初一数学平面图形的认识A卷

合集下载

七年级平面图形的认识(一)综合测试卷(word含答案)

七年级平面图形的认识(一)综合测试卷(word含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CEA中,∴△ABD≌△CEA(AAS),∴S△ABD=S△CEA,设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,∴S△ABC= BC•h=12,S△ACF= CF•h,∵BC=2CF,∴S△ACF=6,∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,∴△ABD与△CEF的面积之和为6.【解析】【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,由AAS证得△ADB≌△CEA,则AE=BD,AD=CE,即可得出结论;(2)由∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA即可得出答案;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ACF即可得出结果.2.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。

苏科版七年级数学上册第6章平面图形的认识(一)达标测试卷【含答案】

苏科版七年级数学上册第6章平面图形的认识(一)达标测试卷【含答案】

9.如果线段 AB=5cm,BC=4cm,且 A,B,C 在同一条直线上,那么 A、C 两点的距离是( )
A. 1cm
B. 9cm
D. 以上答案都不正确
10.同一平面内,三条不同直线的交点个数可能是( )个.
C. 1cm 或 9cm
A. 1 或 3
B. 0、1 或 3
C. 0、1 或
2
D. 0、1、2 或 3
A.①④
B.②③
C.①②④
D.①③④
6.下列说法①一个角的补角大于这个角②小于平角的角是钝角③同角或等角的余角相等④若 1 2 3 180 ,
则 1 、 2 、 3 互为补角.其中正确的说法有( )
A.4 个
B.3 个
C.2 个
D.1 个
7.如图,AM 为∠BAC 的平分线,下列等式错误的是( )
A.两点确定一条直线
B.两点之间,线段最短
C.垂线段最短
D.同一平面内垂直于同一条直线的两直线平行
5.下列日常现象:
①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;
③利用圆规可以比较两条线段的大小;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.
其中,可以用“两点确定一条直线”来解释的现象是( )
【考点】角平分线的定义. 【答案】见试题解答内容 【分析】根据角平分线的定义求解. 【解答】解:∵∠AOC=25°,OC 平分∠AOB, ∴∠AOB=2∠AOC=50°, 故答案为 50°. 15 如图,点 A 位于点 O 的 方向上.
【考点】方向角. 【答案】见试题解答内容 【分析】根据方位角的概念直接解答即可. 【解答】解:点 A 位于点 O 的北偏西 30°方向上.

七年级上册数学 平面图形的认识(一)达标检测(Word版 含解析)

七年级上册数学 平面图形的认识(一)达标检测(Word版 含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.根据下图回答问题:(1)如图1,CM平分∠ACD,AM平分∠BAC,∠MAC+∠ACM=90°,请判断AB与CD的位置关系并说明理由;(2)如图2,当∠M=90°且AB与CD的位置关系保持(1)中的不变,当直角顶点M移动时,问∠BAM与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,G为线段AC上一定点,点H为直线CD上一动点且AB与CD的位置关系保持(1)中的不变,当点H在射线CD上运动时(点C除外)∠CGH+∠CHG与∠BAC有何数量关系?猜想结论并说明理由.【答案】(1)∵CM平分∠ACD,AM平分∠BAC,∴∠BAC=2∠MAC,∠ACD=2∠ACM,∵∠MAC+∠ACM=90°,∴∠BAC+∠ACD=180°,∴AB∥CD;(2)∠BAM+∠MCD=90°,理由:如图,过M作MF∥AB,∵AB∥CD,∴MF∥AB∥CD,∴∠BAM=∠AMF,∠FMC=∠DCM,∵∠M=90°,∴∠BAM+∠MCD=90°;(3)∠BAC=∠CHG+∠CGH.理由:过点G作GP∥AB,∵AB∥CD∴GP∥CD,∴∠BAC=∠PGC,∠CHG=∠PGH,∴∠PGC=∠CHG+∠CGH,∴∠BAC=∠CHG+∠CGH.【解析】【分析】(1)已知CM平分∠ACD,AM平分∠BAC,根据角平分线的定义可得∠BAC=2∠MAC,∠ACD=2∠ACM,再由∠MAC+∠ACM=90°,即可得∠BAC+∠ACD=180°,根据同旁内角互补,两直线平行即可得AB∥CD;(2)∠BAM+∠MCD=90°,过M作MF∥AB,即可得MF∥AB∥CD,根据平行线的性质可得∠BAM=∠AMF,∠FMC=∠DCM,再由∠M=90°,即可得∠BAM+∠MCD=90°;(3)∠BAC=∠CHG+∠CGH,过点G作GP∥AB,即可得GP∥CD,根据平行线的性质可得∠BAC=∠PGC,∠CHG=∠PGH,所以PGC=∠CHG+∠CGH,即可得∠BAC=∠CHG+∠CGH.2.已知,AB//CD,(1)如图,若E 为DC 延长线上一点,AF、CG 分别为∠BAC、∠ACE 的平分线.(1)求证:AF//CG.(2)若 E 为线段 DC 上一点(E 不与 C 重合),AF、CG 分别为∠BAC、∠ACE的平分线,画出图形,试判断 AF,CG 的位置关系,并证明你的结论.【答案】(1)证明:∵AB//CD∴∠BAC=∠ACE,∵AF、CG 分别为∠BAC、∠ACE的平分线,∴∠CAF= ∠BAC, ∠ACG= ∠ACE,∴∠CAF=∠ACG∴AF//CG.(2)解:AF⊥CG,理由如下:如图,AF、CG 分别为∠BAC、∠ACE的平分线,∴∠1= ∠BAC,∠2= ∠ACD,∵AB//CD,∴∠BAC+∠ACD=180°,∴∠1+∠2= ∠BAC+ ∠ACD= (∠BAC+∠ACD)=90°,∴∠3=180°-(∠1+∠2)=90°,∴AF⊥CG.【解析】【分析】(1)根据二直线平行,内错角相等得出∠BAC=∠ACE,根据角平分线的定义得出∠CAF=∠ACG ,进而根据内错角相等,二直线平行得出AF∥CG;(2)根据题意作出图形,根据角平分线的定义得出∠1= ∠BAC,∠2= ∠ACD, 根据二直线平行,同旁内角互补得出∠BAC+∠ACD=180°,从而即可得出∠1+∠2= 90°,根据三角形的内角和定理得出∠3=90°,进而根据垂直的定义得出AF⊥CG.3.如图1, .如图2,点分别是上的点,且, .(1)求证: F;(2)若的角平分线与的角平分线交于点,请补全图形并直接写出与之间的关系为________.【答案】(1)证明:如图,延长EH,交CD的延长线与M,(2)∠BFE=2∠P.【解析】【解答】解:(2)结论:∠BFE=2∠P,理由如下:如图,设∠B=∠HEF=y.∠BFE=x=,故答案为:∠BFE=2∠P.【分析】(1)延长EH,交CD的延长线与M,根据平行线的性质及等量代换即可证明;(2)设∠B=∠HEF=y,∠BFE=x,根据平行的性质结合三角形的内角和定理得出∠BFE=2∠P.4.探究与发现:(1)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.(2)探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.(3)探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.(4)探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:▲ .【答案】(1)解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;(2)探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC= ∠ADC,∠PCD= ∠ACD,∴∠DPC=180°-∠PDC-∠PCD,=180°- ∠ADC- ∠ACD,=180°- (∠ADC+∠ACD),=180°- (180°-∠A),=90°+ ∠A;(3)探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC= ∠ADC,∠PCD= ∠BCD,∴∠DPC=180°-∠PDC-∠PCD,=180°- ∠ADC- ∠BCD,=180°- (∠ADC+∠BCD),=180°- (360°-∠A-∠B),= (∠A+∠B);(4)探究四:六边形ABCDEF的内角和为:(6-2)•180°=720°,∵DP、CP分别平分∠EDC和∠BCD,∴∠PDC= ∠EDC,∠PCD= ∠BCD,∴∠P=180°-∠PDC-∠PCD=180°- ∠EDC- ∠BCD=180°- (∠EDC+∠BCD)=180°- (720°-∠A-∠B-∠E-∠F)= (∠A+∠B+∠E+∠F)-180°,即∠P= (∠A+∠B+∠E+∠F)-180°.【解析】【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC= ∠ADC,∠PCD= ∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究二解答即可.5.已知,与两角的角平分线交于点P,D是射线上一个动点,过点D的直线分别交射线,,于点E,F,C.(1)如图1,若,,,求的度数;(2)如图2,若,请探索与的数量关系,并证明你的结论;(3)在点运动的过程中,请直接写出,与这三个角之间满足的数量关系:________.【答案】(1)解:∵PA、PB是∠BAM、∠ABN的角平分线,∴∠BAP=∠PAE= ∠BAM= ,∠ABP=∠PBE= ∠ABN= ,∴∠BPC=∠BAP+∠ABP= ;(2)解:,理由如下:∵PA、PB是∠BAM、∠ABN的角平分线,∴设,,∵,∴,∵,∴,又∵,∴,∴;(3)【解析】【解答】解:(3)∵PA、PB是∠BAM、∠ABN的角平分线,∴设,,∵,∴,如图,当点P在线段BD上时,,∴;如图,当点P在线段BD的延长线上时,,即,∴,即;故答案为:.【分析】(1)根据角平分线的性质结合三角形外角的性质即可求解;(2)设,,根据角平分线的性质结合四边形内角和定理即可求解;(3)分点P在线段BD上和点P在线段BD的延长线上两种情况讨论即可求解.6.如图四边形ABCD中,AD∥BC,∠BCD=90°,∠BAD的平分线AG交BC于点G.(1)求证:∠BAG=∠BGA;(2)如图2,∠BCD的平分线CE交AD于点E,与射线GA相交于点F,∠B=50°.①若点E在线段AD上,求∠AFC的度数;②若点E在DA的延长线上,直接写出∠AFC的度数;(3)如图3,点P在线段AG上,∠ABP=2∠PBG,CH∥AG,在直线AG上取一点M,使∠PBM=∠DCH,请直接写出∠ABM:∠PBM的值.【答案】(1)证明:∵AD∥BC,∴∠GAD=∠BGA,∵AG平分∠BAD,∴∠BAG=∠GAD,∴∠BAG=∠BGA;(2)解:①∵CF平分∠BCD,∠BCD=90°,∴∠GCF=45°,∵AD∥BC,∠ABC=50°,∴∠AEF=∠GCF=45°;∠DAB=180°﹣50°=130°,∵AG平分∠BAD,∴∠BAG=∠GAD=65°,∴∠AFC=65°﹣45°=20°;②如图:∵∠AGB=65°,∠BCF=45°,∴∠AFC=∠CGF+∠BCF=115°+45°=160°;(3)解:有两种情况:①当M在BC的下方时,如图:∵∠ABC=50°,∠ABP=2∠PBG,∴∠ABP=()°,∠PBG=()°,∵AG∥CH,∴∠BCH=∠AGB=65°,∵∠BCD=90°,∴∠DCH=∠PBM=90°﹣65°=25°,∴∠ABM=∠ABP+∠PBM=( +25)°=()°,∴∠ABM:∠PBM=()°:25°= ;②当M在BC的上方时,如图:同理得:∠ABM=∠ABP﹣∠PBM=(﹣25)°=()°,∴∠ABM:∠PBM=()°:25°= ;综上,∠ABM:∠PBM的值是或.【解析】【分析】(1)根据AD//BC可知∠GAD=∠BGA,由AG平分∠BAD可知∠BAG=∠GAD,即可得答案.(2)①根据CF平分∠BCD,∠BCD=90°,可求出∠GCF的度数,由AD//BC可求出∠AEF和∠DAB的度数,根据三角形外角的性质求出∠AFC的度数即可;②根据三角形外角性质求出即可;(3)根据M点在BP的上面和下面两种情况讨论,分别求出∠PBM和∠ABM的值即可.7.如图1,△ABC中,D、E、F三点分别在AB,AC,BC三边上,过点D的直线与线段EF 的交点为点H,∠1+∠2=180°,∠3=∠C.(1)求证:DE∥BC;(2)在以上条件下,若△ABC及D,E两点的位置不变,点F在边BC上运动使得∠DEF的大小发生变化,保证点H存在且不与点F重合,探究:要使∠1=∠BFH成立,请说明点F 应该满足的位置条件,在图2中画出符合条件的图形并说明理由.(3)在(2)的条件下,若∠C=α,直接写出∠BFH的大小________.【答案】(1)证明:如图1.∵∠1是△DEH的外角,∴∠1=∠3+∠4.又∵∠1+∠2=180°,∴∠3+∠4+∠2=180°.∵∠3=∠C,∴∠C+∠4+∠2=180°,即∠DEC+∠C=180°,∴DE∥BC(2)解:如图2.∵∠1是△DEH的外角,∴∠1=∠3+∠DEF,①∵∠BFE是△CEF的外角,∴∠BFH=∠2+∠C.当∠1=∠BFH时,∠1=∠2+∠C,②由①②得:∠3+∠DEF=∠2+∠C.∵∠3=∠C,∴∠DEF=∠2,即EF平分∠DEC,∴点F运动到∠DEC的角平分线与边BC的交点位置时,∠1=∠BFH成立.(3)90°+【解析】【解答】(3)∵EF平分∠DEC,∴∠DEF=∠2.∵DE∥BC,∴∠DEC+∠C=180°,∴2∠2+α=180°,∴∠2= = .∵∠BFH=∠2+∠C= = .【分析】(1)欲证明DE∥BC,只需推知∠DEC+∠C=180°即可,因此先根据外角性质,将∠1转化为∠3+∠4,再根据∠1与∠2互补,得到∠3+∠4+∠2=180°,最后将∠3=∠C代入即可得出结论;(2)点F运动到∠DEC的角平分线与边BC的交点位置时,∠1=∠BFH成立.(3)根据平行线的性质和角平分线的定义,得出∠2的度数,再由三角形外角的性质即可得出结论.8.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O 处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=________;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD= ∠AOE.求∠BOD的度数.【答案】(1)30(2)解:∵OE平分∠AOC,∴∠COE=∠AOE= ∠COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线(3)解:设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120,∴x=5或7.5,即∠COD=65°或37.5°,∴∠BOD=65°或52.5°【解析】【解答】(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=∠BOE-∠COB=30°,故答案为30;【分析】(1)根据图形得出∠COE=∠BOE-∠COB,代入求出即可;(2)根据角平分线定义求出∠COE=∠AOE= ∠COA,再根据∠AOE+∠DOB=90°,∠COE+∠COD=90°,可得∠COD=∠DOB,从而问题得证;(3)设∠COD=x°,则∠AOE=5x°,根据题意则可得6x=30或5x+90﹣x=120,解方程即可得.9.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.①求t值;②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.【答案】(1)解:①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°(3)解:设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC 平分∠MON列方程求解即可.10.课题学习:平行线的“等角转化功能.(1)问题情景:如图1,已知点是外一点,连接、,求的度数.天天同学看过图形后立即想出:,请你补全他的推理过程.解:(1)如图1,过点作,∴ ________, ________.又∵,∴ .解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将,,“凑”在一起,得出角之间的关系,使问题得以解决.(2)问题迁移:如图2,,求的度数.(3)方法运用:如图3,,点在的右侧,,点在的左侧,,平分,平分,、所在的直线交于点,点在与两条平行线之间,求的度数.【答案】(1)∠EAB;∠DAC(2)解:过C作CF∥AB,∵AB∥DE,∴CF∥DE∥AB,∴∠D=∠FCD,∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)解:如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE= ∠ABC=30°,∠CDE= ∠ADC=35°∴∠BED=∠BEF+∠DEF=30°+35°=65°.【解析】【解答】解:(1)根据平行线性质可得:因为,所以∠EAB,∠DAC;【分析】(1)根据平行线性质“两直线平行,内错角相等”可得∠B+∠BCD+∠D∠BCF+∠BCD+∠DCF;(2)过C作CF∥AB,根据平行线性质可得;(3)如图3,过点E作EF∥AB,根据平行线性质和角平分线定义可得∠ABE= ∠ABC=30°,∠CDE= ∠ADC=35°,故∠BED=∠BEF+∠DEF.11.已知:直线AB,CD相交于点O,且OE⊥CD,如图.(1)过点O作直线MN⊥AB;(2)若点F是(1)中所画直线MN上任意一点(O点除外),且∠AOC=35°,求∠EOF的度数;(3)若∠BOD:∠DOA=1:5,求∠AOE的度数.【答案】(1)解:如图,MN为所求(2)解:若F在射线OM上,∵MN⊥AB,OE⊥CD,∴∠AOC+∠COM=90°,∠EOF+∠COM=90°,则∠EOF=∠AOC=35°;若F'在射线ON上,∵MN⊥AB,OE⊥CD,∴∠DON=∠COM=90°-∠AOC=55°,∠EOD=90°则∠EOF'=∠DOE+∠DON=145°;综上所述,∠EOF的度数为35°或145°;(3)解:∵∠BOD:∠DOA=1:5∴∠BOD:∠BOC=1:5,∴∠BOD=∠COD=30°,∴∠AOC=30°,又∵EO⊥CD,∴∠COE=90°,∴∠AOE=90°+30°=120°.【解析】【分析】(1)根据垂直的定义即可作图;(2)分F在射线OM上和在射线ON 上分别进行求解即可;(3)依据平角的定义以及垂线的定义,即可得到∠AOE的度数.12.如图所示,O为一个模拟钟面圆心,M、O、N 在一条直线上,指针OA、OB 分别从OM、ON 出发绕点 O 转动,OA 运动速度为每秒 30 ,OB 运动速度为每秒10 ,当一根指针与起始位置重合时,运动停止,设转动的时间为 t 秒,试解决下列问题:(1)如图①,若OA顺时针转动,OB逆时针转动, =________秒时,OA与OB第一次重合;(2)如图②,若OA、OB同时顺时针转动,①当 =3秒时,∠AOB=________ ;②当为何值时,三条射线OA、OB、ON其中一条射线是另两条射线夹角的角平分线?________【答案】(1)4.5(2);解:由题意知,∴∠BON=10t ,∠AON=180-30t (0≤t≤6),∠AON=30t-180(6<t≤12).当ON为∠AOB的角平分线时,有180-30t =10t ,解得:t =4.5;当OA为∠BON的角平分线时,10t =2(30t -180),解得:t =7.2;当OB为∠AON的角平分线时,30t -180=2×10t ,解得:t =18(舍去);∴经过4.5,7.2秒时,射线OA、OB、ON其中一条射线是另外两条射线夹角的平分线【解析】【解答】(1)解:若OA顺时针转动,OB逆时针转动,∴∠AOM+∠BON=180 ,∴,解得:;∴秒,OA与OB第一次重合;故答案为:4.52)解:①若OA、OB同时顺时针转动,∴,,∴;故答案为:120;【分析】(1)设t秒后第一次重合.根据题意,列出方程,解方程即可;(2)①利用180 减去OA转动的角度,加上OB转动的角度,即可得到答案;②先用t的代数式表示∠BON和∠AON,然后分为三种情况进行讨论:当ON、OA、OB为角平分线时,分别求出t的值,即可得到答案.。

数学七年级上册 平面图形的认识(一)达标检测(Word版 含解析)

数学七年级上册 平面图形的认识(一)达标检测(Word版 含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CEA中,∴△ABD≌△CEA(AAS),∴S△ABD=S△CEA,设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,∴S△ABC= BC•h=12,S△ACF= CF•h,∵BC=2CF,∴S△ACF=6,∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,∴△ABD与△CEF的面积之和为6.【解析】【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,由AAS证得△ADB≌△CEA,则AE=BD,AD=CE,即可得出结论;(2)由∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA即可得出答案;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ACF即可得出结果.2.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.3.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.4.问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足____关系。

最新苏教版七年级数学上册第六单元《平面图形的认识》测试卷(附答案)

最新苏教版七年级数学上册第六单元《平面图形的认识》测试卷(附答案)

最新苏教版七年级数学上册第六单元《平面图形的认识》测试卷(附答案)最新苏教版七年级数学上册第六单元《平面图形的认识》测试卷(附答案)一、选择题(每小题3分,共21分)1.下列说法正确的是()A。

过一点P只能作一条直线。

B。

射线AB和射线BA表示同一条射线。

C。

直线AB和直线BA表示同一条直线。

D。

射线a比直线b短。

2.如图5-Z-1,由点O测点A的方向是()A。

北偏南60°B。

南偏西60°C。

南偏西30°D。

西偏南30°3.如图5-Z-2,OA⊥OB,∠BOC=30°,OD平分∠AOC,则∠BOD的度数是()A。

40°B。

60°C。

20°D。

30°4.若直线l上一点P和直线l外一点Q的距离为8 cm,则点Q到直线l的距离是()A。

等于8 cmB。

小于或等于8 cmC。

大于8 cmD。

以上三种都有可能5.如图5-Z-3所示,OC⊥AB,∠COD=45°,则图中互为补角的角共有()A。

1对B。

2对C。

3对D。

4对6.在图5-Z-4中,线段的条数为()A。

9B。

10C。

13D。

157.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ的值为()A。

45°B。

60°C。

90°D。

180°二、填空题(每小题3分,共24分)8.已知∠A=40°,则∠A的余角的度数是( 50°)。

9.工人师傅在砌墙时,先在两端各固定一点,中间拉紧一条细线,然后沿着细线砌墙就能砌直。

运用的数学原理:(同一直线上的三点确定一条直线)。

10.9:30时,钟表的时针和分针构成的角的度数是( 105°)。

11.如图5-Z-5,已知BC=4,BD=7,D是线段AC的中点,则AB=( 15 )。

12.把16°15′化为度是( 16.25°)。

七年级数学第6章平面图形的认识(一)单元测试(A).doc

七年级数学第6章平面图形的认识(一)单元测试(A).doc

第6章平面图形的认识(一)单元测试(A)(满分:100分时间:60分钟)一、选择题(每题3分,共21分)1.要把一根木条同定在墙上,至少要钉()A. 1个钉子B. 2个钉子C. 3个钉子D. 4个钉子2.下列命题:①绷紧的琴弦可近似看作线段;②手电筒射出的光线可近似看作射线;③孙悟空的金箍棒可近似看作直线;④自来水管从高处流出的水可近似看作射线;⑤用一个2倍的放大镜观察一个10°的角,看到的角是20°,其中正确的有()A. 2个B. 3个C. 4个D. 5个3.如果Zc=60。

,那么Zd的余角的度数是()A. 30°B. 60°C. 90°D. 120°4.已知ZAOC=135° , OB为/AOC内部的一条射线,且ZBOC = 90°,以OB为一条边,0A为角平分线的角的另一边是()A. ZBOC的平分线B.射线0CC・射线0B的反向延长线 D.射线0C的反向延长线5.如图,直线AB与直线CD相交于点0, E是ZAOD内一点,若0E丄AB, ZBOD =45°,则ZCOE的度数是()A.125°B.135°C・ 145°D・ 155°6.在同一平面内,下列说法:①两直线不平行,一定相交;②经过直线外一点有且只有一条直线与已知直线平行;③过一点有且只有一条直线与已知直线垂直;④从直线外一点到这条直线的垂线叫点到直线的距离,其中正确的有()A. 1个B. 2个C. 3个D. 4个7.将一张纸第一次翻折,折痕为AB (如图①),第二次翻折,折痕为PQ(如图②),第三次翻折使PA与PQ重合,折痕为PC(如图③),第四次翻折使PB与PA重合,折痕为PD(如图④).此时,如果将纸复原到图①的形状,则ZCPD的度数是()A. 120°B. 90°C. 60°D. 45°二、填空题(每题3分,共21分) 8. ________________________________________________ 如图,从A 地到B 地共有五条路可以走,你应选择第 __________________________________ 条路,因为 _______9. 如图,CB=4, DB = 7,且D 是AC 的中点,贝!j AB=__________ ・10. 如果Z G =40° ,那么Za 的余角的补角等于 ___________ .11. 如图,小明在5m 的助跑线上跑过,从起跳板AB 上起跳,两脚分别落在C 、D 处,己知点C 到AB 的垂线段长度是2m,点D 到AB 的垂线段长度是2.2m,则他的跳远成绩是_______•12. (1)74.16° = ________ ° ______ ' ______ ”;(2) 35° 18'18”= ______ ° .13. 如图,小明把一个含60°角的三角尺CAB 绕60°角的顶点A 按逆时针方向旋转到DAE 的位置.若已量出ZCAE=100° ,则ZDAB= ____________ .14. 如图,P 是直线/外一点,过点P 画直线PA 、PB 、PC 、…,交/于点A 、B 、C 、….请你分别量出Zl 、Z2、Z3的度数和PA 、PB 、PC 的长度,你发现的规律是 _________ .三、解答题(共58分)15. (8分)如图,在方格纸上有一条线段AB 和一点C.助跑线A第11题(1)过点C画出与AB平行的直线CD;(2)过点C画出与AB垂直的直线CE.16- E如图’BC=1AB = 1CD, E. F分别是线段AB. CD的中点,且EF=60厘米,求AB、CD的长.1A» 1 1 1E C BF D第16题17.(10分)如图,直线AB、EF相交于点D, ZADC=90°・(1)Z1的对顶角是______ ; Z2的余角有 _______ ;(2)若Z1与Z2的度数之比为1: 5,求ZCDF、ZEDB的度数.18.(8分)如图,直线AB、CD相交于点O, OE丄OF,垂足为0, ZBOF=2ZBOE,OC平分ZAOE,求ZD0E的度数.19.(10 分)(1)点C、D在线段AB±,画出图形,指出图中共有多少条线段?(2)往返于甲、乙两地的客车,中途停靠三个站,每两站之间的距离都不等,问有多少种不同的票价?需准备多少种车票?20.(12分)如图,先找到长方形纸片的宽DC的中点E,将ZC过点E折起任意一个角, 折痕是EF,再将/D过点E折起,使DE和CE重合,折痕是GE,请探索下列问题.(1)ZFEC和ZGEC互为余角吗?为什么?(2)ZGEF是直角吗?为什么?(3)在上述折纸图形中,还有哪些角互为余角(至少写出五组)?哪些角互为补角(至少写出十二组)?B第20题参考答案16. AB 的长为72厘米,线段CD 的长为96厘米 17. (1) ZBDF Zl, ZBDF (2) ZCDF=105° , ZEDB=165°18. 105° 19. (1)如图,图中有线段AC 、AD 、AB 、CD 、CB 、DB,共6条线段 ⑵有10种不同的票价,需准备20种车票 I I,一 ■ AC D B第19题2. C3. A4. D5. B6. C7. B二、 12. 三、1. B 8.③ 两点Z 间的所有连线屮,线段最短9. 10 10. 130°(1)74 9 36 (2) 35.30513. 20° 14. 11 - 2 m 角度越大,线段长度越小15. (1)、(2)如图所示第15题20.⑴互为余角(2) ZGEF是直角(3)答案不唯一。

七年级上册数学 平面图形的认识(一)达标检测卷(Word版 含解析)

七年级上册数学 平面图形的认识(一)达标检测卷(Word版 含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.【答案】(1)解:不变化.理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°(∠OAB+∠ABO)=180° ×90°=135°(2)解:都不变.理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°【解析】【分析】根据角平分线定义和三角形内角和定理得到∠APB=180° −(∠OAB+∠ABO);根据邻补角的平分线互相垂直,得到∠CAQ=∠QBP=90°,由∠APB的度数,求出∠Q和∠C的度数.2.已知:如图1,点M是线段AB上一定点,AB=12cm,C、D两点分别从M、B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AM=4cm,当点C、D运动了2s,此时AC=________,DM=________;(直接填空)(2)当点C、D运动了2s,求AC+MD的值.(3)若点C、D运动时,总有MD=2AC,则AM=________(填空)(4)在(3)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.【答案】(1)2;4(2)解:当点C、D运动了2 s时,CM=2 cm,BD=4 cm∵AB=12 cm,CM=2 cm,BD=4 cm∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm(3)4(4)解:①当点N在线段AB上时,如图1,∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=4∴MN=AB﹣AM﹣BN=12﹣4﹣4=4∴ = = ;②当点N在线段AB的延长线上时,如图2,∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB=12∴ = =1;综上所述 = 或1【解析】【解答】解:(1.)根据题意知,CM=2cm,BD=4cm,∵AB=12cm,AM=4cm,∴BM=8cm,∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm,故答案为:2,4;(3.)根据C、D的运动速度知:BD=2MC,∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM,∵AM+BM=AB,∴AM+2AM=AB,∴AM= AB=4,故答案为:4;【分析】(1)根据运动速度和时间分别求得CM、BD的长,根据线段的和差计算可得;(2)由题意得CM=2 cm、BD=4 cm,根据AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD可得答案;(3)根据C、D的运动速度知BD=2MC,再由已知条件MD=2AC求得MB=2AM,所以AM= AB;(4)分点N在线段AB上时和点N在线段AB的延长线上时分别求解可得.3.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,∁….例如:当α=30°时,OA1, OA2, OA3, OA4的位置如图2所示,其中OA3恰好落在ON 上,∠A3OA4=120°;当α=20°时,OA1, OA2, OA3, OA4, OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是________;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3, OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是________(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.【答案】(1)45°(2)解:如图所示.∵α<30°,∴∠A0OA3<180°,4α<180°.∵OA4平分∠A2OA3,∴2(180°﹣6α)+ =4α,解得:(3),,(4)解:对于角α=120°不能停止.理由如下:无论a为多少度,旋转过若干次后,一定会出现OA i是∠A i OA K是的角平分线,所以旋转会停止.但特殊的,当a为120°时,第一次旋转120°,∠MOA1=120°,第二次旋转240°时,与OM 重合,第三次旋转360°,又与OM重合,第四次旋转480°时,又与OA1重合,…依此类推,旋转的终边只会出现“与OM重合”或“与OA1重合”两种情况,不会出第三条射线,所以不会出现OA i是∠A i OA K是的角平分线这种情况,旋转不会停止【解析】【解答】解:(1)解:如图所示.aφ=45°,【分析】(1)根据题意,明确每次旋转的角度,计算即可;(2)根据各角的度数,找出等量关系式,列出方程,求出α的度数即可;(3)类比第(2)小题的算法,分三种情况讨论,求出α的度数即可;(4)无论a为多少度,旋转很多次,总会出一次OA i是∠A i OA K是的角平分线,但当a=120度时,只有两条射线,不会出现OA i是∠A i OA K是的角平分线,所以旋转会中止.4.如图,已知点,且,满足 .过点分别作轴、轴,垂足分别是点A、C.(1)求出点B的坐标;(2)点M是边上的一个动点(不与点A重合),的角平分线交射线于点N,在点M运动过程中,的值是否变化?若不变,求出其值;若变化,说明理由. (3)在四边形的边上是否存在点,使得将四边形分成面积比为1:4的两部分?若存在,请直接写出点的坐标;若不存在,说明理由.【答案】(1)解:由得:,解得:∴点的坐标为(2)解:不变化∵轴∴BC∥x轴∴∵平分∴∴∴(3)解:点P可能在OC,OA边上,如下图所示,由(1)可知,BC=5,AB=3,故矩形的面积为15若点P在OC边上,可设P点坐标为,则三角形BCP的面积为,剩余部分面积为,所以,解得,P点坐标为;若点P在OA边上,可设P点坐标为,则三角形BAP的面积为,剩余部分面积为,所以,解得,P点坐标为 .综上,点的坐标为, .【解析】【分析】(1)由绝对值和算术平方根的非负性可知由两个非负数的和为0,则这两个数都为0,由此可列出关于,的二元一次方程组,解之即可得出B点坐标;(2)根据平行线和角平分线的性质可证明,所以比值不变化;(3)点P只能在OC,OA边上,表示出两部分的面积,依比值求解即可.5.如图1,已知直线CD∥EF,点A、B分别在直线CD与EF上.P为两平行线间一点.(1)若∠DAP=40°,∠FBP=70°,则∠APB=________.(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由.(3)利用(2)的结论解答:①如图2,AP1、BP1分别平分∠DAP、∠FBP,请你写出∠P与∠P1的数量关系,并说明理由.②如图3,AP2、BP2分别平分∠CAP、∠EBP,若∠APB=β,求∠AP2B(用含β的代数式表示).【答案】(1)(2)由(1)可知∠DAP,∠FBP,∠APB之间的关系为: .(3)解:①∠P=2∠P1;由(2)得:,即∠P=2∠P1;②由(2)得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分别平分∠CAP、∠EBP,∴∴【解析】【解答】(1)证明:过P作PM∥CD,∴∠APM=∠DAP.(两直线平行,内错角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一条直线的两条直线互相平行),∴∠MPB=∠FBP.(两直线平行,内错角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质),即【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等得出∠APM=∠DAP,根据平行于同一条直线的两条直线互相平行得出PM∥CD,根据两直线平行,内错角相等得出∠MPB=∠FBP,根据角的和差及等量代换即可得出;(2)由(1)可知∠DAP,∠FBP,∠APB之间的关系为: .(3)①∠P=2∠P1;根据(2)的结论,得,由角平分线的定义及等量代换得,②由(2)得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,根据角平分线的定义及角的和差,等量代换即可得出结论:∴=180°-.6.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,求∠BOF的度数;(2)若∠BOF=36°,求∠AOC的度数;(3)若|∠AOC﹣∠BOF|=α°,请直接写出∠AOC和∠BOF的度数.(用含的代数式表示)【答案】(1)解:∵∠BOD=∠AOC=76°,又∵OE平分∠BOD,∴∠DOE= ∠BOD= ×76°=38°.∴∠COE=180°﹣∠DOE=180°﹣38°=142°,∵OF平分∠COE,∴∠EOF= ∠COE= ×142°=71°,∴∠BOF=∠EOF﹣∠BOE=71°﹣38°=33°(2)解:∵OE平分∠BOD,OF平分∠COE,∴∠BOE=∠EOD,∠COF=∠FOE,∴设∠BOE=x,则∠DOE=x,故∠COA=2x,∠EOF=∠COF=x+36°,则∠AOC+∠COF+∠BOF=2x+x+36°+36°=180°,解得:x=36°,故∠AOC=72°(3)解:设∠BOE=x,∵OE平分∠BOD,∠BOD=∠AOC,∴∠DOE=x,∠COA=2x,∴∠BOC=180°-2x,∴∠COE=180°-x,∵OF平分∠COE,∴∠EOF=90°- x,∴∠BOF=90°﹣ x,∵|∠AOC﹣∠BOF|=α°,∴|2x﹣(90°﹣ x)|=α°,解得:x=()°+ α°或x=()°﹣α°,当x=()°+ α°时,∠AOC=2x=()°+ α°,∠BOF=90°﹣ x=()°﹣α°;当x=()°﹣α°时,∠AOC=2x=()°﹣α°,∠BOF=90°﹣ x=()°+ α°【解析】【分析】(1)由∠AOC=76°易得∠BOD=76°,结合OE平分∠BOD可得∠DOE=∠BOE=38°,由此可得∠COE=180°-38°=142°,结合OF平分∠COE可得∠EOF=71°,最后由∠BOF=∠EOF-∠BOE即可求得∠BOF的度数;(2)设∠BOE=x,由OE平分∠BOD,∠AOC=∠BOD可得∠DOE=∠BOE=x,∠AOC=2x,结合∠BOF=36°,OF平均∠EOF 可得∠COF=∠EOF=x+36°,最后由∠AOC+∠COF+∠BOF=180°即可列出关于x的方程,解方程求得x的值即可求得∠AOC的度数;(3)设∠BOE=x,则由已知条件易得∠AOC=2x,∠BOF=90°- x,这样结合|∠AOC﹣∠BOF|=α°即可列出关于x的方程,解方程求得x的值即可求得∠AOC和∠BOF的值.7.已知,,点在射线上, .(1)如图1,若,求的度数;(2)把“ °”改为“ ”,射线沿射线平移,得到,其它条件不变(如图2所示),探究的数量关系;(3)在(2)的条件下,作,垂足为,与的角平分线交于点,若,用含α的式子表示(直接写出答案).【答案】(1)解:∵CD//OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-90°-120°=150°(2)解:如图2,过O点作OF//CD,∴CD//OE,∴OF∥OE,∴∠AOF=180°-∠OCD,∠BOF=∠EO'O=180°-∠BO'E,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO'E=360°-(∠OCD+∠BO'E)=120°,∴∠OCD+∠BO'E=240°(3)30°+【解析】【解答】解:(3)如图,∵CP是∠OCD的平分线,∴∠OCP= ∠OCD,∴∠CPO'=360°-90°-120°-∠OCP=150°- ∠OCD=150°- (240°-∠BO'E)=30°+【分析】(1)先求出到∠AOE的度数,再根据直角、周角的定义即可求解;(2)过O点作OF//CD,根据平行线的判定和性质可得∠OCD、∠BO'E的数量关系;(3)根据四边形内角和为360°,再结合(2)的结论以及角平分线的定义即可解答.8.如图,在△ ABC中,∠ ABC、∠ ACB的平分线交于点O.(1)若∠ABC=40°,∠ ACB=50°,则∠BOC=________(2)若∠ABC+∠ ACB=lO0°,则∠BOC="________"(3)若∠A=70°,则∠BOC=________(4)若∠BOC=140°,则∠A=________(5)你能发现∠ BOC与∠ A之间有什么数量关系吗?写出并说明理由.【答案】(1)135°(2)130°(3)125°(4)100°(5)解:BO平分∠ABC, CO平分∠ABC ∴∠OBC=0.5∠ABC ∠OCB=0.5∠ACB ∴∠OBC+∠OCB=0.5∠ABC+0.5∠ACB= 0.5(180-∠A)=90-0.5∠A ∴∠O=180-(∠OBC+∠OCB)=180-(90-0.5∠A)=90°+0.5∠A【解析】【解答】解:(1)∵∠ABC=40°,∠ACB=50°,在△ABC中,∠ABC、∠ACB的平分线交于点O.∴∠OBC= ∠ABC=20°,∠OCB= ∠ACB=25°,∴∠BOC=180°-∠OBC-∠OCB=180°-20°-25°=135°,故答案是:135°;( 2 )在△ABC中,∠ABC、∠ACB的平分线交于点O.∴∠OBC= ∠ABC,∠OCB= ∠ACB,∴∠OBC+∠OCB= (∠ABC+∠ACB)=50°,∴∠BOC=180°- (∠ABC+∠ACB)=180°-50°=130°,故答案是130°.( 3 )在△ABC中,∠ABC、∠ACB的平分线交于点O.∴∠OBC= ∠ABC,∠OCB= ∠ACB,∴∠OBC+∠OCB= (∠ABC+∠ACB)=55°,∴∠BOC=180°- (∠ABC+∠ACB)=180°-55°=125°,故答案是125°;( 4 )∵∠BOC=140°,∴∠OBC+OCB=40°,∵∠OBC= ∠ABC,∠OCB= ∠ACB,∴∠ABC+∠ACB=2(∠OBC+OCB)=80°,∴∠A=100°,故答案是:100°;【分析】根据角平分线的性质以及三角形内角和定理得出∠OBC和∠OCB与∠A之间的关系,然后根据△BOC的内角和定理得出∠BOC与∠A的关系.9.如图1,已知∠MON=60°,A、B两点同时从点O出发,点A以每秒x个单位长度沿射线ON匀速运动,点B以每秒y个单位长度沿射线OM匀速运动.(1)若运动1s时,点A运动的路程比点B运动路程的2倍还多1个单位长度,运动3s 时,点A、点B的运动路程之和为12个单位长度,则x=________,y=________;(2)如图2,点C为△ABO三条内角平分线交点,连接BC、AC,在点A、B的运动过程中,∠ACB的度数是否发生变化?若不发生变化,求其值;若发生变化,请说明理由;(3)如图3,在(2)的条件下,连接OC并延长,与∠ABM的角平分线交于点P,与AB 交于点Q.①试说明∠PBQ=∠ACQ;②在△BCP中,如果有一个角是另一个角的2倍,请写出∠BAO的度数.【答案】(1)3;1(2)解:的度数不发生变化,其值求解如下:由三角形的内角和定理得点C为三条内角平分线交点,即AC平分,BC平分由三角形的内角和定理得(3)解:①由三角形的外角性质得:点C为三条内角平分线交点,即AC平分,OC平分又是的角平分线;② 是的角平分线,BC平分由三角形的外角性质得:则在中,如果有一个角是另一个角的2倍,那么一定是.【解析】【解答】(1)由题意得:化简得解得故答案为:3,1;【分析】(1)根据“路程速度时间”建立一个关于x、y的二元一次方程组,求解即可得;(2)先根据三角形的内角和定理可得,再根据角平分线的定义可得,然后根据三角形的内角和定理即可得;(3)①先根据三角形的外角性质可得,再根据角平行线的定义即可得;②先根据角平分线的定义、平角的定义得出,再根据三角形的外角性质得出,从而得出,然后根据直角三角形的性质得出,最后根据角的和差、角平分线的定义即可得.10.如(图1),在平面直角坐标系中,,,,且满足,线段交轴于点.(1)填空: ________, ________;(2)点为轴正半轴上一点,若,,且分别平分,如(图2),求的度数;(3)求点的坐标;(4)如(图3),在轴上是否存在一点,使三角形的面积和三角形的面积相等?若存在,求出点坐标,若不存在,说明理由.【答案】(1)-3;3(2)解:∵AB∥DE,∴∠ODE+∠DFB=180°,∵,∴∠DFB=∠AFO=180°-140°=40°,∴∠FAO=50°,∵分别平分,∴∠OAN=∠FAO=25°,∠NDM=∠ODE=70°,∴∠DNM=∠ANO=90°-25°=65°,∴∠AMD=180°−∠DNM-∠NDM=45°(3)解:连结OB,如图,设F(0,t),∵△AOF的面积+△BOF的面积=△AOB的面积,∴ ×3×t+ ×t×3= ×3×3,解得t=,∴F点坐标为(0,);(4)解:存在,∵,∴△的面积= ,设Q(0,y),∵△ABQ的三角形=△AQF的面积+△BQF的面积,∴•|y− |•3+•|y− |•3=,解得y=5或y=−2,∴此时Q点坐标为(0,5)或(0,−2);【解析】【解答】解:(1)∵(a+b)2+|b-a-6|=0,∴a+b=0,b-a-6=0,∴a=−3,b=3,故答案为:-3,3;【分析】(1)根据非负数的性质得a+b=0,b-a-6=0,然后解方程组求出a和b即可得到点A和B的坐标;(2)由AB∥DE可知∠ODE+∠DFB=180°,得到∠DFB=∠AFO=180°-140°=40°,所以∠FAO=50°,再根据角平分线定义得∠OAN=∠FAO=25°,∠NDM=∠ODE=70°,得到∠DNM=∠ANO=90°-25°=65°,然后根据三角形内角和定理得∠AMD=180°−∠DNM-∠NDM=45°;(3)①连结OB,如图3,设F(0,t),根据△AOF的面积+△BOF的面积=△AOB的面积得到 ×3×t+ ×t×3= ×3×3,解得t=,则可得到F点坐标为(0,);(4)先计算△ABC的面积=,利用△ABQ的三角形=△AQF的面积+△BQF的面积得到•|y− |•3+•|y− |•3=,解出y即可.11.如图①,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的上方.(1)在图①中, ________度;(2)将图①中的三角板绕点按逆时针方向旋转,使得在的内部,如图②,若,求的度数;(3)将图①中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,当直线恰好平分锐角时,旋转的时间是________秒.(直接写出结果)【答案】(1)30(2)解:设∠BON=α,∵∠BOC=60°,∴∠NOC=60°-α,∵∠MON=90°,∴∠MOC=∠MON-∠NOC=90°-60°+α=30°+α,∠MOA=180°-∠MON-∠BON=180°-90°-α=90°-α,∵∠NOC= ∠MOA,∴60°-α= (90°-α),解得:α=54°,即∠BON=54°;(3)3或21【解析】【解答】(1)∵将一直角三角板的直角顶点放在点O处,一边ON在射线OB 上,另一边OM在直线AB的上方,∴∠MON=90°,∴∠COM=∠MON-∠BOC=90°-60°=30°,(3)∵直线ON平分∠BOC,∠BOC=60°,∴∠BON=30°或∠BON=210°,∵三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,∴直线ON平分∠BOC时,旋转的时间是3或21秒,故答案为:3或21.【分析】(1)由题意得出∠MON=90°,得出∠COM=∠MON-∠BOC=90°-60°=30°;(2)设∠BON=α,则∠NOC=60°-α,∠MOC=∠MON-∠NOC=90°-60°+α=30°+α,∠MOA=180°-∠MON-∠BON=180°-90°-α=90°-α,由题意得出60°-α= (90°-α),解得α=54°即可;(3)求出∠BON=30°或∠BON=210°,即可得出答案.12.以直线上点为端点作射线,使,将直角的直角顶点放在点处.(1)若直角的边在射线上(图①),求的度数;(2)将直角绕点按逆时针方向转动,使得所在射线平分(图②),说明所在射线是的平分线;(3)将直角绕点按逆时针方向转动到某个位置时,恰好使得(图③),求的度数.【答案】(1)解:∵,又∵,∴ .(2)解:∵平分,∴,∵,∴,,∴,∴所在直线是的平分线.(3)解:设,则,∵,,①若∠COD在∠BOC的外部,∴,解得x=10,∴∠COD=10°,∴∠BOD=60°+10°=70°;②若∠COD在∠BOC的内部,,解得x=30,∴∠COD=30°,∴∠BOD=60°-30°=30°;即或,∴或 .【解析】【分析】(1)代入∠BOE=∠COE+∠COB求出即可;(2)求出∠AOE=∠COE,根据∠DOE=90°求出∠AOE+∠DOB=90°,∠COE+∠COD=90°,推出∠COD=∠DOB,即可得出答案;(3)要分情况讨论,一种是∠COD在∠BOC的内部,另一种是∠COD在∠BOC的外部,再根据平角等于180°可通过列方程求出即可.。

七年级上册平面图形的认识(一)达标检测卷(Word版 含解析)

七年级上册平面图形的认识(一)达标检测卷(Word版 含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧(1)若AB=18,DE=8,线段DE在线段AB上移动①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式,则________.【答案】(1)解:①又 E为BC中点;②设,因点F(异于A、B、C点)在线段AB上,可知:,和当时,此时可画图如图2所示,代入得:解得:,即AD的长为3当时,此时可画图如图3所示,代入得:解得:,即AD的长为5综上,所求的AD的长为3或5;(2) .【解析】【解答】(2)①若DE在如图4的位置设,则又(不符题设,舍去)②如DE在如图5的位置设,则又代入得:解得:则 .【分析】(1)①根据AB的长和可求出AC和BC,根据中点的定义可得CE,再由可得CD,最后根据计算即可得;②设,因点F(异于A、B、C点)在线段AB上,可知,和,所以需分2种情况进行讨论:和,如图2、3(见解析),先根据已知条件判断点E、F位置,再将EF和CE用含x的式子表示出来,最后代入求解即可;(2)设,先判断出DE在AB上的位置,再根据得出x和y 满足的等式,然后将其代入化简即可得.3.问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足____关系。

七年级数学第六章平面图形的认识一检测卷含答案

七年级数学第六章平面图形的认识一检测卷含答案

1第六章 平面图形的认识(一) 检测卷(总分100分 时间60分钟)一、选择题选择题((每小题3分,共24分) 1.若∠α=35°,则∠α的补角等于 ( )A .155°B .145°C .65°D .55° 2.如图,ON ⊥L ,OM ⊥L ,所以OM 与ON 重合,其理由是 ( ) A .过二点只有一条直线 B .垂线段最短C .过一点只能作一条垂线D.经过一点只有一条直线垂直于已知直线3.如图,OB 、OD 分别平分∠AOC 、∠COE ,若∠BOD =70°,则∠AOE 等于 ( )A .70°B .100°C .140°D .120° 4.下列画图语句中,正确的是 ( )A .画射线OP =3cmB .连结A 、B 两点C .画出A 、B 两点的中点D .画出A 、B 两点的距离 5.把两块三角板按如图所示那样拼在一起,则∠ABC 的大小为 ( ) A .90° B .120° C .100° D .135°6.在同一平面内,有8条互不重合的直线,l 1,l 2,l 3,…l n ,若l 1⊥l 2,l 2∥l 3,l 3⊥l 4,l 4∥l 5……以此类推,则l 1和l 5的位置关系是 ( )A .垂直B .平行C .平行或垂直D .无法确定7.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①∠α-90°;②90°-∠β;③12(∠α+∠β;④12(∠a -∠β).正确的个数是 ( ) A .4个 B .3个 C .2个 D .1个 8.如图,M 、N 、P 、Q 分别是数轴上四个整数所对应的点, 并且MN =NP =PQ =1,数a 对应的点在M 、N 之间,数b 对应的点在P 、Q 之间,若a b +=3,则原点是( )A .M 或QB .N 或PC .M 或PD .N 或Q2二、填空题填空题((每小题3分,共30分)9.如图,在一条河旁有甲、乙两个村庄,现在需在河上架设一座桥, 使桥到甲、乙两村的距离之和最短,请在图中标出桥的位置,并说明理由_______.10.钟面上2点整时,时针和分针的夹角是______;3点45分时,时针与分针的夹角是_______.11.已知点B 在线段AC 上,AB =8cm ,AC =18cm ,P 、Q 分别是AB 、AC 中点,则PQ=_______.12.如图,C 、D 是线段AB 上的点,若AB =8,CD =2,则图中以A 、C 、D 、B 为端点的所有线段的长度之和为_______.13.在一七巧板拼图中,如图,∠ADC =______度.14.如图,直线AB 、CD 、EF 相交于点O ,则∠1+∠2+∠3的度数是_______度. 15.已知∠a =40°36',则∠A 的余角为_______.16.8.15°=_______平角,38周角=_______度,25°12'18”=_______度.17.将一张长方形纸片按如图所示的方式折叠,BC 、BD 为折痕,则∠CBD 为_______°.18.一块正方形木板有4个角,每次锯掉一个角,锯一次后还有5个角,锯两次后还有6个角,锯三次后还有7个角,……像这样锯n 次后,还有_______个角. 三、解答题解答题((19题6分,20~24题每题8分,共46分)19.一个角的补角等于这个角的余角的3倍,求这个角的度数.320.如图,点P 是∠AOB 的边OB 上的一点. (1)过点P 画OB 的垂线,交OA 于点C , (2)过点P 画OA 的垂线,垂足为H ;(3)线段PH 的长度是点P 到_______的距离,_______是点C 到直线OB 的距离,线段PC 、PH 、OC 这三条线段大小关系是______________(用“<”号连接).21.如图,直线AB 、CD 交于点O ,∠AOE =∠COF =90°. (1)找出图中所有相等的角;(2)找出图中的对顶角.22.如图,延长线段AB 到C ,使BC =2AB ,取AC 的中点D ,已知BD =2cm ,求AC的长.23.如图,AOC为一直线,OD是∠AOB的平分线,∠BOE=12∠EOC,∠DOE=72°.求∠EOC的度数.24.如图,P是直线AB外一点,AB上任意一个点与P点连结得到一条线段,在AB上各点所连结的线段中:(1)你能找出最短的一条吗?并说明你找出的根据;(2)如图②利用你的结论来测运动会上小明由A点跳到B点的跳远成绩.45参考答案1.B 2.D 3.C 4.B 5.B 6.B 7.B 8.A 9.两点之间线段最短 10.60°;157.5° 11.5cm 12.26 13.135 14.180 15.49°24' 16.112;135;25.25 17.90 18.n +4 19.45° 20.(1)(2)如图所示 (3)OA CP 的长度PH<PC<OC21.(1)相等角的有∠1=∠2,∠3=∠4,∠AOD =∠COB =∠EOF ,∠BOF =∠DOE ,∠AOE =∠COF =∠DOF =∠BOE . (2)对顶角有:∠1与∠2. 22.12cm 23.72°24.(1)如图①PC 最短,理由是垂线段最短.(2)如图②小明由A 跳到B 点的跳远成绩是垂线段BC 的长.。

2020年苏科版初一数学下册第7章 平面图形的认识(二) 单元测试卷及答案(AB卷)

2020年苏科版初一数学下册第7章 平面图形的认识(二) 单元测试卷及答案(AB卷)

第7章平面图形的认识(二) 单元综合卷(A)一、选择题(每题3分,共21分)1.下列图案中,只要用其中一部分平移一次就可以得到的是( )2.如图,在所标记的角中,是同旁内角的有( )A.∠1和∠2 B.∠1和∠4 C.∠3和∠4 D.∠2和∠33.如图,为了估计池塘两岸A、B间的距离,杨阳在池塘的一侧选到了一点,测得PA=16 m,PB=12 m,那么AB间的距离不可能是( )A.5 m B.15 m C.20 m D.28 m4.如图,.AB∥CD,AC⊥BC,图中与∠CAB 互余的角有( ) A.1个B.2个C.3个D.4个5.一个正方形和两个等边三角形的位置如图所示,若∠3=50。

,则∠1+∠2的度数为( ) A.90︒B.100︒C.130︒D.180︒6.已知一个多边形的最小的外角是60︒,其余外角依次增加20︒,则这个多边形的边数为( )A.6 B.5 C.4 D.37.如图,在△ABC中,ZA=96。

,延长BC到D,∠ABC与∠ACD的平分线相交于点A。

.∠A1BC与∠A1CD的平分线相交于点A2,依此类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为( )A.19.2︒B.8︒C.6︒D.3︒二、填空题。

(每空3分,共21分)8.如图,AB∥CD,∠C=25︒,∠E=30︒,则∠A= .9.在△ABC中,三个内角∠A、∠B、∠C满足∠B一∠A=∠C一∠B,则∠B= .10.已知一个多边形的每一个内角都等于140︒,则这个多边形的边数是.11.已知三角形的边长分别为4、a、8,则a的取值范围是;如果这个三角形中有两条边相等,那么它的周长为.12.如图是一块从一个边长为50 cm的正方形材料中剪出的垫片,现测得FG=8 cm,则这个剪出的图形的周长是cm.13.在如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7= .14.如图,∠A=10︒,∠ABC=90︒,∠ACB=∠DCE,∠ADC=∠EDF,∠CED=∠FEG,则∠AFE= .三、解答题。

A4版打印苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

A4版打印苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、在下列图形中,线段PQ的长度表示点P到直线L的距离的是()A. B. C. D.2、下列四个图形中,∠α的度数等于50°的图形个数是()A.1个B.2个C.3个D.4个3、下列四个命题:①两直线平行,内错角相等;②若a>0,则a+3>0;③两个角相等,它们一定是对顶角;④二元一次方程的解为其中为真命题的个数是( )A.1B.2C.3D.44、如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.24B.C.D.55、过平面上三点中的任意两点作直线,可作( )A.1条B.3条C.1条或3条D.无数条6、如图,O为直线AB上一点,OM平分∠AOC,ON平分∠BOC,则图中互余的角有()A.4对B.3对C.2对D.1对7、平面内,经过直线外一点画的垂线,能画出(A.1条B.2条C.3条D.4条8、如图,在△ABC中,AB=AC=5,BC=6,若点P在边AC上移动,则BP的最小值是()A.5B.6C.4D.4.89、下列语句叙述正确的有( )①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.0个B.1个C.2个D.3个10、如图,是直线上的一点,,,平分,则图中的大小是()A. B. C. D.11、一条船在灯塔的北偏东30°方向,那么灯塔在船的什么方向()A.南偏西30°B.西偏南40°C.南偏西60°D.北偏东30°12、下列四种说法:①线段AB是点A与点B之间的距离;②射线AB与射线BA 表示同一条射线;③两点确定一条直线;④两点之间线段最短.其中正确的个数是 ( )A.1个B.2个C.3个D.4个13、下列说法正确的个数是()①“对顶角相等”的逆命题是真命题②所有的黄金三角形都相似③若数据1、-2、3、x的极差为6,则x=4 ④方程x2-mx-3=0有两个不相等的实数根⑤已知关于x的方程的解是正数,那么m的取值范围为m>-6A.5B.4C.3D.214、如图,点A到线段BC所在直线的距离是线段()A.AC的长度B.AD的长度C.AE的长度D.AB的长度15、下列说法正确的是()A.射线AB与射线BA是同一条射线B.任何一个锐角的余角比它的补角小C.一个角的补角一定大于这个角D.如果,那么互为补角二、填空题(共10题,共计30分)16、如图是一个正方形,把此正方形沿虚线AB减去一个角,得到一个五边形,则这个五边形的周长________原来正方形的周长.(填“大于”“小于”或“等于”),理由是________17、如图,在△ABC,AB=AC,点D为BC的中点,AE是∠BAC外角的平分线,DE//AB交AE于E,则四边形ADCE的形状是________.18、某物体A先在小明的西南方向,后来A绕小明逆时针旋转了140°,则这时A在小明的________方向.19、如图,点是正方形的对角线上的一个动点(不与、重合),连接,过点作直线的垂线,垂足为,连接.若正方形的边长为4,则线段的最小值是________.20、如图,AB∥CD,BC平分∠ABD,且∠C=40°,则∠D的度数是________.21、将一根木条固定在墙上只用了两个钉子,这样做的依据是________.22、钟面上 8 点 30 分时,时针与分针的夹角的度数是________ .23、如图,若按虚线剪去长方形纸片相邻的两个角,并使∠1=120°,则∠2的度数为________24、如右图, A、B、C三点在一直线上,已知∠1=23º,∠2=67º,则CD与CE 的位置关系是________ .25、如图,想在河堤两岸搭建一座桥,搭建方式最短的是________,理由________;三、解答题(共5题,共计25分)26、如图所示,直线AB、CD、EF相交于点O,CD⊥AB,∠AOE:∠AOD=3:5,求∠BOF与∠DOF的度数.27、如图,A、B、C和D、E、F分别在同一条直线上,且∠1=∠2,∠C=∠D,试完成下面证明∠A=∠F的过程.证明:∵∠1=∠2(已知),∠2=∠3(▲),∴__▲__(等量代换)∴BD//CE(_▲_)∴∠D+∠DE=180°(_▲__),又∵∠C=∠D(_▲_),∴∠C+∠DEC=180°(_▲),∴__▲__(_▲_),∴∠A=∠F(__▲_).28、己知:如图,点O在直线AC上,OD平分∠AOB,,求:∠EOC的度数.29、如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东30°、西北(即北偏西45°)方向上又分别发现了客轮B和海岛C.(1)仿照表示灯塔方位的方法,分别画出表示客轮B和海岛C方向的射线OB,OC(不写作法);(2)若图中有一艘渔船D,且∠AOD的补角是它的余角的3倍,画出表示渔船D方向的射线OD,则渔船D在货轮O的方位角30、已知与互为补角,是的角平分线,射线在内,且,,求的度数.参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、C5、C6、A7、A8、D9、B10、C11、A12、B13、D14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、。

七年级上册数学 平面图形的认识(一)达标检测卷(Word版 含解析)

七年级上册数学 平面图形的认识(一)达标检测卷(Word版 含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.感知:如图①,∠ACD为△ABC的外角,易得∠ACD=∠A+∠B(不需证明) ;(1)探究:如图②,在四边形ABDC中,试探究∠BDC与∠A、∠B.、∠C之间的关系,并说明理由;(2)应用:如图③,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ 恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=________度;(直接填答案,不需证明) (3)拓展:如图④,BE平分∠ABD,CE平分∠ACD,若∠BAC=100°,∠BDC=150°,则∠BEC=________度. (直接填答案,不需证明)【答案】(1)解:如图5,连接AD并延长至点F.∵∠BDF为△ABD的外角,∴∠BDF=∠BAD+∠B,同理可得∠CDF=∠CAD+∠C,∴∠BDF+∠CDF=∠BAD+∠B+∠CAD+∠C,即∠BDC=∠BAC+∠B+∠C;(2)40°(3)125°【解析】【解答】解:(2)由题意可得∠BXC=90°,由(1)中结论可得∠BXC=∠A+∠ABX+∠ACX,∵∠A=50°,∴∠ABX+∠ACX=90°-50°=40°;(3)如图6,∵∠A=100°,∠BDC=150°,∠BDC=∠A+∠ABD+∠ACD,∴∠ABD+∠ACD=150°-100°=50°,∵BE平分∠ABD,CE平分∠ACD,∴∠ABE+∠ACE= (∠ABD+∠ACD)=25°,又∵∠BEC=∠A+∠ABE+∠ACE,∴∠BEC=100°+25°=125°.【分析】(1)如图5,连接AD并延长至F,然后利用三角形外角的性质进行分析证明即可得到∠BDC=∠BAC+∠B+∠C;(2)由题意可知∠BXC=90°,结合∠A=50°和(1)中所得结论即可得到∠ABX+∠ACX=90°-50°=40°;(3)如图6,利用(1)中所得结论结合已知条件进行分析解答即可.2.探究题学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题。

七年级上册数学 平面图形的认识(一)单元测试卷 (word版,含解析)

七年级上册数学 平面图形的认识(一)单元测试卷 (word版,含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.2.如图1,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.(1)将图1中的三角板绕点逆时针旋转至图,使一边在的内部,且恰好平分,问:此时直线是否平分?请直接写出结论:直线 ________(平分或不平分) .(2)将图1中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为________.(直接写出结果)(3)将图1中的三角板绕点顺时针旋转,请探究:当始终在的内部时(如图3),与的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【答案】(1)平分(2)或49(3)解:不变,设,,,【解析】【解答】(1)直线平分;(2)或【分析】(1)根据图形得到直线ON平分∠AOC ;(2)由三角板绕点 O 以每秒 5 °的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON恰好平分锐角∠AOC,求出t的值;(3)根据题意得到∠AON=50°−y,∠AOM−∠NOC=x−y=40°.3.如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰为AB的中点,求DE的长;(2)若AC=6cm,求DE的长;(3)试说明不论AC取何值(不超过16cm),DE的长不变;(4)知识迁移:如图2,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD、OE 分别平分∠AOC和∠BOC,试说明∠DOE=65°与射线OC的位置无关.【答案】(1)解:∵点C恰为AB的中点,∴AC=BC= AB=8cm,∵点D、E分别是AC和BC的中点,∴DC= AC=4cm,CE= BC=4cm,∴DE=8cm(2)解:∵AB=16cm,AC=6cm,∴BC=10cm,由(1)得,DC= AC=3cm,CE= CB=5cm,∴DE=8cm(3)解:∵点D、E分别是AC和BC的中点,∴DC= AC,CE= BC,∴DE= (AC+BC)= AB,∴不论AC取何值(不超过16cm),DE的长不变(4)解:∵OD、OE分别平分∠AOC和∠BOC,∴∠DOC= ∠AOC,∠EOC= ∠BOC,∴∠DOE=∠DOC+∠EOC= (∠AOC+∠BOC)= ∠AOB=65°,∴∠DOE=65°与射线OC的位置无关【解析】【分析】(1)由点C恰为AB的中点,得到AC=BC的值,再由点D、E分别是AC和BC的中点,求出DE的值;(2)由(1)得,DC= AC的值,CE= CB的值,得到DE的值;(3)由点D、E分别是AC和BC的中点,得到不论AC取何值(不超过16cm),DE 的长不变;(4)由OD、OE分别平分∠AOC和∠BOC,根据角平分线定义,得到∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=∠AOB,得到∠DOE=65°与射线OC的位置无关.4.如图,已知AB∥CD,∠A=40°,点P是射线B上一动点(与点A不重合),CM,CN分别平分∠ACP和∠PCD,分别交射线AB于点M,N.(1)求∠MCN的度数.(2)当点P运动到某处时,∠AMC=∠ACN,求此时∠ACM的度数.(3)在点P运动的过程中,∠APC与∠ANC的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.【答案】(1)解:∵A B∥CD,∴∠ACD=180°﹣∠A=140°,又∵CM,CN分别平分∠ACP和∠PCD,∴∠MCN=∠MCP+∠NCP= (∠ACP+∠PCD)= ∠ACD=70°,故答案为:70°.(2)解:∵AB∥CD,∴∠AMC=∠MCD,又∵∠AMC=∠ACN,∴∠MCD=∠ACN,∴∠ACM=∠ACN﹣∠MCN=∠MCD﹣∠MCN=∠NCD,∴∠ACM=∠MCP=∠NCP=∠NCD,∴∠ACM= ∠ACD=35°,故答案为:35°.(3)解:不变.理由如下:∵AB∥CD,∴∠APC=∠PCD,∠ANC=∠NCD,又∵CN平分∠PCD,∴∠ANC=∠NCD= ∠PCD= ∠APC,即∠APC:∠ANC=2:1.【解析】【分析】(1)由AB∥CD可得∠ACD=180°-∠A,再由CM、CN均为角平分线可求解;(2)由AB∥CD可得∠AMC=∠MCD,再由∠AMC=∠ACN可得∠ACM =∠NCD(3)由AB∥CD可得∠APC=∠PCD,再由CN为角平分线即可解答.5.根据下图回答问题:(1)如图1,CM平分∠ACD,AM平分∠BAC,∠MAC+∠ACM=90°,请判断AB与CD的位置关系并说明理由;(2)如图2,当∠M=90°且AB与CD的位置关系保持(1)中的不变,当直角顶点M移动时,问∠BAM与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,G为线段AC上一定点,点H为直线CD上一动点且AB与CD的位置关系保持(1)中的不变,当点H在射线CD上运动时(点C除外)∠CGH+∠CHG与∠BAC有何数量关系?猜想结论并说明理由.【答案】(1)∵CM平分∠ACD,AM平分∠BAC,∴∠BAC=2∠MAC,∠ACD=2∠ACM,∵∠MAC+∠ACM=90°,∴∠BAC+∠ACD=180°,∴AB∥CD;(2)∠BAM+∠MCD=90°,理由:如图,过M作MF∥AB,∵AB∥CD,∴MF∥AB∥CD,∴∠BAM=∠AMF,∠FMC=∠DCM,∵∠M=90°,∴∠BAM+∠MCD=90°;(3)∠BAC=∠CHG+∠CGH.理由:过点G作GP∥AB,∵AB∥CD∴GP∥CD,∴∠BAC=∠PGC,∠CHG=∠PGH,∴∠PGC=∠CHG+∠CGH,∴∠BAC=∠CHG+∠CGH.【解析】【分析】(1)已知CM平分∠ACD,AM平分∠BAC,根据角平分线的定义可得∠BAC=2∠MAC,∠ACD=2∠ACM,再由∠MAC+∠ACM=90°,即可得∠BAC+∠ACD=180°,根据同旁内角互补,两直线平行即可得AB∥CD;(2)∠BAM+∠MCD=90°,过M作MF∥AB,即可得MF∥AB∥CD,根据平行线的性质可得∠BAM=∠AMF,∠FMC=∠DCM,再由∠M=90°,即可得∠BAM+∠MCD=90°;(3)∠BAC=∠CHG+∠CGH,过点G作GP∥AB,即可得GP∥CD,根据平行线的性质可得∠BAC=∠PGC,∠CHG=∠PGH,所以PGC=∠CHG+∠CGH,即可得∠BAC=∠CHG+∠CGH.6.如图,BE平分∠ABC,∠ABC=2∠E,∠ADE+∠BCF=180°.(1)请说明AB∥EF的理由;(2)若AF平分∠BAD,判断AF与BE的位置关系,并说明理由.【答案】(1)证明:∵BE平分∠ABC,∴∠ABE= ∠ABC.又∵∠ABC=2∠E,即∠E= ∠ABC,∴∠E=∠ABE.∴AB∥EF(2)解:结论:AF⊥BE.理由:∵∠ADE+∠ADF=180°,∠ADE+∠BCF=180°,∴∠ADF=∠BCF,∴AD∥BC;∴∠DAB+∠CBA=180°,∵∠OAB= DAB,∠OBA= ∠CBA,∴∠OAB+∠OBA=90°,∴∠AOB=90°,∴AF⊥BE【解析】【分析】(1)由BE平分∠ABC,得∠ABE=∠ABC,结合∠ABC=2∠E,得∠E=∠ABC,等量代换得∠E=∠ABE,则内错角相等两直线平行,AB平行EF;(2)由同角的补角相等得∠ADF=∠BCF,则同位角相等两直线平行,AD∥BC,由于∠DAB和∠CBA是同旁内角,得∠DAB+∠CBA=180°,由于∠OAB和∠OBA分别是∠DAB和∠CBA的一半,则∠OAB和∠OBA之和为90°,即AF⊥BE。

七年级数学第六章七年级数学平面图形的认识(一)测试卷(一).doc

七年级数学第六章七年级数学平面图形的认识(一)测试卷(一).doc

第六章七年级数学平面图形的认识(一)测试卷(一)(满分:100分时间:60分)一. 选择题(20分)下列各图屮,画出了直线PQ 、射线AB 和线段MN,其中能相交的是西30°的射线是1.2. 如果Z a =40°A. 60°3. D. 90,那么Z G 的余角等于B. 50C. 140 如图,图中画出了以点O 为端点的四条射线OA 、OB 、 OC 、OD,其中,方向为北偏A. 射线OAB. 射线OBC. 射线OCD.射线OD4. 如图, A. 15. 如图, 在正方体屮,与棱AB 平行的棱有B. 2条C- 3条CD 丄EF 于点D,且ZEDA=ZFDB,下列说法中,D. 4条错误的是A. ZEDA 与 ZBDC 互余B. ZEDA 与ZFDA 互补B东第4题 第5题C. ZEDA与ZFDB是对顶角D. ZADC=ZBDC6.下列说法中,正确的是A.一根拉紧的细线就是直线B.直线上的一点将直线分成两条相等的射线C.经过两点有且只有一条直线D.端点相同的两条射线就是同一条射线7.如图,C是AB的中点,D是BC的中点.下列等式中,错误的有()① CD=AC—DB② CD=AD—BC③CD=-AB--AC④ CD=-AB» 1 1 1 A C D B2 23A. 1个B. 2个C. 3个D.4个8.下列说法中,正确的是( )A.互补的两个角若相等,则这两个角都是直角B.直线是平角C.不相交的两条直线互相平行D.和为180°的两个角是邻补角9.在同一平面内,四条直线的交点个数不可能是()A. 2个B. 3个C. 4个D. 5个10.如图,在正方形网格中,Zl、Z2、Z3的大小关系是()A.Z1 = Z2=Z3B.Z1 = Z2>Z3C.Z1<Z2=Z3D.Z1>Z2>Z3二、填空题(20分)11.两点之间的所有连线中,__________ 最短.12.2时30分时,钟面上的时针和分针的夹角度数是___________ .13.如图,当Z1和Z2满足条件___________ 吋,OA丄OB.(填一个适当的条件)第13题第14题14.__________________________________________________________________ 如图,ZAOD和ZBOC都是直角,如果ZDOC=38°,那么ZADB的度数是_________________15.计算:28° 32’ +15° 46’ _____________ ° , 180° -32°47’ 12" = ________________ ,32° 5' 42" X4= _____________ , 37° 43z 27"十3= _____________ .16.已知A、B、C三点在同一条直线上,AB = 10, BC=8,则AC= ______________ .17.用_副三角尺可以画出的度数有______________________________________________(请写出所有能画出的度数)三、计算题(18分)18.一个角的补角是它的余角的3倍,求这个角的度数.19.如图,AB = 8cm,点C是AB ±一点,AC = 3. 2cm, M是AB的中点,N是AC的中点,求线段MN的长.I 1 I ] IA N C M B20.如图,直线AB、CD相交于点O, OD平分ZBOF, OE丄CD, ZBOE=50° ,求ZAOC、ZEOF、ZAOF 的度数。

七年级试卷汇编(新教材)图形的初步认识 a卷

七年级试卷汇编(新教材)图形的初步认识 a卷

试卷十一新课程全程配套试卷精选(图形的初步认识 A 卷)初一 班 座号 姓名 成绩一. 选择题(共每题4分,共32分)1.①平角是一条直线. ②线段AB 是点A 与点B 的距离.③射线AB 与射线BA 表示同一条直线. ④过一点有且只有一条直线与已知直线平行. ⑥圆柱的侧面是长方形.以上说法正确的有( )A .0个 B.1个 C.2个 D.3个2.在下列立体图形中,不属于多面体的是( )A .正方体B .三棱柱C .长方体D .圆锥体 3.两个锐角的和( )A .一定是锐角B 一定是直角C 一定是钝角D 可能是钝角、直角或锐角 4.平面上有三点A 、B 、C ,如果AB=8,AC=5,BC=3,则( ) A 点C 在线段AB 上 B 点B 在线段AB 的延长线上 C 点C 在直线AB 外 D 点C 可能在直线AB 上,也可能在直线AB 外 5.如右图所示,C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 中点,若MN=a ,BC=b ,则线段AD 的长是( )A 2(a-b )B 2a-bC a+bD a-b6.如图,115︒∠=,90AOC ︒∠=,点B 、O 、D 在同一直线上, 则2∠的度数为( )A . 75︒B .15︒C .105︒D .165︒7.在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的( )A 南偏西50度方向B 南偏西40度方向C 北偏东50度方向D 北偏东40度方向 8.如图,////,//AB EF DC EG BD , 则图中与1∠相等的角共有( )个A 6个B .5个C .4个 D.2个二. 填空题(3+3+3+4+8=21分)9.不在同一直线上的四点最多能确定 条直线。

10.如右图,点C 是 AOB ∠的边OA 上一点,D 、E 是OB 上两点, 则图中共有 条线段, 条射线, 个小于平角的角.A DB M CN A BCDEFGH1ABCDE OABCDO1211.如图,点C 是线段AB 上一点,点D 、E 分别是 线段AC 、BC 的中点. 如果AB=a,AD=b,其中a>2b,那么CE=12.(1) ?'2330︒= ︒ 78.36_________'____"︒︒=(2)5245'3246'_________'︒︒︒-= 18.32634'_________'︒︒︒+= 13.如图,①如果12∠=∠,那么根据 ,可得 // ;得14.如图,AOB ∠为已知角,请用圆规和直尺准确地画一个角等于AOB ∠(请保留作图痕迹)(4分)15.在如图所示,将方格中的图形向右平移3格,再向上平移4格,画出平移后的图形.(4分)AB ABC DEA BC五、解答题(7+6+6+7+6+6=38分)16.(1) 一个角的余角比它的补角29还多1︒,求这个角.(2)已知互余两角的差为20︒ ,求这两个角的度数.17.如图,AD=12DB, E 是BC 的中点,BE=15AC=2cm,线段DE 的长,求线段DE 的长.ABD18如图,直线//a b ,1(225)x ∠=-︒,2(175)x ∠=-︒,求1,2∠∠的度数.3ab12L19.在下图中,已知直线AB 和直线CD 被直线GH 所截,交点分别为E 、F 点,AEF EFD ∠=∠.(1)写出//AB CD 的根据;(2)若ME 是AEF ∠的平分线, FN 是EFD ∠的平分线,则EM 与FN 平行吗?若平行,试写出根据.如图,已知://AD BC ,且DC AD ⊥于D,求证:①DC BC ⊥②12180∠+∠=︒21.如图, CD AB ⊥于D , GF AB ⊥于F ,140,250∠=︒∠=︒,求B ∠度数.A BC DEFGMNHA BCD12345ABCDEFG1234。

人教版数学七年级上册 平面图形的认识(一)单元试卷(word版含答案)

人教版数学七年级上册 平面图形的认识(一)单元试卷(word版含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CEA中,∴△ABD≌△CEA(AAS),∴S△ABD=S△CEA,设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,∴S△ABC= BC•h=12,S△ACF= CF•h,∵BC=2CF,∴S△ACF=6,∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,∴△ABD与△CEF的面积之和为6.【解析】【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,由AAS证得△ADB≌△CEA,则AE=BD,AD=CE,即可得出结论;(2)由∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA即可得出答案;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ACF即可得出结果.2.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【答案】(1)∠PFD+∠AEM=90°(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【解析】【解答】(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.3.如图,已知:点不在同一条直线, .(1)求证: .(2)如图②,分别为的平分线所在直线,试探究与的数量关系;(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.【答案】(1)证明:过点C作,则,∵∴∴(2)解:过点Q作,则,∵,∴∵分别为的平分线所在直线∴∴∵∴(3):1:2:2【解析】【解答】解:(3)∵∴∴∵∴∵∴∴∴∴ .故答案为: .【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.4.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.5.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.6.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【答案】(1)解:AB∥CD.理由如下:如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)证明:如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥G H;(3)解:∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°-∠3=90°-2∠2.∴∠EPK=180°-∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK= ∠EPK=45°+∠2.∴∠HPQ=∠QPK-∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.7.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=________;(2)若∠GOA= ∠BOA,∠GAD= ∠BAD,∠OBA=42°,则∠OGA=________;(3)将(2)中的“∠OBA=42°”改为“∠OBA= ”,其它条件不变,求∠OGA的度数.(用含的代数式表示)(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO= (30°< α <90°),求∠OGA的度数.(用含的代数式表示)【答案】(1)21°(2)14°(3)解:∵∠BOA=90°,∠OBA=α,∴∠BAD=∠BOA+∠ABO=90°+α,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD∴∠GAD=30°+ α,∠EOA=30°,∴∠OGA=∠GAD−∠EOA= α.(4)解:当∠EOD:∠COE=1:2时,∴∠EOD=30°,∵∠BAD=∠ABO+∠BOA=α+90°,∵AF平分∠BAD,∴∠FAD= ∠BAD,∵∠FAD=∠EOD+∠OGA,∴2×30°+2∠OGA=α+90°,∴∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得到∠OGA= α−15°,即∠OGA的度数为α+15°或α−15°.【解析】解:(1)∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵AF平分∠BAD,OE平分∠BOA,∠BOA=90°,∴∠GAD= ∠BAD=66°,∠EOA= ∠BOA=45°,∴∠OGA=∠GAD−∠EOA=66°−45°=21°;故答案为21°;⑵∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD,∴∠GAD=44°,∠EOA=30°,∴∠OGA=∠GAD−∠EOA=44°−30°=14°;故答案为14°;【分析】(1)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(2)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(3)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(4)讨论:当∠EOD:∠COE=1:2时,利用∠BAD=∠ABO+∠BOA=α+90°,∠FAD=∠EOD+∠OGA得到2×30°+2∠OGA=α+90°,则∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得∠OGA= α-15°.8.如图(1),将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=25°,∠ACB=?;若∠ACB=150°,则∠DCE=?;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)如图(2),若是两个同样的直角三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小又有何关系,请说明理由.【答案】(1)【解答】∵∠ECB=90°,∠DCE=25°∴∠DCB=90°﹣25°=65°∵∠ACD=90°∴∠ACB=∠ACD+∠DCB=155°.∵∠ACB=150°,∠ACD=90°∴∠DCB=150°﹣90°=60°∵∠ECB=90°∴∠DCE=90°﹣60°=30°.故答案为:155°,30°(2)【解答】猜想得:∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°(3)【解答】∠DAB+∠CAE=120°理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB故∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°.【解析】【分析】(1)本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出∠ACB,∠DCE的度数;(2)根据前个小问题的结论猜想∠ACB与∠DCE的大小关系,结合前问的解决思路得出证明.(3)根据(1)(2)解决思路确定∠DAB与∠CAE的大小并证明.9.如图(1)如图1,AB∥CD,∠AEP=40°,∠PFD=130°。

【实用型】初一数学平面图形的认识a卷.doc

【实用型】初一数学平面图形的认识a卷.doc

第八章 平面图形的认识(二)★ A 卷 基础知识点点通班级 姓名 成绩一、选择题(每题3分,共24分)1. 由图⑴可知,∠1和∠2是一对( ) A.对顶角 B.同位角C.内错角D.同旁内角 2. 已知如图(2),∠1=∠2,则直线a 与直线b 的 关系是( )A.平行B.相交C.垂直D.不能确定3. 平移图(3)中的图案,能得到下列哪一个图案( ) A. B. C. D.4. 下列哪组数据能构成三角形( )A.1cm 、2cm 、3cmB.2cm 、3cm 、4cmC.4cm 、4cm 、9cmD.1cm 、2cm 、4cm5. 三角形的角平分线、中线、高都是( )A.直线B.线段C.射线D.以上都不对 6. 若一个三角形中,三个内角的度数比是1∶2∶3,则这个三图(3)角形中最大的内角度数为( )A.30°B.45°C.60°D.90°7. 一个多边形的内角和为1440°,则此多边形的边数为( )A.8边B.9边C.10边D.11边8. 一个多边形的每一个外角都是24°,则此多边形的内角和( )A.2160°B.2340°C.2700°D.2880°二、填空题(每空3分,共36分)9. 已知如图(4),∠1=∠B ,则 ∥ ,若∠3=∠4,则 ∥ ; 10.已知如图(5),a ∥b ,且∠1=117°,则∠3= °;11.在△ABC 中,∠A ∶∠B ∶∠C=2∶3∶4,则∠A= °,∠B= °,∠C= °; 12.如图(6),在△ABC 中,∠ABC 与∠ACB 的平分线交于点I ,若∠A=40°,则∠BIC= °;13.如图(7),则x= °;14.已知一个多边形的内角和是外角和的2倍,则此多边形为 边形; 15.如图(8),则∠A+∠B+∠C+∠D+∠E+∠F= °; D图(4)E C B A 4321图(5)321cb a 图(6)IC B AD C B A 3x 2x 120°图(7)E D BCFA三、解答题:(第16题6分,第17题6分,第18题8分,共20分)16.⑴作出△ABC 的三条高⑵将下图按箭头方向平移3cmC B A17.如图(9)所示,AB ∥DF ,DE ∥BC ,∠1=65°,求∠2,∠3的度数,并说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 平面图形的认识(二)
★ A 卷 基础知识点点通
班级 姓名 成绩
一、选择题(每题3分,共24分)
1. 由图⑴可知,∠1
和∠2是一对( )
A.对顶角
B.同位角
C.内错角
D.同旁内角
2. 已知如图(2),∠1=∠2,则直线a 与直线b 的 关系是( )
A.平行
B.相交
C.垂直
D.不能确定
3. 平移图(3)中的图案,能得到下列哪一个图案 ( )
A. B. C. D. 4. 下列哪组数据能构成三角形( )
A.1cm 、2cm 、3cm
B.2cm 、3cm 、4cm
C.4cm 、4cm 、9cm
D.1cm 、2cm 、4cm 5. 三角形的角平分线、中线、高都是( )
A.直线
B.线段
C.射线
D.以上都不对
6. 若一个三角形中,三个内角的度数比是1∶2∶3,则这个三
角形中最大的内角度数为( )
图(3)
A.30°
B.45°
C.60°
D.90°
7. 一个多边形的内角和为1440°,则此多边形的边数为( )
A.8边
B.9边
C.10边
D.11边
8. 一个多边形的每一个外角都是24°,则此多边形的内角和
( )
A.2160°
B.2340°
C.2700°
D.2880°
二、填空题(每空3分,共36分)
9. 已知如图(4),∠1=∠B ,则 ∥ ,若 ∠3=∠4,则 ∥ ;
10.已知如图(5),a ∥b ,且∠1=117°,则∠3= °;
11.在△ABC 中,∠A ∶∠B ∶∠C=2∶3∶4,则∠A= °,∠B= °,∠C= °;
12.如图(6),在△ABC 中,∠ABC 与∠ACB 的平
分线交于点I ,若∠A=40°,则∠BIC= °;
13.如图(7),则x= °;
14.已知一个多边形的内角和是外角和的2倍,则
此多边形为 边形;
15.如图(8),则∠A+∠B+∠C+∠D+∠E+∠F= °;
三、解答题:(第16题6分,第17题6分,第18题8
分,共20分)
16.⑴作出△ABC 的三条高
D 图(4)
E
C
B
A 4
32
1
图(5)
3
21
c
b
a 图(6)
I
C
B
A
D
C
B
A
3x
2x 120°
图(7)
图(8)
E D
B
C
F A
⑵将下图按箭头方向平移3cm
C
B
A
17.如图(9)所示,AB ∥DF ,DE ∥BC ,∠1=65°,求∠2,∠3的度数,并说明理由。

18.如图(10),已知∠A=∠F ,∠C=∠D ,试说明BD ∥CE 。

图(9)
312
C
D
F
B
E
A
图(10)
F
E D
C
B
A
四、思考题:(每题10分,共20分)
19.如果一个n边形的内角都相等,且它的每一个外角与内角的比为2∶3,求内角和。

20.已知AB∥CD,在AB、CD间取一点E,连结EA,EC,试探索∠AEC与∠A,∠C之间的关系。

(提示:分三种情况)。

相关文档
最新文档