计算机专业外文资料翻译----微机发展简史
计算机专业外文资料翻译----微机发展简史
附录外文文献及翻译Progress in computersThe first stored program computers began to work around 1950. The one we built in Cambridge, the EDSAC was first used in the summer of 1949.These early experimental computers were built by people like myself with varying backgrounds. We all had extensive experience in electronic engineering and were confident that that experience would standus in good stead. This proved true, although we had some new things to learn. The most important of these was that transients must be treated correctly; what would cause a harmless flash on the screen of a television set could lead to a serious error in a computer.As far as computing circuits were concerned, we found ourselves with an embarrass de riches. For example, we could use vacuum tube diodes for gates as we did in the EDSAC or pentodes with control signals on both grids, a system widely used elsewhere. This sort of choice persisted and the term famillogic came into use. Those who have worked in the computer field will remember TTL, ECL and CMOS. Of these, CMOS has now become dominant.In those early years, the IEE was still dominated by power engineering and we had to fight a number of major battles in order to get radio engineering along with the rapidly developing subject of electronics. dubbed in the IEE light current electrical engineering. properlyrecognized as an activity in its own right. I remember that we had some difficulty in organizing a co nference because the power engineers‟ ways of doing things were not our ways. A minor source of irritation was that all IEE published papers were expected to start with a lengthy statement of earlier practice, something difficult to do when there was no earlier practiceConsolidation in the 1960sBy the late 50s or early 1960s, the heroic pioneering stage was over and the computer field was starting up in real earnest. The number of computers in the world had increased and they were much more reliable than the very early ones . To those years we can ascribe the first steps in high level languages and the first operating systems. Experimental time-sharing was beginning, and ultimately computer graphics was to come along.Above all, transistors began to replace vacuum tubes. This change presented a formidable challenge to the engineers of the day. They had to forget what they knew about circuits and start again. It can only be said that they measured up superbly well to the challenge and that the change could not have gone more smoothly.Soon it was found possible to put more than one transistor on the same bit of silicon, and this was the beginning of integrated circuits. As time went on, a sufficient level of integration was reached for one chip to accommodate enough transistors for a small number of gates or flip flops. This led to a range of chips known as the 7400 series. The gates and flip flops were independent of one another and each had its own pins. They could be connected by off-chip wiring to make a computer or anything else.These chips made a new kind of computer possible. It was called a minicomputer. It was something less that a mainframe, but still very powerful, and much more affordable. Instead of having one expensive mainframe for the whole organization, a business or a university was able to have a minicomputer for each major department.Before long minicomputers began to spread and become more powerful. The world was hungry for computing power and it had been very frustrating for industry not to be able to supply it on the scalerequired and at a reasonable cost. Minicomputers transformed the situation.The fall in the cost of computing did not start with the minicomputer; it had always been that way. This was what I meant when I referred in my abstract to inflation in the computer industry …going the other way‟. As time goes on people get more for their money, not less.Research in Computer Hardware.The time that I am describing was a wonderful one for research in computer hardware. The user of the 7400 series could work at the gate and flip-flop level and yet the overall level of integration was sufficient to give a degree of reliability far above that of discreet transistors. The researcher, in a university orelsewhere, could build any digital device that a fertile imagination could conjure up. In the Computer Laboratory we built the Cambridge CAP, a full-scaleminicomputer with fancy capability logic.The 7400 series was still going strong in the mid 1970s and was used for the Cambridge Ring, a pioneering wide-band local area network. Publication of the design study for the Ring came just before the announcement of the Ethernet. Until these two systems appeared, users had mostly been content with teletype-based local area networks. Rings need high reliability because, as the pulses go repeatedly round the ring, they must be continually amplified and regenerated. It was the high reliability provided by the 7400 series of chips that gave us the courage needed to embark on the project for the Cambridge Ring.The RISC Movement and Its AftermathEarly computers had simple instruction sets. As time went on designers of commercially available machines added additional features which they thought would improve performance. Few comparative measureme nts were done and on the whole the choice of features depended upon the designer‟s intuition.In 1980, the RISC movement that was to change all this broke on the world. The movement opened with a paper by Patterson and ditzy entitled The Case for the Reduced Instructions Set Computer.Apart from leading to a striking acronym, this title conveys little of the insights into instruction set design which went with the RISC movement, in particular the way it facilitated pipelining, a system whereby several instructions may be in different stages of execution within the processor at the same time. Pipelining was not new, but it was new for small computersThe RISC movement benefited greatly from methods which had recently become available for estimating the performance to be expected from a computer design without actually implementing it. I refer to the use of a powerful existing computer to simulate the new design. By the use of simulation, RISC advocates were able to predict with some confidence that a good RISC design would be able to out-perform the best conventional computers using the same circuit technology. This prediction was ultimately born out in practice.Simulation made rapid progress and soon came into universal use by computer designers. In consequence, computer design has become more of a science and less of an art. Today, designers expect to have a roomful of, computers available to do their simulations, not just one. They refer to such a roomful by the attractive name of computer farm.The x86 Instruction SetLittle is now heard of pre-RISC instruction sets with one major exception, namely that of the Intel 8086 and its progeny, collectively referred to as x86. This has become the dominant instruction set and the RISC instruction sets that originally had a considerable measure of success are having to put up a hard fight for survival.This dominance of x86 disappoints people like myself who come from the research wings. both academic and industrial. of the computer field. No doubt, business considerations have a lot to do with the survival of x86, but there are other reasons as well. However much we research oriented people would liketo think otherwise. high level languages have not yet eliminated the use of machine code altogether. We need to keep reminding ourselves that there is much to be said for strict binary compatibility with previous usage when that can be attained. Nevertheless, things might have been different if Intel‟s major attempt to produce a good RISC chip had been more successful. I am referring to the i860 (not the i960, which was something different). In many ways the i860 was an excellent chip, but its software interface did not fit it to be used in aworkstation.There is an interesting sting in the tail of this apparently easy triumph of the x86 instruction set. It proved impossible to match the steadily increasing speed of RISC processors by direct implementation ofthe x86 instruction set as had been done in the past. Instead, designers took a leaf out of the RISC book; although it is not obvious, on the surface, a modern x86 processor chip contains hidden within it a RISC-style processor with its own internal RISC coding. The incoming x86 code is, after suitable massaging, converted into this internal code and handed over to the RISC processor where the critical execution is performed. In this summing up of the RISC movement, I rely heavily on the latest edition of Hennessy and Patterson‟s books on computer design as my supporting authority; see in particular Computer Architecture, third edition, 2003, pp 146, 151-4, 157-8.The IA-64 instruction set.Some time ago, Intel and Hewlett-Packard introduced the IA-64 instruction set. This was primarily intended to meet a generally recognized need for a 64 bit address space. In this, it followed the lead of the designers of the MIPS R4000 and Alpha. However one would have thought that Intel would have stressed compatibility with the x86; the puzzle is that they did the exact opposite.Moreover, built into the design of IA-64 is a feature known as predication which makes it incompatible in a major way with all other instruction sets. In particular, it needs 6 extra bits with each instruction. This upsets the traditional balance between instruction word length and information content, and it changes significantly the brief of the compiler writer.In spite of having an entirely new instruction set, Intel made the puzzling claim that chips based on IA-64 would be compatible with earlier x86 chips. It was hard to see exactly what was meant.Chips for the latest IA-64 processor, namely, the Itanium, appear to have special hardware for compatibility. Even so, x86 code runs very slowly.Because of the above complications, implementation of IA-64 requires a larger chip than is required for more conventional instruction sets. This in turn implies a higher cost. Such at any rate, is the received wisdom, and, as a general principle, it was repeated as such by Gordon Moore when he visited Cambridge recently to open the Betty and Gordon Moore Library. I have, however, heard it said that the matter appears differently from within Intel. This I do not understand. But I am very ready to admit that I am completely out of my depth as regards the economics of the semiconductor industry.Shortage of ElectronsAlthough shortage of electrons has not so far appeared as an obvious limitation, in the long term it may become so. Perhaps this is where the exploitation of non-conventional CMOS will lead us. However, some interesting work has been done. notably by HuronAmend and his team working in the Cavendish Laboratory. on the direct development of structures in which a single electron more or less makes the difference between a zero and a one. However very little progress has been made towards practical devices that could lead to the construction of a computer. Even with exceptionally good luck, many tens of years must inevitably elapse before a working computer based on single electron effects can be contemplated.微机发展简史第一台存储程序的计算开始出现于1950前后,它就是1949年夏天在剑桥大学,我们创造的延迟存储自动电子计算机(EDSAC)。
微机原理的发展史
总的1.微型计算机的发展简史自从1964年第一台电子计算机ENIAC问世,半个世纪以来,计算机科学和技术飞速发展。
根据组成计算机的电子器件的发展历程,计算机发展已经历了四代,现在正向第五代计算机发展。
第一代:电子管时代。
计算机采用电子管作为逻辑与案件。
第二代:晶体管时代。
计算机用晶体管代替电子管,主存储器采用磁芯存储器,外存储器开始使用磁盘,并提供了较多的外部设备。
第三代:集成电路时代。
计算机采用了小规模和中规模集成电路,主存储器用半导体存储器,采用微程序控制技术。
第四代:大规模集成电路时代。
计算机全面采用了大规模集成电路甚至是超大规模集成电路。
计算机开始向巨型和微型发展。
微型计算机特别是多媒体计算机的开发和使用,将计算机的生产和应用推向了新的高潮。
2.8255A的实验设计概论可编程并行接口芯片8255A因为其输入和输出电平与TTL完全兼容的特性,已广泛应用于实际工程中。
通过8255A并行接口可连接两个或多个系统构成相互之间的通信或系统与外设之间通过8255A交换信息等。
交通灯的实验可以让我们在掌握8255A 典型应用电路的接法、工作方式及其应用的基础上,更好的学以致用。
3.8259A的实验设计概论8259A的中断管理功能很强,单片可以管理8级外部中断,在多片级联方式下最多可以管理64级外部中断,并且具有中断优先权判优、中断嵌套、中断屏蔽和中断结束、中断触发等多种中断管理方式。
通过运用其中断特性,进行简单的单级中断控制实验。
在实验中掌握学理论与实际相结合的学习方法。
4.典型的输入输出芯片1.可编程串行通信接口:8251A8251A是一种可编程的通用同步/异步接受发送器,用于CPU与外设之间的串行通信接口,通过编程可选择同步和异步的工作方式。
2.可编程并行通信接口:8255A8255A是一个40个引脚双列直插式封装的大规模集成电路。
采用单一的+5V 电源供电,其输入和输出电平与TTL完全兼容。
3.可编程技数器/定时器8253A8253A是一种外围电路,它可以通过软件方式设定不同的工作方式,产生各种形式的时间延迟信号,一满足各类系统提出的不同时间的要求4.DMA控制器:8237A8237A是一种高性能可编程的DMA控制器,每个集成电路上有4个独立的DMA 通道,可分别独立编程,实现外围设备与内存、内存与内存之间的高速数据传输5.中断控制器:8259A8259A是一种专门为控制优先级中断而设计的集成电路。
计算机发展史英文
电子计算机
第一台电子计算机
电子计算机的出现标志着计算机时代的真正开始。第一台电子计算机是ENIAC( Electronic Numerical Integrator And Calculator),它于1946年问世。
晶体管计算机
随着晶体管技术的不断发展,人们开始使用晶体管代替电子管来制造计算机。晶 体管计算机比电子管计算机更小、更快、更可靠。
计算机发展史英文
xx年xx月xx日
目录
• 早期计算机 • 发展中的计算机 • 现代计算机 • 未来计算机
01
早期计算机
机械计算机
莱布尼茨的机械计算机
莱布尼茨发明了一种基于齿轮和杠杆的机械计算机,它可以执行基本的算术 和逻辑运算。
帕斯卡(Pascal)的计算机
帕斯卡设计了一种简单的机械计算机,它可以进行加法和减法运算,并具有 存储和读取数据的能力。
1981年,IBM PC推出,成为个人计算机的标准。
1991年,Linux操作系统诞生,成为开源软件的代表 。
云计算与大数据
2006年,Amazon Web Services推出,云计算服务 开始商业化。
2012年,Google BigQuery推出,大数据分析进入云 时代。
2009年,Hadoop分布式计算系统诞生,大数据处理 成为可能。
生物计算机的出现将带来巨大的变革,包括改变药物设计和治 疗的方式、加速生物科学研究等。
THANKS
谢谢您的观看
发展趋势
除了科学计算和数据处理,还广泛应用于工 业控制、航空航天等领域。
随着集成电路的发展,晶体管计算机逐渐被 淘汰,为微处理器所取代。
03
现代计算机
个人计算机
1977年,Apple II型计算机问世,成为第一台成功的 个人计算机。
微型计算机与pc机发展史
微型计算机是指以微处理器为核心, 配上由大规模集成电路制作的存储器、输 入/输出接口电路及系统总线所组成的计算 机。微型计算机自出现以来,便以其集成 度 高、功能强、体积小、功耗低、价格廉、 灵活方便等一系列优点,广泛应用于国防、 航空航天、海洋、地质、气候、教育、经 济、日常生活的各个领域,并发挥着巨大 的作用。
什么是微型计算机 (PC机)
微型计算机(PC机) 的结构 微型计算机(PC机) 的历史
微型计算机(Microcomputer) 也叫做个人计算机(PersonalComputer,PC),简称微机或 PC机。 微型计算机的特点 1.易于使用 2.技术简单 3.价格低廉 微型计算机的用途 1.一般用作桌面系统 2.个人事务处理 3.网络终端
主板 用途:整个微机系统的核心 位置:主机箱内 特点:基于总线的扩展槽 主板的配置: CPU插座 芯片组(南桥、北桥) 储存器插槽 AGP插槽 总线插槽 串、并行口 电源、键盘、鼠标、硬盘、软盘、 CD-ROM等外部设备
中央处理器(CPU) 用途:通过对数值的处理和各种逻辑、控制运算实现计算机的功能。 位置:主板CPU插座 CPU 的组成部分 算术逻单元ALU 寄存器组 控制单元 处理器系统 CISC RISC Pentium处理器
输入设备 用途:将外部信息转变为数据输入到计算机中
位置:外部设备,通过外接端口与计算机相连
常用输入设备:键盘,鼠标器,触摸屏,光笔
输出设备 用途:人与计算机之间进行信息交换的主要装置 位置:外部设备,通过外接端口与计算机相连
常用输出设备:显示器,投影仪,打印机
1946
1958
现今
1964
1971
内存条 用途:连接CPU 和其他设备,起到缓冲和数据交换作用 位置:主板上
微型计算机发展史
微型计算机发展史
随着科学技术的不断发展,计算机的性能逐渐得到提高,微型计算机作为计算机革命的标志,在社会上得到了广泛的应用。
计算机发展史,要从20世纪50年代说起。
1951年,英国科学家迪米特里·埃尔德提出了装有核心存储器的计算机原理,这就是计算机的起源。
1956年,美国IBM推出的IBM702系列,是世界上第一台型号标准的大型机,它采用了核心存储器储存程序,实现了程序储存,而且它的数据处理速度达到5000次/秒,是当时的最大计算机。
随后,IBM推出了第一台微型计算机,1973年IBM推出了首款微型计算机,IBM5100,它比当时的大型机小了几十倍,但它也拥有大型机的功能,售价一万七千美元。
后来,微型计算机的价格逐渐降低,性能也得到大大提高,随着微型计算机的发展,现在的微型计算机有多种结构形式,例如电脑、笔记本电脑、平板电脑等,电脑和笔记本电脑是目前应用最为广泛的微型计算机。
电脑的发展,也改变了人类的生活方式,它不仅提高了用户的工作效率,而且拓展了人类的智慧,能够有效地处理和分析大量数据,实现快速的信息计算,帮助人类解决许多复杂的问题。
一、计算机(computer)发展简史
运算速度为 5000 次 / 秒加
法运算,占地面积170m2, 重 量 为 30 吨 , 耗 电 量 为 140千瓦/小时
二、个人电脑的发展
个人电脑简称PC 1981年IBM公司设
计出第一台个人电脑, 以后经过几十年的发 展,到现在的台式电 脑、笔记本电脑、掌 上电脑等。
三、电脑体系结构
名字叫爱尼亚克eniac运算速度为5000次秒加法运算占地面积170m重量为30吨耗电量为140千瓦小时二个人电脑的发展1981年ibm公司设计出第一台个人电脑以后经过几十年的发展到现在的台式电脑笔记本电脑掌上电脑等
一、计算机(computer)发展简史
人类历史上第一台电子计
算机于 1946 年 2 月在美国 宾西法尼亚州问世。名字 叫爱尼亚克(ENIAC)
主机
硬件系统
显示器 键盘 鼠标
系统软件
软件系统
(系统软件:是当计算机在执行各类信息,处理任务时,那些分类、
开发、管理与支持计算机系统资源及操作的程序:例WIND解决学习、生活、工作中实际问题的软件: 指法练习软件,Word,Excl,CAD等。)
四、电脑开机与关机
开机:先开显示器,后开主机 关机:
死机:CTRL+ALT+DEL键复位 冷起动:按主机电源直至关机再开机
五、认识键盘
Enter(回车):确定
ESC:取消
Caps Lock:锁定大写
Shift(上档):输入上面字符 Delete:删除后一个
Num Lock:锁定数字
Backspace:删除前一个
微机发展历史
微处理器的发展
第三代微处理器(1978-1984)
位数(字长):16位 代表产品:Intel 8088/8086/80286、 Motorola mc68000、 Zilog z800、出现了微型计算机例如IBM PC系列机 性能特征:采用HMOS工艺、时钟频率小于5MHZ-10MHZ、平 均指令执行时间为0.5微秒-1微秒、集成度与运算速度 比第2代提高1个数量级、可用汇编语言及高级语言并 配有软件系统 应用: 广泛
Extensions,多媒体扩展指令集)技术、二级缓存放入CPU
中、超标量指令流水线结构
应用:广泛
微处理器的发展
微处理器的发展
第六代微处理器(2005)
位数(字长):64 代表产品:Intel intaninu、Intel 酷睿(core)/core 2系列 、 AMD athlon系列 性能特征:分单核/双核/四核/八核三种、酷睿处理器采用 800MHz-1333Mhz的前端总线速率、45nm/65nm制 程工艺、 2M/4M/8M/12M/16M L2缓存、 Core 2 Duo在单个芯片上封装了2.91亿个晶体管功能强大 应用:微机服务器、图形工作站等
1957年,哈尔滨工业大学研制成功中国 第一台模拟式电子计算机。
1958年,中国第一台计算机--103型通用 数字电子计算机研制成功,运行速度每 秒1500次,标志着我国第一台电子计算 机的诞生。
1959年,中国研制成功104型电子计算机, 运算速度每秒1万次。
1960年,中国第一台大型通用电子计算 机--107型通用电子数字计算机研制成功。
第三代计算机19651970中小规模的集成电路运算速度为百万几百万次每秒半导体存储器逐步取代了磁芯存储器的主存储器地位磁盘成了不可缺少的辅助存储器第四代计算机1971至今大超大规模集成电路运算速度为几百万千万亿次每秒主存储器均采用半导体存储器主要的外存储器是磁带磁盘光盘微处理器和微型计算机诞生
微机发展简史中英文翻译
毕业设计(论文)外文翻译题目微机发展简史专业电子信息工程班级01学生李嘉亮指导教师邓亚玲西安理工大学高科学院2011 年微机发展简史IEEE的论文剑桥大学,2004/2/5莫里斯威尔克斯计算机实验室剑桥大学第一台存储程序的计算开始出现于1950前后,它就是1949年夏天在剑桥大学,我们创造的延迟存储自动电子计算机(EDSAC)。
最初实验用的计算机是由象我一样有着广博知识的人构造的。
我们在电子工程方面都有着丰富的经验,并且我们深信这些经验对我们大有裨益。
后来,被证明是正确的,尽管我们也要学习很多新东西。
最重要的是瞬态一定要小心应付,虽然它只会在电视机的荧幕上一起一个无害的闪光,但是在计算机上这将导致一系列的错误。
在电路的设计过程中,我们经常陷入两难的境地。
举例来说,我可以使用真空二级管做为门电路,就象在EDSAC中一样,或者在两个栅格之间用带控制信号的五级管,这被广泛用于其他系统设计,这类的选择一直在持续着直到逻辑门电路开始应用。
在计算机领域工作的人都应该记得TTL,ECL和CMOS,到目前为止,CMOS已经占据了主导地位。
在最初的几年,IEE(电子工程师协会)仍然由动力工程占据主导地位。
为了让IEE 认识到无线工程和快速发展的电子工程并行发展是它自己的一项权利,我们不得不面对一些障碍。
由于动力工程师们做事的方式与我们不同,我们也遇到了许多困难。
让人有些愤怒的是,所有的IEE出版的论文都被期望以冗长的早期研究的陈述开头,无非是些在早期阶段由于没有太多经验而遇到的困难之类的陈述。
60年代的巩固阶段60年代初,个人英雄时代结束了,计算机真正引起了重视。
世界上的计算机数量已经增加了许多,并且性能比以前更加可靠。
这些我认为归因与高级语言的起步和第一个操作系统的诞生。
分时系统开始起步,并且计算机图形学随之而来。
综上所述,晶体管开始代替正空管。
这个变化对当时的工程师们是个不可回避的挑战。
他们必须忘记他们熟悉的电路重新开始。
微机的发展史
微机的发展史微机是指个人计算机,它是计算机技术发展的重要里程碑之一。
本文将从微机的起源、发展和未来前景三个方面,介绍微机的发展史。
一、微机的起源20世纪60年代末,随着集成电路技术的发展,计算机体积逐渐缩小,价格逐渐下降。
1969年,美国一家计算机公司推出了第一台个人计算机,这标志着微机的诞生。
当时的微机还非常庞大,只能由专业人员操作,价格昂贵,普通人难以接触。
二、微机的发展20世纪70年代,随着微电子技术的迅猛发展,微机开始进入大众视野。
1976年,美国的一家创业公司推出了一款名为“苹果”的个人计算机,这款计算机的问世引发了一场个人计算机革命。
个人计算机从此开始走向普及,成为人们生活和工作中必不可少的工具。
在80年代,微机的发展进入了一个高速发展的时期。
各国纷纷投入资金和人力资源进行研发,推动了微机技术的不断创新。
1981年,IBM公司发布了第一台个人计算机,这款计算机的操作系统开放给其他厂商使用,从而推动了个人计算机的标准化和普及。
个人计算机市场竞争激烈,各家厂商相继推出了各种型号的微机,不断满足用户的需求。
90年代,随着互联网的兴起,微机的功能进一步扩展。
人们可以通过微机上网冲浪、发送电子邮件等,微机的作用不再局限于办公和娱乐。
同时,微机的体积也逐渐减小,性能不断提升,成本不断降低,使得微机进一步普及。
三、微机的未来前景随着科技的不断发展,微机的未来前景将更加广阔。
首先,随着人工智能技术的进步,微机将具备更强大的计算和处理能力,可以更好地满足人们的需求。
其次,随着物联网技术的普及,微机将与各种设备和传感器连接,实现智能化的控制和管理。
再次,微机将继续向轻薄化、便携化的方向发展,更加适应人们的移动办公和生活需求。
微机作为个人计算机的代表,经历了起源、发展和未来前景三个阶段。
从庞大昂贵的计算机到普及化的个人计算机,微机在不断演进和创新中,改变了人们的生活和工作方式。
随着科技的不断进步,微机的未来前景将更加广阔,我们可以期待微机在各个领域的应用和发展。
微型计算机发展史
随着社会信息化程度的提高,人们对计算机的需求越来越大,但传统的大型计算机价格昂贵、体积庞大,难以满足个人和小型组织的需求。因此,微型计算机的出现满足了这一市场需求,推动了计算机技术的普及和应用。
社会背景
02
CHAPTER
微型计算机的发展历程
总结词
第一代微型计算机以微处理器为核心,采用集成电路技术,体积小、价格低、应用范围广。
微型计算机
微型计算机具有高度的可定制性和可扩展性,可以根据用户的需求进行硬件配置和软件安装。它还具有易于使用和维护的特点,降低了计算机应用的门槛,使得计算机技术得以广泛普及和应用。
特点
1
2
3
随着集成电路和微处理器技术的出现和发展,科学家们开始尝试将计算机小型化,出现了实验性的微型计算机。
1960年代
04
CHAPTER
微型计算机的未来展望
更低功耗
随着环保意识的增强,低功耗或节能的微型计算机将成为主流,有助于减少能源消耗和环境污染。
物联网应用
随着物联网的普及,微型计算机将在智能家居、工业自动化等领域发挥更大的作用。
人工智能集成
微型计算机将更加集成人工智能技术,实现更智能化的数据处理和应用。
更快速度
总结词:微型计算机在数据处理领域的应用,使得数据分析和数据挖掘成为可能,为决策制定提供了有力支持。
自动化控制是指利用计算机对生产过程进行自动监测、控制和调节,以提高生产效率和产品质量。微型计算机在自动化控制领域的应用,使得自动化控制系统的设计和实现更加灵活和便捷。
总结词:微型计算机在自动化控制领域的应用,使得自动化控制系统更加智能化和高效化,提高了生产效率和产品质量。
微型计算机发展史
汇报人:
微型计算机和PC机—历史和结构
微机发展最显著的特征就是易于使用并且价格低廉。
微机的简介
根据其放置方式,微机 也叫做台式机。左图的 微机为卧式机箱,也有 使用直立式机箱的
微ቤተ መጻሕፍቲ ባይዱ的结构
从广义上讲,微机可以分为运算器,控制器,存储器,输入 设备和输出设备这五个设备。 运算器和控制器统称为处理器,也就是CPU,运算器负责算 术运算和逻辑运算,控制器负责键盘,鼠标等外部设备。 存储器:存储器包括外存储器和存储器,外存储器常见的有 硬盘,U盘,MP3等,内存储器也就是内存RAM,分问 SDRAM和DDRAM也就是SD内存和DDR内存 输入设备:常见的有键盘,鼠标,写字板,扫描仪,摄像头 输出设备:常见的有打印机,显示器,传真机等等
微型计算机和PC机——历史和结构
微机的简介intruduce
微机的结构structure
微(Microcomputr)也叫做个人计算机(personal Computer,PC),简称微机或者PC机,一般用于桌面系统, 特别适合个人事务处理、网络终端等的应用。大多数用户使 用的都是这种类型的机器,它已经进入了家庭。微机也被应 用在控制、工程、网络等领域。
微机的历史
1. 第一代微机 第一代PC机以IBM公 司的IBM PC/XT机为代 表,CPU是8088,诞 生于1981年,如右图所 示。后来出现了许多兼 容机。
微机的历史
2. 第二代微机 IBM公司于1985年推 出的IBM PC/AT(如右 图所示)标志着第二代 PC机的诞生。它采用 80286为CPU,其数据 处理和存储管理能力都 大大提高 。
微机的历史
5. 第五代微机 1993年Intel公司推出了第五代微处理器Pentium (中文名“奔腾”)。Pentium实际上应该称为 80586 80586,但Intel公司出于宣传竞争方面的考虑,改 Intel 变了“x86”传统的命名方法。 其他公司推出的第五代CPU还有AMD公司的K5、 Cyrix公司的6x86。1997年Intel公司推出了多功能 Pentium MMX。奔腾档次的微机由于可运行 Windows 95,所以现在仍有部分在使用。
微型计算机发展简史-19页文档资料
微型计算机发展简史1614年,苏格兰人John Napier (1550-1617)发表了一篇论文,其中提到他发明了一种可以计算四则运算和方根运算的精巧装置。
1623年,Wilhelm Schickard (1592-1635)制作了一个能进行六位以内数加减法,并能通过铃声输出答案的'计算钟'。
通过转动齿轮来进行操作。
1625年,William Oughtred (1575-1660) 发明计算尺。
1642至1643年,巴斯卡(Blaise Pascal)为了帮助做收税员的父亲,他就发明了一个用齿轮运作的加法器,叫“Pascalene”,这是第一部机械加法器。
1666年,在英国Samuel Morland发明了一部可以计算加数及减数的机械计数机。
1673年,Gottfried Leibniz 制造了一部踏式(stepped)圆柱形转轮的计数机,叫“Stepped Reckoner”,这部计算器可以把重复的数字相乘,并自动地加入加数器里。
1694年,德国数学家,Gottfried Leibniz ,把巴斯卡的Pascalene 改良,制造了一部可以计算乘数的机器,它仍然是用齿轮及刻度盘操作。
1773年,Philipp-Matthaus 制造及卖出了少量精确至12位的计算机器。
1775年,The third Earl of Stanhope 发明了一部与Leibniz 相似的乘法计算器。
1786年,J.H.Mueller 设计了一部差分机,可惜没有拨款去制造。
1801年,Joseph-Marie Jacquard 的织布机是用连接按序的打孔卡控制编织的样式。
Charles Babbages的差分机1847年,计算机先驱、英国数学家Charles Babbages开始设计机械式差分机。
总体设计耗时尽2年,这台机器可以完成31位精度的运算并将结果打印到纸上,因此被普遍认为是世界上第一台机械式计算机。
微型计算机的发展历史、现状和未来(最新)
微型计算机的发展历史、现状及未来学号:030841019 姓名:向世柱中文摘要:计算机自从问世以来,就对世界产生了很大的影响,随之就带来了工业上的一次飞跃,使我们的生活发生了前所未有的一次变革,不论是在工业上还是在生活中,可以说到处都闪现着他的身影,计算机不断普及的过程也就是计算机技术不断完善,不断深入的一个过程。
关键词:微型计算机微处理器发展史现状未来正文部分微型计算机的发展史在人类文明发展历史的长河中,计算工具也经历了从简单到复杂、从低级到高级的发展过程。
如曾有“结绳记事”的绳结、算筹、算盘、计算尺、手摇机械计算机、电动机械计算机等。
它们在不同的历史时期发挥了各自的作用,而且也孕育了电子计算机的设计思想的雏形。
1943 年美国为解决复杂的导弹计算而开始研制电子计算机。
1946 年2 月,由美国宾夕法尼亚大学莫尔学院的物理学博士莫克利和电气工程师埃克特领导的研制小组,研制成了世界上第一台数字式电子计算机ENIAC (Electronic Numerical Integrator And C alculator )。
虽然它既大又贵,但却是现在各种计算机的先驱,为发展至今的数字电子计算机奠定了基础,至今人们仍然公认,ENIAC的问世标志了电子计算机时代的到来,它的出现具有划时代的伟大意义。
在ENIAC的研制过程中,由美籍匈牙利数学家冯·诺依曼(J ohn von Nermann)总结并提出两点改进意见。
其一是计算机内部直接采用二进制数进行运算,其二是将指令和数据都存储起来,由程序控制计算机自动执行。
1974年,罗伯茨用8080微处理器装配了一种专供业余爱好者试验用的计算机“牛郎星”(Altair),第一台微型计算机诞生。
1976年,乔布斯和沃兹尼克设计成功了他们的第一台微型计算机,装在一个木盒子里,它有一块较大的电路板,8KB的存储器,能发声,且可以显示高分辨率图形。
1977年,沃兹尼克设计了世界上第一台真正的个人计算机——AppleⅡ,并“追认”他们在“家酿计算机俱乐部”展示的那台机器为AppleⅠ。
微型计算机发展史
自1981年美国IBM 公司推出第一代微型计算机IBM—PC/XT以来,微型机以其执行结果精确、处理速度怏捷、性价比高、轻便小巧等特点迅速进入社会各个领域,且技术不断更新、产品快速换代,从单纯的计算工具发展成为能够处理数字、符号、文字、语言、图形、图像、音频、视频等多种信息的强大多媒体工具。
如今的微型机产品无论从运算速度、多媒体功能、软硬件支持还是易用性等方面都比早期产品有了很大飞跃。
便携机更是以使用便捷、无线联网等优势越来
3微型计算机技术现状及发展趋势
微型计算机是当今发展速度最快、应用最为普及的计算机类型。
它可以细分为PC服务器、NT工作站、台式(也称桌上型)电脑、膝上型电脑、笔记本型电脑、掌上型电脑、可穿戴式计算机以及问世不久的平板电脑等多种类型。
习惯上将尺。
计算机发展史 computer develop history
4. 自动化程度高 :计算机通用性的特点表现在几乎能 求解自然科学和社会 科学中一切类型的问题,能广泛
地应用于各个领域。
WHY?
次至数万次)、价格昂贵,但为以后的计算机发展奠定了基础。
晶体管数字机 (1958—1964年)
第四代
• 第四代计算器在软件方面出现了数据库管理系统、网络管理系统 和面向对象语言等。1971年世界上第一台微处理器在美国硅谷诞 生,开创了微型计算机的新时代。应用领域从科学计算、事务管
理、过程控制逐步走向家庭。
NICOLE TANG
什么是计算机
计算机,俗称电脑, 是现代一种用于高速 计算的电子计算机器, 可以进行数值计算, 又可以进行逻辑计算, 还具有存储记忆功能。 是能够按照程序运行, 自动、高速处理海量 数据的现代化智能电 子设备。
一、电子计算机(1945~1957)
• 硬件:真空电子管 • 软件:机器语言、汇编语言 • 应用领域:军事和科学计算为主 • 特点:体积大、功耗高、可靠性差。速度慢(一般为每秒数千
Байду номын сангаас
1. 运算速度快运算速度是计算机的一个重要性能指标。 计算机的运算速度通常用每秒钟执行定点加法的次 数或平均每秒钟执行指 令的条数来衡量。
2. 计算精度高在科学研究和工程设计中,对计算结果的 精度有很高的 要求。
3. 存储容量大计算机的存储器可以存储大量数据,这使 计算机具有了 “记忆”功能。目前计算机的存储容量
计算机的发展历史求图片和文字介绍
计算机的发展历史求图片和文字介绍计算机发展史(一)1945年,由美国生产了第一台全自动电子数字计算机“埃尼阿克”(英文缩写词是ENIAC,即Electronic Numerical Integrator and Calculator,中文意思是电子数字积分器和计算器)。
它是美国奥伯丁武器试验场为了满足计算弹道需要而研制成的。
主要发明人是电气工程师普雷斯波·埃克特(J. Prespen Eckert)和物理学家约翰·莫奇勒博士(John W. Mauchly)。
这台计算机1946年2月交付使用,共服役9年。
它采用电子管作为计算机的基本元件,每秒可进行5000次加减运算。
它使用了18000只电子管,10000只电容,7000只电阻,体积3000立方英尺,占地170平方米,重量30吨,耗电140~150千瓦,是一个名副其实的“庞然大物”。
ENIAC机的问世具有划时代的意义,表明计算机时代的到来,在以后的40多年里,计算机技术发展异常迅速,在人类科技史上还没有一种学科可以与电子计算机的发展速度相提并论。
下面介绍各代计算机的硬件结构及系统的特点:一、第一代(1946~1958):电子管数字计算机计算机的逻辑元件采用电子管,主存储器采用汞延迟线、磁鼓、磁芯;外存储器采用磁带;软主要采用机器语言、汇编语言;应用以科学计算为主。
其特点是体积大、耗电大、可靠性差、价格昂贵、维修复杂,但它奠定了以后计算机技术的基础。
二、第二代(1958~1964):晶体管数字计算机晶体管的发明推动了计算机的发展,逻辑元件采用了晶体管以后,计算机的体积大大缩小,耗电减少,可靠性提高,性能比第一代计算机有很大的提高。
主存储器采用磁芯,外存储器已开始使用更先进的磁盘;软件有了很大发展,出现了各种各样的高级语言及其编译程序,还出现了以批处理为主的操作系统,应用以科学计算和各种事务处理为主,并开始用于工业控制。
三、第三代(1964~1971):集成电路数字计算机20世纪60年代,计算机的逻辑元件采用小、中规模集成电路(SSI、MSI),计算机的体积更小型化、耗电量更少、可靠性更高,性能比第十代计算机又有了很大的提高,这时,小型机也蓬勃发展起来,应用领域日益扩大。
微型计算机的发展历史
微型计算机的发展历史、现状及前景摘要自1981年美国IBM公司推出了第一代微型计算机IBM—PC/XT以来,以微处理器为核心的微型计算机便以其执行结果精确、处理速度快捷、小型、廉价、可靠性高、灵活性大等特点迅速进入社会各个领域,且技术不断更新、产品不断换代,先后经历了80286、80386、80486乃至当前的80586 (Pentium)微处理器芯片阶段,并从单纯的计算工具发展成为能够处理数字、符号、文字、语言、图形、图像、音频和视频等多种信息在内的强大多媒体工具。
如今的微型计算机产品无论从运算速度、多媒体功能、软硬件支持性以及易用性方面都比早期产品有了很大的飞跃,便携式计算机更是以小巧、轻便、无线联网等优势受到了越来越多的移动办公人士的喜爱,一直保持着高速发展的态势.关键词:微型计算机现状发展一微型计算机的发展历史第一台微型计算机-—1974年,罗伯茨用8080微处理器装配了一种专供业余爱好者试验用的计算机“牛郎星”(Altair)。
第一台真正的微型计算机——1976年,乔布斯和沃兹尼克设计成功了他们的第一台微型计算机,装在一个木盒子里,它有一块较大的电路板,8KB的存储器,能发声,且可以显示高分辨率图形。
1977年,沃兹尼克设计了世界上第一台真正的个人计算机—-AppleⅡ,并“追认”他们在“家酿计算机俱乐部”展示的那台机器为AppleⅠ。
1978年初,他们又为AppleⅡ增加了磁盘驱动器。
从微型计算机的档次来划分,它的发展阶段又可以分为以下几个阶段:第一代微机-—第一代PC机以IBM公司的IBM PC/XT机为代表,CPU是8088,诞生于1981年,如图1—3所示.后来出现了许多兼容机。
第二代微机——IBM公司于1985年推出的IBM PC/AT标志着第二代PC机的诞生.它采用80286为CPU,其数据处理和存储管理能力都大大提高。
第三代微机——1987年,Intel公司推出了80386微处理器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录外文文献及翻译Progress in computersThe first stored program computers began to work around 1950. The one we built in Cambridge, the EDSAC was first used in the summer of 1949.These early experimental computers were built by people like myself with varying backgrounds. We all had extensive experience in electronic engineering and were confident that that experience would standus in good stead. This proved true, although we had some new things to learn. The most important of these was that transients must be treated correctly; what would cause a harmless flash on the screen of a television set could lead to a serious error in a computer.As far as computing circuits were concerned, we found ourselves with an embarrass de riches. For example, we could use vacuum tube diodes for gates as we did in the EDSAC or pentodes with control signals on both grids, a system widely used elsewhere. This sort of choice persisted and the term famillogic came into use. Those who have worked in the computer field will remember TTL, ECL and CMOS. Of these, CMOS has now become dominant.In those early years, the IEE was still dominated by power engineering and we had to fight a number of major battles in order to get radio engineering along with the rapidly developing subject of electronics. dubbed in the IEE light current electrical engineering. properlyrecognized as an activity in its own right. I remember that we had some difficulty in organizing a co nference because the power engineers‟ ways of doing things were not our ways. A minor source of irritation was that all IEE published papers were expected to start with a lengthy statement of earlier practice, something difficult to do when there was no earlier practiceConsolidation in the 1960sBy the late 50s or early 1960s, the heroic pioneering stage was over and the computer field was starting up in real earnest. The number of computers in the world had increased and they were much more reliable than the very early ones . To those years we can ascribe the first steps in high level languages and the first operating systems. Experimental time-sharing was beginning, and ultimately computer graphics was to come along.Above all, transistors began to replace vacuum tubes. This change presented a formidable challenge to the engineers of the day. They had to forget what they knew about circuits and start again. It can only be said that they measured up superbly well to the challenge and that the change could not have gone more smoothly.Soon it was found possible to put more than one transistor on the same bit of silicon, and this was the beginning of integrated circuits. As time went on, a sufficient level of integration was reached for one chip to accommodate enough transistors for a small number of gates or flip flops. This led to a range of chips known as the 7400 series. The gates and flip flops were independent of one another and each had its own pins. They could be connected by off-chip wiring to make a computer or anything else.These chips made a new kind of computer possible. It was called a minicomputer. It was something less that a mainframe, but still very powerful, and much more affordable. Instead of having one expensive mainframe for the whole organization, a business or a university was able to have a minicomputer for each major department.Before long minicomputers began to spread and become more powerful. The world was hungry for computing power and it had been very frustrating for industry not to be able to supply it on the scalerequired and at a reasonable cost. Minicomputers transformed the situation.The fall in the cost of computing did not start with the minicomputer; it had always been that way. This was what I meant when I referred in my abstract to inflation in the computer industry …going the other way‟. As time goes on people get more for their money, not less.Research in Computer Hardware.The time that I am describing was a wonderful one for research in computer hardware. The user of the 7400 series could work at the gate and flip-flop level and yet the overall level of integration was sufficient to give a degree of reliability far above that of discreet transistors. The researcher, in a university orelsewhere, could build any digital device that a fertile imagination could conjure up. In the Computer Laboratory we built the Cambridge CAP, a full-scaleminicomputer with fancy capability logic.The 7400 series was still going strong in the mid 1970s and was used for the Cambridge Ring, a pioneering wide-band local area network. Publication of the design study for the Ring came just before the announcement of the Ethernet. Until these two systems appeared, users had mostly been content with teletype-based local area networks. Rings need high reliability because, as the pulses go repeatedly round the ring, they must be continually amplified and regenerated. It was the high reliability provided by the 7400 series of chips that gave us the courage needed to embark on the project for the Cambridge Ring.The RISC Movement and Its AftermathEarly computers had simple instruction sets. As time went on designers of commercially available machines added additional features which they thought would improve performance. Few comparative measureme nts were done and on the whole the choice of features depended upon the designer‟s intuition.In 1980, the RISC movement that was to change all this broke on the world. The movement opened with a paper by Patterson and ditzy entitled The Case for the Reduced Instructions Set Computer.Apart from leading to a striking acronym, this title conveys little of the insights into instruction set design which went with the RISC movement, in particular the way it facilitated pipelining, a system whereby several instructions may be in different stages of execution within the processor at the same time. Pipelining was not new, but it was new for small computersThe RISC movement benefited greatly from methods which had recently become available for estimating the performance to be expected from a computer design without actually implementing it. I refer to the use of a powerful existing computer to simulate the new design. By the use of simulation, RISC advocates were able to predict with some confidence that a good RISC design would be able to out-perform the best conventional computers using the same circuit technology. This prediction was ultimately born out in practice.Simulation made rapid progress and soon came into universal use by computer designers. In consequence, computer design has become more of a science and less of an art. Today, designers expect to have a roomful of, computers available to do their simulations, not just one. They refer to such a roomful by the attractive name of computer farm.The x86 Instruction SetLittle is now heard of pre-RISC instruction sets with one major exception, namely that of the Intel 8086 and its progeny, collectively referred to as x86. This has become the dominant instruction set and the RISC instruction sets that originally had a considerable measure of success are having to put up a hard fight for survival.This dominance of x86 disappoints people like myself who come from the research wings. both academic and industrial. of the computer field. No doubt, business considerations have a lot to do with the survival of x86, but there are other reasons as well. However much we research oriented people would liketo think otherwise. high level languages have not yet eliminated the use of machine code altogether. We need to keep reminding ourselves that there is much to be said for strict binary compatibility with previous usage when that can be attained. Nevertheless, things might have been different if Intel‟s major attempt to produce a good RISC chip had been more successful. I am referring to the i860 (not the i960, which was something different). In many ways the i860 was an excellent chip, but its software interface did not fit it to be used in aworkstation.There is an interesting sting in the tail of this apparently easy triumph of the x86 instruction set. It proved impossible to match the steadily increasing speed of RISC processors by direct implementation ofthe x86 instruction set as had been done in the past. Instead, designers took a leaf out of the RISC book; although it is not obvious, on the surface, a modern x86 processor chip contains hidden within it a RISC-style processor with its own internal RISC coding. The incoming x86 code is, after suitable massaging, converted into this internal code and handed over to the RISC processor where the critical execution is performed. In this summing up of the RISC movement, I rely heavily on the latest edition of Hennessy and Patterson‟s books on computer design as my supporting authority; see in particular Computer Architecture, third edition, 2003, pp 146, 151-4, 157-8.The IA-64 instruction set.Some time ago, Intel and Hewlett-Packard introduced the IA-64 instruction set. This was primarily intended to meet a generally recognized need for a 64 bit address space. In this, it followed the lead of the designers of the MIPS R4000 and Alpha. However one would have thought that Intel would have stressed compatibility with the x86; the puzzle is that they did the exact opposite.Moreover, built into the design of IA-64 is a feature known as predication which makes it incompatible in a major way with all other instruction sets. In particular, it needs 6 extra bits with each instruction. This upsets the traditional balance between instruction word length and information content, and it changes significantly the brief of the compiler writer.In spite of having an entirely new instruction set, Intel made the puzzling claim that chips based on IA-64 would be compatible with earlier x86 chips. It was hard to see exactly what was meant.Chips for the latest IA-64 processor, namely, the Itanium, appear to have special hardware for compatibility. Even so, x86 code runs very slowly.Because of the above complications, implementation of IA-64 requires a larger chip than is required for more conventional instruction sets. This in turn implies a higher cost. Such at any rate, is the received wisdom, and, as a general principle, it was repeated as such by Gordon Moore when he visited Cambridge recently to open the Betty and Gordon Moore Library. I have, however, heard it said that the matter appears differently from within Intel. This I do not understand. But I am very ready to admit that I am completely out of my depth as regards the economics of the semiconductor industry.Shortage of ElectronsAlthough shortage of electrons has not so far appeared as an obvious limitation, in the long term it may become so. Perhaps this is where the exploitation of non-conventional CMOS will lead us. However, some interesting work has been done. notably by HuronAmend and his team working in the Cavendish Laboratory. on the direct development of structures in which a single electron more or less makes the difference between a zero and a one. However very little progress has been made towards practical devices that could lead to the construction of a computer. Even with exceptionally good luck, many tens of years must inevitably elapse before a working computer based on single electron effects can be contemplated.微机发展简史第一台存储程序的计算开始出现于1950前后,它就是1949年夏天在剑桥大学,我们创造的延迟存储自动电子计算机(EDSAC)。