半导体物理分章答案第四章

合集下载

半导体物理与器件第四课后习题答案3.doc

半导体物理与器件第四课后习题答案3.doc

Chapter 33.1If o a were to increase, the bandgap energy would decrease and the material would begin to behave less like a semiconductor and more like a metal. If o a were to decrease, the bandgap energy would increase and thematerial would begin to behave more like an insulator._______________________________________ 3.2Schrodinger's wave equation is:()()()t x x V xt x m ,,2222ψ⋅+∂ψ∂- ()tt x j ∂ψ∂=, Assume the solution is of the form:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x exp , Region I: ()0=x V . Substituting theassumed solution into the wave equation, we obtain:()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧∂∂-t E kx j x jku x m exp 22 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-=t E kx j x u jE j exp which becomes()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m exp 222 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jkexp 2 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp 22 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=t E kx j x Eu exp This equation may be written as()()()()0222222=+∂∂+∂∂+-x u mE x x u x x u jk x u kSetting ()()x u x u 1= for region I, the equation becomes:()()()()021221212=--+x u k dx x du jk dxx u d α where222mE=αIn Region II, ()O V x V =. Assume the same form of the solution:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x exp , Substituting into Schrodinger's wave equation, we find:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m exp 222 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jkexp 2 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp 22 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+t E kx j x u V O exp ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=t E kx j x Eu exp This equation can be written as:()()()2222x x u x x u jk x u k ∂∂+∂∂+- ()()02222=+-x u mEx u mV OSetting ()()x u x u 2= for region II, this equation becomes()()dx x du jk dxx u d 22222+ ()022222=⎪⎪⎭⎫ ⎝⎛+--x u mV k O α where again222mE=α_______________________________________3.3We have()()()()021221212=--+x u k dx x du jk dxx u d α Assume the solution is of the form: ()()[]x k j A x u -=αexp 1()[]x k j B +-+αexp The first derivative is()()()[]x k j A k j dxx du --=ααexp 1 ()()[]x k j B k j +-+-ααexp and the second derivative becomes()()[]()[]x k j A k j dxx u d --=ααexp 2212 ()[]()[]x k j B k j +-++ααexp 2Substituting these equations into the differential equation, we find()()[]x k j A k ---ααexp 2()()[]x k j B k +-+-ααexp 2(){()[]x k j A k j jk --+ααexp 2()()[]}x k j B k j +-+-ααexp ()()[]{x k j A k ---ααexp 22 ()[]}0exp =+-+x k j B α Combining terms, we obtain()()()[]222222αααα----+--k k k k k ()[]x k j A -⨯αexp()()()[]222222αααα--++++-+k k k k k ()[]0exp =+-⨯x k j B α We find that 00=For the differential equation in ()x u 2 and the proposed solution, the procedure is exactly the same as above._______________________________________ 3.4We have the solutions ()()[]x k j A x u -=αexp 1()[]x k j B +-+αexp for a x <<0 and()()[]x k j C x u -=βexp 2()[]x k j D +-+βexp for 0<<-x b .The first boundary condition is ()()0021u u =which yields0=--+D C B AThe second boundary condition is201===x x dx dudx du which yields()()()C k B k A k --+--βαα()0=++D k β The third boundary condition is ()()b u a u -=21 which yields()[]()[]a k j B a k j A +-+-ααexp exp ()()[]b k j C --=βexp()()[]b k j D -+-+βexp and can be written as()[]()[]a k j B a k j A +-+-ααexp exp ()[]b k j C ---βexp()[]0exp =+-b k j D β The fourth boundary condition isbx a x dx dudx du -===21 which yields()()[]a k j A k j --ααexp()()[]a k j B k j +-+-ααexp ()()()[]b k j C k j ---=ββexp()()()[]b k j D k j -+-+-ββexp and can be written as ()()[]a k j A k --ααexp()()[]a k j B k +-+-ααexp()()[]b k j C k ----ββexp()()[]0exp =+++b k j D k ββ_______________________________________ 3.5(b) (i) First point: πα=aSecond point: By trial and error, πα729.1=a (ii) First point: πα2=aSecond point: By trial and error, πα617.2=a_______________________________________3.6(b) (i) First point: πα=aSecond point: By trial and error, πα515.1=a (ii) First point: πα2=aSecond point: By trial and error, πα375.2=a_______________________________________ 3.7ka a aaP cos cos sin =+'αααLet y ka =, x a =α Theny x x xP cos cos sin =+'Consider dy dof this function.()[]{}y x x x P dyd sin cos sin 1-=+⋅'- We find()()()⎭⎬⎫⎩⎨⎧⋅+⋅-'--dy dx x x dy dx x x P cos sin 112y dydxx sin sin -=- Theny x x x x x P dy dx sin sin cos sin 12-=⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡+-'For πn ka y ==, ...,2,1,0=n 0sin =⇒y So that, in general,()()dk d ka d a d dy dxαα===0 And22 mE=αSodk dEm mE dk d ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-22/122221 α This implies thatdk dE dk d ==0α for an k π= _______________________________________ 3.8(a) πα=a 1π=⋅a E m o 212()()()()2103123422221102.41011.9210054.12---⨯⨯⨯==ππa m E o19104114.3-⨯=J From Problem 3.5 πα729.12=aπ729.1222=⋅a E m o()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J 12E E E -=∆1918104114.3100198.1--⨯-⨯= 19107868.6-⨯=Jor 24.4106.1107868.61919=⨯⨯=∆--E eV(b) πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=J From Problem 3.5, πα617.24=aπ617.2224=⋅a E m o()()()()2103123424102.41011.9210054.1617.2---⨯⨯⨯=πE18103364.2-⨯=J 34E E E -=∆1818103646.1103364.2--⨯-⨯= 1910718.9-⨯=Jor 07.6106.110718.91919=⨯⨯=∆--E eV_______________________________________3.9(a) At π=ka , πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JAt 0=ka , By trial and error, πα859.0=a o ()()()()210312342102.41011.9210054.1859.0---⨯⨯⨯=πoE19105172.2-⨯=J o E E E -=∆11919105172.2104114.3--⨯-⨯= 2010942.8-⨯=Jor 559.0106.110942.81920=⨯⨯=∆--E eV (b) At π2=ka , πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JAt π=ka . From Problem 3.5, πα729.12=aπ729.1222=⋅a E m o()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J23E E E -=∆1818100198.1103646.1--⨯-⨯= 19104474.3-⨯=Jor 15.2106.1104474.31919=⨯⨯=∆--E eV_______________________________________3.10(a) πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JFrom Problem 3.6, πα515.12=aπ515.1222=⋅a E m o()()()()2103123422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J 12E E E -=∆1919104114.310830.7--⨯-⨯= 19104186.4-⨯=Jor 76.2106.1104186.41919=⨯⨯=∆--E eV (b) πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JFrom Problem 3.6, πα375.24=aπ375.2224=⋅a E m o()()()()2103123424102.41011.9210054.1375.2---⨯⨯⨯=πE18109242.1-⨯=J 34E E E -=∆1818103646.1109242.1--⨯-⨯= 1910597.5-⨯=Jor 50.3106.110597.51919=⨯⨯=∆--E eV_____________________________________3.11(a) At π=ka , πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JAt 0=ka , By trial and error, πα727.0=a oπ727.022=⋅a E m o o()()()()210312342102.41011.9210054.1727.0---⨯⨯⨯=πo E19108030.1-⨯=Jo E E E -=∆11919108030.1104114.3--⨯-⨯= 19106084.1-⨯=Jor 005.1106.1106084.11919=⨯⨯=∆--E eV (b) At π2=ka , πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JAt π=ka , From Problem 3.6,πα515.12=aπ515.1222=⋅a E m o()()()()2103423422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J23E E E -=∆191810830.7103646.1--⨯-⨯= 1910816.5-⨯=Jor 635.3106.110816.51919=⨯⨯=∆--E eV_______________________________________3.12For 100=T K, ()()⇒+⨯-=-1006361001073.4170.124gE164.1=g E eV200=T K, 147.1=g E eV 300=T K, 125.1=g E eV 400=T K, 097.1=g E eV 500=T K, 066.1=g E eV 600=T K, 032.1=g E eV_______________________________________3.13The effective mass is given by1222*1-⎪⎪⎭⎫⎝⎛⋅=dk E d mWe have()()B curve dkE d A curve dk E d 2222> so that ()()B curve m A curve m **<_______________________________________ 3.14The effective mass for a hole is given by1222*1-⎪⎪⎭⎫ ⎝⎛⋅=dk E d m p We have that()()B curve dkEd A curve dk E d 2222> so that ()()B curve m A curve m p p **<_______________________________________ 3.15Points A,B: ⇒<0dk dEvelocity in -x directionPoints C,D: ⇒>0dk dEvelocity in +x directionPoints A,D: ⇒<022dk Ednegative effective massPoints B,C: ⇒>022dkEd positive effective mass _______________________________________3.16For A: 2k C E i =At 101008.0+⨯=k m 1-, 05.0=E eV Or ()()2119108106.105.0--⨯=⨯=E J So ()2101211008.0108⨯=⨯-C3811025.1-⨯=⇒CNow ()()38234121025.1210054.12--*⨯⨯==C m 311044.4-⨯=kgor o m m ⋅⨯⨯=--*31311011.9104437.4o m m 488.0=* For B: 2k C E i =At 101008.0+⨯=k m 1-, 5.0=E eV Or ()()2019108106.15.0--⨯=⨯=E JSo ()2101201008.0108⨯=⨯-C 3711025.1-⨯=⇒CNow ()()37234121025.1210054.12--*⨯⨯==C m 321044.4-⨯=kg or o m m ⋅⨯⨯=--*31321011.9104437.4o m m 0488.0=*_______________________________________ 3.17For A: 22k C E E -=-υ()()()2102191008.0106.1025.0⨯-=⨯--C 3921025.6-⨯=⇒C()()39234221025.6210054.12--*⨯⨯-=-=C m31108873.8-⨯-=kgor o m m ⋅⨯⨯-=--*31311011.9108873.8o m m 976.0--=* For B: 22k C E E -=-υ()()()2102191008.0106.13.0⨯-=⨯--C 382105.7-⨯=⇒C()()3823422105.7210054.12--*⨯⨯-=-=C m3210406.7-⨯-=kgor o m m ⋅⨯⨯-=--*31321011.910406.7o m m 0813.0-=*_______________________________________ 3.18(a) (i) νh E =or ()()341910625.6106.142.1--⨯⨯==h E ν1410429.3⨯=Hz(ii) 141010429.3103⨯⨯===νλc E hc 51075.8-⨯=cm 875=nm(b) (i) ()()341910625.6106.112.1--⨯⨯==h E ν1410705.2⨯=Hz(ii) 141010705.2103⨯⨯==νλc410109.1-⨯=cm 1109=nm_______________________________________ 3.19(c) Curve A: Effective mass is a constantCurve B: Effective mass is positive around 0=k , and is negativearound 2π±=k . _______________________________________ 3.20()[]O O k k E E E --=αcos 1 Then()()()[]O k k E dkdE ---=ααsin 1()[]O k k E -+=ααsin 1 and()[]O k k E dk E d -=ααcos 2122Then221222*11 αE dk Ed m o k k =⋅== or212*αE m =_______________________________________ 3.21(a) ()[]3/123/24lt dn m m m =*()()[]3/123/264.1082.04oom m =o dn m m 56.0=*(b)o o l t cnm m m m m 64.11082.02123+=+=*oo m m 6098.039.24+=o cn m m 12.0=*_______________________________________ 3.22(a) ()()[]3/22/32/3lh hh dp m m m +=*()()[]3/22/32/3082.045.0o om m +=[]o m ⋅+=3/202348.030187.0o dp m m 473.0=*(b) ()()()()2/12/12/32/3lh hh lh hh cpm m m m m ++=*()()()()om ⋅++=2/12/12/32/3082.045.0082.045.0 o cp m m 34.0=*_______________________________________ 3.23For the 3-dimensional infinite potential well, ()0=x V when a x <<0, a y <<0, and a z <<0. In this region, the wave equation is:()()()222222,,,,,,z z y x y z y x x z y x ∂∂+∂∂+∂∂ψψψ()0,,22=+z y x mEψ Use separation of variables technique, so let ()()()()z Z y Y x X z y x =,,ψSubstituting into the wave equation, we have222222zZXY y Y XZ x X YZ ∂∂+∂∂+∂∂ 022=⋅+XYZ mEDividing by XYZ , we obtain021*********=+∂∂⋅+∂∂⋅+∂∂⋅ mEz Z Z y Y Y x X XLet01222222=+∂∂⇒-=∂∂⋅X k x X k x X X xx The solution is of the form: ()x k B x k A x X x x cos sin +=Since ()0,,=z y x ψ at 0=x , then ()00=X so that 0=B .Also, ()0,,=z y x ψ at a x =, so that ()0=a X . Then πx x n a k = where ...,3,2,1=x n Similarly, we have2221y k y Y Y -=∂∂⋅ and 2221z k zZ Z -=∂∂⋅From the boundary conditions, we find πy y n a k = and πz z n a k =where...,3,2,1=y n and ...,3,2,1=z n From the wave equation, we can write022222=+---mE k k k z y xThe energy can be written as()222222⎪⎭⎫⎝⎛++==a n n n m E E z y x n n n z y x π _______________________________________ 3.24The total number of quantum states in the 3-dimensional potential well is given (in k-space) by()332a dk k dk k g T ⋅=ππ where222 mEk =We can then writemEk 2=Taking the differential, we obtaindE Em dE E m dk ⋅⋅=⋅⋅⋅⋅=2112121 Substituting these expressions into the density of states function, we have()dE E mmE a dE E g T ⋅⋅⋅⎪⎭⎫ ⎝⎛=212233 ππ Noting thatπ2h=this density of states function can be simplified and written as()()dE E m h a dE E g T ⋅⋅=2/33324π Dividing by 3a will yield the density of states so that()()E h m E g ⋅=32/324π _______________________________________ 3.25For a one-dimensional infinite potential well,222222k a n E m n ==*π Distance between quantum states()()aa n a n k k n n πππ=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=-+11Now()⎪⎭⎫ ⎝⎛⋅=a dkdk k g T π2NowE m k n *⋅=21dE Em dk n⋅⋅⋅=*2211 Then()dE Em a dE E g n T ⋅⋅⋅=*2212 π Divide by the "volume" a , so ()Em E g n *⋅=21πSo()()()()()EE g 31341011.9067.0210054.11--⨯⋅⨯=π ()EE g 1810055.1⨯=m 3-J 1-_______________________________________ 3.26(a) Silicon, o n m m 08.1=*()()c nc E E h m E g -=*32/324π()dE E E h m g kTE E c nc c c⋅-=⎰+*232/324π()()kT E E c nc cE E h m 22/332/33224+*-⋅⋅=π()()2/332/323224kT hm n⋅⋅=*π ()()[]()()2/33342/33123210625.61011.908.124kT ⋅⋅⨯⨯=--π ()()2/355210953.7kT ⨯=(i) At 300=T K, 0259.0=kT eV()()19106.10259.0-⨯= 2110144.4-⨯=J Then ()()[]2/3215510144.4210953.7-⨯⨯=c g25100.6⨯=m 3-or 19100.6⨯=c g cm 3-(ii) At 400=T K, ()⎪⎭⎫⎝⎛=3004000259.0kT034533.0=eV()()19106.1034533.0-⨯= 21105253.5-⨯=J Then()()[]2/32155105253.5210953.7-⨯⨯=c g2510239.9⨯=m 3- or 191024.9⨯=c g cm 3-(b) GaAs, o nm m 067.0=*()()[]()()2/33342/33123210625.61011.9067.024kT g c ⋅⋅⨯⨯=--π ()()2/3542102288.1kT ⨯=(i) At 300=T K, 2110144.4-⨯=kT J ()()[]2/3215410144.42102288.1-⨯⨯=c g2310272.9⨯=m 3- or 171027.9⨯=c g cm 3-(ii) At 400=T K, 21105253.5-⨯=kT J ()()[]2/32154105253.52102288.1-⨯⨯=c g2410427.1⨯=m 3-181043.1⨯=c g cm 3-_______________________________________ 3.27(a) Silicon, o p m m 56.0=* ()()E E h mE g p-=*υυπ32/324()dE E E h mg E kTE p⋅-=⎰-*υυυυπ332/324()()υυυπE kTE pE E hm 32/332/33224-*-⎪⎭⎫ ⎝⎛-=()()[]2/332/333224kT hmp-⎪⎭⎫ ⎝⎛-=*π ()()[]()()2/33342/33133210625.61011.956.024kT ⎪⎭⎫ ⎝⎛⨯⨯=--π ()()2/355310969.2kT ⨯=(i)At 300=T K, 2110144.4-⨯=kT J ()()[]2/3215510144.4310969.2-⨯⨯=υg2510116.4⨯=m3-or 191012.4⨯=υg cm 3- (ii)At 400=T K, 21105253.5-⨯=kT J()()[]2/32155105253.5310969.2-⨯⨯=υg2510337.6⨯=m3-or 191034.6⨯=υg cm 3- (b) GaAs, o p m m 48.0=*()()[]()()2/33342/33133210625.61011.948.024kT g ⎪⎭⎫ ⎝⎛⨯⨯=--πυ ()()2/3553103564.2kT ⨯=(i)At 300=T K, 2110144.4-⨯=kT J()()[]2/3215510144.43103564.2-⨯⨯=υg2510266.3⨯=m 3- or 191027.3⨯=υg cm 3-(ii)At 400=T K, 21105253.5-⨯=kT J()()[]2/32155105253.53103564.2-⨯⨯=υg2510029.5⨯=m 3-or 191003.5⨯=υg cm 3-_______________________________________ 3.28(a) ()()c nc E E h m E g -=*32/324π()()[]()c E E -⨯⨯=--3342/33110625.61011.908.124πc E E -⨯=56101929.1 For c E E =; 0=c g1.0+=c E E eV; 4610509.1⨯=c g m 3-J 1-2.0+=c E E eV; 4610134.2⨯=m 3-J 1-3.0+=c E E eV; 4610614.2⨯=m 3-J 1- 4.0+=c E E eV; 4610018.3⨯=m 3-J 1- (b) ()E E h m g p-=*υυπ32/324()()[]()E E -⨯⨯=--υπ3342/33110625.61011.956.024E E -⨯=υ55104541.4 For υE E =; 0=υg1.0-=υE E eV; 4510634.5⨯=υg m 3-J 1-2.0-=υE E eV; 4510968.7⨯=m 3-J 1-3.0-=υE E eV; 4510758.9⨯=m 3-J 1-4.0-=υE E eV; 4610127.1⨯=m 3-J 1-_______________________________________ 3.29(a) ()()68.256.008.12/32/32/3=⎪⎭⎫ ⎝⎛==**pnc m m g g υ(b) ()()0521.048.0067.02/32/32/3=⎪⎭⎫ ⎝⎛==**pncmm g g υ_______________________________________3.30 Plot_______________________________________ 3.31(a) ()()()!710!7!10!!!-=-=i i i i i N g N g W()()()()()()()()()()()()1201238910!3!7!78910===(b) (i) ()()()()()()()()12!10!101112!1012!10!12=-=i W 66=(ii) ()()()()()()()()()()()()1234!8!89101112!812!8!12=-=i W 495=_______________________________________ 3.32()⎪⎪⎭⎫ ⎝⎛-+=kT E E E f F exp 11(a) kT E E F =-, ()()⇒+=1exp 11E f()269.0=E f (b) kT E E F 5=-, ()()⇒+=5exp 11E f()31069.6-⨯=E f(c) kT E E F 10=-, ()()⇒+=10exp 11E f ()51054.4-⨯=E f_______________________________________ 3.33()⎪⎪⎭⎫ ⎝⎛-+-=-kT E E E f F exp 1111or()⎪⎪⎭⎫ ⎝⎛-+=-kT E E E f F exp 111(a) kT E E F =-, ()269.01=-E f (b) kT E E F 5=-, ()31069.61-⨯=-E f(c) kT E E F 10=-, ()51054.41-⨯=-E f_______________________________________ 3.34(a) ()⎥⎦⎤⎢⎣⎡--≅kT E E f F F exp c E E =; 61032.90259.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f 2kT E c +; ()⎥⎦⎤⎢⎣⎡+-=0259.020259.030.0exp F f 61066.5-⨯=kT E c +; ()⎥⎦⎤⎢⎣⎡+-=0259.00259.030.0exp F f 61043.3-⨯=23kT E c +; ()()⎥⎦⎤⎢⎣⎡+-=0259.020259.0330.0exp F f 61008.2-⨯=kT E c 2+; ()()⎥⎦⎤⎢⎣⎡+-=0259.00259.0230.0exp F f 61026.1-⨯=(b) ⎥⎦⎤⎢⎣⎡-+-=-kT E E f F F exp 1111()⎥⎦⎤⎢⎣⎡--≅kT E E F exp υE E =; ⎥⎦⎤⎢⎣⎡-=-0259.025.0exp 1F f 51043.6-⨯= 2kT E -υ; ()⎥⎦⎤⎢⎣⎡+-=-0259.020259.025.0exp 1F f 51090.3-⨯=kT E -υ; ()⎥⎦⎤⎢⎣⎡+-=-0259.00259.025.0exp 1F f 51036.2-⨯=23kTE -υ; ()()⎥⎦⎤⎢⎣⎡+-=-0259.020259.0325.0exp 1F f 51043.1-⨯= kT E 2-υ;()()⎥⎦⎤⎢⎣⎡+-=-0259.00259.0225.0exp 1F f 61070.8-⨯=_______________________________________3.35()()⎥⎦⎤⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡--=kT E kT E kT E E f F c F F exp exp and()⎥⎦⎤⎢⎣⎡--=-kT E E f F F exp 1 ()()⎥⎦⎤⎢⎣⎡---=kT kT E E F υexp So ()⎥⎦⎤⎢⎣⎡-+-kT E kT E F c exp ()⎥⎦⎤⎢⎣⎡+--=kT kT E E F υexp Then kT E E E kT E F F c +-=-+υOr midgap c F E E E E =+=2υ_______________________________________ 3.3622222ma n E n π =For 6=n , Filled state()()()()()2103122234610121011.92610054.1---⨯⨯⨯=πE18105044.1-⨯=Jor 40.9106.1105044.119186=⨯⨯=--E eV For 7=n , Empty state ()()()()()2103122234710121011.92710054.1---⨯⨯⨯=πE1810048.2-⨯=Jor 8.12106.110048.219187=⨯⨯=--E eV Therefore 8.1240.9<<F E eV_______________________________________ 3.37(a) For a 3-D infinite potential well()222222⎪⎭⎫ ⎝⎛++=a n n n mE z y x π For 5 electrons, the 5th electron occupies the quantum state 1,2,2===z y x n n n ; so()2222252⎪⎭⎫ ⎝⎛++=a n n n m E z y x π()()()()()21031222223410121011.9212210054.1---⨯⨯++⨯=π1910761.3-⨯=Jor 35.2106.110761.319195=⨯⨯=--E eV For the next quantum state, which is empty, the quantum state is 2,2,1===z y x n n n . This quantum state is at the same energy, so 35.2=F E eV(b) For 13 electrons, the 13th electronoccupies the quantum state 3,2,3===z y x n n n ; so ()()()()()2103122222341310121011.9232310054.1---⨯⨯++⨯=πE 1910194.9-⨯=Jor 746.5106.110194.9191913=⨯⨯=--E eVThe 14th electron would occupy the quantum state 3,3,2===z y x n n n . This state is at the same energy, so 746.5=F E eV_______________________________________ 3.38The probability of a state at E E E F ∆+=1 being occupied is()⎪⎭⎫ ⎝⎛∆+=⎪⎪⎭⎫ ⎝⎛-+=kT E kT E E E f F exp 11exp 11111 The probability of a state at E E E F ∆-=2being empty is()⎪⎪⎭⎫ ⎝⎛-+-=-kT E E E f F 222exp 1111⎪⎭⎫ ⎝⎛∆-+⎪⎭⎫ ⎝⎛∆-=⎪⎭⎫ ⎝⎛∆-+-=kT E kT E kT E exp 1exp exp 111or()⎪⎭⎫ ⎝⎛∆+=-kT E E f exp 11122so ()()22111E f E f -=_______________________________________3.39(a) At energy 1E , we want01.0exp 11exp 11exp 1111=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛-kT E E kT E E kT E E F F FThis expression can be written as01.01exp exp 111=-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+kT E E kT E E F F or()⎪⎪⎭⎫⎝⎛-=kT E E F 1exp 01.01Then()100ln 1kT E E F += orkT E E F 6.41+= (b)At kT E E F 6.4+=, ()()6.4exp 11exp 1111+=⎪⎪⎭⎫ ⎝⎛-+=kT E E E f F which yields()01.000990.01≅=E f_______________________________________ 3.40 (a)()()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=0259.050.580.5exp exp kT E E f F F 61032.9-⨯=(b) ()060433.03007000259.0=⎪⎭⎫⎝⎛=kT eV31098.6060433.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f (c) ()⎥⎦⎤⎢⎣⎡--≅-kT E E f F F exp 1 ⎥⎦⎤⎢⎣⎡-=kT 25.0exp 02.0or 5002.0125.0exp ==⎥⎦⎤⎢⎣⎡+kT ()50ln 25.0=kTor()()⎪⎭⎫⎝⎛===3000259.0063906.050ln 25.0T kT which yields 740=T K_______________________________________ 3.41 (a)()00304.00259.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 0.304%(b) At 1000=T K, 08633.0=kT eV Then()1496.008633.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 14.96%(c) ()997.00259.00.785.6exp 11=⎪⎭⎫ ⎝⎛-+=E for 99.7% (d)At F E E =, ()21=E f for all temperatures_______________________________________ 3.42(a) For 1E E =()()⎥⎦⎤⎢⎣⎡--≅⎪⎪⎭⎫ ⎝⎛-+=kT E E kTE E E fF F11exp exp 11Then()611032.90259.030.0exp -⨯=⎪⎭⎫ ⎝⎛-=E fFor 2E E =, 82.030.012.12=-=-E E F eV Then()⎪⎭⎫ ⎝⎛-+-=-0259.082.0exp 1111E for()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---≅-0259.082.0exp 111E f141078.10259.082.0exp -⨯=⎪⎭⎫ ⎝⎛-=(b) For 4.02=-E E F eV,72.01=-F E E eVAt 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.072.0exp exp 1kT E E E f F or()131045.8-⨯=E f At 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.04.0expor()71096.11-⨯=-E f_______________________________________ 3.43(a) At 1E E =()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.030.0exp exp 1kT E E E f F or()61032.9-⨯=E fAt 2E E =, 12.13.042.12=-=-E E F eV So()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.012.1expor()191066.11-⨯=-E f (b) For 4.02=-E E F ,02.11=-F E E eV At 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.002.1exp exp 1kT E E E f F or()181088.7-⨯=E f At 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.04.0expor ()71096.11-⨯=-E f_______________________________________ 3.44()1exp 1-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=kTE E E f Fso()()2exp 11-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-=kT E E dE E df F⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛⨯kT E E kT F exp 1or()2exp 1exp 1⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=kT E E kT E E kT dE E df F F (a) At 0=T K, For()00exp =⇒=∞-⇒<dE dfE E F()0exp =⇒+∞=∞+⇒>dEdfE E FAt -∞=⇒=dEdfE E F(b) At 300=T K, 0259.0=kT eVFor F E E <<, 0=dE dfFor F E E >>, 0=dEdfAt F E E =,()()65.91110259.012-=+⎪⎭⎫ ⎝⎛-=dE df (eV)1-(c) At 500=T K, 04317.0=kT eVFor F E E <<, 0=dE dfFor F E E >>, 0=dEdfAt F E E =,()()79.511104317.012-=+⎪⎭⎫ ⎝⎛-=dE df (eV)1- _______________________________________ 3.45(a) At midgap E E =,()⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=kT E kTE E E f g F2exp 11exp 11Si: 12.1=g E eV, ()()⎥⎦⎤⎢⎣⎡+=0259.0212.1exp 11E for()101007.4-⨯=E fGe: 66.0=g E eV ()()⎥⎦⎤⎢⎣⎡+=0259.0266.0exp 11E for()61093.2-⨯=E f GaAs: 42.1=g E eV ()()⎥⎦⎤⎢⎣⎡+=0259.0242.1exp 11E for()121024.1-⨯=E f(b) Using the results of Problem 3.38, the answers to part (b) are exactly the same as those given in part (a)._______________________________________3.46(a) ()⎥⎦⎤⎢⎣⎡--=kT E E f F F exp ⎥⎦⎤⎢⎣⎡-=-kT 60.0exp 108or()810ln 60.0+=kT()032572.010ln 60.08==kT eV ()⎪⎭⎫⎝⎛=3000259.0032572.0Tso 377=T K(b) ⎥⎦⎤⎢⎣⎡-=-kT 60.0exp 106()610ln 60.0+=kT()043429.010ln 60.06==kT ()⎪⎭⎫⎝⎛=3000259.0043429.0Tor 503=T K_______________________________________ 3.47(a) At 200=T K,()017267.03002000259.0=⎪⎭⎫⎝⎛=kT eV⎪⎪⎭⎫ ⎝⎛-+==kT E E f F F exp 1105.019105.01exp =-=⎪⎪⎭⎫ ⎝⎛-kT E E F()()()19ln 017267.019ln ==-kT E E F 05084.0=eV By symmetry, for 95.0=F f , 05084.0-=-F E E eVThen ()1017.005084.02==∆E eV (b) 400=T K, 034533.0=kT eV For 05.0=F f , from part (a),()()()19ln 034533.019ln ==-kT E E F 10168.0=eVThen ()2034.010168.02==∆E eV _______________________________________。

半导体物理学(刘恩科)课后习题解第四章答案

半导体物理学(刘恩科)课后习题解第四章答案

σ = nqu n + pqu p = ni q(u n + u p ) = 1×1010 ×1.602 ×10 -19 × (1350+500) = 3.0 ×10 -6 S / cm
1 1 金钢石结构一个原胞内的等效原子个数为 8 × + 6 × + 4 = 8 个,查看附录 B 知 Si 8 2
ρ i = 1/ σ i =
1 ni q(u n + u p )
=
1 = 12.5Ω ⋅ cm 5 ×10 ×1.602 × 10 −19 × ( 400 + 600)
14
11. 截面积为 10-3cm2, 掺有浓度为 1013cm-3 的 p 型 Si 样品,样品内部加有强度为 103V/cm的电场,求; ①室温时样品的电导率及流过样品的电流密度和电流强度。 ②400K 时样品的电导率及流过样品的电流密度和电流强度。 解: ①查表 4-15(b)知室温下,浓度为 1013cm-3的p型Si样品的电阻率为 ρ ≈ 2000Ω ⋅ cm , 则电导率为 σ = 1 / ρ ≈ 5 ×10 −4 S / cm 。 电流密度为 J = σE = 5 ×10 −4 ×10 3 = 0.5 A / cm 2 电流强度为 I = Js = 0.5 ×10 −3 = 5 ×10 −4 A ②400K时,查图 4-13 可知浓度为 1013cm-3的p型Si的迁移率约为 u p = 500cm 2 /(V ⋅ s ) , 则电导率为 σ = pqu p = 1013 ×1.602 ×10 −19 × 500 = 8 ×10 −4 S / cm 电流密度为 J = σE = 8 ×10 −4 ×10 3 = 0.8 A / cm 2
n = p0 + N D = 2 × 1013 + 8.4 × 1014 = 8.6 × 1014 cm −3

半导体物理习题答案(1-3章)

半导体物理习题答案(1-3章)

第1章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值附近能量()c E k 和价带极大值附近能量()v E k 分别为2222100()()3c h k k h k E k m m -=+,22221003()6v h k h k E k m m =-0m 为电子惯性质量,112k a =, 0.314a =nm 。

试求:1) 禁带宽度;2) 导带底电子有效质量; 3) 价带顶电子有效质量;4) 价带顶电子跃迁到导带底时准动量的变化。

解:1) 禁带宽度g E ,根据22100()2()202c dE k h k k h k dk m m -=+=,可求出对应导带能量极小值min E 的k 值:min 134k k =, 由题目中()c E k 式可得:min 12min 3104()4c k k k h E E k k m ====; 根据20()60v dE k h k dk m =-=,可以看出,对应价带能量极大值max E 的k 值为:k max = 0;可得max 221max 00()6v k k h k E E k m ====,所以2221min max 2001248g h k h E E E m m a=-== 2) 导带底电子有效质量m n由于2222200022833c d E h h h dk m m m =+=,所以202238nc m h md E dk== 3) 价带顶电子有效质量vn m由于22206v d E h dk m =-,所以20226v nv m h m d E dk ==- 4) 准动量的改变量min max 133()48hh k h k k hk a∆=-==2. 晶格常数为0.25 nm 的一维晶格,当外加102 V/m 、107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:设电场强度为E ,电子受到的力f 为dkf hqE dt==(E 取绝对值),可得h dt dk qE =, 所以12012ta h h t dt dk qE qE a===⎰⎰,代入数据得: 34619106.62108.310()1.6102(2.510)t s E E----⨯⨯==⨯⨯⨯⨯⨯ 当E = 102 V/m 时,88.310t s -=⨯;当E = 107 V/m 时,138.310t s -=⨯。

半导体物理学第四章答案

半导体物理学第四章答案

半导体物理学第四章答案第四章习题及答案1. 300K 时,Ge 的本征电阻率为47Ωcm ,如电子和空穴迁移率分别为3900cm 2/( V.S)和1900cm 2/( V.S)。

试求Ge 的载流子浓度。

解:在本征情况下,i n p n ==,由)(/p n i p n u u q n pqu nqu +=+==111σρ知 3131910292190039001060214711--?=+=+=cm u u q n p n i .)(.)(ρ 2. 试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1350cm 2/( V.S)和500cm 2/( V.S)。

当掺入百万分之一的As 后,设杂质全部电离,试计算其电导率。

比本征Si 的电导率增大了多少倍?解:300K 时,)/(),/(S V cm u S V cm u p n ?=?=225001350,查表3-2或图3-7可知,室温下Si 的本征载流子浓度约为3101001-?=cm n i .。

本征情况下,cm S +.u u q n pqu nqu -p n i p n /.)()(6191010035001350106021101-?==+=+=σ金钢石结构一个原胞内的等效原子个数为84216818=+?+?个,查看附录B 知Si 的晶格常数为0.543102nm ,则其原子密度为322371051054310208--?=?cm ).(。

掺入百万分之一的As,杂质的浓度为3162210510000001105-?=?=cm N D ,杂质全部电离后,i D n N >>,这种情况下,查图4-14(a )可知其多子的迁移率为800 cm 2/( V.S)cm S .qu N -n D /.''468001060211051916==≈σ比本征情况下增大了66101210346?=?=-..'σσ倍 3. 电阻率为10Ω.m 的p 型Si 样品,试计算室温时多数载流子和少数载流子浓度。

半导体物理与器件-第四章 平衡半导体

半导体物理与器件-第四章 平衡半导体
ni严重依赖温度
16
4.1 半导体中的载流子
4.1.3 本征载流子浓 度
P81例4.3
ni随温度的升高而明显增大。
• 与温度关系很大: • 温升150度时,浓度增大4个数量级。
17
4.1 半导体中的载流子
4.1.4 本征费米能级位置
由电中性条件:n0=p0
禁带中央
本征费米能级精确位于禁带中央;
本征费米能级会稍高于禁带中央; 本征费米能级会稍低于禁带中央;
平征半导体(Intrinsic Semiconductor)
本征激发:共价键上的电子激发成为准自由电子,也就是 价带电子获得能量跃迁到导带的过程。
本征激发的特点:成对的产生导带电子和价带空穴。
14
4.1 半导体中的载流子
4.1.3 本征载流子浓度
说明: 本征半导体中电子的浓度=空穴的浓度即n0=p0 (电中性条件)记为ni=pi
3、施主杂质原子增加导带电子,但并不产生价带空穴,因此,这样的半导体称为 n型半导体。
22
4.2掺杂原子与能级 施主杂质
■ 电子脱离施主杂质的束缚成为导电电子的过程称为施主电 离,所需要的能量
ΔED=Ec-Ed 称为施主杂质电离能。ΔED的大小与半导体材料和杂质种类
有关,但远小于Si和Ge的禁带宽度。 ■ 施主杂质未电离时是中性的,称为束缚态或中性态,电离后
4.4施主和受主的统计学分布 4.4.2完全电离和束缚态
与室温条件相反,当T=0K时,杂质原子没有电离: 1、对n型半导体,每个施主原子都包含一个电子,nd=Nd
费米能级高于施主能级
2、对p型半导体,杂质原子不包含外来电子,na=Na,费米能级低于受主能级
束缚态:
没有电子从施主能态热激发到导带 中,

半导体物理 课后习题答案

半导体物理 课后习题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。

解322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C 22C L E m h E E E m V dE E E m V dE E g V d dEE g d E E m V E g c nc C n l m h E C n l m E C n n c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)(2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。

半导体物理(刘恩科)第四章小结含习题答案

半导体物理(刘恩科)第四章小结含习题答案

ℏ������������
������0 ∝ [ⅇ������0������ − 1]
12.当几种散射概率同时存在时
P=������Ι + ������ΙΙ + ������ΙΙΙ + ⋯ ⋯
τ
=
1 ������
=
1 ������Ι+������ΙΙ+������ΙΙΙ+⋯

1 ������
=
������Ι
比本征情况下增大了������′
������
=
6.4 3.18×10−6
=
2.01
×
106倍
显然掺杂大大提高了电导率
3. 电阻率为 10.m 的 p 型 Si 样品,试计算室温时多数载流子和少数载流子浓度。
解:对 p 型 Si,多子为空穴 ������ = 1
������������������������
其中������������ = 500 ������������2/(������������)

������
=
1 ������������������������
=
1 10×1.6×10−19×500
=
1.25
×
1015������������−3
������
=
������������2 ������
=
47
×
1.602
×
1 10−19
×
(3800
+
1800)
=
2.37
×
1013������������−3
2. 试 计 算本 征 Si 在 室温 时的 电导率 ,设 电子和 空穴 迁移率 分别 为 1450cm2/( V.S)和

半导体物理第四章答案

半导体物理第四章答案
R= 1 l 1 2 = = 5.2Ω −2 σ p s 19.2 2 × 10
返回
截面积为 0.001cm 的圆柱形纯Si样品,长1mm,接于 10V电源上,室温下希望通过0.1A的电流,问: ⑴样品的电阻为多少? ⑵样品的电导率是多少?
µ n = 1200 cm 2 V ⋅ s ) ⑶应掺入为多少的施主?(
4-11 -
σ 1 = N A qµ p = 1013 ×1.6 ×10 −19 × 500 = 8 ×10 −4 / Ω ⋅ cm
J 1 = σε = 8 × 10 −4 × 10 3 = 0.8 A cm 2
I 1 = J 1 S = 0.8mA
ni = 8 × 1012 cm −3 ⑵400K时,由图3-7知,
第四章
PowerPoint2003
半导体物理习题 第四章
4-1 - 4-6 - 4-11 - 4-16 - 4-2 - 4-7 - 4-12 - 4-17 - 4-3 - 4-8 - 4-13 - 4-18 - 4-4 - 4-9 - 4-14 - 4-19 - 4-5 - 4-10 - 4-15 - 4-20 -
n 8 × 10 n≈ = = 4.41 × 1012 cm −3 p 1.45 × 1013
2 i
(
12 2
)
µ p = 230cm 2 / V ⋅ s µ 由图4-13知, n = 700cm / V ⋅ s ,
2
σ 2 = nqµ n + pqµ p
= 1.6 ×10−19 × 4.41×1012 × 700 + 1.45 ×1013 × 230
即本征激发不可忽略。
N A ≈ ni

NA p= 2

半导体物理学第四章答案

半导体物理学第四章答案

全部电离,试计算其电导率。比本征Si的电导率增大了多少倍?
解:300K时,,查表3-2或图3-7可知,室温下Si的本征载流子浓度约
为。
本征情况下,
金钢石结构一个原胞内的等效原子个数为个,查看附录B知Si的晶格
常数为0.543102nm,则其原子密度为。
掺入百万分之一的As,杂质的浓度为,杂质全部电离后,,这种情况
①室温时样品的电导率及流过样品的电流密度和电流强度。 ②400K时样品的电导率及流过样品的电流密度和电流强度。 解: ①查表4-15(b)知室温下,浓度为1013cm-3的p型Si样品的电阻率为, 则电导率为。 电流密度为 电流强度为 ②400K时,查图4-13可知浓度为1013cm-3的p型Si的迁移率约为,则电导 率为 电流密度为 电流强度为 12. 试从图4-14求室温时杂质浓度分别为1015,1016,1017cm-3的p型 和n型Si 样品的空穴和电子迁移率,并分别计算他们的电阻率。再从图 4-15分别求他们的电阻率。
,
,查图4-14(a)知,
④磷原子31015cm-3+镓原子11017cm-3+砷原子11017cm-3
,
,查图4-14(a)知, 17. ①证明当unup且电子浓度n=ni时,材料的电导率最小,并求min的表 达式。 解:
令 因此,为最小点的取值
②试求300K时Ge 和Si样品的最小电导率的数值,并和本征电导率相比 较。 查表4-1,可知室温下硅和锗较纯样品的迁移率 Si: Ge: 18. InSB的电子迁移率为7.5m2/( VS),空穴迁移率为0.075m2/( VS), 室温时本征载流子浓度为1.61016cm-3,试分别计算本征电导率、电阻率 和最小电导率、最大电导率。什么导电类型的材料电阻率可达最大。 解: 借用17题结果 当时,电阻率可达最大,这时 ,这时为P型半导体。

半导体物理导论 课后习题 第4章

半导体物理导论 课后习题 第4章

Eg
77K
Eg
0
T
T
2
1.21
4.73 104 772 77 636
1.2061eV
Eg
300K
Eg
0
T
T
2
1.21
4.73 104 3002 300 636
1.1615eV
Eg
500K
Eg
0
T
T
2
0.7437
4.73 104 5002 500 636
1.1059eV
习题6. 试分别计算本征Si在77K、300K和500K下的载流子浓度。
解:假设载流子的有效质量近似不变,则:

Eg
T
Eg
0
T
T
2
且 4.73104, 636
ni
Eg
Nc Nv e 2k0T
所以
Eg
77K
Eg
0
T
T
2
1.21
4.73 104 772 77 636
1.2061eV
e 3.5 10 cm
1.1615 1.6021039 2 1.3810 23 300
9
3
ni (500K)
N N e
Eg 2k0T
cv
6.025 1019
2.367 1019
e
1.1059 1.6021039 2 1.3810 23 500
1.669 1014 cm3
Eg
300K
Eg
0
T
T
2
1.21
4.73 104 3002 300 636
1.1615eV

半导体物理分章答案第四章

半导体物理分章答案第四章
可忽略
可忽略
占主导
非本征区
本征区
低温区
0 K
4.6 强电场下的效应 热载流子 Effect at Large Field, Hot Carrier
学习重点:
强电场下欧姆定律发生偏离的原因
1、欧姆定率的偏离与强电场效应
N型锗样品电流与电场强度的关系
光学波散射:
正负离子的振动位移会产生附加势场,因此化合物半导体中光学波散射较强。例如:GaAs 对于元素半导体,只是在高温条件下才考虑光学波散射的作用。例如:Ge、Si 离子晶体中光学波对载流子的散射几率
4.3 迁移率与杂质浓度和温度的关系
当几种散射机构同时存在时
2
平均自由时间τ和散射几率P的关系
晶格振动表现为格波
1
N个原胞组成的晶体→格波波矢有N个。格波的总数等于原子自由度总数
2
一个格波波矢q 对应3(n-1)支光学波+3支声学波。
3
光学波=N (n-1)个纵波+2 N (n-1)个横波
4
声学波=N个纵波+2N个横波
5
晶格振动散射可理解为载流子与声子的碰撞,遵循两大守恒法则
6
准动量守恒
7
1、迁移率( Mobility ) 2、散射机制(Scattering mechanisms) 3、迁移率、电阻率与温度的关系
第四章 半导体的导电性 Electrical conduction of Semiconductors
202X
重点:
漂移运动 迁移率 电导率
学习重点:
202X
§4.1 载流子的漂移运动 迁移率 The drift motion of carrier, mobility

半导体物理学(第7版本)刘恩科第四章习题答案

半导体物理学(第7版本)刘恩科第四章习题答案
' ' N D qun 5 10 16 1.602 10 -19 800 6.4 S / cm
比本征情况下增大了
' 6.4 2.1 10 6 倍 6 3 10
3. 电阻率为 10 .m 的 p 型 Si 样品,试计算室温时多数载流子和少数载流子浓度。 解:查表 4-15(b)可知,室温下,10 .m 的 p 型 Si 样品的掺杂浓度 NA 约为1.5 1015 cm 3 ,查表 3-2 或 图 3-7 可知,室温下 Si 的本征载流子浓度约为 ni 1.0 10 10 cm 3 , N A ni
n p0 N D 2 10 13 8.4 10 14 8.6 10 14 cm 3
1/
1 1 1.9 cm 14 nqun 8.6 10 1.602 10 19 0.38 10 4
5. 500g 的 Si 单晶,掺有 4.510-5g 的 B ,设杂质全部电离,试求该材料的电阻率p=500cm2/( V.S), 硅单晶密度为 2.33g/cm3,B 原子量为 10.8。 解:该 Si 单晶的体积为: V B 掺杂的浓度为: N A
7 长为 2cm 的具有矩形截面的 Ge 样品,截面线度分别为 1mm 和 2mm,掺有 1022m-3 受主,试求室温时样 品的电导率和电阻。再掺入 51022m-3 施主后,求室温时样品的电导率和电阻。 解: N A 1.0 10 22 m 3 1.0 10 16 cm 3 ,查图 4-14(b)可知,这个掺杂浓度下,Ge 的迁移率 u p 为 1500 cm2/( V.S),又查图 3-7 可知,室温下 Ge 的本征载流子浓度 ni 2 10 13 cm 3 , N A ni ,属强电离区, 所以电导率为

半导体物理习题答案第四章

半导体物理习题答案第四章

第4章 半导体的导电性2.试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1350cm 2/V ?s 和500 cm 2/V ?s 。

当掺入百万分之一的As 后,设杂质全部电离,试计算其电导率。

掺杂后的电导率比本征Si 的电导率增大了多少倍?解:将室温下Si 的本征载流子密度?1010/cm 3及题设电子和空穴的迁移率代入电导率公式()i i n p n q σμμ=+即得:101961.510 1.610(1350500) 4.4410 s/cm i σ--=⨯⨯⨯⨯+=⨯;已知室温硅的原子密度为5?1022/cm 3,掺入1ppm 的砷,则砷浓度22616351010510 cm D N --=⨯⨯=⨯在此等掺杂情况下可忽略少子对材料电导率的贡献,只考虑多子的贡献。

这时,电子密度n 0因杂质全部电离而等于N D ;电子迁移率考虑到电离杂质的散射而有所下降,查表4-14知n-Si 中电子迁移率在施主浓度为5?1016/cm 3时已下降为800 cm 2/V ?s 。

于是得1619510 1.610800 6.4 s cm n nq σμ-==⨯⨯⨯⨯=/该掺杂硅与本征硅电导率之比866.4 1.44104.4410i σσ-==⨯⨯ 即百万分之一的砷杂质使硅的电导率增大了亿倍5. 500g 的Si 单晶中掺有?10-5g 的B ,设杂质全部电离,求其电阻率。

(硅单晶的密度为2.33g/cm 3,B 原子量为)。

解:为求电阻率须先求杂质浓度。

设掺入Si 中的B 原子总数为Z ,则由1原子质量单位=?10-24g 算得618244.510 2.51010.8 1.6610Z --⨯==⨯⨯⨯个 500克Si 单晶的体积为3500214.6 cm 2.33V ==,于是知B 的浓度 ∴1816-32.510 1.1610 cm 214.6A Z N V ⨯===⨯ 室温下硅中此等浓度的B 杂质应已完全电离,查表4-14知相应的空穴迁移率为400 cm 2/V ?s 。

半导体物理第四章习题答案

半导体物理第四章习题答案

半导体物理第四章习题答案(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四篇题解-半导体的导电性刘诺编4-1、对于重掺杂半导体和一般掺杂半导体,为何前者的迁移率随温度的变化趋势不同?试加以定性分析。

解:对于重掺杂半导体,在低温时,杂质散射起主体作用,而晶格振动散射与一般掺杂半导体的相比较,影响并不大,所以这时侯随着温度的升高,重掺杂半导体的迁移率反而增加;温度继续增加后,晶格振动散射起主导作用,导致迁移率下降。

对一般掺杂半导体,由于杂质浓度较低,电离杂质散射基本可以忽略,起主要作用的是晶格振动散射,所以温度越高,迁移率越低。

4-2、何谓迁移率影响迁移率的主要因素有哪些解:迁移率是单位电场强度下载流子所获得的漂移速率。

影响迁移率的主要因素有能带结构(载流子有效质量)、温度和各种散射机构。

4-3、试定性分析Si的电阻率与温度的变化关系。

解:Si的电阻率与温度的变化关系可以分为三个阶段:(1)温度很低时,电阻率随温度升高而降低。

因为这时本征激发极弱,可以忽略;载流子主要来源于杂质电离,随着温度升高,载流子浓度逐步增加,相应地电离杂质散射也随之增加,从而使得迁移率随温度升高而增大,导致电阻率随温度升高而降低。

(2)温度进一步增加(含室温),电阻率随温度升高而升高。

在这一温度范围内,杂质已经全部电离,同时本征激发尚不明显,故载流子浓度基本没有变化。

对散射起主要作用的是晶格散射,迁移率随温度升高而降低,导致电阻率随温度升高而升高。

(3)温度再进一步增加,电阻率随温度升高而降低。

这时本征激发越来越多,虽然迁移率随温度升高而降低,但是本征载流子增加很快,其影响大大超过了迁移率降低对电阻率的影响,导致电阻率随温度升高而降低。

当然,温度超过器件的最高工作温度时,器件已经不能正常工作了。

4-4、证明当µn ≠µp,且电子浓度pninnμμ/=,空穴浓度npinpμμ/=时半导体的电导率有最小值,并推导minσ的表达式。

半导体物理第四章习题参考答案

半导体物理第四章习题参考答案

9. 由于光的照射在半导体中产生了非平衡载流子 n p 1012 cm-3 ,分别计算
施主掺杂浓度为 ND 1016 cm-3 的 N 型硅和本征硅在这种情况下的准费米能 级的位置,并与原来的费米能级的位置做比较,画出相应的能带图。 答:有:
n
ni
exp
E fn kT
Ei
,
n
E fn
答:(1) 电离杂质散射是由电离的杂质对载流子的库仑相互作用引起的,其特点 为:掺杂浓度越高,电离杂质散射越显著;温度越高,载流子的动能越大,受库 仑相互作用力的影响相对减弱,因此,电离杂质散射在低温时起主要作用,其 、
与温度的关系为:
3
3
I T 2 , I T 2
(2) 声学波散射是晶格振动对载流子散射中作用大的一种,属于晶格自身的特
10. 设空穴浓度是线性分布,在 3μm 内浓度分布差 1015cm-3,μp=400cm2·V-1·s-1, 试计算空穴扩散电流密度。
答:由爱因斯坦关系:
Dp
kT q
p
有:
jp
qDp
p x
kT p
p x
5.52 A
cm2
11. 考虑平衡情形,证明:
en
Vthn nni
exp
Et Ei kT
i niqn piqp 4.45106 Ω cm
(2)
当掺入百万分之一的
As
时,施主浓度为:
ND
5 1022 106
cm-3
51016 cm-3
(其中 N 51022 cm-3 为 Si 的原子密度)。
由于杂质全部电离,从而: n
ND
51016 cm-3,
p

半导体物理习题答案第四章

半导体物理习题答案第四章

半导体物理习题答案第四章第4章半导体的导电性2.试计算本征Si 在室温时的电导率,设电⼦和空⽳迁移率分别为1350cm 2/V?s 和500 cm 2/V?s 。

当掺⼊百万分之⼀的As 后,设杂质全部电离,试计算其电导率。

掺杂后的电导率⽐本征Si 的电导率增⼤了多少倍解:将室温下Si 的本征载流⼦密度?1010/cm 3及题设电⼦和空⽳的迁移率代⼊电导率公式()i i n p n q σµµ=+即得:101961.510 1.610(1350500) 4.4410 s/cm i σ--=+=?;已知室温硅的原⼦密度为5?1022/cm 3,掺⼊1ppm 的砷,则砷浓度22616351010510 cm D N --=??=?在此等掺杂情况下可忽略少⼦对材料电导率的贡献,只考虑多⼦的贡献。

这时,电⼦密度n 0因杂质全部电离⽽等于N D ;电⼦迁移率考虑到电离杂质的散射⽽有所下降,查表4-14知n-Si 中电⼦迁移率在施主浓度为5?1016/cm 3时已下降为800 cm 2/V?s 。

于是得1619510 1.610800 6.4 s cm n nq σµ-===/该掺杂硅与本征硅电导率之⽐866.4 1.44104.4410i σσ-==?? 即百万分之⼀的砷杂质使硅的电导率增⼤了亿倍5. 500g 的Si 单晶中掺有?10-5g 的B ,设杂质全部电离,求其电阻率。

(硅单晶的密度为2.33g/cm 3,B 原⼦量为)。

解:为求电阻率须先求杂质浓度。

设掺⼊Si 中的B 原⼦总数为Z ,则由1原⼦质量单位=?10-24g 算得618244.510 2.51010.8 1.6610Z --?==个 500克Si 单晶的体积为3500214.6 cm 2.33V ==,于是知B 的浓度∴1816-32.510 1.1610 cm 214.6A Z N V ?===? 室温下硅中此等浓度的B 杂质应已完全电离,查表4-14知相应的空⽳迁移率为400 cm 2/V?s 。

半导体物理答案

半导体物理答案

第一篇 半导体中的电子状态习题1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。

1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。

1-3、试指出空穴的主要特征。

1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。

1-5、某一维晶体的电子能带为[])sin(3.0)cos(1.01)(0ka ka E k E --=其中E 0=3eV ,晶格常数a=5х10-11m 。

求:(1) 能带宽度;(2) 能带底和能带顶的有效质量。

题解:1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。

其结果是在半导体中出现成对的电子-空穴对。

如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。

1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。

温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。

反之,温度降低,将导致禁带变宽。

因此,Ge 、Si 的禁带宽度具有负温度系数。

1-3、 解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。

主要特征如下:A 、荷正电:+q ;B 、空穴浓度表示为p (电子浓度表示为n );C 、E P =-E nD 、m P *=-m n *。

1-4、 解:(1) Ge 、Si:a )Eg (Si :0K) = 1.17eV ;Eg (Ge :0K) = 0.744eV ;b )间接能隙结构c )禁带宽度E g 随温度增加而减小;(2) GaAs :a )Eg (0K) = 1.52eV ;b )直接能隙结构;c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ;1-5、 解:(1) 由题意得:[][])sin(3)cos(1.0)cos(3)sin(1.002220ka ka E a k d dE ka ka aE dk dE+=-=eVE E E E a kd dE a k E a kd dE a k a k a k ka tg dk dE ooo o 1384.1min max ,01028.2)4349.198sin 34349.198(cos 1.0,4349.198,01028.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.1831,04002222400222121=-=∆<⨯-=+==>⨯=+====∴==--则能带宽度对应能带极大值。

半导体物理第四章20题试证明锗的电导有效质量

半导体物理第四章20题试证明锗的电导有效质量

J z J l cos J t sin ①
z方向电流密度还可写作
其中
v Jt

v Jz 4
nqvvt

n 4
qvvuzv
nqt t
nq vvt vvl
,其数值

v Jt

v Jl
v Jl

nqvvl

Jtuv nqt z sin
nql l ,其数值
若电子浓度为n则单位体积中每个椭球有电子数为如前图相应方向上的电流密度为则z方向上的电流密度其大小为sincosnqvnqnqvnqsincosnqnq由图中可得
4-20
试证Ge的电导有效质量也为:
1 mc

1 3

1 ml

2 mt

证明:
[001]
[001]
2
[111] [110]
[100]

Jl nql z cos ③
②③代入①得:
J z nql z cos2 nqt z sin 2
由图中可得:cos2

1 3

2
1 3
,sin 2

2 3
代入上式
则有
Jz

nq z

1 3
l

2 3
t

写成一般形式: J z nq z c
得到
c

1 3
l

2 3
t
பைடு நூலகம்
,式中
l

q n
ml
, t

q n
mt
并把
c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、迁移率µ与杂质浓度和温度的关系 迁移率µ
由前面可知 电离杂质散射: 电离杂质散射: i µ 声学波散射: 声学波散射: 光学波散射: 光学波散射:
∝ N iT
3 2 hvl k 0T

3 2
µs ∝ T µo ∝ e
1
( N i = ∑ N Ai + ∑ N D j )
−1
+ + 1
对Ge和Si: Ge和Si: 所以 对GaAs: GaAs:
(1)电离杂质散射(即库仑散射) 电离杂质散射(即库仑散射)
载流子的散射几率P 载流子的散射几率P 散射几率P 散射几率Pi∝NiT-3/2 单位时间内一个载流子受到散射的平均 次数。主要用于描述散射的强弱。 次数。主要用于描述散射的强弱。 (N :为杂质浓度总和) 为杂质浓度总和)
i
(2)晶格振动散射 晶格振动表现为格波 N个原胞组成的晶体→格波波矢有N个。格波的总数 个原胞组成的晶体→格波波矢有N 等于原子自由度总数 一个格波波矢q 对应3(n-1)支光学波 支声学波 一个格波波矢q 对应3(n-1)支光学波+3支声学波。 支光学波+3支声学波。 光学波=N (n-1)个纵波 光学波=N (n-1)个纵波+2 N (n-1)个横波 个纵波+2 (n-1)个横波 声学波=N个纵波 声学波=N个纵波+2N个横波 个纵波+2N个横波 晶格振动散射可理解为载流子与声子的碰撞, 晶格振动散射可理解为载流子与声子的碰撞,遵循两 大守恒法则 准动量守恒 能量守恒
(室温) 室温)
ρ与Ni呈非线性关系。 呈非线性关系。
2、电阻率随温度的变化
• 本征半导体 随着温度T的增加,电阻率ρ下降。 随着温度T的增加,电阻率ρ下降。 • 杂质半导体 电离杂质散射 声学波散射
1 ρn = nqµ n
电阻率
µ i ∝ N iT µs ∝ T
C
3 2

3 2
A B 温度 杂质离化区 过渡区 高温本征激发区
散射:晶格振动、杂质、 散射:晶格振动、杂质、缺陷以及表面因素等均会引 起晶体中周期性势场的畸变。当载流子接近畸变区域时, 起晶体中周期性势场的畸变。当载流子接近畸变区域时, 其运动状态会发生随机性变化。 其运动状态会发生随机性变化。这种现象可以理解为粒子 波的散射,因此被称为载流子的散射。 波的散射,因此被称为载流子的散射。
1、载流子散射
(1)载流子的热运动
电子
自由程:相邻两次散射之间自由运动的路程。 自由程:相邻两次散射之间自由运动的路程。 平均自由程:连续两次散射间自由运动的平均路程。 平均自由程:连续两次散射间自由运动的平均路程。 平均自由时间:连续两次散射间自由运动的平均运动时间。 平均自由时间:连续两次散射间自由运动的平均运动时间。
hk '− hk = ± hq
E '− E = ± hv a
由准动量守恒可知,晶格振动散射以长波为主。 由准动量守恒可知,晶格振动散射以长波为主。
一般,长声学波散射前后电子的能量基本不变,为 一般,长声学波散射前后电子的能量基本不变, 弹性散射。光学波散射前后电子的能量变化较大, 弹性散射。光学波散射前后电子的能量变化较大, 为非弹性散射。 为非弹性散射。 (A)声学波散射: 声学波散射: 在长声学波中,纵波对散射起主要作用(通过体变 在长声学波中,纵波对散射起主要作用( 产生附加势场)。 产生附加势场)。 对于单一极值,球形等能面的半导体, 对于单一极值,球形等能面的半导体,理论推导得 到 * 16πε c2 k0T (mn ) 2 ∆V Ps = v ∆E c = ε c 4 2 ρh u V0 其中u纵弹性波波速。 其中u纵弹性波波速。 由上式可知
§4.2 载流子的散射
The Scattering of carriers
学习重点: 学习重点:
• 散射 — 使迁移率减小 • 散射机构 — 各种散射因素
散射:晶格振动、杂质、缺陷以及表面因素等均会引 散射:晶格振动、杂质、 起晶体中周期性势场的畸变。当载流子接近畸变区域时, 起晶体中周期性势场的畸变。当载流子接近畸变区域时, 其运动状态会发生随机性变化。 其运动状态会发生随机性变化。这种现象可以理解为粒子 波的散射,因此被称为载流子的散射。 波的散射,因此被称为载流子的散射。
上式的解为
N (t ) = N 0 e − Pt
其中N t=0时刻未遭散射的电子数 其中N0为t=0时刻未遭散射的电子数 在 t ~ t + ∆t 被散射的电子数 N 0 Pe − Pt dt 平均自由时间
1 1 − Pt τ= ∫ N 0 Pe tdt = P N0 0

2、电导率σ和迁移率µ与平均自由时间τ的关系 电导率σ和迁移率µ与平均自由时间τ
P0 ∝ (hvl ) ( k0T )
3 2 1 2
[
1 1 ] hv hv exp( l ) − 1 f ( l ) k 0T k 0T
§4.3 迁移率与杂质浓度和温度的关系
1、平均自由时间τ和散射几率P的关系 平均自由时间τ和散射几率P 1 τ= P
当几种散射机构同时存在时 总散射几率: 总散射几率: 相应的平均自由时间: 相应的平均自由时间:
µ
1
= =
1
µs
1
ห้องสมุดไป่ตู้
µi
1
1 µ ∝ 32 aT + bN i T −3 2
µ
µs
µi
+
1
µo
§4.4 电阻率及其与杂质浓度和温度的关系
Temperature Dependence of Resistivity and Impurity concentration
电阻率 对n型半导体: 型半导体: 对p型半导体: 型半导体: 对一般半导体: 对一般半导体: 对本征半导体: 对本征半导体:
The drift motion of carrier, mobility
学习重点: 学习重点:
• 漂移运动 • 迁移率 • 电导率
1、漂移运动
漂移运动:载流子在外电场作用下的定向运动。 漂移运动:载流子在外电场作用下的定向运动。
E 漂移运动
电子 空穴
结论
在严格周期性势场(理想) 在严格周期性势场(理想)中运动的载流子 在电场力的作用下将获得加速度, 在电场力的作用下将获得加速度,其漂移速度应 越来越大。 越来越大。
P = ∑ Pj
j
1
τ
=∑
j
1
τj
τ-P关系的数学推导 用N(t)表示t时刻未遭到散射的电子数,则在 t ~ t + ∆t 被 N(t)表示 时刻未遭到散射的电子数, 表示t 散射的电子数
N (t ) P ∆ t = N (t ) − N (t + ∆ t )
dN (t ) N (t + ∆t ) − N (t ) = lim = − PN (t ) ∆t → 0 dt ∆t
v x0 = 0
根据迁移率的定义
µ=
vx E
电子迁移率 空穴迁移率
qτ n µn = * mn
µn =
qτ p m* p
各种不同类型材料的电导率 n型: σ n = nqµ n =
nq τ n * mn
2
p型: σ p = pqµ p =
pq 2τ p m* p nq 2τ n + * mn
pq 2τ p m* p
N型锗样品电流与电场强度的关系
强电场效应: 实验发现,当电场增强到一定程度后, 强电场效应: 实验发现,当电场增强到一定程度后, 半导体的电流密度不再与电场强度成正比, 半导体的电流密度不再与电场强度成正比, 偏离了欧姆定律,场强进一步增加时, 偏离了欧姆定律,场强进一步增加时,平均 漂移速度会趋于饱和, 漂移速度会趋于饱和,强电场引起的这种现 象称为强电场效应。 象称为强电场效应。
3、多数载流子浓度与温度的关系
样品为硅中掺入N 样品为硅中掺入ND=1015cm-3的磷。 的磷。
2.0 1.5 低温区 非本征区
n/ND
1.0 0.5 0 100 200 300 400 本征区 ni/ND 600 T(K)
500
n=0
n=ND+
可忽略
n=ND
可忽略 非本征区
n=ni
占主导 本征区
Ps ∝ T
3 2
此式对于其它能带结构的半导体也适用
(B)光学波散射: 光学波散射: 正负离子的振动位移会产生附加势场, 正负离子的振动位移会产生附加势场,因此 化合物半导体中光学波散射较强。例如: 化合物半导体中光学波散射较强。例如: GaAs 对于元素半导体, 对于元素半导体,只是在高温条件下才考虑 光学波散射的作用。例如:Ge、 光学波散射的作用。例如:Ge、Si 离子晶体中光学波对载流子的散射几率
(2)载流子的漂移运动
E
电子 空穴
理想情况 载流子在电场作用下不断加速
E 电子
实际情况
热运动+ 热运动+漂移运动
2、半导体的主要散射机构
• 电离杂质散射 • 晶格振动散射 • 中性杂质散射(在低温重掺杂半导体中较为显著) 中性杂质散射(在低温重掺杂半导体中较为显著) • 晶格缺陷散射(位错密度大于104cm-2时较为显著) 晶格缺陷散射(位错密度大于10 时较为显著) • 载流子与载流子间的散射(载流子浓度很高时较为显 载流子与载流子间的散射( 著) • 能谷间散射:等同能谷间散射高温下较易发生;不同 能谷间散射:等同能谷间散射高温下较易发生; 能谷间散射一般在强电场下发生。 能谷间散射一般在强电场下发生。
对一般半导体: 对一般半导体:
σ p = pqµ p + nqµ n =
3、多能谷半导体的电流密度及电导有效质量
相关文档
最新文档