初中数学几何的动点问题专题练习-附答案版
九年级中考数学几何动点问题专项训练(含答案)
九年级中考数学几何动点问题专项训练1如图,已知△ABC 中,AB =10 cm ,AC =8 cm ,BC =6 cm.如果点P 由B 出发沿BA 向点A 匀速运动,同时点Q 由A 出发沿AC 向点C 匀速运动,它们的速度均为2 cm/s.连接PQ ,设运动的时间为t (单位:s)(0≤t ≤4).第1题图(1)当t 为何值时,PQ ∥BC ;(2)设△AQP 的面积为S (单位:cm 2),当t 为何值时,S 取得最大值,并求出最大值;(3)是否存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分?若存在,求出此时t 的值;若不存在,请说明理由.解:(1)由题意知BP =2t ,AP =10-2t ,AQ =2t ,∵PQ ∥BC ,∴△APQ ∽△ABC ,∴=,AP AB AQ AC即=,解得t =,10-2t 102t 8209即当t 为 s 时,PQ ∥BC ;209(2)∵AB =10 cm ,AC =8 cm ,BC =6 cm ,∴AB 2=AC 2+BC 2,∴△ABC 为直角三角形,∴∠C =90°,如解图,过点P 作PD ⊥AC 于点D,第1题解图则PD ∥BC ,∴△APD ∽△ABC ,∴=,AP AB PD BC∴=,10-2t 10PD 6∴PD =(10-2t ),35∴S =AQ ·PD = ·2t ·(10-2t )=-t 2+6t =-(t -)2+7.5,121235656552∵-<0,抛物线开口向下,有最大值,65∴当t = 秒时,S 有最大值,最大值是7.5 cm 2;52(3)不存在.理由如下:假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则S △AQP =S △ABC ,12即-t 2+6t =××8×6,651212整理得t 2-5t +10=0,∵b 2-4ac =(-5)2-4×10=-15<0,∴此方程无解,即不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.2.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 以每秒1个单位长度的速度由点A 向点B 匀速运动,到达B 点即停止运动.M ,N 分别是AD ,CD 的中点,连接MN .设点D 运动的时间为t .(1)判断MN 与AC 的位置关系;(2)求在点D 由点A 向点B 匀速运动的过程中,线段MN 所扫过区域的面积;(3)若△DMN 是等腰三角形,求t的值.第2题图解:(1)MN ∥AC .证明:在△ADC 中,M 是AD 的中点,N 是DC 的中点,∴MN ∥AC ;(2)如解图①,分别取△ABC 三边中点E ,F ,G 并连接EG ,FG ,第2题解图①根据题意,可知线段MN 扫过区域的面积就是▱AFGE 的面积.∵AC =6,BC =8,∴AE =3,GC =4,∵∠ACB =90°,∴S ▱AFGE =AE ·GC =12,∴线段MN 扫过区域的面积为12;(3)依题意可知,MD =AD ,DN =DC ,MN =AC =3.121212分三种情况讨论:(ⅰ)当MD =MN =3时,△DMN 为等腰三角形,此时AD =AC =6,∴t =6.(ⅱ)当MD =DN 时,AD =DC .如解图②,过点D 作DH ⊥AC 于点H ,则AH =AC =3,12第2题解图②∵cos A ==,AB =10,AH AD AC AB即=.3AD 610∴t =AD =5.(ⅲ)当DN =MN =3时,AC =DC ,如解图③,连接MC ,则CM ⊥AD.第2题解图③∵cos A ==,即=,AM AC AC AB AM 6610∴AM =,185∴t =AD =2AM =.365综上所述,当t =5或6或时,△DMN 为等腰三角形.3653.如图,在矩形ABCD 中,点E 在BC 边上,动点P 以2厘米/秒的速度从点A 出发,沿△AED 的边按照A →E →D →A 的顺序运动一周.设点P 从点A 出发经x (x >0)秒后,△ABP 的面积是y .(1)若AB =8厘米,BE =6厘米,当点P 在线段AE 上时,求y 关于x 的函数表达式;(2)已知点E 是BC 的中点,当点P 在线段ED 上时,y =x ;当点P 在线段AD 125上时,y =32-4x .求y 关于x的函数表达式.第3题图解:(1)∵四边形ABCD 是矩形,∴∠ABE =90°,又∵AB =8,BE =6,∴AE ===10,22BE AB +2268+如解图①,过点B 作BH ⊥AE 于点H,第3题解图①∵S △ABE =AE ·BH =AB ·BE ,1212∴BH =,245又∵AP =2x ,∴y =AP ·BH =x (0<x ≤5);12245(2) ∵四边形ABCD 是矩形,∴∠B =∠C =90°,AB =DC , AD =BC ,∵E 为BC 中点,∴BE =EC ,∴△ABE ≌△DCE (SAS),∴AE =DE ,∵y =x (P 在ED 上), y =32-4x (P 在AD 上),125当点P 运动至点D 时,可联立得,,{y =125x y =32-4x )解得x =5,∴AE +ED =2x =10,∴AE =ED =5,当点P 运动一周回到点A 时,y =0,∴y =32-4x =0, 解得x =8,∴AE +DE +AD =16,∴AD =BC =6,∴BE =3,在Rt △ABE 中,AB ==4,22-BE AE 如解图②,过点B 作BN ⊥AE 于N ,则BN =,125第3题解图②∴y =x (0<x ≤2.5),125∴y =.{125x (0<x ≤5)32-4x (5≤x ≤8))4.如图,四边形ABCD 是边长为1的正方形,点E 在AD 边上运动,且不与点A 和点D 重合,连接CE ,过点C 作CF ⊥CE 交AB 的延长线于点F ,EF 交BC 于点G .(1)求证:△CDE ≌△CBF ;(2)当DE = 时,求CG 的长;12(3)连接AG ,在点E 运动过程中,四边形CEAG 能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.第4题图(1)证明:如解图,在正方形ABCD 中,DC =BC ,∠D = ∠CBA = ∠CBF = ∠DCB = 90°,第4题解图∴∠1+∠2= 90°,∵CF ⊥CE ,∴∠2+∠3= 90°,∴∠1= ∠3,在△CDE 和△CBF 中,,{∠D = ∠CBFDC =BC ∠1= ∠3)∴△CDE ≌△CBF (ASA);(2)解:在正方形ABCD 中,AD ∥BC ,∴△GBF ∽△EAF ,∴= ,BG AE BF AF由(1)知,△CDE ≌△CBF ,∴BF = DE = ,12∵正方形的边长为1,∴AF =AB +BF = ,32AE =AD -DE = ,12∴=,BG 121232∴BG =,16∴CG =BC -BG = ;56(3)解:不能.理由:若四边形CEAG 是平行四边形,则必须满足AE ∥CG ,AE = CG ,∴AD -AE =BC -CG ,∴DE =BG ,由(1)知,△CDE ≌△CBF ,∴DE =BF ,CE =CF ,∴△GBF 和△ECF 是等腰直角三角形,∴∠GFB = 45°,∠CFE = 45°,∴∠CFA = ∠GFB +∠CFE = 90°,此时点F 与点B 重合,点D 与点E 重合,与题目条件不符,∴点E 在运动过程中,四边形CEAG 不能是平行四边形.5. 如图,在正方形ABCD 中,点E ,G 分别是边AD ,BC 的中点,AF =AB .14(1)求证:EF ⊥AG ;(2)若点F ,G 分别在射线AB ,BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF ⊥AG 是否成立(只写结果,不需说明理由)?(3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点,当S △PAB =S △OAB 时,求△PAB周长的最小值.第5题图(1)证明:∵四边形ABCD 是正方形,∴AD =AB =BC ,∠EAF =∠ABG =90°,∵点E ,G 分别是边AD ,BC 的中点,AF =AB ,14∴=,=,AE AB 12AF BG 12∴=,AE AB AF BG又∵∠EAF =∠ABC =90°,∴△AEF ∽△BAG ,∴∠AEF =∠BAG ,又∵∠BAG +∠EAO =90°,∴∠AEF +∠EAO =90°,∴∠EOA =90°,即EF ⊥AG ;(2)解:EF ⊥AG 仍然成立;(3)解:如解图,过点O 作MN ∥AB 分别交AD 、BC 于点M ,N ,连接PA,第5题解图∵P 是正方形ABCD 内一点,当S △PAB =S △OAB ,∴点P 在线段MN 上(不含端点),作点A 关于MN 的对称点A ′,连接BA ′交MN 于点P ,此时PA +PB =PA ′+PB =BA ′最小,即△PAB 的周长最小.∵正方形ABCD 的边长为4,∴AE =AD =2,AF =AB =1,1214∴EF ==,22AF AE 5OA ==,AE ·AF EF 255∵∠AMO =∠EOA ,∠EAO =∠EAO ,∴△EOA ∽△OMA ,∴=,AEOA OA AM ∴OA 2=AM ·AE ,∴AM ==,AE OA 225∴A ′A =2AM =,45∴BA ′==,22'AB A A 4265故△PAB 周长的最小值为4+.42656.如图,在Rt △ABC 中,∠ACB =90°,∠A =45°,AB =4cm.点P 从点A 出发,以2cm/s 的速度沿边AB 向终点B 运动.过点P 作PQ ⊥AB 交折线ACB 于点Q ,D 为PQ 中点,以DQ 为边向右侧作正方形DEFQ .设正方形DEFQ 与△ABC 重叠部分图形的面积是y (cm 2),点P 的运动时间为x (s).(1)当点P 不与点B 重合时,求点F 落在边BC 上时x 的值;(2)当0<x <2时,求y 关于x 的函数解析式;(3)直接写出边BC 的中点落在正方形DEFQ 内部时x 的取值范围.第6题图解:(1)如解图①,延长FE 交AB 于点G ,由题意,得AP =2x ,∵D 为PQ 中点,∴DQ =DP =x ,∵四边形DEFQ 为正方形,∴DQ =DE =GP =x ,∵FG ⊥AB ,∠B =45°,∴△FGB 是等腰直角三角形,∴BG =FG =PQ =2x ,∴AP +PG +BG =AB ,即2x +x +2x =4,∴x =,45第6题解图①(2)当0<x ≤时,y =S 正方形DEFQ =DQ 2=x 2,45∴y =x 2,(0<x ≤)45如解图②,当<x ≤1时,设BC 交QF 于点M ,BC 交EF 于点N ,过点C 作CH 45⊥AB 于点H ,交FQ 于点K ,则CH =2,∵PQ =AP =2x ,∴CK =2-2x ,∴MQ =2CK =4-4x ,∴FM =x -(4-4x )=5x -4,∴y =S 正方形DEFQ -S △MNF =DQ 2-FM 2,12∴y =x 2-(5x -4)2=-x 2+20x -8,12232∴y =-x 2+20x -8 (<x ≤1) ,23245第6题解图②如解图③,当1<x <2时,PQ =PB =4-2x ,∴DQ =2-x ,∴y =S △DEQ =DQ 2,12∴y =(x -2)2,12∴y =x 2-2x +2(1<x <2),12第6题解图③(3)1<x <.32【解法提示】当Q 与C 重合时,E 为BC 的中点,2x =2,∴x =1;当Q 为BC的中点时,BQ =,PB =1,∴AP =3,∴2x =3,∴x =,∴x 的取值范围是2321<x <.327.如图,在平面直角坐标系中,直线y =-x +3与x 轴、y 轴分别交于A 、B 两34点,点P 、Q 同时从点A 出发,运动时间为t 秒.其中点P 沿射线AB 运动,速度为每秒4个单位长度,点Q 沿射线AO 运动,速度为每秒5个单位长度.以点Q 为圆心,PQ 为半径作⊙Q .(1)求证:直线AB 是⊙Q 的切线;(2)过点A 左侧x 轴上的任意一点C (m ,0),作直线AB 的垂线CM ,垂足为点M ,若CM 与⊙Q 相切于点D ,求m 与t 的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C ,直线AB 、CM 、y 轴与⊙Q 同时相切,若存在,请直接写出此时点C 的坐标,若不存在,请说明理由.第7题图(1)证明:如解图,连接QP ,∵y =-x +3交坐标轴于A ,B 两点,34∴A (4,0),B (0,3),∴OA =4,OB =3,AB ==5,22OB OA ∵AQ =5t ,AP =4t ,在△APQ 与△AOB 中,==t ,==t ,AQ AB 5t 5AP AO 4t 4∴=,AQ AB AP AO又∵∠PAQ =∠OAB ,∴△APQ ∽△AOB ,∴∠APQ =∠AOB =90°,又∵PQ 为⊙Q的半径,∴AB 为⊙Q 的切线;第7题解图①(2)解:①当直线CM 在⊙Q 的左侧与⊙Q 相切时,如解图①,连接DQ ,∵AP ⊥QP ,AP =4t ,AQ =5t ,∴PQ =3t ,∴易得四边形DQPM 为正方形,∴MP =DQ =QP =3t ,∴cos ∠BAO ===,MA AC PA QA 45又∵MA =MP +PA =3t +4t =7t ,AC =AO -CO =4-m ,∴=,∴m ==-t +4;7t 4-m 4516-35t 4354②当直线CM 在⊙Q 的右侧与⊙O 相切时,如解图②,连接DQ ,PQ ,由①易得MA =PA -PM =4t -3t =t,第7题解图②AC =4-m ,∴=,t 4-m 45∴m =-t +4;54综上所述,m 与t 的函数关系式为m =-t +4或m =-t +4;35454(3)解:存在,点C 的坐标为(-,0)或(,0)或(-,0)或(,0).3827827232【解法提示】①如解图③,当⊙Q 在y 轴的右侧与y 轴相切,∴OQ =QP =3t ,∴OA =OQ +QA =3t +5t =8t =4,∴t =,12第1题解图③则m =-t +4=-,35438∴C 1(-,0);38m =-t +4=,54278∴C 2(,0);278②如解图④,当⊙Q 在y 轴的左侧与y 轴相切,OA =AQ -OQ =5t -3t =2t =4,∴t =2,第7题解图④则m =-t +4=-,354272∴C 3(-,0);272m =-t +4=,5432∴C 4(,0).32综上所述,点C 的坐标为(-,0)或(,0)或(-,0)或(,0).38278272328.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB =8,∠BAD =60°.点E 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.当点E 不与点A 重合时,过点E 作EF ⊥AD 于点F ,作EG ∥AD 交AC 于点G ,过点G 作GH ⊥AD 交AD (或AD 的延长线)于点H ,得到矩形EFHG .设点E 运动的时间为t 秒.(1)求线段EF 的长(用含t 的代数式表示);(2)求点H 与点D 重合时t 的值;(3)设矩形EFHG 与菱形ABCD 重叠部分图形的面积为S 平方单位,求S 与t 之间的函数关系式.第8题图解:(1)由题意可知AE =2t ,0≤t ≤4,∵EF ⊥AD ,∠BAD =60°,∴sin ∠BAD ==,EF AE 32∴EF =AE =t ;323(2)如解图①,∵点H 与点D 重合,菱形ABCD 中,∠DAC =∠BA =30°,AD 12=AB =8,∴在Rt △ADG 中,DG =AD ·tan30°=8×=,33833∴在矩形FEGD 中,EF =DG =,833由(1)知EF ==t ,8333∴t =;83第8题解图①(3)①当0<t ≤时,点H 在AD 上,83∵AE =2t ,∠BAD =60°,∠DAC =30°,∴EF =t ,AH =HG =EF =3t ,AF =t ,333∴FH =AH -AF =2t ,∴S =EF ·FH =t ·2t =2t 2;33②如解图②,当<t ≤4时,点H 在AD 的延长线上,83设GH 与CD 交于点M ,由(2)知∠DAC =30°,∴在菱形ABCD 中,∠BAC =30°,∵EG ∥AD ,∴∠AGE =∠DAC =30°,∴∠BAC =∠AGE ,∴AE =EG ,∵AE =2t ,EF =t ,∠BAD =60°,3∴在Rt △AFE 中,AF =AE ·cos60°=2t ×=t ,12∴DF =8-t ,∵AE =EG =FH =2t ,∴DH =2t -(8-t )=3t -8,∵AB ∥CD ,∴∠HDM =∠BAD =60°,∴在Rt △DHM 中,HM =DH ·tan60°=(3t -8),3则DH =3t -8,HM =(3t -8),3第8题解图②∴S =S 矩形HGEF -S △DHM =EF ·FH -DH ·HM =2t 2-(3t -8)·(3t -8)123123=2t 2-(9t 2-48t +64)332=2t 2-t 2+24t -32393233=-t 2+24t -32,53233∴S 与t 之间的函数关系为S=⎧<≤⎪⎪⎨⎪+-<≤⎪⎩2280383(4).3t t。
初一数学动点问题20题及答案
初一数学动点问题20题及答案数轴上动点问题1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.(1)线段AC的长为__________个单位长度;点M表示的数为;(2)当t=5时,求线段MN的长度;(3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是;(2)若AC=8,求x的值;(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置.(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?5.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=_______,b=_______;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,更多好题请进入:437600809,请问经过多少秒甲追上乙?6.在数轴上有A、B两动点,点A起始位置表示数为﹣3,点B起始位置表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度?(2)若点A、点B同时沿数轴向左运动,是否有一个时刻,表示数﹣3的点是线段AB 的中点?如果有,求出运动时间;如果没有,说明理由.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H 同时出发,问点P运动多少秒时追上点H?8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)求线段AB的长;(2)直接用含t的式子分别表示数轴上的点P,Q对应的数;(3)当PQ=AB时,求t的值.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O 出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数______;当t=3时,OP=_______.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.(1)写出数轴上点A、点C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系?11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.13.如图1,点A,B是在数轴上对应的数字分别为﹣12和4,动点P和Q分别从A,B 两点同时出发向右运动,点P的速度是5个单位/秒,点Q的速度是2个单位/秒,设运动时间为t秒.(1)AB=.(2)当点P在线段BQ上时(如图2):①BP=______________(用含t的代数式表示);②当P点为BQ中点时,求t的值.。
初二数学动点问题归类复习(含例题、练习及答案)
初二数学动点问题归类复习(含例题、练习及答案)所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想本文将初一至二学习过的有关知识,结合动点问题进行归类复习,希望对同学们能有所帮助。
一、等腰三角形类:因动点产生的等腰三角形问题例1:(2013年上海市虹口区中考模拟第25题)如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图思路点拨1.第(2)题BP=2分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.解答:(1)在Rt△ABC中,AB=6,AC=8,所以BC=10.在Rt△CDE中,CD=5,所以315tan544ED CD C=⋅∠=⨯=,254EC=.(2)如图2,过点D作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN是△ABC的两条中位线,DM=4,DN=3.由∠PDQ=90°,∠MDN=90°,可得∠PDM=∠QDN.因此△PDM∽△QDN.所以43PM DMQN DN==.所以34QN PM=,43PM QN=.图2 图3 图4①如图3,当BP=2,P在BM上时,PM=1.此时3344QN PM==.所以319444CQ CN QN=+=+=.②如图4,当BP=2,P在MB的延长线上时,PM=5.此时31544QN PM==.所以1531444CQ CN QN=+=+=.(3)如图5,如图2,在Rt△PDQ中,3tan4QD DNQPDPD DM∠===.在Rt△ABC中,3tan4BACCA∠==.所以∠QPD=∠C.由∠PDQ=90°,∠CDE=90°,可得∠PDF=∠CDQ.因此△PDF∽△CDQ.当△PDF是等腰三角形时,△CDQ也是等腰三角形.①如图5,当CQ=CD=5时,QN=CQ-CN=5-4=1(如图3所示).此时4433PM QN==.所以45333BP BM PM=-=-=.②如图6,当QC=QD时,由cosCHCCQ=,可得5425258CQ=÷=.所以QN=CN-CQ=257488-=(如图2所示).此时4736PM QN==.所以725366BP BM PM=+=+=.③不存在DP=DF的情况.这是因为∠DFP≥∠DQP>∠DPQ(如图5,图6所示).图5 图6考点伸展:如图6,当△CDQ是等腰三角形时,根据等角的余角相等,可以得到△BDP也是等腰三角形,PB=PD.在△BDP中可以直接求解256BP=.二、直角三角形:因动点产生的直角三角形问题例2:(2008年河南省中考第23题)如图1,直线434+-=xy和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0).(1)试说明△ABC是等腰三角形;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S.①求S与t的函数关系式;②设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在请说明理由;③在运动过程中,当△MON为直角三角形时,求t的值.图1思路点拨:1.第(1)题说明△ABC 是等腰三角形,暗示了两个动点M 、N 同时出发,同时到达终点.2.不论M 在AO 上还是在OB 上,用含有t 的式子表示OM 边上的高都是相同的,用含有t 的式子表示OM 要分类讨论.3.将S =4代入对应的函数解析式,解关于t 的方程.4.分类讨论△MON 为直角三角形,不存在∠ONM =90°的可能. 解答:(1)直线434+-=x y 与x 轴的交点为B (3,0)、与y 轴的交点C (0,4). Rt △BOC 中,OB =3,OC =4,所以BC =5.点A 的坐标是(-2,0),所以BA =5. 因此BC =BA ,所以△ABC 是等腰三角形.(2)①如图2,图3,过点N 作NH ⊥AB ,垂足为H .在Rt △BNH 中,BN =t ,4sin 5B =,所以45NH t =. 如图2,当M 在AO 上时,OM =2-t ,此时211424(2)22555S OM NH t t t t =⋅⋅=-⨯=-+.定义域为0<t ≤2.如图3,当M 在OB 上时,OM =t -2,此时211424(2)22555S OM NH t t t t =⋅⋅=-⨯=-.定义域为2<t ≤5.图2 图3②把S =4代入22455S t t =-,得224455t t -=.解得12t =,22t =.因此,当点M 在线段OB 上运动时,存在S =4的情形,此时2t = ③如图4,当∠OMN =90°时,在Rt △BNM 中,BN =t ,BM 5t =-,3cos 5B =, 所以535t t -=.解得258t =. 如图5,当∠OMN =90°时,N 与C 重合,5t =. 不存在∠ONM =90°的可能.所以,当258t =或者5t =时,△MON 为直角三角形.图4 图5考点伸展:在本题情景下,如果△MON 的边与AC 平行,求t 的值.如图6,当ON //AC 时,t =3;如图7,当MN //AC 时,t =2.5.图6 图7三、平行四边形问题:因动点产生的平行四边形问题 例3:(2010年山西省中考第26题)在直角梯形OABC 中,CB //OA ,∠COA =90°,CB =3,OA =6,BA=.分别以OA 、OC 边所在直线为x 轴、y 轴建立如图1所示的平面直角坐标系.(1)求点B 的坐标;(2)已知D 、E 分别为线段OC 、OB 上的点,OD =5,OE =2EB ,直线DE 交x 轴于点F .求直线DE 的解析式;(3)点M 是(2)中直线DE 上的一个动点,在x 轴上方的平面内是否存在另一点N ,使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.图1 图2思路点拨:1.第(1)题和第(2)题蕴含了OB 与DF 垂直的结论,为第(3)题讨论菱形提供了计算基础.2.讨论菱形要进行两次(两级)分类,先按照DO 为边和对角线分类,再进行二级分类,DO与DM 、DO 与DN 为邻边.解答:(1)如图2,作BH⊥x轴,垂足为H,那么四边形BCOH为矩形,OH=CB=3.在Rt△ABH中,AH=3,BA=BH=6.因此点B的坐标为(3,6).(2) 因为OE=2EB,所以223E Bx x==,243E By y==,E(2,4).设直线DE的解析式为y=kx+b,代入D(0,5),E(2,4),得5,2 4.bk b=⎧⎨+=⎩解得12k=-,5b=.所以直线DE的解析式为152y x=-+.(3) 由152y x=-+,知直线DE与x轴交于点F(10,0),OF=10,DF=.①如图3,当DO为菱形的对角线时,MN与DO互相垂直平分,点M是DF的中点.此时点M的坐标为(5,52),点N的坐标为(-5,52).②如图4,当DO、DN为菱形的邻边时,点N与点O关于点E对称,此时点N的坐标为(4,8).③如图5,当DO、DM为菱形的邻边时,NO=5,延长MN交x轴于P.由△NPO∽△DOF,得NP PO NODO OF DF==,即510NP PO==NP=,PO=.此时点N的坐标为(-.图3 图4考点伸展如果第(3)题没有限定点N在x轴上方的平面内,那么菱形还有如图6的情形.图5 图6四、相似三角形:因动点产生的相似三角形问题例4:(2013年苏州中考28题)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).(1)当t=s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.思路点拨:(1)利用正方形的性质,得到BE=BF,列一元一次方程求解即可;(2)△EBF与△FCG相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题.假设存在,则可以分别求出在不同条件下的t值,它们互相矛盾,所以不存在.解答:(1)若四边形EBFB′为正方形,则BE=BF,即:10﹣t=3t,解得t=2.5;(2)分两种情况,讨论如下:①若△EBF∽△FCG ,则有,即,解得:t=2.8;②若△EBF∽△GCF ,则有,即,解得:t=﹣14﹣2(不合题意,舍去)或t=﹣14+2.∴当t=2.8s或t=(﹣14+2)s时,以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似.(3)假设存在实数t,使得点B′与点O重合.如图,过点O作OM⊥BC于点M,则在Rt△OFM中,OF=BF=3t,FM =BC﹣BF=6﹣3t,OM=5,由勾股定理得:OM2+FM2=OF2,即:52+(6﹣3t)2=(3t)2解得:t =;过点O作ON⊥AB于点N,则在Rt△OEN中,OE=BE=10﹣t,EN=BE﹣BN=10﹣t﹣5=5﹣t,ON=6,由勾股定理得:ON2+EN2=OE2,即:62+(5﹣t)2=(10﹣t)2解得:t=3.9.∵≠3.9,∴不存在实数t,使得点B′与点O重合.考点伸展:本题为运动型综合题,考查了矩形性质、轴对称、相似三角形的判定性质、勾股定理、解方程等知识点.题目并不复杂,但需要仔细分析题意,认真作答.第(2)问中,需要分类讨论,避免漏解;第(3)问是存在型问题,可以先假设存在,然后通过推导出互相矛盾的结论,从而判定不存在.拓展练习:1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。
初中数学几何的动点问题专题练习-附答案版之欧阳历创编
动点问题专题训练1、如图,已知ABC==厘米,8BC=厘米,点D为AB AC△中,10AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C 点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1△是否全等,请说明理由;△与CQP②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△全等?△与CQP(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇?1.解:(1)①∵1t=秒,∴313==⨯=厘米,BP CQ∵10AB=厘米,点D为AB的中点,∴5BD=厘米.又∵8=-=PC BC BP BC,厘米,∴835PC=-=厘米,∴PC BD=.又∵AB AC=,∴B C ∠=∠,∴BPD CQP △≌△. ···························· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t ==秒,∴515443Q CQ v t===厘米/秒. ····················· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯,解得803x =秒.∴点P 共运动了803803⨯=厘米.∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇,∴经过803秒点P 与点Q 第一次在边AB 上相遇. ··· (12分)2、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.2.解(1)A (8,0)B (0,6) · 1分 (2)86OA OB ==,点Q 由O 到A 的时间是881=(秒)∴点P 的速度是61028+=(单位/秒) ················· 1分当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,2S t = (1)分当P在线段BA上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,,如图,作PD OA ⊥于点D ,由PD AP BOAB=,得4865t PD -=, ··· 1分21324255S OQ PD t t ∴=⨯=-+ (1)分(自变量取值范围写对给1分,否则不给分.)(3)82455P ⎛⎫ ⎪⎝⎭,···································· 1分 12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, ···················· 3分5、在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t秒(t >0).(1)当t = 2时,AP =,点Q 到AC 的距离是;(2)在点P 从C 向A 运动的过程中,求△APQ 的面积S与t 的函数关系式;(不必写出t 的取值范围)图16(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.5.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP= t ,∴3AP t =-. 由△AQF ∽△ABC ,4BC =,得45QF t =.∴45QF t =.∴14(3)25S t t =-⋅,即22655S tt =-+. (3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP=90°.由△APQ ∽△ABC ,得AQ AP ACAB=,即335t t -=. 解得98t =.②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 此时∠APQ =90°. 由△AQP ∽△ABC ,得 AQ APAB AC=,即353t t -=. 解得158t =.(4)52t =或4514t =.①点P 由C 向A 运动,DE 经过点C . 连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PCQC =,得22234[(5)][4(5)]55tt t =-+--,解得52t =.P图4P图5②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=度时,四边形EDBC 是等腰梯形,此时AD 的长为;②当α=度时,四边形EDBC 是直角梯形,此时AD 的长为;(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由. 6.解(1)①30,1;②60,1.5; ……………………4分 (2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC//ED.∵CE//AB, ∴四边形EDBC 是平行四边形. ……………………6分在Rt △ABC 中,∠ACB=900,∠B=600,BC=2,∴∠A=300.∴3.∴AO=12AC 3……………………8分在Rt △AOD 中,∠A=300,∴AD=2.OE CDAαlOCA(备用图)∴BD=2. ∴BD=BC.又∵四边形EDBC 是平行四边形, ∴四边形EDBC是菱形 ……………………10分 7如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.7.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==. ································ 1分 在Rt ABK △中,sin 4542AK AB =︒==.2cos 45424BK AB =︒== ······················· 2分在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ··················3分C(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形∵MN AB ∥∴MN DG ∥ ∴3BG AD ==∴1037GC =-= ···························· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥ ∴NMC DGC =∠∠ 又C C =∠∠ ∴MNC GDC △∽△∴CN CM CD CG = ······························ 5分即10257t t -=解得,5017t = (6)分(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =-∴103t = ································· 7分②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=-(图①)ADCBKH(图②)ADCBG MNADCBM N(图③)(图④)AD CBM NH E在Rt CEN △中,5cos EC t c NCt-==又在Rt DHC △中,3cos 5CH c CD==∴535t t-=解得258t = (8)分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△ ∴NC EC DC HC =即553t t -=∴258t = (8)分③当MN MC=时,如图⑤,过M作MF CN⊥于F点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025tFC C MC t ===-解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△∴FCMCHC DC=即1102235tt -=∴6017t =(图⑤)ADCBH N MF综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ············································· 9分10数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE=EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM=EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE=EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 10.解:(1)正确. ··········· (1分)证明:在AB 上取一点M ,使AM EC =,连接ME . (2分)BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线, 45DCF ∴∠=°, 135ECF ∴∠=°.ADF CGEB 图1ADF CGE B图2ADFC GB图3A D F CGEBMAME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). ······················· (5分) AE EF ∴=.·································· (6分)(2)正确. ··············· (7分) 证明:在BA 的延长线上取一点N .使AN CE =,连接NE . ········ (8分)BN BE ∴=.45N PCE ∴∠=∠=°.四边形ABCD 是正方形,AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). ······················ (10分)AE EF ∴=. (11分)11已知一个直角三角形纸片OAB,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;11.解(Ⅰ)如图①,折叠后点B 与点A 重合,ADFC GB N则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+, 即()22242m m -=+,解得32m =.∴点C 的坐标为302⎛⎫⎪⎝⎭,. (4)分(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ····································· 6分由点B '在边OA 上,有02x ≤≤,∴解析式2128y x =-+()02x ≤≤为所求.∴当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤.······················· 7分(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.(Ⅲ)如图③,折叠后点B落在OA边上的点为B''B D OB''∥.则OCB CB D''''∠=∠.又CBD CB D OCB CBD''''∠=∠∴∠=∠,,有CB BA''∥.Rt RtCOB BOA''∴△∽△.有OB OCOA OB''=,得2OC OB''=. ························ 9分在Rt B OC''△中,设()OB x x''=>,则02OC x=.由(Ⅱ)的结论,得2001228x x=-+,解得000808x x x=-±>∴=-+,∴点C的坐标为()016. ······················ 10分12如图(1),将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.当CE/CD=1/2时,求AM/BN的值.类比归纳在图(1)中,若13CECD=,则AMBN的值等于;若14CECD=,则AMBN的值等于;若1CECD n=(n为整数),则AMBN的值等于.(用含n的式子表示)联系拓广如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C D,重合),压平后得到折痕MN,设()111AB CEmBC m CD n=>=,,则AMBN的值等于.(用含m n,的式子表示)12解:方法一:如图(1-1),连接BM EM BE,,.方法指导:为了求得AMBN的值,可先求BN、AM的长,不妨设:AB=2A DEFM图(1)AB CDEFMN由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称.∴MN 垂直平分BE .∴BM EM BN EN ==,. ·············· 1分∵四边形ABCD 是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,. ∵112CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-.在Rt CNE △中,222NE CN CE =+.∴()22221x x =-+.解得54x =,即54BN =. ················· 3分在Rt ABM △和在Rt DEM △中,222AM AB BM +=, 222DM DE EM +=,∴2222AM AB DM DE +=+. (5)分 设AM y =,则2DM y =-,∴()2222221y y +=-+. 解得14y =,即14AM =. (6)分 ∴15AM BN =. ······································· 7分 方法二:同方法一,54BN =. (3)分如图(1-2),过点N 做NG CD ∥,交AD 于点G ,连接BE .∵AD BC ∥,∴四边形GDCN 是平行四边形.∴NG CD BC ==.同理,四边形ABNG 也是平行四边形.∴54AG BN ==.∵90MN BE EBC BNM ⊥∴∠+∠=,°.在BCE △与NGM △中90EBC MNG BC NG C NGM ∠=∠⎧⎪=⎨⎪∠=∠=⎩,,°.∴BCE NGM EC MG =△≌△,. ············ 5分 ∵114AM AG MG AM =--=5,=.4··················· 6分N图(1-1) A B C DE FMN图(1-2) A BC D EFMG∴15AMBN =.······························· 7分12..如图所示,在直角梯形ABCD 中,AD//BC ,∠A =90°,AB =12,BC =21,AD=16。
初中数学几何的动点问题专题练习-附答案版
动点问题专题练习 【1 】1.如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)假如点P 在线段BC 上以3厘米/秒的速度由B 点向C 点活动,同时,点Q 在线段CA 上由C 点向A 点活动.①若点Q 的活动速度与点P 的活动速度相等,经由1秒后,BPD △与CQP △是否全等,请解释来由;②若点Q 的活动速度与点P 的活动速度不相等,当点Q 的活动速度为若干时,可以或许使BPD △与CQP △全等?(2)若点Q 以②中的活动速度从点C 动身,点P 以本来的活动速度从点B 同时动身,都逆时针沿ABC △三边活动,求经由多长时光点P 与点Q 第一次在ABC △的哪条边上相遇? 1.解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. ············································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 活动的时光433BP t ==秒, ∴515443Q CQ v t===厘米/秒. ·································································· (7分)(2)设经由x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯, 解得803x =秒.∴点P 共活动了803803⨯=厘米.∵8022824=⨯+,∴点P .点Q 在AB 边上相遇,∴经由803秒点P 与点Q 第一次在边AB 上相遇. ········································· (12分) 2.直线364y x =-+与坐标轴分离交于A B 、两点,动点P Q 、同时从O 点动身,同时到达A点,活动停滞.点Q 沿线段OA 活动,速度为每秒1个单位长度,点P 沿路线O →B →A 活动.(1)直接写出A B 、两点的坐标;(2)设点Q 的活动时光为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为极点的平行四边形的第四个极点M 的坐标. 2.解(1)A (8,0)B (0,6) ················· 1分 (2)86OA OB ==,10AB ∴=点Q 由O 到A 的时光是881=(秒) ∴点P 的速度是61028+=(单位/秒) ·1分 当P 在线段OB 上活动(或03t ≤≤)时,2OQ t OP t ==,2S t = ·········································································································· 1分当P 在线段BA 上活动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, ······································· 1分21324255S OQ PD t t ∴=⨯=-+ ······································································· 1分 (自变量取值规模写对给1分,不然不给分.)(3)82455P ⎛⎫ ⎪⎝⎭, ···························································································· 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, ···················································· 3分5.在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 动身沿CA 以每秒1个单位长的速度向点A 匀速活动,到达点A 后连忙以本来的速度沿AC 返回;点Q 从点A 动身沿AB 以每秒1个单位长的速度向点B 匀速活动.陪同着P.Q 的活动,DE 保持垂直等分PQ,且交PQ 于点D,交折线QB-BC-CP 于点E .点P.Q 同时动身,当点Q 到达点B 时停滞活动,点P 也随之停滞.设点P.Q 活动的时光是t 秒(t >0).(1)当t = 2时,AP =,点Q 到AC 的距离是;(2)在点P 从C 向A 活动的进程中,求△APQ 的面积S与t 的函数关系式;(不必写出t 的取值规模)(3)在点E 从B 向C 活动的进程中,四边形QBED 可否成为直角梯形?若能,求t 的值.若不克不及,请解释来由; (4)当DE 经由点C 时,请直接写出t 的值. 5.解:(1)1,85;(2)作QF ⊥AC 于点F,如图3, AQ = CP= t,∴3AP t =-. 由△AQF ∽△ABC,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅, 即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ,∴PQ ⊥QB,四边形QBED 是直角梯形. 此时∠AQP=90°.P图16P图4由△APQ ∽△ABC,得AQ APAC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. ①点P 由C 向A 活动,DE 经由点C . 衔接QC,作QG ⊥BC 于点G,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.②点P 由A 向C 活动,DE 经由点C,如图7. 22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的地位开端,绕点O 作逆时针扭转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的扭转角为α.(1)①当α=度时,四边形EDBC 是等腰梯形,此时AD 的长为;②当α=度时,四边形EDBC 是直角梯形,此时AD 的长为; (2)当90α=°时,断定四边形EDBC 是否为菱形,并解释来由.6.解(1)①30,1;②60,1.5; ……………………4分 (2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC//ED.∵CE//AB, ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB=900,∠B=600,BC=2,∴∠A=300.OE CDAα lOCA (备用图)ACBPQ E D 图5AC (E ) BPQD图6GA C (E )B PQD图7G∴∴AO=12AC. ……………………8分 在Rt △AOD 中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC.又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形 ……………………10分7如图,在梯形ABCD 中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点动身沿线段BC 以每秒2个单位长度的速度向终点C 活动;动点N 同时从C 点动身沿线段CD 以每秒1个单位长度的速度向终点D 活动.设活动的时光为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探讨:t 为何值时,MNC △为等腰三角形.7.解:(1)如图①,过A .D 分离作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==. ················································································ 1分 在Rt ABK △中,sin 4542AK AB =︒==.2cos 454242BK AB =︒== ··························································2分 在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ················································· 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ CM ADCB KHAD CBG MN∴3BG AD ==∴1037GC =-= ············································································· 4分 由题意知,当M .N 活动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥ ∴NMC DGC =∠∠ 又C C =∠∠ ∴MNC GDC △∽△∴CN CMCD CG =··················································································· 5分 即10257t t -= 解得,5017t = ······················································································ 6分(3)分三种情形评论辩论:①当NC MC =时,如图③,即102t t =- ∴103t =·························································································· 7分②当MN NC =时,如图④,过N 作NE MC ⊥于E解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cosEC t c NC t-== 又在Rt DHC △中,3cos 5CH c CD ==∴535t t -=解得258t = ······················································································· 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△ ∴NC ECDC HC= ADCB MN(图③) (图④)AD CB M NH E即553t t-=∴258t = ·························································································· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(办法同②中解法一)132cos 1025tFC C MC t ===-解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△∴FC MCHC DC =即1102235tt -= ∴6017t =综上所述,当103t =.258t =或6017t =时,MNC △为等腰三角形 ······················ 9分10数学课上,张先生出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F,求证:AE=EF .经由思虑,小明展现了一种准确的解题思绪:取AB 的中点M,衔接ME,则AM=EC,易证AME ECF △≌△,所以AE EF =.在此基本上,同窗们作了进一步的研讨:(1)小颖提出:如图2,假如把“点E 是边BC 的中点”改为“点E 是边BC 上(除B,C 外)的随意率性一点”,其它前提不变,那么结论“AE=EF”仍然成立,你以为小颖的不雅点准确吗?假如准确,写出证实进程;假如不准确,请解释来由;(2)小华提出:如图3,点E 是BC 的延伸线上(除C 点外)的随意率性一点,其他前提不变,结论“AE=EF”仍然成立.你以为小华的不雅点准确吗?假如准确,写出证实进程;假如不(图⑤)A DCBH N MF10.解:(1)准确. ················································· (1分) 证实:在AB 上取一点M ,使AM EC =,衔接ME . ···· (2分)BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角等分线, 45DCF ∴∠=°, 135ECF ∴∠=°. AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). ··································································· (5分) AE EF ∴=. ························································································· (6分) (2)准确. ····················································· (7分) 证实:在BA 的延伸线上取一点N .使AN CE =,衔接NE . ····································· (8分)BN BE ∴=.45N PCE ∴∠=∠=°.四边形ABCD 是正方形,AD BE ∴∥.DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). ································································· (10分) AE EF ∴=.(11分)11已知一个直角三角形纸片OAB ,个中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . A DF C GEBM ADFC GE BN则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+, 即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ··················································································· 4分(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并肯定y 的取值规模;(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···························································································· 6分 由点B '在边OA 上,有02x ≤≤,∴解析式2128y x =-+()02x ≤≤为所求.∴当02x ≤≤时,y 随x 的增大而减小,y ∴的取值规模为322y ≤≤. ····································································· 7分 (Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.(Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠.又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥.Rt Rt COB BOA ''∴△∽△.有OB OCOA OB''=,得2OC OB ''=. ····································································· 9分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2001228x x =-+, 解得000808x x x =-±>∴=-+,∴点C 的坐标为()016. ··································································· 10分 12如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当CE/CD=1/2时,求AM/BN 的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于;若14CE CD =,则AM BN 的值等于;若1CE CD n =(n 为整数),则AMBN的值等于.(用含n 的式子暗示) 接洽拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN的值等于.(用含m n ,的式子暗示)12解:办法一:如图(1-1),衔接BM EM BE ,,.由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称.∴MN 垂直等分BE .∴BM EM BN EN ==,. ··············································· 1分 ∵四边形ABCD 是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,. ∵112CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-. 在Rt CNE △中,222NE CN CE =+.∴()22221x x =-+.解得54x =,即54BN =. ······················································ 3分 在Rt ABM △和在Rt DEM △中, 办法指点: 为了求得AM BN 的值,可先求BN .AM 的长,无妨设:AB =2 图(2) NAB C D EFM图(1)A B CDEFMNN 图(1-1)A B C EFM222AM AB BM +=,222DM DE EM +=,∴2222AM AB DM DE +=+. ····························································· 5分 设AM y =,则2DM y =-,∴()2222221y y +=-+. 解得14y =,即14AM =. ····································································· 6分 ∴15AM BN =. ································································································ 7分 办法二:同办法一,54BN =. ·································································· 3分 如图(1-2),过点N 做NG CD ∥,交AD 于点G ,衔接BE .∵AD BC ∥,∴四边形GDCN是平行四边形. ∴NG CD BC ==. 同理,四边形ABNG 也是平行四边形.∴54AG BN ==. ∵90MN BE EBC BNM ⊥∴∠+∠=,°. 90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠,°,.在BCE △与NGM △中90EBC MNG BC NG C NGM ∠=∠⎧⎪=⎨⎪∠=∠=⎩,,°.∴BCE NGM EC MG =△≌△,. ·································· 5分 ∵114AM AG MG AM =--=5,=.4 ····················································· 6分 ∴15AM BN =. ··················································································· 7分 12..如图所示,在直角梯形ABCD 中,AD//BC,∠A =90°,AB =12,BC =21,AD=16.动点P 从点B 动身,沿射线BC 的偏向以每秒2个单位长的速度活动,动点Q 同时从点A 动身,在线段AD 上以每秒1个单位长的速度向点D 活动,当个中一个动点到达端点时另一个动点也随之停滞活动.设活动的时光为t (秒).(1)设△DPQ 的面积为S,求S 与t 之间的函数关系式;(2)当t 为何值时,四边形PCDQ 是平行四边形?(3)分离求出出当t 为何值时,① PD =PQ,② DQ =PQ ?类比归纳N 图(1-2) A B C D EF M G25(或410);917;()2211n n -+ ······································································ 10分 接洽拓广 2222211n m n n m -++ ······················································································· 12分 解1:依题意,得AQ=t,BP=2t,QD=16-t.过点Q 作QF ⊥BP,又∵AQ‖BF,∴∠ABP=90°∴四边形AQFB 是矩形∴AQ=BF=t ∵BP=2t ∴FP=t,∴在Rt △QFP 中,QP=√(12²+t²)又∵QD=QP=PD ∴√(12²+t²)=16-t ∴12²+t²=16²-2*16*t+t²∴解得:t=7/2解2:如图所示,:这P 作PE 垂直AD 于E,垂足为E 点,则ABPE 为矩形.PE=AB=12;AE=BP(1).s=1/2×AB×DQ=1/2×12×(AD-AQ)=6×(16-t)=96-6t;(2).当 BC-2t=21-2t=PC=DQ=AD-t=16-t,即t=5时,四边形PCDQO 为平形四边形.(3).①QE=AE-AQ=BP-AQ=2t-t=t,而ED=AD-AE=16-BP=16-2t;当QE=ED 时,PE 为QD 的垂直等分线时,PQ=PD,而此时t=16-2t; t=16/3;所以当t=16/3时,PD=PQ;.②在Rt △PEQ 中,PE=AB=12; EQ=AE-AQ=PB-AQ=2t-t=t; PQ²=QE²+PE²=t²+12²; QD²=(AD-AQ)²=(16-t)²; 所以当t²+12²=(16-t)²,即:t=3.5时,DQ=PQ;解:因为∠C=90°,∠CBA=30°,BC=20√3所以可求出AB =40如图,圆心从A 向B 的偏向活动时,共有三个地位能使此圆与直线AC 或直线BC 相切当圆心在O1点时,设切点为P显然PO1=6,∠APO1=90°,∠AO1P=30°所以AO1=4√3因为圆O以2个单位长度/秒的速度向右活动所以当t1=4√3/2=2√3(秒)时,圆O与直线AC相切当圆心在O2点时,设切点为Q显然QO2=6,∠BQO2=90°,∠QBO2=30°所以BO2=12,AO2=40-12=28因为圆O以2个单位长度/秒的速度向右活动所以当t2=28/2=14(秒)时,圆O与直线BC相切当圆心在O3点时,设切点为R显然RO3=6,∠BRO3=90°,∠RBO3=30°所以BO3=12,AO3=40+12=52因为圆O以2个单位长度/秒的速度向右活动所以当t3=52/2=26(秒)时,圆O与直线BC相切综上所述,当圆O活动2√3秒.14秒.26秒时与△ABC的一边地点的直线相切.。
初中数学几何的动点问题专题练习-附答案版
动点问题专题训练1、如图,已知ABC△中,10AB AC==厘米,8BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇?2、直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结P A,若P A=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A 的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.5在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ;(2)在点P 从C 向A 运动的过程中,求△APQ的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α. (1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ;(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.图16(备用图)7如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形.8如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =. ①当点N 在线段AD 上时(如图2),P M N △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由; ②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.C M ADE BF C图4(备用)ADE BF C图5(备用)A D E BF C图1 图2A DEBF C PN M 图3A D EBFCPN M(第25题)9如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标; (4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.10数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ADFC GB图1ADF C GB 图2 ADFGB图311已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.12如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN 的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AMBN 的值等于 ;若1CE CD n =(n 为整数),则AMBN的值等于 .(用含n 的式子表示) 联系拓广 如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN的值等于 .(用含m n ,的式子表示)方法指导: 为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2图(2) AB C D EF M 图(1) A B C D E FM N12..如图所示,在直角梯形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16。
人教版八年级数学上册数学动点问题专题练习(含详细参考答案)
人教版八年级数学上册数学动点问题专题练习(详细参考答案附后)1、在△ABC中,BC=12cm,AC=9,点P为一动点,沿着C→B→A→C的路径运动(返回C点时则停止运动),已经点P的运动速度为2cm/秒,试求:(1)AB的取值范围;(2)若∠C=90度,AB=15cm①当P点在CB上运动时,经过多长时间PC=AC;②经过多长时间后,点P与△ABC某一顶点的连线将把△ABC的周长分成相等的两部分.③当P从运动开始,几秒后点P与△ABC某一顶点的连线将这个△ABC分成面积相等的两部分;2、点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交AB 于点E,交CA的延长线于点F。
(1)如图(1),请观察AF与AE,它们相等吗?并证明你的猜想。
(2)如图(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB 的延长线上时,(1)中所得的结论还成立吗?请你在图(2)中完成图形,并给予证明。
3、如图,己知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点。
如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3)。
(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD 与△CQP全等?人教版八年级数学上册数学动点问题专题练习参考答案1、在△ABC中,BC=12cm,AC=9,点P为一动点,沿着C→B→A→C的路径运动(返回C点时则停止运动),已经点P的运动速度为2cm/秒,试求:(1)AB的取值范围;(2)若∠C=90度,AB=15cm①当P点在CB上运动时,经过多长时间PC=AC;②经过多长时间后,点P与△ABC某一顶点的连线将把△ABC的周长分成相等的两部分.③当P从运动开始,几秒后点P与△ABC某一顶点的连线将这个△ABC分成面积相等的两部分;解:(1)根据三角形三边之间的关系可知AB> BC -AC AB<AC+BC∴AB> 12 -9 AB<12+9即:3<AB<21(2)①∵PC=AC=9 t=v÷s=9÷2=4.5(秒)②△ABC的周长一半=(AB+ AC+BC)÷2=(15+9+12)÷2=36÷2=18(cm)当P从点C往点B运动至9cm处时,点P与点A的连线恰好将△ABC的周长分成相等的两部分。
初中数学动点题百题训练专题练习(含答案解析)
初中数学动点题百题训练专题练习1.如图,P是直线m上一动点,A、B是直线n上的两个定点,且直线m//n;对于下列各值:①点P到直线n的距离;②△PAB的周长;③△PAB的面积;④∠APB的大小.其中会随点P的移动而变化的是()A. ①②B. ①③C. ②④D. ③④2.直线AB上有一点O,OM⊥AB于O,另有直角∠COD在平角∠AOB内绕O点左右摆动(OC与OA、OD与OB不重合),在摆动时,始终与∠MOD保持相等的角是()A. ∠BODB. ∠AOCC. ∠COMD. 没有3.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60∘为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A. (2017,0)B. (201712,√32) C. (2018,√3) D. (2018,0)4.如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(−1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,−2),……,按这样的运动规律,动点P第2018次运动到点()A. (2018,0)B. (2017,0)C. (2018,1)D. (2017,−2)5.如图,等腰ΔABC中,AB=AC,MN是边BC上一条运动的线段(点M不与点B重合,点N不与点C重合),且MN=12BC,MD⊥BC交AB于点D,NE⊥BC交AC于点E,在MN从左至右的运动过程中,ΔBMD和ΔCNE的面积之和A. 保持不变B. 先变小后变大C. 先变大后变小D. 一直变大6.如图,矩形ABCD中,点R沿CD边从点C向点D运动,点M在BC边上运动,E、F分别是AM、MR的中点,则EF的长度随着点M、点R的运动()A. 变短B. 变长C. 不变D. 无法确定7.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A. 6B. 8C. 9D. 108.如图,已知,,,点是线段上的一个动点,连接,动点始终与点关于直线对称,当点由点位置向右运动至点位置时,相应的点所经过的路程为()A.B.C.D.9.如图,在△ABC中,∠ACB=90∘,AC=2,BC=1,点A、C分别在x轴、y轴上,当点A在x轴运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为()A. √5B. √6C. 1+√2D. 310.如图,在▱ABCD中,对角线AC、BD交于点O,并且∠DAC=60∘,∠ADB=15∘.点E是AD边上一动点,延长EO交BC于点F.当点E从D点向A点移动过程中(点E与点D,A不重合),则四边形AFCE的变化是()A. 平行四边形→矩形→平行四边形→菱形→平行四边形B. 平行四边形→菱形→平行四边形→矩形→平行四边形C. 平行四边形→矩形→平行四边形→正方形→平行四边形D. 平行四边形→矩形→菱形→正方形→平行四边形11.如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别为AB,BC边上的中点,则MP+NP的最小值是()A. 2B. 1C.D.12.如图,在Rt△ABC中,∠C=90∘,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s的速度向点A运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPO的面积y(cm2)与运动时间x(s)之间的函数图象大致是()A. B. C. D.13.如图,在△ABC中,∠B=90∘,tan∠C=34,AB=6cm.动点P从点A开始沿边AB向点B 以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A. 18cm2B. 12cm2C. 9cm2D. 3cm214.抛物线y=x2−2x−15,y=4x−23,交于A、B点(A在B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E再到达x轴上的某点F,最后运动到点B.若使点P动的总路径最短,则点P运动的总路径的长为( )A. 10√5B. 7√10C. 5√21D. 8√1015.如图,抛物线y=x2−12x−32与直线y=x−2交于A、B两点(点A在点B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B.若使点P运动的总路径最短,则点P运动的总路径的长为()A. √292B. √293C. 52D. 5316.如图,在△ABC中,∠C=90∘,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为()A. 19cm2B. 16cm2C. 15cm2D. 12cm217.如图,抛物线y=x2−2x−3与x轴交于A,B两点,过点B的直线与抛物线在第二象限交于点C,且tan∠CBA=43,点D为线段BC上一点(不含端点).现有一动点P从点A出发,沿线段AD以每秒1个单位长度的速度运动到D点,再沿线段DC以每秒54个单位长度的速度运动到C点,则动点P运动到C点的最短时间需()秒.A. 7B. 649C. 10 D. 75818.如图,在△ABC中,∠B=90∘,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过()秒,四边形APQC的面积最小.A. 1B. 2C. 3D. 419.如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是()A. 4或4.8B. 3或4.8C. 2或4D. 1或620.如图,矩形ABCD中,AB=4,BC=10,点P为BC边上一动点,AP交BD于点Q.点P从B点出发沿BC边以每秒1个单位长度的速度向C点移动,移动时间为x秒.设S△AQD+S△PQB=y,写出y与x之间的函数关系式,并探究P点运动到第几秒与第几秒之间时,y取得最小值.()A. 3到4B. 4到5C. 5到6D. 6到721.在矩形ABCD中,BC=10cm、DC=6cm,点E、F分别为边AB、BC上的两个动点,E从点A出发以每秒5cm的速度向B运动,F从点B出发以每秒3cm的速度向C运动,设运动时间为t秒.若∠AFD=∠AED,则t的值为()A. √2−1B. 0.5C. 23D. 122.如图,△ABC内接于⊙O,∠A=60∘,BC=4√3,当点P在B^C上由B点运动到C点时,弦AP的中点E运动的路径长为()A. 4√33πB. 43πC. 83πD. 2√323.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(12,1),(3,1),(3,0),点A 为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是()A. −14≤b≤1 B. −54≤b≤1 C. −94≤b≤12D. −94≤b≤124.如图,在△ABC中,∠ACB=90∘,∠A=30∘,BC=1.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,阴影部分面积S1+S2的大小变化情况是()A. 一直不变B. 一直减小C. 一直增大D. 先减小后增大25.如图,在反比例函数y=32x的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=kx的图象上运动,若tan∠CAB=2,则k的值为()A. −3B. −6C. −9D. −1226.如图,在点O处测得远处动点P作匀速直线运动,开始位置在A点,一分钟后到达B点,再过一分钟到达C点,测得∠AOB=90∘,∠BOC=30∘,则tan∠OAB=()A. 32B. √32C. 2√33D. 2327.如图,四边形ABCD和四边形BEFG均为正方形,且A、B、E三点共线,正方形ABCD的边长为4,则S△ACF的面积为______ .28.20.如图,矩形ABCD中,点M是CD的中点,点P是AB上的一动点,若AD=1,AB=2,则PA+PB+PM的最小值是.29.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2017次运动后,动点P的坐标是______,经过第2018次运动后,动点P的坐标是______.30.15.如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,若y与x的关系图象如图2所示,则AB的长为_______,梯形ABCD的面积为__________.31.18、正方形中,为上一动点,连接交于,过点作交于,。
九年级中考数学动点问题压轴题专题训练(含答案)
九年级中考数学动点问题压轴题专题训练1.如图1, 在平面直角坐标系中, 四边形OABC各顶点的坐标分别为O(0, 0), A(3, 3 ), B(9, 5 ), C(14, 0). 动点P与Q同时从O点出发, 运动时间为t秒, 点P沿OC方向以1单位长度/秒的速度向点C运动, 点Q沿折线OA-AB-BC运动, 在OA, AB, BC上运动的速度分别为3, , (单位长度/秒). 当P, Q中的一点到达C点时, 两点同时停止运动.(1)求AB所在直线的函数表达式.(2)如图2, 当点Q在AB上运动时, 求△CPQ的面积S关于t的函数表达式及S的最大值.(3)在P, Q的运动过程中, 若线段PQ的垂直平分线经过四边形OABC的顶点, 求相应的t值.图1 图22.如图, 抛物线y=-x2+bx+c与x轴交于A, B两点(A在B的左侧), 与y轴交于点N, 过A点的直线l:y=kx+n与y轴交于点C, 与抛物线y=-x2+bx+c的另一个交点为D, 已知A(-1, 0), D(5, -6), P 点为抛物线y=-x2+bx+c上一动点(不与A, D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时, 过P点作PE∥x轴交直线l于点E, 作PF ∥y轴交直线l于点F, 求PE+PF的最大值;(3)设M为直线l上的点, 探究是否存在点M, 使得以点N, C, M, P为顶点的四边形为平行四边形.若存在, 求出点M的坐标;若不存在, 请说明理由.3.如图, 在平面直角坐标系中, 抛物线y=ax2+bx+c经过A(-2, -4 )、O(0, 0)、B(2, 0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点, 求AM+OM的最小值.4.设直线l1: y=k1x+b1与l2: y=k2x+b2, 若l1⊥l2, 垂足为H, 则称直线l1与l2是点H的直角线.(1)已知直线①;②;③;④和点C(0, 2), 则直线_______和_______是点C的直角线(填序号即可);(2)如图, 在平面直角坐标系中, 直角梯形OABC的顶点A(3, 0)、B(2, 7)、C(0, 7), P为线段OC上一点, 设过B、P两点的直线为l1, 过A、P两点的直线为l2, 若l1与l2是点P的直角线, 求直线l1与l2的解析式.5.如图①, 在平面直角坐标系xOy中, 已知抛物线y=ax2-2ax-8a与x轴相交于A, B两点(点A在点B的左侧), 与y轴交于点C(0, -4).(1)点A的坐标为, 点B的坐标为, 线段AC的长为, 抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.如果在x轴上存在点Q, 使得以点B, C, P, Q为顶点的四边形是平行四边形, 求点Q的坐标.①6.如图, 已知抛物线(b是实数且b>2)与x轴的正半轴分别交于点A.B(点A位于点B是左侧), 与y轴的正半轴交于点C.(1)点B的坐标为______, 点C的坐标为__________(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P, 使得四边形PCOB的面积等于2b, 且△PBC是以点P为直角顶点的等腰直角三角形?如果存在, 求出点P的坐标;如果不存在, 请说明理由;(3)请你进一步探索在第一象限内是否存在点Q, 使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在, 求出点Q的坐标;如果不存在, 请说明理由.7.如图, 已知A.B是线段MN上的两点, , , . 以A为中心顺时针旋转点M, 以B为中心逆时针旋转点N, 使M、N两点重合成一点C, 构成△ABC, 设.(1)求x的取值范围;(2)若△ABC为直角三角形, 求x的值;(3)探究: △ABC的最大面积?8.如图, 已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴, 垂足为C, 在对称轴的左侧且平行于y轴的直线交线段AB于点N, 交抛物线于点M, 若四边形MNCB为平行四边形, 求点M的坐标.9.在平面直角坐标系中, 反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时, 求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大, 求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q, 当△ABQ是以AB为斜边的直角三角形时, 求k的值.10.如图, 已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3, 抛物线与x轴相交于A, B两点, 与y轴相交于点C, 已知B点的坐标为(8, 0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点, 点N为线段BC上的一点, 若MN∥y 轴, 求MN的最大值;(3)在抛物线的对称轴上是否存在点Q, 使△ACQ为等腰三角形?若存在, 求出符合条件的Q点坐标;若不存在, 请说明理由.11.如图, 直线y=2x+6与反比例函数y=(k>0)的图象交于点A(m, 8), 与x轴交于点B, 平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M, 交AB于点N, 连接BM.(1)求m的值和反比例函数的解析式;(2)观察图象, 直接写出当x>0时不等式2x+6->0的解集;(3)直线y=n沿y轴方向平移, 当n为何值时, △BMN的面积最大?最大值是多少?12.如图, 在平面直角坐标系xOy中, 顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B, AO=BO=2, ∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM, 求∠AOM的大小;(3)如果点C在x轴上, 且△ABC与△AOM相似, 求点C的坐标.13.在直角梯形OABC中, CB//OA, ∠COA=90°, CB=3, OA=6, BA=. 分别以OA.OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D.E分别为线段OC.OB上的点, OD=5, OE=2EB, 直线DE交x轴于点F. 求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点, 在x轴上方的平面内是否存在另一点N, 使以O、D、M、N为顶点的四边形是菱形?若存在, 请求出点N的坐标;若不存在, 请说明理由.14.如图, 已知一次函数y=-x+7与正比例函数的图象交于点A, 且与x轴交于点B. (1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C, 过点B作直线l//y轴. 动点P从点O出发, 以每秒1个单位长的速度, 沿O—C—A的路线向点A运动;同时直线l从点B出发, 以相同速度向左平移, 在平移过程中, 直线l交x轴于点R, 交线段BA或线段AO于点Q. 当点P到达点A时, 点P和直线l都停止运动. 在运动过程中, 设动点P运动的时间为t秒.①当t为何值时, 以A.P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在, 求t的值;若不存在, 请说明理由.15.如图, 二次函数y=a(x2-2mx-3m2)(其中a、m是常数, 且a>0, m>0)的图像与x轴分别交于A.B(点A位于点B的左侧), 与y轴交于点C(0,-3), 点D在二次函数的图像上, CD//AB, 联结AD. 过点A作射线AE交二次函数的图像于点E, AB平分∠DAE.(1)用含m的式子表示a;(2)求证: 为定值;(3)设该二次函数的图像的顶点为F.探索:在x轴的负半轴上是否存在点G, 联结GF, 以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在, 只要找出一个满足要求的点G即可, 并用含m的代数式表示该点的横坐标;如果不存在, 请说明理由.16.如图, 二次函数y=-x2+4x+5的图象的顶点为D, 对称轴是直线l, 一次函数y= x+1的图象与x轴交于点A, 且与直线DA关于l的对称直线交于点B.(1)点D的坐标是.(2)直线l与直线AB交于点C, N是线段DC上一点(不与点D, C重合), 点N的纵坐标为n.过点N作直线与线段DA, DB分别交于点P, Q, 使得△DPQ与△DAB 相似.①当n= 时, 求DP的长;②若对于每一个确定的n的值, 有且只有一个△DPQ与△DAB相似, 请直接写出n的取值范围.17.已知直线y=3x-3分别与x轴、y轴交于点A, B, 抛物线y=ax2+2x+c经过点A, B. (1)求该抛物线的表达式, 并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l, 点B关于直线l的对称点为C, 若点D在y 轴的正半轴上, 且四边形ABCD为梯形.①求点D的坐标;②将此抛物线向右平移, 平移后抛物线的顶点为P, 其对称轴与直线y=3x-3交于点E, 若, 求四边形BDEP的面积.18.如图, 在平面直角坐标系xOy中, 二次函数y=-x2+2x+8的图象与一次函数y=-x+b的图象交于A.B两点, 点A在x轴上, 点B的纵坐标为-7.点P是二次函数图象上A.B两点之间的一个动点(不与点A.B重合), 设点P的横坐标为m, 过点P作x轴的垂线交AB于点C, 作PD ⊥AB于点D.(1)求b及sin∠ACP的值;(2)用含m的代数式表示线段PD的长;(3)连接PB, 线段PC把△PDB分成两个三角形, 是否存在适合的m值, 使这两个三角形的面积之比为1∶2?如果存在, 直接写出m的值;如果不存在, 请说明理由.19.如图, 抛物线与x轴交于A.B两点(点A在点B的左侧), 与y轴交于点C.(1)求点A.B的坐标;(2)设D为已知抛物线的对称轴上的任意一点, 当△ACD的面积等于△ACB 的面积时, 求点D的坐标;(3)若直线l过点E(4, 0), M为直线l上的动点, 当以A、B、M为顶点所作的直角三角形有且只有三个时, 求直线l的解析式.20.已知平面直角坐标系中两定点A(-1, 0)、B(4, 0), 抛物线y=ax2+bx-2(a≠0)过点A.B, 顶点为C, 点P(m, n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时, 求m的取值范围;(3)若m>, 当∠APB为直角时, 将该抛物线向左或向右平移t(0<t<)个单位, 点C、P平移后对应的点分别记为C′、P′, 是否存在t, 使得顺次首尾连接A、B、P′、C′所构成的多边形的周长最短?若存在, 求t的值并说明抛物线平移的方向;若不存在, 请说明理由.2021中考数学压轴专题训练之动点问题-答案一、解答题(本大题共20道小题)1.【答案】【思维教练】(1)设一次函数解析式, 将已知点A、B的坐标值代入求解即可;(2)S △CPQ=·CP·Qy, CP=14-t, 点Q在AB上, Qy即为当x=t时的y值, 代入化简得出S与t的函数关系式, 化为顶点式得出最值;(3)垂直平分线过顶点需以时间为临界点分情况讨论, 当Q在OA上时, 过点C;当Q在AB上时, 过点A;当Q在BC上时, 过点C和点B, 再列方程并求解.解图1解: (1)把A(3, 3 ), B(9, 5 )代入y=kx+b,得, 解得,∴y=33x+23;(3分)(2)在△PQC中, PC=14-t,∵OA==6且Q在OA上速度为3单位长度/s,AB==4 且Q点在AB上的速度为单位长度/s,∴Q在OA上时的横坐标为t, Q在AB上时的横坐标为t,PC边上的高线长为33t+2 3.(6分)所以S=(14-t)( t+2 )=-t2+t+14 (2≤t≤6).当t=5时, S有最大值为.(7分)解图2(3)①当0<t ≤2时, 线段PQ 的中垂线经过点C(如解图1). 可得方程(332t )2+(14-32t )2=(14-t )2.解得t1= , t2=0(舍去), 此时t = .(8分)解图3②当2<t ≤6时, 线段PQ 的中垂线经过点A(如解图2).可得方程(33)2+(t -3)2=[3(t -2)]2.解得t1= , ∵t2= (舍去), 此时t = .③当6<t ≤10时,(1)线段PQ 的中垂线经过点C(如解图3).可得方程14-t =25- t, 解得t = .(10分)解图4(2)线段PQ 的中垂线经过点B(如解图4).可得方程(53)2+(t -9)2=[52(t -6)]2.解得t1= , t2= (舍去).此时t=38+2027.(11分)综上所述, t的值为, , , .(12分)【难点突破】解决本题的关键点在于对PQ的垂直平分线过四边形顶点的情况进行分类讨论, 在不同阶段列方程求解.2.【答案】[分析] (1)将点A, D的坐标分别代入直线表达式、抛物线的表达式, 即可求解;(2)设出P点坐标, 用参数表示PE, PF的长, 利用二次函数求最值的方法.求解;(3)分NC是平行四边形的一条边或NC是平行四边形的对角线两种情况, 分别求解即可.解:(1)将点A, D的坐标代入y=kx+n得:解得:故直线l的表达式为y=-x-1.将点A, D的坐标代入抛物线表达式,得解得故抛物线的表达式为:y=-x2+3x+4.(2)∵直线l的表达式为y=-x-1,∴C(0, -1), 则直线l与x轴的夹角为45°, 即∠OAC=45°,∵PE∥x轴, ∴∠PEF=∠OAC=45°.又∵PF∥y轴, ∴∠EPF=90°, ∴∠EFP=45°.则PE=PF.设点P坐标为(x, -x2+3x+4),则点F(x, -x-1),∴PE+PF=2PF=2(-x2+3x+4+x+1)=-2(x-2)2+18,∵-2<0, ∴当x=2时, PE+PF有最大值, 其最大值为18.(3)由题意知N(0, 4), C(0, -1), ∴NC=5,①当NC是平行四边形的一条边时, 有NC∥PM, NC=PM.设点P坐标为(x, -x2+3x+4), 则点M的坐标为(x, -x-1),∴|yM-yP|=5, 即|-x2+3x+4+x+1|=5,解得x=2±或x=0或x=4(舍去x=0),则点M坐标为(2+ , -3- )或(2- , -3+ )或(4, -5);②当NC是平行四边形的对角线时, 线段NC与PM互相平分.由题意, NC的中点坐标为0, ,设点P坐标为(m, -m2+3m+4),则点M(n', -n'-1),∴0= = ,解得:n'=0或-4(舍去n'=0), 故点M(-4, 3).综上所述, 存在点M, 使得以N, C, M, P为顶点的四边形为平行四边形, 点M的坐标分别为:(2+ , -3- ), (2- , -3+ ), (4, -5), (-4, 3).3.【答案】(1)。
初中数学动点问题及练习题附参考答案
初中数学动点问题及练习题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
二、应用比例式建立函数解析式。
专题36 几何动态性问题之动点问题-2023年中考数学二轮复习核心考点拓展训练(解析版)
专题36 几何动态性问题之动点问题(解析版)类型一 动点产生函数关系1.(2020秋•呼和浩特期末)如图,AB =5,O 是AB 的中点,P 是以点O 为圆心,AB 为直径的半圆上的一个动点(点P 与点A ,B 可以重合),连接PA ,过P 作PM ⊥AB 于点M .设AP =x ,则AM =15x 2,令y =AP ﹣AM ,下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .思路引领:由y =AP ﹣AM =x ―15x 2=―15x (x ﹣5)(0≤x ≤5),即可求解.解:由题意得:y =AP ﹣AM =x ―15x 2=―15x (x ﹣5)(0≤x ≤5),∵a =―15,故抛物线开口向下,当x =52时,y 的最大值为―15×52(―52)=54,故选:A .总结提升:本题考查的是动点问题的函数图象,确定函数的表达式是本题解题的关键.2.(2022•湖北模拟)如图①,在矩形ABCD 中,AB <AD ,对角线AC ,BD 相交于点O ,动点P 由点A 出发,沿AB →BC →CD 向点D 运动.设点P 的运动路程为x ,△AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AD 边的长为 .思路引领:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP 面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3.∴12AB⋅12BC=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,∵AB<AD,即AB<BC,∴AB=3,BC=4.即AD=4.故答案为:4.总结提升:本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.3.(2022秋•荔城区校级期末)如图,点A为双曲线y=―2x在第二象限上的动点,AO的延长线与双曲线的另一个交点为B,以AB为边的矩形ABCD满足AB:BC=4:3,对角线AC,BD交于点P,设P的坐标为(m,n),则m,n满足的关系式为 .思路引领:连接OP,分别过点A、P作x轴的垂线,垂足为M、N,证明△AOM∽△OPN,然后利用相似三角形的性质分析求解.解:连接OP,分别过点A、P作x轴的垂线,垂足为M、N,∴∠AMO=∠PNO=90°,∵四边形ABCD是矩形,∴∠ABC=90°,AP=PC,∵OA=OB,∴OP∥BC,BC=2OP,∴∠AOP=∠ABC=90°,AO:OP=AB:BC=4:3,∴∠AOM+∠PON=90°,∵∠AMO=90°,∴∠AOM+∠MAO=90°,∴∠MAO=∠PON,∴△AOM∽△OPN,∴S△AOMS△OPN=(AOOP)2=169,∵点A为双曲线y=―2x在第二象限上的动点,设点A的坐标为(a,―2a ),∵S△AOM=12×(―a)×―2a=1,∴S△OPN=9 16,∵P的坐标为(m,n),∴S△OPN=12mn=916,∴mn=9 8,故答案为:mn=9 8.总结提升:本题考查了反比例函数k的几何意义、相似三角形判定与性质和矩形的性质,恰当的构建相似三角形,利用面积比是相似比的平方是解题关键.4.(2022秋•甘井子区校级期末)如图,△ABC中,AB=AC=6cm,BC=8cm,点P从点B 出发,沿线段BC以2cm/s的速度向终点C运动,点Q从点C出发,沿着C→A→B的方向以3cm/s的速度向终点B运动,P,Q同时出发,设点P运动的时间为t(s),△CPQ 的面积为S(cm2).(1)sin B= ;(2)求S关于t的函数关系式,并直接写出自变量t的取值范围.思路引领:(1)过点A作AD⊥BC,垂足为D,利用等腰三角形的三线合一性质求出BD 的长,再利用勾股定理求出AD的长即可解答;(2)分两种情况,当0<t≤1时,当1<t<2时.解:(1)过点A作AD⊥BC,垂足为D,∵AB=AC=6cm,AD⊥BC,∴BD=12BC=4cm,在Rt△ABD中,AB=6cm,BD=4cm,∴AD=AB2―BD2=25,∴sin B=ADAB=53;故答案为:5 3.(2)过点Q作QE⊥BC,垂足为E,∵AB=AC,∴∠B=∠C,∴sin B=sin C=5 3,分两种情况:当0<t≤1时,由题意得:CQ=3t,BP=2t,∴CP=BC﹣BP=8﹣2t,在Rt△CQE中,QE=CQ sin C=3t•53=5t,∴S=12CP•QE=12•(8﹣2t)•5t=45t―5t2=―5t2+45t,当1<t<2时,由题意得:CA+AQ=3t,BP=2t,∴CP=BC﹣BP=8﹣2t,BQ=AB+AC﹣(CA+AQ)=12﹣3t,在Rt△BQE中,QE=BQ sin B=(12﹣3t)•53=45―5t,∴S=12CP•QE=12•(8﹣2t)•(45―5t)=5t2―85t+165,∴S=2+45t(0<t≤2)85t+165(2<t≤4).总结提升:本题考查了解直角三角形,函数关系式,勾股定理,等腰三角形的性质,函数自变量的取值范围,熟练掌握解直角三角形是解题的关键,同时渗透了分类讨论的数学思想.类型二动点产生面积变化5.(2022春•舒城县校级月考)如图所示,在矩形ABCD中,AB=20,AD=16,点P从点A 出发沿AB以每秒4个单位长度的速度向点B运动,同时点Q从点B出发沿BC以每秒2个单位长度的速度向点C运动,点P到达终点后,P、Q两点同时停止运动.(1)当t=3秒时,线段DP= .(2)当t= 秒时,△BPQ的面积是24.思路引领:(1)当t=3秒时,根据题意可得,AP=12,再根据勾股定理即可求解.(2)设运动时间为t(t≤5)秒,则BP=20﹣4t,BQ=2t,根据△BPQ的面积是24列出方程,求解即可.解:(1)∵当t=3秒时,AP=4×3=12,根据勾股定理得DP=AP2+AD2=20.故答案为:20.(2)设运动时间为t(t≤5)秒,此时,BP=20﹣4t,BQ=2t,∵△BPQ的面积是24,∴12⋅(20―4t)⋅2t=24,整理得,t2﹣5t+6=0,解得:t1=2,t2=3,∴当t=2秒或3秒时,△BPQ的面积是24.故答案为:2或3.总结提升:本题主要考查勾股定理、列代数式、一元二次方程的应用,根据题意找准数量关系,列出方程是解题关键.6.(2022秋•江门期末)如图,在△ABC中,∠B=90°,AB=5cm,BC=8cm.点P从点A 开始沿AB边向点B以1cm/s的速度移动、同时点Q从点B开始沿BC边向点C以2cm/s 的速度移动,当其中一点到达终点时,另外一点也随之停止运动.(1)△PQB的面积能否等于9cm2?请说明理由.(2)几秒后,四边形APQC的面积等于16cm2?请写出过程.思路引领:(1)根据△PQB的面积等于9cm2,即可得出关于t的一元二次方程,由根的判别式Δ=﹣11<0,可得所列方程没有实数根,进而得出△PQB的面积不等等于9cm2;(2)根据四边形APQC的面积等于16cm2,即可得出关于t的一元二次方程,解之即可得出t的值,结合当t=4时,C,Q点重合,即可得出结论.解:(1)△PQB的面积不能等于9cm2,理由如下:∵5÷1=5s,8÷2=4s,∴运动时间t的取值范围为:0≤t≤4,根据题意可得:AP=tm,BP=(5﹣t)cm,BQ=2tcm,假设△PQB的面积等于9cm2,则12(5―t)×2t=9,整理得:t2﹣5t+9=0,∵Δ=(﹣5)2﹣4×1×9=﹣11<0,∴所列方程没有实数根,∴△PQB的面积不能等于9cm2;(2)由(1)得:AP=tcm,BP=(5﹣t)cm,BQ=2tcm,运动时间t的取值范围为:0≤t≤4,∵四边形APQC的面积等于16cm2,∴12×5×8―12(5―t)×2t=16,整理得:t2﹣5t+4=0,解得t1=1,t2=4,当当t=4时,C,Q点重合,不符合题意,舍去,∴t=1,答:1s后,四边形APQC的面积等于16cm2.总结提升:本题考查了一元二次方程的应用以及根的判别式,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)牢记当Δ<0时,方程无实数根.类型三动点产生两点距离变化7.(2022•安岳县模拟)如图所示,A,B,C,D为矩形的四个顶点,AB=16cm,AD=8cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向B移动,一直到达B 为止;点Q以2cm/s的速度向D移动.当P,Q两点从出发开始几秒时,点P和点Q的距离是10cm.( )(若一点到达终点,另一点也随之停止运动)A.2s或235s B.1s或225s C.225s D.2s或225s思路引领:设当P、Q两点从出发开始x秒时,点P和点Q的距离是10cm,此时AP=3xcm,DQ=(16﹣2x)cm,利用勾股定理即可得出关于x的一元二次方程,解之即可得出结论.解:设当P、Q两点从出发开始x秒时(x<163),点P和点Q的距离是10cm,此时AP=3xcm,DQ=(16﹣2x)cm,根据题意得:(16﹣2x﹣3x)2+82=102,解得:x1=2,x2=22 5.答:当P、Q两点从出发开始到2秒或225秒时,点P和点Q的距离是10cm.故选:D.总结提升:本题考查了一元二次方程的应用以及勾股定理,利用勾股定理找出关于x的一元二次方程是解题的关键.8.(2022秋•荔湾区校级期末)如图,正方形ABCD中,AB=5cm,以B为圆心,1cm为半径画圆,点P是⊙B上一个动点,连接AP,并将AP绕点A逆时针旋转90°至AP′,连接BP′,在点P移动的过程中,BP′长度的取值范围是 cm.思路引领:通过画图发现,点P′的运动路线为以D为圆心,以1cm为半径的圆,可知:当P′在对角线BD上时,BP′最小;当P′在对角线BD的延长线上时,BP′最大.先证明△PAB≌△P′AD,则P′D=PB=1,再利用勾股定理求对角线BD的长,则得出BP′的长度的取值范围.解:如图,当P′在对角线BD上时,BP′最小;当P′在对角线BD的延长线上时,BP′最大.连接BP,①当P′在对角线BD上时,由旋转得:AP=AP′,∠PAP′=90°,∴∠PAB+∠BAP′=90°,∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAP′+∠DAP′=90°,∴∠PAB=∠DAP′,∴△PAB≌△P′AD,∴P′D=PB=1cm,在Rt△ABD中,∵AB=AD=5cm,由勾股定理得:BD52+52=52cm,∴BP′=BD﹣P′D=52―1,即BP′长度的最小值为(52―1)cm.②当P′在对角线BD的延长线上时,同理可得BD=52cm,∴BP′=BD+P′D=(52+1)cm,即BP′长度的最大值为(52+1)cm.∴BP'长度的取值范围是(52―1)cm≤BP′≤(52+1)cm故答案为:(52―1)cm≤BP′≤(52+1)cm.总结提升:本题考查了正方形的性质、旋转的性质、点与圆的位置关系和最值问题,寻找点P′的运动轨迹是本题的关键.9.(2022秋•海港区校级期末)如图,已知二次函数图象的顶点坐标为M(2,0),与y轴交于点B(0,2),直线y=x+m与该二次函数的图象交于A,B两点,D是线段AB上的一个动点,过D 作x 轴的垂线交二次函数的图象于点E .则线段DE 的最大值为 .思路引领:根据题中条件可求出抛物线和直线的解析式,进而求出点A 的坐标,根据点D 是线段AB 上的一个动点,设出点D 的坐标,再根据DE ⊥x 轴,可得出点E 的坐标,则可得出DE =―12m 2+3m =―12(m ﹣3)2+92,根据二次函数的性质即可求出最大值.解:根据题意可设抛物线解析式为:y =a (x ﹣2)2,把B (0,2)代入可得:4a =2,解得:a =12,∴抛物线解析式为:y =12(x ﹣2)2=12x 2﹣2x +2,把B (0,2)代入直线y =x +m 可得:m =2,∴y =x +2,当12x 2﹣2x +2=x +2时,解得:x 1=0,x 2=6,∴A (6,8),∵点D 是线段AB 上的一个动点,∴可设点D 的坐标为(m ,m +2),且0≤m ≤6,∵过D 作x 轴的垂线交二次函数的图象于点E ,∴点E 的坐标为(m ,12m 2﹣2m +2),∴DE =m +2﹣(12m 2﹣2m +2)=―12m 2+3m =―12(m ﹣3)2+92,∵―12<0,图象开口向下,且0≤m ≤6,∴当m =3时,DE 有最大值,最大值为92;故答案为:92.总结提升:本题主要考查的是二次函数之线段最大值题型,解题关键:一是求出抛物线与直线的解析式,二是用含有m 的式子表示出DE 的长并配成顶点式.类型四 动点产生图形形状变化10.(2022秋•阳泉期末)如图所示,已知△ABC 中,BC =16cm ,AC =20cm ,AB =12cm ,点P是BC边上的一个动点,点P从点B开始沿B→C→A方向运动,且速度为每秒2cm,设运动的时间为t(s),若△ABP是以AB为腰的等腰三角形,则运动时间t= .思路引领:分情况讨论:AB=BP,AB=AP,画出图形分别求解即可.解:∵BC=16cm,AC=20cm,AB=12cm,∴BC2+AB2=AC2,∴∠B=90°,如图1,AB=PB=12cm,∴t=12÷2=6s;如图2,AP=AB=12cm,∴BC+PC=(16+20﹣12)cm=24cm,∴t=24÷2=12s;如图3,AB=BP=12cm,过点B作BD⊥AC于D,则AD=PD,∵S △ABC =12×AB ×BC =12×AC ×BD ,∴12×16=20BD ,∴BD =9.6cm ,由勾股定理得:AD =AB 2―BD 2=122―9.62=7.2cm ,∴AP =2AD =14.4cm ,∴t =(16+20﹣14.4)÷2=10.8s ,综上所述,t 的值是6s 或12s 或10.8s .故答案为:6s 或12s 或10.8s .总结提升:本题考查的是等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.11.(2022秋•中原区校级期末)如图,在矩形OAHC 中,OC =83,OA =16,B 为CH 中点,连接AB .动点M 从点O 出发沿OA 边向点A 运动,动点N 从点A 出发沿AB 边向点B 运动,两个动点同时出发,速度都是每秒1个单位长度,连接CM ,CN ,MN ,设运动时间为t (0<t <16)秒,则t = 时,△CMN 为直角三角形.思路引领:△CMN 是直角三角形时,有三种情况,一是∠CMN =90°,二是∠MNC =90°,三是∠MCN =90°,然后进行分类讨论求出t 的值.解:过点N 作OA 的垂线,交OA 于点F ,交CH 于点E ,如图,∵B 点是CH 的中点,∴BH =12CH =8,∵AH =OC =83,∴由勾股定理可求:AB =16,∵AN =t ,∴BN =16﹣t ,∵NE ∥AH ,∴△BEN ∽△BHA ,∴BN AB =EN AH,∴16―t 16=EN 83,∴EN=32(16﹣t),∴FN=83―EN=32 t,当∠CMN=90°,由勾股定理可求:AF=12 t,∴MF=AM﹣AF=16﹣t―12t=16―32t,∵∠OCM+∠CMO=90°,∠CMO+∠FMN=90°,∴∠OCM=∠FMN,∵∠O=∠NFM=90°,∴△COM∽△MFN,∴OCMF=OMFN,∴8316―32t=t32t,∴t=8 3,当∠MNC=90°,CE=OF=OM+MF=t+16―32t=16―t2,∵∠MNF+∠CNE=90°,∠ECN+∠CNE=90°,∴∠MNF=∠ECN,∵∠CEN=∠NFM=90°,∴△CEN∽△NFM,∴CEFN=ENMF,∴16―t232t=32(16―t)16―3t2,∵0<t<16,∴t=8,当∠NCM=90°,由题意知:此情况不存在,综上所述,△CMN为直角三角形时,t=83或8.总结提升:本题主要考查了矩形的性质,相似三角形的判定与性质、勾股定理等知识,有一定的综合性12.(2022秋•中原区月考)如图,在矩形ABCD中、AB=15cm,AD=5cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q以2cm/s 的速度向点D移动(点P停止移动时,点Q也停止移动).设移动时间为t(s).连接PQ,QB.(1)当t为何值时,P、Q两点间的距离为13cm?(2)四边形APQD的形状可能为矩形吗?若可能,求出t的值;若不可能,请说明理由.思路引领:(1)可通过构建直角三角形来求解.过Q作QM⊥AB于M,如果设出发x秒后,QP=13cm.那么可根据路程=速度×时间,用未知数表示出PM的值,然后在直角三角形PMQ中,求出未知数的值.(1)利用矩形的性质得出当AP=DQ时,四边形APQD为矩形求出即可;解:(1)设出发t秒后P、Q两点间的距离是13cm.则AP=3t,CQ=2t,作QM⊥AB于M,则PM=|15﹣2t﹣3t|=|15﹣5t|,(15﹣5t)2+52=132,解得:t=0.6或t=5.4,答:P、Q出发0.6和5.4秒时,P,Q间的距离是13cm;(2)四边形APDQ的形状有可能为矩形;理由:当四边形APQD为矩形,则AP=DQ,即3t=15﹣2t,解得:t=3.答:当P、Q出发3秒时四边形APQD为矩形.总结提升:本题考查了一元二次方程的应用,本题结合几何知识并根据题意列出方程是解题的关键.13.(2022春•淄川区期中)如图,在梯形ABCD中,AD∥BC,∠C=∠D=90°,BC=16,CD=12,AD=21.动点P从点D出发,沿线段DA的方向以每秒2个单位长度的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长度的速度向点B运动.点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动.设运动时间为t(s),当t为何值时,以B,P,Q三点为顶点的三角形为等腰三角形?思路引领:以B,P,Q为顶点的三角形为等腰三角形有三种情况:当PB=PQ时,当PQ =BQ时,当BP=BQ时,由等腰三角形的性质就可以得出结论.解:如图1,当PB=PQ时,作PE⊥BC于E,∴EQ=12 BQ,∵CQ=t,∴BQ=16﹣t,∴EQ=8―12 t,∴EC=8―12t+t=8+12t.∴2t=8+12 t.解得:t=16 3.如图2,当PQ=BQ时,作QE⊥AD于E,∴∠PEQ=∠DEQ=90°,∵∠C=∠D=90°,∴∠C=∠D=∠DEQ=90°,∴四边形DEQC是矩形,∴DE=QC=t,∴PE=t,QE=CD=12.在Rt△PEQ中,由勾股定理,得PQ=t2+144.16﹣t=t2+144,解得:t=7 2;如图3,当BP=BQ时,作PE⊥BC于E,∵CQ=t,∴BP=BQ=BC﹣CQ=16﹣t,∵PD=2t,∴CE=2t,∴BE=16﹣2t,在Rt△BEP中,(16﹣2t)2+122=(16﹣t)2,3t2﹣32t+144=0,△=(﹣32)2﹣4×3×144=﹣704<0,故方程无解.综上所述,t=163或72时,以B,P,Q三点为顶点的三角形为等腰三角形.总结提升:本题考查了勾股定理的运用,矩形的性质的运用,等腰三角形的性质的运用,一元二次方程的解法的运用,解答时根据等腰三角形的性质建立方程是关键.14.(2022秋•崇左期末)已知抛物线y =ax 2+bx +3(a ≠0)交x 轴于A (1,0)和B (﹣3,0),交y 轴于C .(1)求抛物线的解析式;(2)若M 为抛物线上第二象限内一点,求使△MBC 面积最大时点M 的坐标;(3)若F 是对称轴上一动点,Q 是抛物线上一动点,是否存在F 、Q ,使以B 、C 、F 、Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标.思路引领:(1)由待定系数法即可求解;(2)由△MBC 的面积=S △BNM +S △CMN ,即可求解;(3)当BF (BC 、BQ )是对角线时,由中点坐标公式列出等式,即可求解.解:(1)把A (1,0)和B (﹣3,0)代入y =ax 2+bx +3(a ≠0),得:a +b +3=09a ―3b +3=0,解得a =―1b =―2,∴抛物线解析式为y =﹣x 2﹣2x +3;(2)∵M 为抛物线上第二象限内一点,如图,过点M 作MN ⊥x 轴交BC 于点N ,∵抛物线解析式为y =﹣x 2﹣2x +3,B (﹣3,0)∴C (0,3),∴OC =3,OB =3,设直线BC 解析式为y =kx +b ,则―3k +b =0b =3,解得:k =1b =3,∴设直线BC解析式为y=x+3,设M(m,﹣m2﹣2m+3),N(m,m+3),∴MN=―m2―2m+3―m―3=―m2―3m=―(m+32)2+94,∴当m=―32时,MN有最大值94,∴当m=―32时,△MBC的面积最大,∴△MBC的面积=S△BNM+S△CMN=12×3×MN=278,此时点M的坐标为(―32,154);(3)存在.理由如下:∵抛物线解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1,设点Q(m,﹣m2﹣2m+3),点F(﹣1,t),当BC是对角线时,由中点坐标公式得:﹣3=m﹣1,解得:m=2,则点Q(﹣2,3);当BF是对角线时,由中点坐标公式得:﹣3﹣1=m,解得:m=﹣4,则点Q(﹣4,﹣5);是对角线时,由中点坐标公式得:m﹣3=﹣1,解得:m=2,则点Q(2,﹣5);综上所述,点Q的坐标为(﹣2,3),(﹣4,﹣5),(2,﹣5).总结提升:本题考查了二次函数综合题,考查了待定系数法求函数的解析式,二次函数的性质,平行四边形的判定,三角形的面积,解决本题的关键是掌握二次函数的图象和性质.类型五动点产生三角形相似15.(2022秋•亳州期末)如图Rt△ABC的两条直角边AB=4cm,AC=3cm,点D沿AB从A向B运动,速度是1cm/s,同时,点E沿BC从B向C运动,速度为2cm/s.动点E到达点C时运动终止.连接DE、CD、AE.(1)当动点运动 秒时,△BDE 与△ABC 相似;(2)当动点运动 秒时,CD ⊥DE .思路引领:(1)分当△BDE ∽△BAC 时,当△BDE ∽△BCA 时,两种情况利用相似三角形的性质求解即可;(2)如图所示,过点E 作EF ⊥AB 于F ,证明△BEF ∽△BCA ,求出BF =85tcm ,EF =65tcm ,则DF =(4―135t)cm ,再证明△ACD ∽△FDE ,得到AC AD =DF EF ,即3t =4―135t 65t ,解方程即可.解:(1)由题意得AD =tcm ,BE =2tcm ,则BD =AB ﹣AD =(4﹣t )cm ,在Rt △ABC 中,由勾股定理得BC =AB 2+AC 2=5cm ,当△BDE ∽△BAC 时,∴BE BD =BC BA ,即2t 4―t =54,解得t =2013;当△BDE ∽△BCA 时,∴BE BD =BA BC ,即2t 4―t =45,解得t =87;综上所述,当t =2013或t =87时,△BDE 与△ABC 相似,故答案为:2013或87;(2)如图所示,过点E 作EF ⊥AB 于F ,则EF ∥AC ,∴△BEF ∽△BCA ,∴BE BC =BF BA =EF AC ,即2t 5=BF 4=EF 3,∴BF=85tcm,EF=65tcm,∴DF=BD―BF=(4―135t)cm∵CD⊥DE,∴∠CDE=90°,∴∠ACD+∠ADC=90°=∠ADC+∠FDE,∴∠ACD=∠FDE,又∵∠CAD=∠DFE=90°,∴△ACD∽△FDE,∴ACAD=DFEF,即3t=4―135t65t,解得t=2 13,故答案为:2 13.总结提升:本题主要考查了相似三角形的性质与判定,勾股定理,熟知相似三角形的性质与判定条件是解题的关键.16.(2022秋•渠县校级期末)如图,直线y=―43x+8与x轴、y轴分别交于点A、B,一动点P从点A出发,沿A—O—B的路线运动到点B停止,C是AB的中点,沿直线PC截△AOB,若得到的三角形与△AOB相似,则点P的坐标是 .思路引领:先由直线y=―43x+8与x轴、y轴分别交于点A、B,求得A(6,0),B(0,8),再根据勾股定理求得AB=10,则AC=CB=5,分三种情况讨论,一是点P在OA上,且△APC∽△AOB,此时PC∥OB,可求得PO=AP=3,则P(3,0);二是点P在OB上,且△PCB∽△AOB,则PBAB=CBOB,可求得PB=254,所以OB=74,则P(0,74);三是点P在OB上,且△CPB∽△AOB,此时PC∥OA,可求得OP=PB=4,则P(0,4).解:直线y=―43x+8,当x=0时,y=8;当y =0时,则―43x +8=0,解得x =6,∴A (6,0),B (0,8),∵∠AOB =90°,OA =6,OB =8,∴AB =OA 2+OB 2=62+82=10,∵C 是AB 的中点,∴AC =CB =12AB =5,如图1,点P 在OA 上,且△APC ∽△AOB ,∴∠APC =∠AOB ,∴PC ∥OB ,∴AP PO =AC CB=1,∴PO =AP =12OA =3,∴P (3,0);如图2,点P 在OB 上,且△PCB ∽△AOB ,∴PB AB =CB OB,∴PB =AB ⋅CB OB =10×58=254,∴OB =8―254=74,∴P (0,74);如图3,点P 在OB 上,且△CPB ∽△AOB ,∴∠CPB =∠AOB ,∴PC ∥OA ,∴OP PB =AC CB=1,∴OP =PB =12OB =4,∴P (0,4),综上所述,点P 的坐标是(3,0)或(0,74)或(0,4).总结提升:此题重点考查一次函数的图象与性质、图形与坐标、勾股定理、相似三角形的性质、平行线分线段成比例定理、数形结合与分类讨论数学思想的运用等知识与方法,此题综合性质强,应注意按点P 的不同位置分类讨论,求出所有符合题意的答案.17.(2022秋•唐河县期末)如图,在矩形ABCD 中,AB =3cm ,BC =6cm ,动点M 以1cm /s 的速度从A 点出发,沿AB 向点B 运动,同时动点N 以2cm /s 的速度从点D 出发,沿DA 向点A 运动,设运动的时间为t 秒(0<t <3).(1)当t 为何值时,△AMN 的面积等于矩形ABCD 面积的19?(2)是否存在某一时刻t ,使得以A 、M 、N 为顶点的三角形与△ACD 相似?若存在,求出t 的值;若不存在,请说明理由.思路引领:(1)根据矩形的性质求出∠BAD =90°,求出AM 、AN ,根据三角形的面积公式,利用S =19×18建立方程,解之即可;(2)先假设相似,利用相似中的比例线段列出方程,有解的且符合题意的t 值即可说明存在,反之则不存在.解:(1)∵四边形ABCD 是矩形,∴AD =BC =6cm ,∠BAD =90°,AM =tcm ,AN =6﹣2t (cm ),∴S △AMN =12AN •AM =12×(6﹣2t )×t =﹣(t ―32)2+94(0≤t ≤3),依题意得:﹣(t ―32)2+94=19×3×6,t 2﹣3t +2=0,t 1=2,t 2=1.答:经过1秒或2秒时,△AMN 的面积等于矩形ABCD 面积的19;(2)设运动时间为t 秒,由题意得DN =2t (cm ),AN =(6﹣2t )(cm ),AM =t (cm ),若△NMA ∽△ACD ,则有AD :AN =CD :AM ,即6:(6﹣2t )=3:t ,解得t =1.5,若△MNA ∽△ACD则有AD :AM =CD :AN ,即6:t =3:(6﹣2t ),解得t =2.4,答:当运动时间为1.5秒或2.4秒时,以A 、M 、N 为顶点的三角形与△ACD 相似.总结提升:本题考查了相似三角形的判定,矩形的性质,利用分类讨论思想解决问题是解题的关键.类型六 动点产生两直线位置关系变化18.(2022秋•路南区校级期末)如图,矩形ABCD 中,AB =16,BC =8,点P 为AB 边上一动点,DP 交AC 于点Q .(1)求证:△APQ ∽△CDQ ;(2)P 点从A 点出发沿AB 边以每秒2个单位长度的速度向B 点移动,移动时间为t 秒.当t 为何值时,DP ⊥AC ?思路引领:(1)根据矩形的性质可得CD∥AB,根据平行线的性质可得∠DCQ=∠QAP,∠PDC=∠QPA,进而可得判定△APQ∽△CDQ;(2)首先证明△DAP∽△ABC,结合相似三角形即可得到t的值.(1)证明:∵四边形ABCD是矩形,∴CD∥AB,∴∠DCQ=∠QAP,∠PDC=∠QPA,∴△APQ∽△CDQ;(2)解:当t=2时,DP⊥AC;∵∠ADC=90°,DP⊥AC,∴∠AQD=∠AQP=∠ABC=90°,∴∠CAB+∠APQ=∠CAB+∠ACB=90°,∴∠APQ=∠ACB,∴△DAP∽△ABC,∴DAAB=APBC,∴816=2t8解得:t=2,即当t=2时,DP⊥AC.总结提升:此题主要考查了相似三角形的判定和性质,关键是掌握有两个角对应相等的三角形相似,相似三角形对应边成比例.类型七动点产生最值19.(2022秋•荆门期末)如图,平面直角坐标系中点A(6,0),以OA为边作等边△OAB,△OA′B′与△OAB关于y轴对称,M为线段OB′上一动点,则AM+BM的最小值是( )A.6B.9C.12D.18思路引领:连接A′M.首先证明OB′垂直平分线段A′B,推出A′、B关于OB′对称,由MA+MB=MA′+MA≥A′A,可知此时当点M与O重合时,AM+BM的值最小,最小值为12.解:连接A′M.∵△OA'B'和△OAB都是等边三角形,∴∠A′OB′=∠AOB=∠BOB′=60°,OA′=OB,∵OM=OM,∴△OMB≌△OMA′(SAS),∴A′M=BM,∠OMA′=∠OMB=90°,∴OB′垂直平分线段A′B,∴A′、B关于OB′对称,∵MA+MB=MA+MA′≥A′A,∴当点M与O重合时,AM+BM的值最小,最小值为12,∴BM+AM的最小值为12.故选:C.总结提升:本题考查等边三角形的性质、轴对称﹣最短问题、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(2022•扬州三模)如图,已知正方形ABCD的边长为4,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF,则DF+CF的最小值是( )A.45B.43C.52D.213思路引领:连接BF,过点F作FG⊥AB交AB延长线于点G,通过证明△AED≌△GFE (AAS),确定F点在BF的射线上运动;作点C关于BF的对称点C',由三角形全等得到∠CBF=45°,从而确定C'点在AB的延长线上;当D、F、C'三点共线时,DF+CF=DC'最小,在Rt△ADC'中,AD=4,AC'=8,求出DC'=45即可.解:连接BF,过点F作FG⊥AB交AB延长线于点G,∵将ED绕点E顺时针旋转90°到EF,∴EF⊥DE,且EF=DE,∴∠EDA=∠FEG,在△AED和△GFE中,∠A=∠FGE∠EDA=∠FEG,DE=EF∴△AED≌△GFE(AAS),∴FG=AE,AD=EG,∵AD=AB,∴AB=EG,∴AE=BG,∴BG=FG,∴F点在BF的射线上运动,作点C关于BF的对称点C',∵EG=DA,FG=AE,∴AE=BG,∴BG=FG,∴∠FBG=45°,∴∠CBF=45°,∴BF是∠CBC′的角平分线,即F点在∠CBC′的角平分线上运动,∴C'点在AB的延长线上,当D、F、C'三点共线时,DF+CF=DC'最小,在Rt△ADC'中,AD=4,AC'=8,∴DC'=AD2+AC′2=42+82=45,∴DF+CF的最小值为45,故选:A.总结提升:本题考查了旋转的性质,正方形的性质,轴对称求最短路径;能够将线段的和通过轴对称转化为共线线段是解题的关键.21.(2021秋•殷都区期末)如图,在△ABC 中,∠C <90°,∠B =30°,AB =10,AC =7,O 为AC 的中点,M 为BC 边上一动点,将△ABC 绕点A 逆时针旋转角α(0°<α≤360°)得到△AB 'C ',点M 的对应点为M ',连接OM ',在旋转过程中,线段OM '的长度的最小值是( )A .1B .1.5C .2D .3思路引领:O 为AC 的中点,M 为BC 边上一动点,则当OM ′⊥B ′C ′时,OM ′最短,将△ABC 绕点A 逆时针旋转角α(0°<α≤360°)的过程中,当OM ′在直线AC 上时,OM ′最短,然后根据旋转的性质得到∠B =∠B ′=30°,BA =B ′A =10,再利用含30度的直角三角形三边的关系得到AM ′=12B ′A =3,而AO =3.5,所以M ′O =AM ′﹣AO =1.5.解:连接AM ,AM ′,根据题意,点M ′在以A 点为圆心,AM 为半径的圆上,当AM ⊥BC 时,AM 最短,此时AM =12BA =5,∵M ′O ≥AM ′﹣AO (当且仅当M ′、A 、O 共线时取等号),∴M ′O 的最小值为5﹣3.5=1.5.故选:B .总结提升:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.22.(2022秋•横县期中)如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的动点,连接EC ,将线段EC 绕点C 逆时针旋转60°等到FC ,连接DF ,则在点E 运动过程中,DF 的最小值是( )A.3B.1.5C.23D.6思路引领:取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC 的中点,即可得出EG的最小值,此题得解.解:取线段AC的中点G,连接EG,如图所示.∵△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CG=12AB=3,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG.在△FCD和△ECG中,FC=EC∠FCD=∠ECGDC=GC,∴△FCD≌△ECG(SAS),∴DF=GE.当EG⊥AD时,EG最短,即DF最短.∵点G为AC的中点,∴此时EG=DF=12CD=1.5.故选:B.总结提升:本题考查了等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出DF=GE.本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.23.(2022秋•石门县期末)如图,AB是⊙O的直径,AB=4,C为AB的三等分点(更靠近A点),点P是⊙O上一个动点,取弦AP的中点D,则线段CD的最大值为( )A.2B.7C.23D.3+1思路引领:取OA的中点Q,连接DQ,OD,CQ,根据条件可求得CQ长,再由垂径定理得出OD⊥AP,由直角三角形斜边中线等于斜边一半求得QD长,根据当C,Q,D三点共线时,CD长最大求解.解:如图,取AO的中点Q,连接CQ,QD,OD,∵C为AB的三等分点,∴AC的度数为60°,∴∠AOC=60°,∵OA=OC,∴△AOC为等边三角形,∵Q为OA的中点,∴CQ⊥OA,∠OCQ=30°,∴OQ=12OC=12×2=1,由勾股定理可得,CQ=3,∵D为AP的中点,∴OD⊥AP,∵Q为OA的中点,∴DQ=12OA=12×2=1,∴当D点CQ的延长线上时,即点C,Q,D三点共线时,CD长最大,最大值为3 +1.故选:D.总结提升:本题考查利用弧与圆心角的关系及垂径定理求相关线段的长度,并且考查线段最大值问题,利用圆的综合性质是解答此题的关键.24.(2022秋•泰山区期末)如图,点P (3,4),⊙P 半径为2,A (2.5,0),B (5,0),点M 是⊙P 上的动点,点C 是MB 的中点,则AC 的最大值是( )A .32B .52C .72D .92思路引领:作射线OP ,交⊙P 于M 1、M 2,连接OM ,因为OA =AB ,CM =CB ,所以AC =12OM ,所以当OM 最大时,AC 最大,M 运动到M 2时,OM 最大,由此即可解决问题.解:如图,作射线OP ,交⊙P 于M 1、M 2,连接OM ,由勾股定理得:OP =32+42=5,∵OA =AB ,CM =CB ,∴AC =12OM ,∴当OM 最大时,AC 最大,∴当M 运动到M 2时,OM 最大,此时AC 的最大值=12OM 2=12(OP +PM 2)=12×(5+2)=72,故选:C .总结提升:本题考查点与圆的位置关系、坐标与图形的性质、三角形中位线定理、最小值问题等知识,解题的关键是理解圆外一点到圆的最小距离以及最大距离,学会用转化的思想思考问题,所以中考常考题型.25.(2022•南京模拟)如图所示,AB =4,BC =8,AB ⊥BC 于点B ,点D 是线段BC 上一个动点,且AD ⊥DE 于点D ,tan∠DAE =34,连接CE ,则CE 长的最小值是 .思路引领:在BC 上截取BQ =3,构造相似,可得出∠AQE =90°,过C 点作CH ⊥EQ 可得出△ABQ ∽△QHC 即可求出CE 的长.解:在BC 上截取BQ =3,则CQ =5,Rt △ABQ 中,BQ :AB :AQ =3:4:5∵tan∠DAE =34,∴在Rt △ADE 中,DE :AD :AE =3:4:5,∴△EAD ∽△QAB ,∴AB AQ =AD AE,∠QAB =∠EAD ,∴∠BAD =∠QAE ,∴△BAD ∽△QAE ,∴∠AQE =90°,∴∠EQC 的角度固定不变,∴CH 为CE 的最小值.过C 点作CH ⊥EQ 交EQ 于点H ,∴∠CHQ =∠ABQ =90°,∵∠AQE =90°,∴∠CQH =∠QAB ,∴△ABQ ∽△QHC ,∵CQ =5,∴CH =3,故答案为:3.总结提升:本题主要考查相似的判定与性质,正确作出辅助线是解题的关键.26.(2022秋•市北区校级期末)如图,正方形ABCD 边长为12cm ,M 、N 分别是边BC ,CD 上的两个动点,且AM ⊥MN ,则线段AN 的最小值是 cm .思路引领:由正方形ABCD和AM⊥MN先证明在△ABM∽△MCN,Rt△ADN,AN= AD2+DN2,而AD为定值,所以当DN取最小值时,AN也取最小值.于是设BM=xcm,利用△ABM∽△MCN,求出CN的长,即可表示出DN的长,根据二次函数的最值求法即可得到正确结果.解:∵AM⊥MN,∴∠AMB+∠CMN=90°,而∠AMB+∠MAB=90°,∴∠MAB=∠NMC,又∵∠B=∠C=90°,∴△ABM∽△MCN,∴ABMC=BMCN,设BM=xcm,则1212―x =x CN,整理得:CN=―112x2+x=―112(x﹣6)2+3,∴当x=6时,CN取得最大值3cm,∵AN=AD2+DN2=122+DN2,∴当AN取最小值时,DN取得最小值、CN取得最大值,即DN=9cm时,AN最小,∴AN=122+92=15(cm),故答案为:15.总结提升:本题考查的是相似三角形的性质应用与二次函数求最值的结合,把代数与几何问题进行了相互渗透,本题中证明△ABM∽△MCN以及运用二次函数求线段的最值是解题的关键.27.(2022•富阳区二模)如图,在平行四边形ABCD中,AC与BD交于点O,∠OAB=45°,∠ABO=60°,BD=8.点P从B点出发沿着BD方向运动,到达点O停止运动.连接AP,点B关于直线AP的对称点为Q.当点Q落在AC上时,则OQ= ,在运动过程中,点Q到直线BD的距离的最大值为 .。
中考数学动点问题专题练习(含答案)
动点专题一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥O A,垂足为H,△OPH 的重心为G .(1)当点P在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设P Hx =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PG H是等腰三角形,试求出线段PH 的长.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC =1,点D,E在直线B C上运动.设BD=,x CE=y . (1)如果∠B AC=30°,∠DA E=105°,试确定y 与x 之间的函数解析式;(2)如果∠B AC的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.AEDCB 图2H M NG PO A B 图1 x yC三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△A BC中,∠BAC =90°,AB=AC =22,⊙A 的半径为1.若点O在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A相切时, △AO C的面积.一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE的长.AB C O 图8HAB CDEOlA ′(二)线动问题2,在矩形A BCD 中,AB =3,点O 在对角线A C上,直线l过点O ,且与AC 垂直交AD于点E .(1)若直线l 过点B,把△ABE 沿直线l 翻折,点A 与矩形A BCD的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F,且AO=41AC,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.(三)面动问题3.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.解决动态几何问题的常见方法有:C一、 特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O 1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P为⊙O1上的任一点(与点A 不重合),直线PA 交⊙O2于点C,PB 切⊙O2于点B ,则PCBP的值为(A)2 (B)3 (C)23(D)26二、 动手实践,操作确认例4(2003年广州市中考试题)在⊙O中,C 为弧AB 的中点,D 为弧A C上任一点(与A 、C 不重合),则(A)A C+CB=AD+DB (B) A C+C B<AD+DB(C) AC+CB >A D+D B (D) AC+C B与AD+DB 的大小关系不确定例5:如图,过两同心圆的小圆上任一点C 分别作小圆的直径CA 和非直径的弦CD ,延长CA 和C D与大圆分别交于点B 、E,则下列结论中正确的是( * ) (A)AB DE = (B )AB DE >(C)AB DE <(D )AB DE ,的大小不确定三、 建立联系,计算说明例6:如图,正方形ABCD 的边长为4,点M在边DC 上,且DM=1,N为对角线A C上任意一点,则DN +MN 的最小值为 .BMND CBA以圆为载体的动点问题中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重例1.在Rt ABC合),Q是BC边上的动点(与点B、C不重合),当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。
中考数学专题:《动态动点几何问题》带答案
《动态几何问题》专题突破训练(附答案)1.如图,在直角三角形ABC 中,∠ACB =90°,AB =5cm ,BC =4cm .动点P 从点A 出发,沿线段AB 向终点B 以5cm /s 的速度运动,同时动点Q 从点A 出发沿射线AC 以5cm /s 的速度运动,当点P 到达终点时,点Q 也随之停止运动;连接PQ ,设∠APQ 与∠ABC 重叠部分图形的面积为S (cm 2),点P 运动的时间为t (s )(t >0).(1)直接写出AC = cm ;(2)当点A 关于直线PQ 的对称点A '落在线段BC 上时,求t 的值;(3)求S 与t 之间的函数关系式;(4)若M 是PQ 的中点,N 是AB 的中点,当MN 与BC 平行时,t = ;当MN 与AB 垂直时,t = .2.如图,矩形ABCD 中,P 是边AD 上的一动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP =∠∠,如果2AB =,5BC =,AP x =,PM y =(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当4AP =时,求 tan EBP ∠;(3)如果EBC ∆是以EBC ∠为底角的等腰三角形,求AP 的长A-,点3.如图,平行四边形ABCO位于直角坐标系中,O为坐标原点,点(8,0)()C BC交y轴于点.D动点E从点D出发,沿DB方向以每秒1个单位长度的速度3,4终点B运动,同时动点F从点O出发,沿射线OA的方向以每秒2个单位长度的速度运动,当点E运动到点B时,点F随之停止运动,运动时间为t(秒).(1)用t的代数式表示:BE=________,OF=________(2)若以A,B,E,F为顶点的四边形是平行四边形时,求t的值.(3)当BEF恰好是等腰三角形时,求t的值.4.在∠ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作∠ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE为多少?说明理由;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论,不需证明.5.问题情境:如图1,已知正方形ABCD与正方形CEFG,B、C、G在一条直线上,M是AF的中点,连接DM,EM.探究DM,EM的数量关系与位置关系.小明的思路是:小明发现AD//EF,所以通过延长ME交AD于点H,构造∠EFM和∠HAM全等,进而可得∠DEH是等腰直角三角形,从而使问题得到解决,请你参考小明同学的思路,探究并解决下列问题:(1)猜想图1中DM、EM的数量关系,位置关系.(2)如图2,把图1中的正方形CEFG绕点C旋转180°,此时点E在线段DC的延长线上,点G落在线段BC上,其他条件不变,(1)中结论是否成立?请说明理由;(3)我们可以猜想,把图1中的正方形CEFG绕点C旋转任意角度,如图3,(1)中的结论(“成立”或“不成立”)拓展应用:将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.6.如图,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0),B(3,0),与y轴交于点C,点P 是抛物线上一动点,连接PB,PC.(1)求抛物线的解析式;(2)如图1,当点P在直线BC上方时,过点P作PD上x轴于点D,交直线BC于点E.若PE=2ED,求∠PBC的面积;(3)抛物线上存在一点P,使∠PBC是以BC为直角边的直角三角形,求点P的坐标.7.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由;(3)解决问题:如图③,90ACB AED ∠∠︒==,AC =AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.8.如图,∠O 的半径为5,弦BC =6,A 为BC 所对优弧上一动点,∠ABC 的外角平分线AP 交∠O 于点P ,直线AP 与直线BC 交于点E .(1)如图1,①求证:点P 为BAC 的中点;②求sin∠BAC 的值;(2)如图2,若点A 为PC 的中点,求CE 的长;(3)若∠ABC 为非锐角三角形,求PA •AE 的最大值.9.如图1,已知∠ABC 中,∠ACB =90°,AC =BC =6,点D 在AB 边的延长线上,且CD =AB .(1)求BD 的长度;(2)如图2,将∠ACD 绕点C 逆时针旋转α(0°<α<360°)得到∠A'CD'.①若α=30°,A'D'与CD 相交于点E ,求DE 的长度;②连接A'D 、BD',若旋转过程中A'D =BD'时,求满足条件的α的度数.(3)如图3,将∠ACD 绕点C 逆时针旋转α(0°<α<360°)得到∠A'CD',若点M 为AC 的中点,点N 为线段A'D'上任意一点,直接写出旋转过程中线段MN 长度的取值范围.10.如图,P 是等边ABC 内的一点,且5PA =,4PB =,3PC =,将APB △绕点B 逆时针旋转,得到CQB △.(1)求点P 与点Q 之间的距离;(2)求BPC ∠的度数;(3)求ABC 的面积ABC S.11.如图,在矩形ABCD 中,6AB cm =,8BC cm =,如果点E 由点B 出发沿BC 方向向点C 匀速运动,同时点F 由点D 出发沿DA 方向向点A 匀速运动,它们的速度分别为2/cm s 和1/cm s ,FQ BC ⊥,分别交AC ,BC 于点P 和Q ,设运动时间为()04ts t <<.(1)连接EF ,若运动时间t =_______s 时,EF =;(2)连接EP ,当EPC 的面积为23cm 时,求t 的值;(3)若EQP ADC ∽△△,求t 的值.12.如图,边长为ABCD 中,P 是对角线AC 上的一个动点(点P 与A 、C 不重合),连接BP ,将BP 绕点B 顺时针旋转90°得到BQ ,连接QP ,QP 与BC 交于点E ,其延长线与AD (或AD 延长线)交于点F .(1)连接CQ ,证明:CQ AP =;(2)设AP x =,CE y =,试写出y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)试问当P 点运动到何处时,PB PE +的值最小,并求出此时CE 的长.(画出图形,直接写出答案即可)13.已知:O 是ABC ∆的外接圆,且,60,AB BC ABC D =∠=︒为O 上一动点. (1)如图1,若点D 是AB 的中点,求DBA ∠的度数.(2)过点B 作直线AD 的垂线,垂足为点E .①如图2,若点D 在AB 上.求证CD DE AE =+.②若点D 在AC 上,当它从点A 向点C 运动且满足CD DE AE =+时,求ABD ∠的最大值.14.抛物线239344y x x =--与x 轴交于点A ,与y 轴交于点B .线段OA 上有一动点P (不与O A 、重合),过点P 作y 轴的平行线交直线AB 于点C ,交抛物线于点M (1)求直线AB 的解析式;(2)点N 为线段AB 下方抛物线上一动点,点D 是线段AB 上一动点;①若四边形CMND 是平行四边形,证明:点M N 、横坐标之和为定值;②在点P N D 、、运动过程中,平行四边形CMND 的周长是否存在最大值?若存在,求出此时点D 的坐标,若不存在,说明理由15.如图,在平面直角坐标系中,点C 在x 轴上,90,10cm,6cm OCD D AO OC CD ︒∠=∠====.(1)请求出点A 的坐标.(2)如图(2),动点P Q 、以每秒1cm 的速度分别从点O 和点C 同时出发,点P 沿OA AD DC 、、运动到点C 停止,点Q 沿CO 运动到点O 停止,设P Q 、同时出发t 秒. ①是否存在某个时间t (秒),使得OPQ △为直角三角形?若存在,请求出值;若不存在,请说明理由.②若记POQ △的面积为()2cm y ,求()2cm y 关于t (秒)的函数关系式. 16.已知,点O 是等边ABC 内的任一点,连接OA ,OB ,OC .(∠)如图1所示,已知150AOB ∠=︒,120BOC ∠=︒,将BOC 绕点C 按顺时针方向旋转60︒得ADC .①求DAO ∠的度数:②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明;(∠)设AOB α∠=,BOC β∠=.①当α,β满足什么关系时,OA OB OC ++有最小值?并说明理由;②若等边ABC 的边长为1,请你直接写出OA OB OC ++的最小值.17.如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作∠O 交AC 于点F ,连接DF 、PF .(1)则∠DPF 是 三角形;(2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将∠EFP 沿PF 翻折,得到∠QFP ,当点Q 恰好落在BC 上时,求t 的值.18.已知四边形ABCD 为矩形,对角线AC 、BD 相交于点O ,AD AO =.点E 、F 为矩形边上的两个动点,且60EOF ∠=︒.(1)如图1,当点E 、F 分别位于AB 、AD 边上时,若75OEB ∠=︒,求证:AD BE =;(2)如图2,当点E 、F 同时位于AB 边上时,若75OFB ∠=︒,试说明AF 与BE 的数量关系;(3)如图3,当点E 、F 同时在AB 边上运动时,将OEF 沿OE 所在直线翻折至OEP ,取线段CB 的中点Q .连接PQ ,若()20AD a a =>,则当PQ 最短时,求PF 之长.19.如图,在∠ABC中,AB=BC=AC=12cm,点D为AB上的点,且BD=34AB,如果点P在线段BC上以3cm/s的速度由B点向终点C运动,同时,点Q在线段CA上由C点向终点A运动.当一点到达终点时,另一点也随之停止运动.(1)如(图一)若点Q的运动速度与点P的运动速度相等,经过1s后,∠BPD与∠CQP是否全等,请说明理由.(2)如(图二)若点Q的运动速度与点P的运动速度相等(点P不与点B和点C重合),连接点A与点P,连接点B与点Q,并且线段AP,BQ相交于点F,求∠AFQ的度数.(3)若点Q的运动速度为6cm/s,当点Q运动几秒后,可得到等边∠CQP?20.如图,Rt∠ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若∠BPQ与∠ABC相似,求t的值;(2)试探究t为何值时,∠BPQ是等腰三角形;(3)试探究t为何值时,CP=CQ;(4)连接AQ,CP,若AQ∠CP,求t的值.21.如图1,在正方形ABCD 中,4AB m =,点P 从点D 出发,沿DA 向点A 匀速运动,速度是1/cm s ,同时,点Q 从点A 出发,沿AB 方向,向点B 匀速运动,速度是2/cm s ,连接PQ 、CP 、CQ ,设运动时间为()(02)t s t <<.()1是否存在某一时刻,使得//PQ BD 若存在,求出t 的值;若不存在,说明理由; ()2设PQC △的面积为()2S cm ,求S 与t 之间的函数关系式;()3如图2,连接AC ,与线段PQ 相交于点M ,是否存在某一时刻t ,使QCM S :4PCM S =:5?若存在,直接写t 的值;若不存在,说明理由.22.如图,在 RtΔABC 中,∠C=90°,BC=5cm ,tanA 512=.点 M 在边 AB 上,以 2 cm/s 的速度 由点B 出发沿BA 向点A 匀速运动;同时点N 在边AC 上,以1 cm/s 的速度由A 出发沿AC 向点C 匀速运动.当点M 到达A 点时,点M ,N 同时停止运动.连接MN ,设点M 运动的时间为t (单位:s).(1)求AB 的长;(2)当t 为何值时,ΔAMN 的面积为∠ABC 面积的326; (3)是否存在时间t ,使得以A ,M ,N 为顶点的三角形与ΔABC 相似?若存在,求出时间t 的值;若不存在,请说明理由.23.如图,抛物线y =ax 2+bx+3与x 轴交于A ,B 两点,且点B 的坐标为(2,0),与y 轴交于点C ,抛物线对称轴为直线x 12=-.连接AC ,BC ,点P 是抛物线上在第二象限内的一个动点.过点P 作x 轴的垂线PH ,垂足为点H ,交AC 于点Q .过点P 作PG∠AC 于点G . (1)求抛物线的解析式.(2)求PQG 周长的最大值及此时点P 的坐标.(3)在点P 运动的过程中,是否存在这样的点Q ,使得以B ,C ,Q 为顶点的三角形是等腰三角形?若存在,请写出此时点Q 的坐标;若不存在,请说明理由.24.如图,直线1:1l y kx =+与x 轴交于点D ,直线2:l y x b =-+与x 轴交于点A ,且经过定点(1,5)B -,直线1l 与2l 交于点(2,)C m .(1)求k 、b 和m 的值;(2)求ADC ∆的面积;(3)在x 轴上是否存在一点E ,使BCE ∆的周长最短?若存在,请求出点E 的坐标;若不存在,请说明理由;(4)若动点P 在线段DA 上从点D 开始以每秒1个单位的速度向点A 运动,设点P 的运动时间为t 秒.是否存在t 的值,使ACP ∆为等腰三角形?若存在,直接写出t 的值;若不存在,清说明理由.25.如图,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使CMP ∆为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由; (3)作直线BC ,若点(,0)D d 是线段BM 上的一个动点(不与B 、M 重合),过点D 作x 轴的垂线交抛物线于点F ,交BC 于点E ,当BDE CEF S S ∆∆=时,求d 的值.26.正方形ABCD 和等腰Rt DEF △共顶点D ,90DEF ∠=︒,DE EF =,将DEF 绕点D 逆时针旋转一周.(1)如图1,当点F 与点C 重合时,若2AD =,求AE 的长;(2)如图2,M 为BF 中点,连接AM 、ME ,探究AM 、ME 的关系,并说明理由; (3)如图3,在(2)条件下,连接DM 并延长交BC 于点Q ,若22AD DE ==,在旋转过程中,CQ 的最小值为_________.27.综合与探究 如图,抛物线245y x bx c =++经过点()0,4A ,()10B ,,与x 轴交于另一点C (点C 在点B 的右侧),点()P m n ,是第四象限内抛物线上的动点.(1)求抛物线的函数解析式及点C 的坐标;(2)若APC △的面积为S ,请直接写出S 关于m 的函数关系表达式,并求出当m 的值为多少时,S 的值最大?最大值为多少?(3)是否存在点P ,使得PCO ACB ∠=∠?若存在,求出点P 的坐标;若不存在,请说明理由.28.某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: 操作发现:(1)如图1,分别以AB 和AC 为边向∠ABC 外侧作等边∠ABD 和等边∠ACE ,连接BE 、CD ,请你完成作图并证明BE =CD .(要求:尺规作图,不写作法但保留作图痕迹)类比探究:(2)如图2,分别以AB 和AC 为边向∠ABC 外侧作正方形ABDE 和正方形ACFG ,连接CE 、BG ,则线段CE 、BG 有什么关系?说明理由.灵活运用:(3)如图3,在四边形ABCD 中,AC 、BD 是对角线,AB =BC ,∠ABC =60°,∠ADC =30°,AD =3,BD =5,求CD 的长.参考答案1.(1)3;(2)38t =;(3)当305t <≤时,210S t =;当315t <≤时,215309S t t =-+-;(4)38;58.2.(1)4y x x =-.定义域为25x <≤;(2)34;(3)4或53+ 3.(1)5-t ,2t ;(2)3t =或133t =;(3)53t =或910t = 4.(1)90°;(2)①α+β=180°;②点D 在直线BC 上移动,α+β=180°或α=β.5.(1)DM∠EM ,DM =ME ;(2)结论成立;(3)成立;拓展应用: 6.(1)y =﹣x 2+2x +3;(2)3;(3)点P 的坐标为(1,4)或(﹣2,﹣5)7.(1)60BD CE ,=;(2)45CEB BD ∠︒=,;(3)CE 的长为或48.(1)①证明;②3sin 5BAC ∠=;(2)CE =;(3)80.9.(1)﹣(2);②45°或225°;(3)﹣+310.(1)4PQ =;(2)150BPC ∠=︒;(3)9ABC S =. 11.(1)23;(2)2;(3)212.(1)见解析;(2)2(06)y x x =+<<;(3)P 位置如图所示,此时PB PE +的值最小,6CE =-13.(1)30DBA ∠=;(2)①;②当点D 运动到点I 时ABI ∠取得最大值,此时30ABD ∠=.14.(1)334y x =-;(2)①证明;②存在;点D 的坐标为111111,,3434⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭;. 15.(1)(8,6)A .(2)①存在,40 s 9t =或者50 s 9t =.②233(010)10S t t t =-+<<. 16.(1)①90°;②线段OA ,OB ,OC 之间的数量关系是OA 2+OB 2=OC 2,证明;(2)①当α=β=120°时,OA+OB+OC 有最小值.证明;②线段OA+OB+OC17.(1)等腰直角;(2)①当t 为1时,点E 恰好为AC 的一个三等分点;.18.(1)证明;(2)2AF BE =;(3).2FP a =19.(1)BPD CQP ≌;(2)60︒(3)4320.(1)1或3241;(2)23或89或6457;(3)329-;(4)78. 21.()1存在,43t =;()2228(02)S t t t =-+<<;()3存在,1t = 22.(1)13cm ;(2)t=2或92s ;(3)存在,15637t =或16938t =s23.(1)y 12=-x 212-x+3;(2))9108,P(32-,218);(3)存在,Q 1(,+3),Q 2(﹣1,2)24.(1)12k =,4b =,2m =;(2)6;(3存在,8(7E ,0);(4)存在,6-4或2.25.(1)223y x x =--+;(2)存在,P (-或(1,-或(1,6)-或5(1,)3-;(3)d =26.(1)AE =(2)AM ME =,AM ME ⊥;(3)227.(1)2424455x x y -+=;点C 的坐标为(5,0);(2)当m =52时,S 的值最大,最大值为252;(3)存在点P ,使得使得∠PCO =∠ACB .点P 的坐标为(2,-125). 28.(1);(2)CE=BG ;(3)CD=4。
中考数学动点问题(含答案)
中考数学之 动点问题一、选择题:1. 如图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( )94xyOPDA 、10B 、16C 、18D 、20 二、填空题:1. 如上右图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE 、AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ.以下五个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP ;⑤∠AOB=60°. 恒成立的结论有_______________________(把你认为正确的序号都填上)。
三、解答题:1.(2008年大连)如图12,直角梯形ABCD 中,AB ∥CD ,∠A = 90°,CD = 3,AD = 4,tan B = 2,过点C 作CH ⊥AB ,垂足为H .点P 为线段AD 上一动点,直线PM ∥AB ,交BC 、C H 于点M 、Q .以PM 为斜边向右作等腰Rt △PMN ,直线MN 交直线AB 于点E ,直线PN 交直线A B 于点F .设PD 的长为x ,EF 的长为y . ⑴求PM 的长(用x 表示);⑵求y 与x 的函数关系式及自变量x 的取值范围(图13为备用图); ⑶当点E 在线段AH 上时,求x 的取值范围(图14为备用图).Q POBED CA图 13图 14图 12HBCDHBCDHM QP DCBA2.(2008年福建宁德)如图1,在Rt △ABC 中,∠C =90°,BC =8厘米,点D 在AC 上,CD =3厘米.点P 、Q 分别由A 、C 两点同时出发,点P 沿AC 方向向点C 匀速移动,速度为每秒k 厘米,行完AC 全程用时8秒;点Q 沿CB 方向向点B 匀速移动,速度为每秒1厘米.设运动的时间为x 秒()80<x<,△DCQ 的面积为y 1平方厘米,△PCQ 的面积为y 2平方厘米.⑴求y 1与x 的函数关系,并在图2中画出y 1的图象;⑵如图2,y 2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P 的速度及AC 的长;⑶在图2中,点G 是x 轴正半轴上一点(0<OG <6=,过G 作EF 垂直于x 轴,分别交y 1、y2于点E、F.①说出线段EF的长在图1中所表示的实际意义;②当0<x<6时,求线段EF长的最大值.3.(2008年白银)如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边..分别交于点M 、N ,直线m 运动的时间为t (秒). (1) 点A 的坐标是__________,点C 的坐标是__________; (2) 当t= 秒或秒时,MN=21AC ; (3) 设△OMN 的面积为S ,求S 与t 的函数关系式;(4) 探求(3)中得到的函数S 有没有最大值?若有,求出最大值;若没有,要说明理由.图1C Q → BDAP ↓ 图2G 2 4 6 8 10 1210 86 4 2 yOx参考答案一、选择 A二、填空:(1)(2)(3)(5) 三、解答:2、解:⑴∵CD CQ S DCQ ⋅⋅=∆21,CD =3,CQ =x ,∴x y 231=. 图象如图所示.⑵方法一:CP CQ S PCQ ⋅⋅=∆21,CP =8k -xk ,CQ =x , ∴()kx kx x kx k y 42182122+-=⋅-⨯=.∵抛物线顶点坐标是(4,12),∴12444212=⋅+⋅-k k . 解得23=k .则点P 的速度每秒23厘米,AC =12厘米.方法二:观察图象知,当x=4时,△PCQ 面积为12. 此时PC =AC -AP =8k -4k =4k ,CQ =4.∴由CP CQ S PCQ ⋅⋅=∆21,得12244=⨯k .解得23=k . 则点P 的速度每秒23厘米,AC =12厘米.方法三:设y 2的图象所在抛物线的解析式是c bx ax y ++=2. ∵图象过(0,0),(4,12),(8,0),∴⎪⎩⎪⎨⎧=++=++=.0864124160c b a c b a c ,, 解得 ⎪⎪⎩⎪⎪⎨⎧==-=.0643c b a ,, ∴x x y 64322+-=. ①∵CP CQ S PCQ ⋅⋅=∆21,CP =8k -xk ,CQ =x ,∴kx kx y 42122+-=. ②比较①②得23=k .则点P 的速度每秒23厘米,AC =12厘米.⑶①观察图象,知线段的长EF =y 2-y 1,表示△PCQ 与△DCQ 的面积差(或△PDQ 面积).②由⑵得 x x y 64322+-=.(方法二,x x x x y 643232382122+-=⋅⎪⎭⎫ ⎝⎛-⨯⨯=)∵EF =y 2-y 1, ∴EF =x x x x x 29432364322+-=-+-, ∵二次项系数小于0,∴在60<x<范围,当3=x 时,427=EF 最大. 3、解:(1)(4,0),(0,3); ··················· 2分 (2) 2,6; ····························· 4分 (3) 当0<t≤4时,OM =t . 由△OMN ∽△OAC ,得OCONOA OM =, ∴ ON =t 43,S=283t . ··········· 6分 当4<t <8时,如图,∵ OD =t ,∴ AD = t-4. 方法一:由△DAM ∽△AOC ,可得AM =)4(43-t ,∴ BM =6-t 43. ·········· 7分 由△BMN ∽△BAC ,可得BN =BM 34=8-t ,∴ CN =t-4. ··········· 8分S=矩形OABC 的面积-Rt△OAM 的面积- Rt△MBN 的面积- Rt△NCO 的面积=12-)4(23-t -21(8-t )(6-t 43)-)4(23-t =t t 3832+-. ·························· 10分方法二:易知四边形ADNC 是平行四边形,∴ CN =AD =t-4,BN =8-t . ·········· 7分 由△BMN ∽△BAC ,可得BM =BN 43=6-t 43,∴ AM =)4(43-t . ······ 8分 以下同方法一. (4) 有最大值.方法一: 当0<t≤4时,∵ 抛物线S=283t 的开口向上,在对称轴t=0的右边, S 随t 的增大而增大, ∴ 当t=4时,S 可取到最大值2483⨯=6; ·············· 11分当4<t<8时,∵ 抛物线S=t t 3832+-的开口向下,它的顶点是(4,6),∴ S<6. 综上,当t=4时,S 有最大值6. ··················· 12分 方法二:∵ S=22304833488t t t t t ⎧<⎪⎪⎨⎪-+<<⎪⎩,≤,∴ 当0<t <8时,画出S 与t 的函数关系图像,如图所示. ······· 11分 显然,当t=4时,S 有最大值6. ·················· 12分说明:只有当第(3)问解答正确时,第(4)问只回答“有最大值”无其它步骤,可给1分;否则,不给分.。
初中数学几何动点训练题--三角形类(含答案)
几何动点训练题2一、单选题(共6题;共12分)1.(2020·芜湖模拟)如图,在等边△ABC中,AB=12,点D在AB边上,AD=4,E为AC中点,P为△ABC 内一点,且∠BPD=90°,则线段PE的最小值为()A. 3 ﹣2B.C. 2 ﹣4D. 4 ﹣82.(2020·秦安模拟)如图,边长为2的等边△ABC和边长为1的等边△A'B'C',它们的边B'C',BC位于同一条直线L上,开始时,点C'与B重合,△ABC固定不动,然后把△A'B'C'自左向右沿直线L平移,移出△ABC 外(点B'与C重合)停止,设△A'B'C'平移的距离为x,两个三角形重合部分的面积为y,则y关于x的函数图象是()A. B. C. D.3.(2020八下·临汾月考)如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发,沿射线BC以1cm/s的速度移动,设运动的时间为t秒,当△ABP为等腰三角形时,t的值不可能为( )A. 5B. 8C.D.4.(2019八下·滦南期末)如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE⊥AB 于E,PF⊥AC于F,M 为EF 中点,则AM 的最小值为()A. 1B. 1.3C. 1.2D. 1.55.(2019九下·桐乡月考)如图,正三角形纸片ABC中,D是BC的中点,P是AB边上的一个动点,将△BPD 沿PD翻折。
得到△QPD.当点P从点A向点B运动时,点Q也随之运动.若AB=6,则点Q经过的路径长是( )A. 3B. 6C. 3πD. 6π6.(2018九上·康巴什期中)如图,在Rt△ABO中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得的阴影部分的面积为S,则S与t之间的函数关系式为()A. S=t(0<t≤3)B. S= t2(0<t≤3)C. S=t2(0<t≤3)D. S= t2-1(0<t≤3)二、填空题(共4题;共4分)7.(2020·芜湖模拟)如图,Rt△ABC中,∠C=90°,AC=8,BC=16,点D在边BC上,点E在边AB上,沿DE将△ABC折叠,使点B与点A重合,连接AD,点P是线段AD上一动点,当半径为5的⊙P与△ABC 的一边相切时,AP的长为________.8.(2020八下·锡山期中)E、F是线段AB上的两点,且AB=16,AE=1,BF=3,点G是线段EF上的一动点,分别以AG、BG为斜边在AB同侧作两个等腰直角三角形,直角顶点分别为D、C,如图所示,连接CD 并取中点P,连结PG,点G从E点出发运动到F点,则线段PG扫过的图形面积为________.9.(2019七下·苏州期末)如图,中,.点从点出发沿路径向终点运动;点从点出发沿路径向终点运动.点和分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过和作于,于.则点运动时间等于________时,与全等。
初中数学动点问题及练习题附参考问题详解
初中数学动点问题及练习题附参考答案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点问题专题训练1、如图,已知ABC△中,10AB AC==厘米,8BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇?2、直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S 与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结P A,若P A=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A 的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.5在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ;(2)在点P 从C 向A 运动的过程中,求△APQ的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ;(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.A C BQ ED图16O E CDA α lOCA(备用图)7如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形.8如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =. ①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由; ②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.C M ADE BF C图4(备用)ADE BF C图5(备用)A D E BF C图1 图2A DEBF C PN M 图3A D EBFCPN M(第25题)9如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.10数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E 是边BC的中点.90AEF∠=,且EF交正方形外角DCG∠的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证AME ECF△≌△,所以AE EF=.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.A DFC GEB图1 A DFC GEB图2A DFC GEB图311已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.12如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN 的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AMBN 的值等于 ;若1CE CD n =(n 为整数),则AMBN的值等于 .(用含n 的式子表示) 联系拓广 如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN的值等于 .(用含m n ,的式子表示)方法指导: 为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2图(2) N AB C D EF M 图(1) A B C D E FM N12..如图所示,在直角梯形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16。
动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动。
设运动的时间为t(秒)。
(1)设△DPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,四边形PCDQ是平行四边形?(3)分别求出出当t为何值时,①PD=PQ,②DQ=PQ ?13.三角形ABC中,角C=90度,角CBA=30度,BC=20根号3。
一个圆心在A点、半径为6的圆以2个单位长度/秒的速度向右运动,在运动的过程中,圆心始终都在直线AB上,运动多少秒时,圆与△ABC的一边所在的直线相切。
1.解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. ············································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒. ·································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯, 解得803x =秒. ∴点P 共运动了803803⨯=厘米.∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇, ∴经过803秒点P 与点Q 第一次在边AB 上相遇. ········································· (12分) 2.解(1)A (8,0)B (0,6) ············· 1分 (2)86OA OB ==, 10AB ∴=点Q 由O 到A 的时间是881=(秒) ∴点P 的速度是61028+=(单位/秒) · 1分 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,2S t = ·········································································································· 1分当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,,如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, ······························ 1分 21324255S OQ PD t t ∴=⨯=-+ ······································································· 1分 (自变量取值范围写对给1分,否则不给分.)(3)82455P ⎛⎫ ⎪⎝⎭, ···························································································· 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, ···················································· 3分3.解:(1)⊙P 与x 轴相切.∵直线y =-2x -8与x 轴交于A (4,0),与y 轴交于B (0,-8), ∴OA =4,OB =8. 由题意,OP =-k , ∴PB =P A =8+k .在Rt △AOP 中,k 2+42=(8+k )2, ∴k =-3,∴OP 等于⊙P 的半径, ∴⊙P 与x 轴相切.(2)设⊙P 与直线l 交于C ,D 两点,连结PC ,PD 当圆心P在线段OB 上时,作PE ⊥CD 于E .∵△PCD 为正三角形,∴DE =12CD =32,PD =3, ∴PE 33. ∵∠AOB =∠PEB =90°, ∠ABO =∠PBE , ∴△AOB ∽△PEB ,∴332,45AO PE AB PB PB =即, ∴315PB =∴3158PO BO PB =-= ∴3158)P -, ∴3158k =-. 当圆心P 在线段OB 延长线上时,同理可得P (0,315-8), ∴k =315-8, ∴当k 315-8或k =315-8时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形.4.;5.解:(1)1,85(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC ==, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅, 即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP AC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. ①点P 由C 向A 运动,DE 经过点C .连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】6.解(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC //ED .∵CE //AB , ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2,∴∠A =300.∴AB =4,AC .P图4P图5∴AO =12AC……………………8分 在Rt △AOD 中,∠A =300,∴AD =2. ∴BD =2. ∴BD =BC .又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形 ……………………10分7.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==.················································································ 1分 在Rt ABK △中,sin 4542AK AB =︒==.2cos 454242BK AB =︒== ·························································· 2分 在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ················································· 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ············································································· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△∴CN CMCD CG = ··················································································· 5分 即10257t t -= 解得,5017t = ···················································································· 6分(图①) A D C B K H (图②) A D C B G MN(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =- ∴103t = ·························································································· 7分②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC tc NC t -==又在Rt DHC △中,3cos 5CH c CD ==∴535t t -=解得258t = ······················································································· 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC ECDC HC =即553t t -= ∴258t = ·························································································· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025tFC C MC t ===-解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△ ∴FC MCHC DC=ADCB MN(图③)(图④)AD CBM NH E(图⑤)A DCBH N MF即1102235tt -= ∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ··············· 9分8.解(1)如图1,过点E 作EG BC ⊥于点G . ··················· 1分∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ············ 2分∴112BG BE EG ====, 即点E 到BC····································· 3分 (2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. ·················································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PH PM == ∴3cos302MH PM =︒=.则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=. ······································· 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =. ∴23MN MR ==.··················································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. ··································· 8分图1A DE BF C G图2A D EBF CPNMG H当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-=-当NP NM =时,如图5,30NPM PMN ==︒∠∠.则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=.此时,6114x EP GM ===--=.综上所述,当2x =或4或(5时,PMN △为等腰三角形. ···················· 10分 9解:(1)Q (1,0) ····················································································· 1分 点P 运动速度每秒钟1个单位长度.································································· 2分 (2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=.在Rt △AFB中,10AB 3分 过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=︒= ∴△ABF ≌△BCH . ∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.∴所求C 点的坐标为(14,12). 4分 (3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴AP AM MP AB AF BF ==. 1068t AM MP∴==. ∴3455AM t PM t ==,. ∴3410,55PN OM t ON PM t ==-==.设△OPQ 的面积为S (平方单位)∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10) ················································· 5分说明:未注明自变量的取值范围不扣分.∵310a =-<0 ∴当474710362()10t =-=⨯-时, △OPQ 的面积最大. ························· 6分 图3A D E BFCPN M 图4A D EBF CPM N 图5A D EBF (P )CMN GGRG此时P 的坐标为(9415,5310) . ····································································· 7分 (4) 当 53t =或29513t =时, OP 与PQ 相等. ················································· 9分10.解:(1)正确. ················································· (1分)证明:在AB 上取一点M ,使AM EC =,连接ME . (2分)BM BE∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°.AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). ··································································· (5分) AE EF ∴=. ························································································· (6分) (2)正确. ····················································· (7分) 证明:在BA 的延长线上取一点N . 使AN CE =,连接NE . ··································· (8分) BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). ································································· (10分) AE EF ∴=. (11分)11.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+, 即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ··················································································· 4分(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ',则B CD BCD '△≌△. 由题设OB x OC y '==,,AD F C GE B M A DF GE B N则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···························································································· 6分 由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ 当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤. ····································································· 7分 (Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠. 又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OC OA OB''=,得2OC OB ''=. ·································································· 9分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C的坐标为()016. ··································································· 10分12解:方法一:如图(1-1),连接BM EM BE ,,.由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称.∴MN 垂直平分BE .∴BM EM BN EN ==,. ···································· 1分 ∵四边形ABCD 是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,. ∵112CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-. N 图(1-1)A BC EF M。