-1 (当其中一条直线斜率为0 ,另一条直线斜率不存在时也垂直)。

5、点到直线的距离公式点 P(x₀, y₀) 到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²) 。

二、圆1、圆的标准方程(x a)²+(y b)²= r²,其中(a, b) 是圆心坐标,r 是半径。

2、圆的一般方程x²+ y²+ Dx + Ey + F = 0 (D²+ E² 4F > 0 ),圆心坐标为(D/2, E/2) ,半径 r =√(D²+ E² 4F) / 2 。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结解析几何是数学中的一个重要分支,它是几何和代数的结合,通过代数方法研究几何问题。

在高中数学学习中,解析几何是一个重要的知识点,它涉及到直线、圆、曲线等图形的性质和相关定理。

下面将对高中数学解析几何的知识点进行总结。

一、直线的方程。

1.点斜式方程。

点斜式方程是解析几何中直线的一种常见方程形式,它的形式为y-y₁=k(x-x₁),其中(x₁,y₁)为直线上的一点,k为直线的斜率。

利用点斜式方程,可以方便地确定直线的位置和性质。

2.一般式方程。

一般式方程是直线的另一种常见方程形式,它的形式为Ax+By+C=0,其中A、B、C为常数且A和B不同时为0。

一般式方程可以直接得到直线的斜率和截距,方便进行直线的分析和运算。

二、圆的方程。

1.标准方程。

圆的标准方程是(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。

通过标准方程,可以直接得到圆的圆心和半径,方便进行圆的性质和位置分析。

2.一般方程。

圆的一般方程是x²+y²+Dx+Ey+F=0,其中D、E、F为常数。

一般方程可以通过配方和化简得到圆的标准方程,也可以直接得到圆的圆心坐标和半径长度。

三、曲线的方程。

1.抛物线的方程。

抛物线的一般方程为y=ax²+bx+c,其中a、b、c为常数且a≠0。

抛物线是解析几何中的重要曲线,通过抛物线的方程可以确定抛物线的开口方向、顶点坐标等重要性质。

2.椭圆的方程。

椭圆的一般方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆的中心坐标,a、b分别为椭圆在x轴和y轴上的半轴长度。

椭圆是解析几何中的另一种重要曲线,通过椭圆的方程可以确定椭圆的中心、长短轴长度等重要性质。

综上所述,高中数学解析几何知识点总结包括直线的方程、圆的方程和曲线的方程。

通过对这些知识点的学习和掌握,可以帮助学生更好地理解和运用解析几何知识,提高数学解题能力。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结一、基本概念1. 点、直线和平面•点:在平面上,点是最基本的几何对象,可以用坐标表示。

在空间中,点可以用三维坐标表示。

•直线:由无数个点连成的无限延伸的轨迹,可以由两个不重合的点唯一确定。

•平面:由无数点在同一平面上组成。

2. 基本图形•线段:连接两点的线段,有起点和终点,可以用线段的长度表示。

•射线:一个起点和一个终点在同一条直线上的线段,有起始点但没有终结点。

•角:由两条半直线和公共端点组成,以顶点为中心点,夹在两条半直线之间。

二、坐标系与向量1. 坐标系•笛卡尔坐标系:直角坐标系,是一个由两条垂直的坐标轴组成的平面,用于表示点的位置。

•极坐标系:以一个点为极点,在此点设一根射线作为极轴,并规定每一个点到该射线的距离和与该射线正方向所成角度来表示该点的坐标。

2. 向量•向量的定义:向量是有大小和方向的量,表示一段膨胀或者收缩的箭头。

•向量的运算:向量可以做加法和乘法运算,具备平移、缩放和旋转的特性。

•向量的表示:向量可以用有序数组、列矩阵或坐标表示。

三、直线与圆1. 直线的方程•点斜式方程:通过已知点和斜率来表示直线的方程。

•斜截式方程:通过截距和斜率来表示直线的方程。

•两点式方程:通过两个已知点来表示直线的方程。

•一般式方程:直线的一般方程为Ax + By + C = 0。

2. 圆的方程•标准方程:圆的标准方程为(x−a)2+(y−b)2=r2,其中(a,b)为圆心坐标,r为半径长度。

•一般方程:圆的一般方程为x2+y2+Dx+Ey+F=0。

四、曲线与曲面1. 二次曲线•椭圆:由平面上到两个定点的距离之和为常数的点的轨迹组成。

•抛物线:由平面上到一个定点的距离与到一条定直线的距离相等的点的轨迹组成。

•双曲线:有两个定点F1和F2称为焦点,对于任意一点P的到两个焦点的距离之差是常数。

2. 二次曲面•椭球面:由空间中到两个定点的距离之和为常数的点的轨迹组成。

•抛物面:由空间中到一个定点的距离与到一条定直线的距离相等的点的轨迹组成。

2024高考数学解析几何知识点总结与题型分析

2024高考数学解析几何知识点总结与题型分析

2024高考数学解析几何知识点总结与题型分析随着时间的推移,我们离2024年的高考越来越近。

数学作为高考的一门重要科目,解析几何是其中的一个重点内容。

为了帮助同学们更好地复习解析几何,并在高考中取得好成绩,本文将对2024高考数学解析几何的知识点进行总结与题型分析。

1. 直线与平面1.1 直线的方程直线的一般方程为Ax + By + C = 0,其中A、B、C为常数。

根据直线的特点,我们可以将其方程转化为其他形式,如点斜式、两点式、截距式等,以便于解题。

1.2 平面的方程平面的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。

类似于直线的情况,根据平面的性质,我们可以将其方程转化为点法式、截距式等形式。

2. 空间几何体2.1 球球是解析几何中的一个重要概念。

其方程为(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2,其中(a, b, c)为球心坐标,r为半径长度。

2.2 圆锥曲线圆锥曲线包括圆、椭圆、双曲线和抛物线。

通过对几何体的方程进行适当的变化,可以得到不同类型的圆锥曲线方程。

掌握其特点和方程形式,对于解析几何的学习非常重要。

3. 空间几何关系3.1 直线与直线的位置关系直线与直线的位置关系包括相交、平行、重合等情况。

根据两条直线的方程,我们可以通过求解方程组或直线的斜率等方式,判断它们之间的空间位置关系。

3.2 直线与平面的位置关系直线与平面的位置关系包括相交、平行、重合等情况。

根据直线的方程和平面的方程,我们可以通过代入求解或者检验点的方法,判断它们之间的位置关系。

4. 解析几何的常见题型4.1 直线与平面的交点求解给定直线和平面的方程,我们需要求解它们的交点。

通过将直线方程代入平面方程中,可以得到关于未知变量的方程组,进而求解出交点的具体坐标。

4.2 距离计算在解析几何中,我们常常需要计算点、直线或平面之间的距离。

对于给定的两点,我们可以利用距离公式进行计算;对于直线和平面,我们可以利用点到直线/平面的距离公式进行计算。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结一、引言解析几何是高中数学的重要分支,它通过坐标系统将几何问题转化为代数问题,使得复杂的几何图形和关系可以通过代数方法进行分析和解决。

本篇文章旨在总结高中数学解析几何的核心知识点,为学习和复习提供参考。

二、坐标系统1. 笛卡尔坐标系:由两条垂直的数轴构成,分别为x轴和y轴,交点为原点。

2. 坐标点:在坐标系中,任意一点的位置由一对数值(x, y)确定。

3. 距离公式:点A(x1, y1)和点B(x2, y2)之间的距离为√[(x2-x1)²+(y2-y1)²]。

三、直线方程1. 斜率:直线的倾斜程度,用k表示,计算公式为k=(y2-y1)/(x2-x1)。

2. 点斜式:直线方程y-y1=k(x-x1),其中(x1, y1)为直线上的一点。

3. 斜截式:直线方程y=kx+b,其中b为直线与y轴的交点。

4. 两点式:直线方程(y-y1)/(y2-y1)=(x-x1)/(x2-x1),用于两点确定的直线。

5. 一般式:直线方程Ax+By+C=0,其中A、B、C为常数。

四、圆的方程1. 标准圆:圆心在原点,半径为r的圆的方程为x²+y²=r²。

2. 一般圆:圆心为(a, b),半径为r的圆的方程为(x-a)²+(y-b)²=r²。

五、圆锥曲线1. 椭圆:中心在原点,焦点在x轴上的椭圆方程为(x/a)²+(y/b)²=1,其中a>b。

2. 双曲线:中心在原点,焦点在x轴上的双曲线方程为(x/a)²-(y/b)²=1,其中a, b>0。

3. 抛物线:顶点在原点,对称轴为y轴的抛物线方程为y=ax²。

六、空间解析几何1. 三维坐标系:在平面坐标系的基础上增加z轴,形成三维空间坐标系。

2. 空间直线:通过对称性、方程组或参数方程来描述空间中的直线。

高中数学中的解析几何知识点总结

高中数学中的解析几何知识点总结

高中数学中的解析几何知识点总结解析几何是数学中的一个重要分支,它研究了几何图形在坐标系中的性质和变换规律。

在高中数学学习中,解析几何是一个重要的内容模块。

本文将对高中数学中的解析几何知识点做一总结。

一、直线的方程1.点斜式方程:已知直线上一点P(x1, y1)及其斜率k的情况下,直线的方程可以写为y-y1=k(x-x1)。

2.两点式方程:已知直线上两点P(x1, y1)和Q(x2, y2)的情况下,直线的方程可以写为(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。

3.斜截式方程:已知直线与y轴的交点为截距b,斜率为k的情况下,直线的方程可以写为y=kx+b。

二、平面坐标系1.点的坐标:平面坐标系中,一个点的位置可以由其横坐标x和纵坐标y确定。

2.距离公式:平面上两个点的距离可以通过距离公式d=sqrt((x2-x1)²+(y2-y1)²)计算得出。

3.中点公式:平面上两个点的中点坐标可以通过中点公式M((x1+x2)/2, (y1+y2)/2)计算得出。

三、直线的性质1.平行与垂直:两条直线平行的条件是它们的斜率相等,两条直线垂直的条件是它们的斜率的乘积为-1。

2.直线的倾斜角:直线与x轴的倾斜角可以通过斜率的反正切得到。

3.直线的截距:直线与坐标轴的交点称为截距,x轴截距即为直线与x轴的交点的横坐标,y轴截距即为直线与y轴的交点的纵坐标。

四、圆的方程1.标准形式方程:圆的标准方程可以写为(x-a)²+(y-b)²=r²,其中(a, b)为圆心的坐标,r为半径。

2.一般形式方程:圆的一般形式方程可以写为x²+y²+Dx+Ey+F=0,其中D、E、F为常数。

五、直线与圆的位置关系1.相切:当直线与圆只有一个交点,且此交点处的切线斜率存在时,直线与圆相切。

2.相离:当直线与圆没有交点时,直线与圆相离。

3.相交:当直线与圆有两个交点时,直线与圆相交。

高中数学解析几何总结非常全

高中数学解析几何总结非常全

高中数学解析几何总结非常全解析几何是数学中一个非常重要的分支,它凭借着坐标系的引入和解析法的运用,把几何图形的特征用精确的数学语言描述。

本篇文章主要围绕高中数学解析几何的知识点进行总结,旨在帮助读者更好的掌握该学科。

一、平面直角坐标系平面直角坐标系指由二维直角坐标系(x,y) 和坐标平面上给定的一个原点(O) 共同构成的平面。

坐标系的基础知识对解析几何的学习至关重要,因此我们需要掌握如下概念:1. 笛卡尔坐标系平面直角坐标系又称为笛卡尔坐标系,是二维空间中的一种坐标系。

该坐标系中,平面上的任意一点P的坐标(x,y) 是由P点在x轴、y轴上的投影所确定的。

2. 坐标轴平面直角坐标系中的两条坐标轴分别是x轴和y轴,它们相交于坐标系的原点O。

3. 坐标变化在平面直角坐标系中,任意一点P(x,y) 关于x轴、y轴、原点O的对称点分别是P'(x,-y)、P'(-x,y) 和P'(-x,-y)。

二、直线及其方程解析几何中的直线是平面上的一种基本几何元素,由于它们的性质非常重要,因此直线及其方程的知识点也是解析几何中的核心内容。

我们需要掌握以下知识点:1. 直线的方程直线的一般式和斜截式是解析几何中最为常用的两种方程。

(1)直线的一般式:Ax+By+C=0在直线的一般式中,A、B、C 均为实数,其中 A 和 B 不同时为零。

(2)直线的斜截式:y=kx+b在直线的斜截式中,k 为直线的斜率,即斜线的倾斜程度。

斜率为0的直线是水平线,斜率为正数的直线是上升的,斜率为负数的直线是下降的。

2. 直线的截距式直线的截距式比较简单,它是指直线在x、y轴上截距所组成的一种方程形式,可以用来求解直线的截距。

3. 直线之间的关系直线之间的关系有平行、垂直等多种情况,我们需要掌握这些关系的性质和求解方法。

三、圆与圆的方程圆是解析几何中的另一个重要几何元素,它可以用一个点和一个距离来描述。

在本篇文章中,我们需要掌握以下知识点:1. 圆的一般式圆的一般式为(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为圆的半径。

高中解析几何知识归纳

高中解析几何知识归纳

高中解析几何知识归纳高中解析几何是数学中的一个重要组成部分,主要研究平面和空间中点、线、面之间的相互关系和位置关系。

以下是对高中解析几何知识点的详细介绍:一、平面解析几何1. 点:平面上的点用坐标系表示,有序数对(x, y)表示。

2. 直线:直线的方程一般形式为Ax + By + C = 0,其中A、B、C为常数,A和B不同时为0。

3. 圆:圆的标准方程为(x - h)²+ (y - k)²= r²,其中(h, k)为圆心坐标,r为半径。

4. 圆锥曲线:包括椭圆、双曲线和抛物线。

-椭圆:椭圆的标准方程为x²/a²+ y²/b²= 1,其中a为半长轴,b为半短轴。

-双曲线:双曲线的标准方程为x²/a²- y²/b²= 1,其中a为实轴半长,b为虚轴半长。

-抛物线:抛物线的标准方程为y²= 4ax或x²= 4ay,其中a为焦点到准线的距离。

二、空间解析几何1. 点:空间中的点用坐标系表示,有序数对(x, y, z)表示。

2. 直线:空间直线的方程一般形式为Ax + By + Cz + D = 0,其中A、B、C、D为常数,A、B、C不同时为0。

3. 平面:平面的方程一般形式为Ax + By + Cz + D = 0,其中A、B、C、D为常数,A、B、C 不同时为0。

4. 空间几何体:包括立方体、球、锥体、柱体等。

三、解析几何的基本公式和性质1. 点到直线的距离公式:d = |Ax1 + By1 + C| / √(A²+ B²),其中(x1, y1)为点的坐标。

2. 点到直线的距离性质:点到直线的距离等于点到直线的垂线的长度。

3. 直线与直线的交点公式:解直线方程组,得到交点的坐标。

4. 直线与圆的位置关系:直线与圆相交、相切或相离。

5. 圆与圆的位置关系:圆与圆相交、相切或相离。

高中数学解析几何知识点

高中数学解析几何知识点

高中数学解析几何知识点解析几何是高中数学中的一个重要板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了新的思路和方法。

下面我们就来详细了解一下高中数学解析几何的主要知识点。

一、直线的方程1、直线的倾斜角直线倾斜角的范围是0, π),它是直线与 x 轴正方向所成的夹角。

2、直线的斜率斜率可以通过倾斜角的正切值来计算,即k =tanα(α 为倾斜角)。

当直线垂直于 x 轴时,斜率不存在。

3、直线的点斜式方程如果已知直线上一点(x₁, y₁) 以及直线的斜率 k,那么直线方程可以表示为 y y₁= k(x x₁) 。

4、直线的两点式方程已知直线上两点(x₁, y₁),(x₂, y₂)(x₁ ≠ x₂),则直线方程为(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁) 。

5、直线的一般式方程Ax + By + C = 0(A、B 不同时为 0)。

二、两条直线的位置关系1、平行两条直线斜率相等时平行,但要注意当两条直线都垂直于 x 轴时,虽然斜率不存在,但也平行。

2、垂直两条直线斜率之积为-1 时垂直,当一条直线斜率为 0,另一条直线斜率不存在时,也垂直。

3、交点联立两条直线的方程,可以求解它们的交点坐标。

三、圆的方程1、圆的标准方程(x a)²+(y b)²= r²,其中(a, b) 为圆心坐标,r 为半径。

2、圆的一般方程x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),通过配方可以化为标准方程。

四、直线与圆的位置关系1、相离圆心到直线的距离大于半径。

2、相切圆心到直线的距离等于半径。

3、相交圆心到直线的距离小于半径。

判断直线与圆的位置关系,可以通过比较圆心到直线的距离 d 与半径 r 的大小。

五、椭圆1、定义平面内到两个定点 F₁、F₂的距离之和等于常数(大于|F₁F₂|)的点的轨迹。

高中数学解析几何总结(非常全)

高中数学解析几何总结(非常全)

高中数学解析几何第一部分:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。

(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.αt a n=k (1).倾斜角为︒90的直线没有斜率。

(2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。

(3)设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 则当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o90=α;斜率不存在;二、直线的方程1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y = 注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。

3.两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠则直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。

4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:1=+bya x ; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学解析几何知识点大总结第一部分:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。

(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.αtan =k(1).倾斜角为︒90的直线没有斜率。

(2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。

(3)设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 则当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o90=α;斜率不存在;二、直线的方程1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y = 注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。

3.两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠则直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。

4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:1=+bya x ; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。

2).横截距与纵截距相等的直线方程可设为x+y=a;横截距与纵截距互为相反数的直线方程可设为x-y=a5一般式:任何一条直线方程均可写成一般式:0=++C By Ax ;(B A ,不同时为零);反之,任何一个二元一次方程都表示一条直线。

注意:①直线方程的特殊形式,都可以化为直线方程的一般式,但一般式不一定都能化为特殊形式,这要看系数C B A ,,是否为0才能确定。

②指出此时直线的方向向量:),(A B -,),(A B -,⎪⎪⎭⎫⎝⎛+-+2222,B A A BA B (单位向量);直线的法向量:),(B A ;(与直线垂直的向量)6(选修4-4)参数式⎩⎨⎧+=+=bt y y atx x 00(t 参数)其中方向向量为),(b a ,单位向量⎪⎪⎭⎫ ⎝⎛++2222,b a bba a ; ab k =;22||||b a t PP o +=; 点21,P P 对应的参数为21,t t ,则222121||||b a t t P P +-=;⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)其中方向向量为)sin ,(cos αα, t 的几何意义为||o PP ;斜率为αtan ;倾斜角为)0(παα<≤。

设两直线的方程分别为:222111::b x k y l b x k y l +=+=或0:0:22221111=++=++C y B x A l C y B x A l ;当21k k ≠或1221B A B A ≠时它们相交,交点坐标为方程组⎩⎨⎧+=+=2211b x k y b x k y 或⎩⎨⎧=++=++00222111Cy B x A C y B x A解;注意:①对于平行和重合,即它们的方向向量(法向量)平行;如:),(),(2211B A B A λ= 对于垂直,即它们的方向向量(法向量)垂直;如0),(),(2211=⋅B A B A②若两直线的斜率都不存在,则两直线 平行 ;若一条直线的斜率不存在,另一直线的斜率为 0 ,则两直线垂直。

③对于02121=+B B A A 来说,无论直线的斜率存在与否,该式都成立。

因此,此公式使用起来更方便.④斜率相等时,两直线平行(或重合);但两直线平行(或重合)时,斜率不一定相等,因为斜率有可能不存在。

四、两直线的交角(1)1l 到2l 的角:把直线1l 依逆时针方向旋转到与2l 重合时所转的角;它是有向角,其范围是πθ<≤0;注意:①1l 到2l 的角与2l 到1l 的角是不一样的;②旋转的方向是逆时针方向;③绕“定点”是指两直线的交点。

(2)直线1l 与2l 的夹角:是指由1l 与2l 相交所成的四个角的最小角(或不大于直角的角),它的取值范围是20πθ<≤;(3)设两直线方程分别为:222111::b x k y l b x k y l +=+=或0:0:22221111=++=++C y B x A l C y B x A l ①若θ为1l 到2l 的角,12121tan k k k k +-=θ或21211221tan B B A A B A B A +-=θ;②若θ为1l 和2l 的夹角,则12121tan k k k k +-=θ或21211221tan B B A A B A B A +-=θ;③当0121=+k k 或02121=+B B A A o注意:①上述与k 有关的公式中,其前提是两直线斜率都存在,而且两直线互不垂直;当有一条直线斜率不存在时,用数形结合法处理。

②直线1l 到2l 的角θ与1l 和2l 的夹角α:)2(πθθα≤=或)2(πθθπα>-=;五、点到直线的距离公式:1.点),(00y x P 到直线0:=++C By Ax l 的距离为:2200||BA C By Ax d +++=;2.两平行线0:11=++C By Ax l ,0:22=++C By Ax l 的距离为:2221||BA C C d +-=;六、直线系:(1)设直线0:1111=++C y B x A l ,0:2222=++C y B x A l ,经过21,l l 的交点的直线方程为0)(222111=+++++C y B x A C y B x A λ(除去2l );如:①011=--⇒+=kx y kx y ,即也就是过01=-y 与0=x 的交点)1,0(除去0=x 的直线方程。

②直线5)12()1(:-=-+-m y m x m l 恒过一个定点 。

注意:推广到过曲线0),(1=y x f 与0),(2=y x f 的交点的方程为:0)()(21=+x f x f λ; (2)与0:=++C By Ax l 平行的直线为01=++C By Ax ; (3)与0:=++C By Ax l 垂直的直线为01=+-C Ay Bx ; 七、对称问题: (1)中心对称:①点关于点的对称:该点是两个对称点的中点,用中点坐标公式求解,点),(b a A 关于),(d c C 的对称点)2,2(b d a c --②直线关于点的对称:Ⅰ、在已知直线上取两点,利用中点公式求出它们关于已知点对称的两点的坐标,再由两点式求出直线方程; Ⅱ、求出一个对称点,在利用21//l l 由点斜式得出直线方程; Ⅲ、利用点到直线的距离相等。

求出直线方程。

如:求与已知直线0632:1=-+y x l 关于点)1,1(-P 对称的直线2l 的方程。

(2)轴对称:①点关于直线对称:Ⅰ、点与对称点的中点在已知直线上,点与对称点连线斜率是已知直线斜率的负倒数。

Ⅱ、求出过该点与已知直线垂直的直线方程,然后解方程组求出直线的交点,在利用中点坐标公式求解。

如:求点)5,3(-A 关于直线0443:=+-y x l 对称的坐标。

②直线关于直线对称:(设b a ,关于l 对称)Ⅰ、若b a ,相交,则a 到l 的角等于b 到l 的角;若l a //,则l b //,且b a ,与l 的距离相等。

Ⅱ、求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程。

Ⅲ、设),(y x P 为所求直线直线上的任意一点,则P 关于l 的对称点'P 的坐标适合a的方程。

如:求直线042:=-+y x a 关于0143:=-+y x l 对称的直线b 的方程。

八、简单的线性规划:(1)设点),(00y x P 和直线0:=++C By Ax l ,①若点P 在直线l 上,则000=++C By Ax ;②若点P 在直线l 的上方,则0)(00>++C By Ax B ;③若点P 在直线l 的下方,则0)(00<++C By Ax B ; (2)二元一次不等式表示平面区域:对于任意的二元一次不等式)0(0<>++C By Ax ,①当0>B 时,则0>++C By Ax 表示直线:=++C By Ax 上方的区域;0<++C By Ax 表示直线:=++C By Ax 下方的区域;②当0<B 时,则0>++C By Ax 表示直线:=++C By Ax 下方的区域;0<++C By Ax注意:通常情况下将原点)0,0(代入直线C By Ax ++中,根据0>或0<来表示二元一次不等式表示平面区域。

(3)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。

满足线性约束条件的解),(y x 叫做可行解,由所有可行解组成的集合叫做可行域。

生产实际中有许多问题都可以归结为线性规划问题。

注意:①当0>B 时,将直线0=+By Ax 向上平移,则By Ax z +=的值越来越大; 直线0=+By Ax 向下平移,则By Ax z +=的值越来越小;②当0<B 时,将直线0=+By Ax 向上平移,则By Ax z +=的值越来越小; 直线0=+By Ax 向下平移,则By Ax z +=的值越来越大;如:在如图所示的坐标平面的可行域内(阴影部分且包括周界),目标函数ay x z +=取得最小值的最优解有无数个,则a 为 ; 第二部分:圆与方程2.1圆的标准方程:222)()(r b y a x =-+-圆心),(b a C ,半径r 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2.2点与圆的位置关系:1. 设点到圆心的距离为d ,圆半径为r : (1)点在圆上 d=r ;(2)点在圆外 d >r ;(3)点在圆内 d <r .2.给定点),(00y x M 及圆222)()(:r b y a x C =-+-.①M 在圆C 22020)()(r b y a x <-+-⇔ ②M 在圆C 上22020)()r b y a x =-+-⇔( ③M 在圆C 外22020)()(r b y a x >-+-⇔ 2.3 圆的一般方程:022=++++F Ey Dx y x .当0422>-+F E D 时,方程表示一个圆,其中圆心⎪⎭⎫⎝⎛--2,2E D C ,半径2422FE D r -+=.当0422=-+F E D 时,方程表示一个点⎪⎭⎫⎝⎛--2,2E D . 当0422<-+F E D 时,方程无图形(称虚圆).注:(1)方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422>-+AF E D .圆的直径系方程:已知AB 是圆的直径0))(())((),(),(21212211=--+--⇒y y y y x x x x y x B y x A2.4 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种,d 是圆心到直线的距离,(22BA C Bb Aa d +++=(1)<∆⇔⇔>相离r d ;(2)=∆⇔⇔=相切r d ;(3)0>∆⇔⇔<相交r d 。

相关文档
最新文档