2012年福建省三明市中考数学试卷(含答案)

合集下载

2012中考试卷正卷 (最新)

2012中考试卷正卷 (最新)

2012年三明市初中毕业暨高级中等学校招生统一考试化学试题(满分:100分考试时间:6月22日上午10 : 30—11 : 30 )友情提示:1.本试卷共 6 页,4 大题 25 小题。

2.考生将自己的姓名、准考证号及所有答案均填写在答题卡上。

3.答题要求见答题卡上的“注意事项”。

一、选择题(每小题2 分,共30 分。

每小题只有一个....选项符合题目要求)1. 空气成分中,体积分数约占78% 的是A.氧气B.氮气C.二氧化碳D.稀有气体2.生活中发生的下列变化,属于化学变化的是A.瓷碗破碎B.蜡烛熔化C.面包发霉D.汽油挥发3.下列食物中含有丰富蛋白质的是A.鸡蛋B.白菜C.米饭D.海带4. 下列物质中能用作钾肥的是A.CO(NH2)2B.NH4Cl C.K2SO4D.Ca(H2PO4)25.二氧化氯(ClO2)是一种在水处理等方面有广泛应用的高效消毒剂。

ClO2中氯元素的化合价为A.—1 B.+1 C.+3 D.+46.下列实验操作正确的是A.液体滴加B.液体加热C.固体粉末取用D.液体倾倒7.把下列物质分加到适量水中,充分搅拌,可以得到溶液的是A.花生油B.食盐C.面粉D.奶粉8. 下列对有关物质燃烧现象描述不正确...的是A.红磷在空气中:产生大量的白烟B.镁条在空气中:发出耀眼的白光C.硫在氧气中:发出明亮蓝紫色的火焰D.铁丝在氧气中:发出黄色的火焰9.工业用焦碳还原二氧化硅生产硅:SiO2+ 2C Si+2CO↑。

其基本反应类型是A.化合反应B.分解反应C.置换反应D.复分解反应10. 下列物质中,属于氧化物的是A. O2B.CaO C.KOH D.Na2SO4 11.下列粒子结构示意图中,表示阳离子的是A B C D12.下列应急措施不正确...的是A.家用电器着火,用水扑灭B.炒菜时油锅着火,用锅盖盖灭C.煤气泄漏,立即关闭阀门并打开窗门通风D.实验桌上酒精灯翻倒着火,用湿抹布扑灭13.下列有关水的叙述正确的是A.水是由氢气和氧气组成B.用肥皂水可以区别硬水和软水C.水的电解前后,水分子没有发生改变D.工业废水未处理向外排放14.活性炭是饮水器中的主要成分之一,是因为它具有A.还原性B.可燃性C.吸附性D.稳定性15.有X、Y、Z 3 种金属,将X和Y浸入稀硫酸中,X溶解,Y不溶解;将Y浸入Z的硝酸盐溶液中,Y的表面有Z析出。

福建省各市2012年中考数学试题分类解析汇编 专题8 平面几何基础

福建省各市2012年中考数学试题分类解析汇编  专题8  平面几何基础

福建省各市2012年中考数学试题分类解析汇编专题8:平面几何基础一、选择题1. (2012福建龙岩4分)下列命题中,为真命题的是【 】A .对顶角相等B .同位角相等C .若22=a b ,则=a bD .若a >b ,则22a >b -- 【答案】A 。

【考点】真命题,对顶角的性质,同位角的定义,平方根的意义,不等式的性质。

【分析】根据对顶角的性质,同位角的定义,平方根的意义,不等式的性质分别作出判断:A .对顶角相等,命题正确,是真命题;B .两平行线被第三条直线所截,同位角才相等,命题不正确,不是真命题;C .若22=a b ,则=a b ±,命题不正确,不是真命题;D .若a >b ,则22a <b --,命题不正确,不是真命题。

故选A 。

2. (2012福建龙岩4分)下列几何图形中,既是轴对称图形又是中心对称图形的是【 】A .等边三角形B .矩形C . 平行四边形D .等腰梯形【答案】B 。

【考点】轴对称图形和中心对称图形。

【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,只有矩形既是轴对称图形又是中心对称图形。

故选B 。

3. (2012福建南平4分)正多边形的一个外角等于30°.则这个多边形的边数为【 】A .6B .9C .12D .15【答案】C 。

【考点】多边形的外角性质。

【分析】正多边形的一个外角等于30°,而多边形的外角和为360°,则:多边形边数=多边形外角和÷一个外角度数=360°÷30°=12。

故选C 。

4. (2012福建宁德4分)下列两个电子数字成中心对称的是【 】【答案】A 。

【考点】中心对称图形。

【分析】根据轴中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

中考真题电子版-数学福建-2012

中考真题电子版-数学福建-2012

二〇一二年福州市初中毕业会考、高级中等学校招生考试数学14A(满分:150分 时间:120分钟)第Ⅰ卷(选择题,共40分)一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项)1.3的相反数是( )A.-3B.13 C.3 D.-132.今年参观“5·18”海交会的总人数约为489 000人,将489 000用科学记数法表示为( ) A.48.9×104 B.4.89×105 C.4.89×104 D.0.489×1063.如图是由4个大小相同的正方体组合而成的几何体,其主视图...是( )4.如图,直线a ∥b,∠1=70°,那么∠2的度数是( )A.50°B.60°C.70°D.80° 5.下列计算正确的是( ) A.a+a=2a B .b 3·b 3=2b 3 C.a 3÷a=a 3 D.(a 5)2=a 76.式子√x -1在实数范围内有意义,则x 的取值范围是( ) A.x<1 B.x ≤1 C.x>1 D.x ≥17.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是( ) A.8,8 B.8.4,8 C.8.4,8.4 D.8,8.48.☉O 1和☉O 2的半径分别是3 cm 和4 cm,如果O 1O 2=7 cm,则这两圆的位置关系是( ) A.内含 B.相交 C.外切 D.外离9.如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则A 、B 两点的距离是( )A.200米B.200√3米C.220√3米D.100(√3+1)米10.如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=-x+6于A、B两点,若反比例函数y=kx(x>0)的图象与△ABC有公共点,则k的取值范围是()A.2≤k≤9B.2≤k≤8C.2≤k≤5D.5≤k≤8第Ⅱ卷(非选择题,共110分)二、填空题(共5小题,每题4分,满分20分)11.分解因式:x2-16=.12.一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率为.13.若√20n是整数,则正整数n的最小值为.14.计算:x-1x +1x=.15.如图,已知△ABC,AB=AC=1,∠A=36°,∠ABC的平分线BD交AC于点D,则AD的长是,cos A的值是.(结果保留根号)三、解答题(满分90分)16.(每小题7分,共14分)(1)计算:|-3|+(π+1)0-√4;(2)化简:a(1-a)+(a+1)2-1.17.(每小题7分,共14分)(1)如图(i),点E、F在AC上,AB∥CD,AB=CD,AE=CF.求证:△ABF≌△CDE.(2)如图(ii),方格纸中的每个小方格是边长为1个单位长度的正方形.①画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1;②再将Rt△A1B1C1绕点C1顺时针...旋转90°,画出旋转后的Rt△A2B2C1,并求出旋转过程中线段A1C1所扫过的面积(结果保留π).18.(满分12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1)m=%,这次共抽取名学生进行调查;并补全条形图;(2)在这次抽样调查中,采用哪种上学方式的人数最多?(3)如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名?19.(满分11分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1)小明考了68分,那么小明答对了多少道题?(2)小亮获得二等奖(70~90分),请你算算小亮答对了几道题?14B20.(满分12分)如图,AB为☉O的直径,C为☉O上一点,AD和过C点的切线互相垂直,垂足为D,AD交☉O 于点E.(1)求证:AC平分∠DAB;(2)若∠B=60°,CD=2√3,求AE的长.21.(满分13分)如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=,PD=;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图②,在整个运动过程中,求出线段PQ中点M所经过的路径长.22.(满分14分)如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图②,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应).二〇一二年福州市初中毕业会考、高级中等学校招生考试一、选择题1.A只有符号不同的两个数互为相反数,所以3的相反数是-3,故选A.2.B科学记数法即将数字写成a×10n(1≤|a|<10,n为整数)的形式,489000=4.89×105,故选B.3.C主视图即从正面看几何体得到的图形,根据几何体的形状可知C正确,故选C.4.C因为a∥b,所以∠1=∠2(两直线平行,同位角相等).又因为∠1=70°,所以∠2=70°,故选C.5.A合并同类项:字母及字母的指数不变,系数相加减,所以a+a=2a,故A正确;同底数幂的乘法:底数不变,指数相加,所以b3·b3=b6,故B错;同底数幂的除法:底数不变,指数相减,所以a3÷a=a2,故C错;幂的乘方,底数不变,指数相乘,所以(a5)2=a10,故D错.综上,应选A.6.D二次根式有意义,要求被开方数大于或等于零,即x-1≥0,x≥1,故选D.7.B这组数据的平均数为(8+9+8+7+10)÷5=8.4;将这组数据从大到小(从小到大)排列,中位数是8,故选B.8.C圆心距等于两圆半径的和,则两圆的位置关系是外切,故选C.9.D由题目条件易得∠A=30°,∠B=45°,在Rt△CDB中,CD=DB=100米,在Rt△CAD中AD=CD=100√3米,所以A、B两点之间的距离为100(√3+1)米,故选D.tanA评析本题考查俯角的概念及利用三角函数解直角三角形的知识,综合性较强,属中等难度题.10.A当反比例函数图象经过点C时,将C(1,2)代入y=k中,解得k=2;当反比例函数图象与直x,因为切线相切时,设切点的横坐标为a,因为切点在反比例函数图象上,则切点的纵坐标为y=ka点在直线上,若横坐标为a,则切点的纵坐标为y=-a+6,所以有k=-a+6,a2-6a+k=0,若反比例函数a图象与直线AB相切,则(-6)2-4×1×k=0,k=9.综上,当2≤k≤9时,反比例函数图象与△ABC有公共点,故选A.评析本题以反比例函数、一次函数图象为背景,考查函数、方程、不等式等知识,综合性较强,题目难度较大.二、填空题11.答案(x+4)(x-4)解析利用平方差公式对x2-16进行因式分解,x2-16=x2-42=(x+4)(x-4).12.答案35解析从袋子中随机摸出一个球的等可能结果有5个,其中恰好摸到红球的等可能结果为3.个,所以摸到红球的概率为3513.答案5解析当n=5时,√20n=√20×5=√100=10,n=1,2,3,4时,√20n都不是整数,故n的最小值是5.评析本题考查二次根式的相关知识,以及分类讨论的数学思想,题目灵活,考查学生的分析、解决问题的能力.14.答案 1 解析x -1x+1x =x -1+1x=1. 15.答案√5-12;√5+14解析 由已知易得∠ABC=∠C=∠BDC=72°,∠A=∠ABD=∠DBC=36°.因为∠A=∠ABD,所以AD=BD;同理∠BDC=∠C,所以BD=BC.综上述AD=BD=BC.又∠A=∠CBD,∠BDC=∠ACB,所以△ABC ∽△BCD,所以BCAB=CD BC,BC 1=1-BC BC,解得BC=-1±√52,根据BC>0,得BC=-1+√52,所以AD=√5-12.过点D 作AB 的垂线交AB 于点E,cos A=AE AD =12÷-1+√52=√5+14.评析 本题考查相似三角形的判定及性质,并利用对应边成比例考查解方程的知识,同时考查三角函数的相关知识,题目设置巧妙,综合性强,难度较大. 三、解答题16.解析 (1)原式=3+1-2=2; (2)原式=a-a 2+a 2+2a+1-1=3a. 17.解析 (1)证明:∵AB ∥CD, ∴∠A=∠C. ∵AE=CF,∴AE+EF=CF+EF, 即AF=CE. 又∵AB=CD,∴△ABF ≌△CDE. (2)①如图所示. ②如图所示.在旋转过程中,线段A 1C 1所扫过的面积等于90·π·42360=4π.18.解析 (1)26;50.条形图如图所示.(2)采用乘公交车上学的人数最多.(3)该校骑自行车上学的学生约为1 500×20%=300名. 19.解析 (1)设小明答对了x 道题, 依题意得5x-3(20-x)=68,解得x=16.答:小明答对了16道题. (2)设小亮答对了y 道题,依题意得{5y -3(20-y)≥70,5y -3(20-y)≤90.因此不等式组的解集为1614≤y ≤1834. ∵y 是正整数, ∴y=17或18.答:小亮答对了17道题或18道题.评析 本题考查运用一元一次不等式(组)解决实际问题的能力,根据实际问题中数量关系构建恰当的不等式是解决问题的关键,属中等难度题. 20.解析图1(1)证明:如图1,连结OC, ∵CD 为☉O 的切线, ∴OC ⊥CD, ∴∠OCD=90°. ∵AD ⊥CD, ∴∠ADC=90°.∴∠OCD+∠ADC=180°, ∴AD ∥OC, ∴∠1=∠2. ∵OA=OC, ∴∠2=∠3, ∴∠1=∠3,即AC 平分∠DAB.图2(2)解法一:如图2, ∵AB 为☉O 的直径, ∴∠ACB=90°. 又∵∠B=60°, ∴∠1=∠3=30°.在Rt △ACD 中,CD=2√3, ∴AC=2CD=4√3.在Rt △ABC 中,AC=4√3, ∴AB=ACcos ∠CAB =4√3cos30°=8. 连结OE,∵∠EAO=2∠3=60°,OA=OE,∴△AOE是等边三角形,∴AE=OA=12AB=4.图3解法二:如图3,连结CE.∵AB为☉O的直径,∴∠ACB=90°.又∵∠B=60°,∴∠1=∠3=30°.在Rt△ADC中,CD=2√3,∴AD=CDtan∠DAC =2√3tan30°=6.∵四边形ABCE是☉O的内接四边形,∴∠B+∠AEC=180°.又∵∠AEC+∠DEC=180°,∴∠DEC=∠B=60°.在Rt△CDE中,CD=2√3,∴DE=DCtan∠DEC =2√3tan60°=2,∴AE=AD-DE=4.评析本题考查运用圆与直线相切、圆的基本性质及三角函数知识解决问题的能力,作出恰当的辅助线能够使问题解决得更加快捷,题目综合性强,难度较大.21.解析(1)QB=8-2t,PD=43t.(2)不存在.在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10.∵PD∥BC,∴△APD∽△ACB,∴ADAB =APAC,即AD10=t6,∴AD=53t,∴BD=AB-AD=10-53t.∵BQ∥DP,∴当BQ=DP时,四边形PDBQ是平行四边形.即8-2t=43t,解得t=125.当t=125时,PD=43×125=165,BD=10-53×125=6,∴DP≠BD,∴▱PDBQ不能为菱形.设点Q的速度为每秒v个单位长度,则BQ=8-vt,PD=43t,BD=10-53t.要使四边形PDBQ 为菱形,则PD=BD=BQ, 当PD=BD 时,即43t=10-53t,解得t=103.当PD=BQ,t=103时,即43×103=8-103v,解得v=1615.∴当点Q 的速度为每秒1615个单位长度时,经过103秒,四边形PDBQ 是菱形.图1(3)解法一:如图1,以C 为原点,以AC 所在直线为x 轴,建立平面直角坐标系. 依题意,可知0≤t ≤4,当t=0时,点M 1的坐标为(3,0); 当t=4时,点M 2的坐标为(1,4). 设直线M 1M 2的解析式为y=kx+b, ∴{3k +b =0,k +b =4.解得{k =-2,b =6.∴直线M 1M 2的解析式为y=-2x+6. ∵点Q(0,2t),P(6-t,0),∴在运动过程中,线段PQ 中点M 3的坐标为(6-t2,t). 把x=6-t2代入y=-2x+6,得y=-2×6-t2+6=t.∴点M 3在直线M 1M 2上.过点M 2作M 2N ⊥x 轴于点N,则M 2N=4,M 1N=2. ∴M 1M 2=2√5.∴线段PQ 中点M 所经过的路径长为2√5个单位长度. 解法二:如图2,设E 是AC 的中点,连结ME. 当t=4时,点Q 与点B 重合,运动停止.图2设此时PQ 的中点为F,连结EF.过点M 作MN ⊥AC,垂足为N,则MN ∥BC. ∴△PMN ∽△PQC. ∴MN QC =PN PC =PMPQ ,即MN 2t =PN 6-t =12. ∴MN=t,PN=3-12t,∴CN=PC-PN=(6-t)-(3-12t)=3-12t.∴EN=CE-CN=3-(3-12t)=12t.∴tan ∠MEN=MN EN =2. ∵tan ∠MEN 的值不变,∴点M 在直线EF 上.过F 作FH ⊥AC,垂足为H.则EH=2,FH=4.∴EF=2√5.∵当t=0时,点M 与点E 重合;当t=4时,点M 与点F 重合,∴线段PQ 中点M 所经过的路径长为2√5个单位长度.评析 本题主要考查一次函数、三角形的相似、平行四边形(菱形)、三角函数等知识的综合应用,确定运动元素的各种状态,正确建立满足题意的等量关系是解题的关键,属较难题.22.解析 (1)∵抛物线y=ax 2+bx(a ≠0)经过点A(3,0)、B(4,4).∴{9a +3b =0,16a +4b =4.解得{a =1,b =-3. ∴抛物线的解析式是y=x 2-3x.(2)设直线OB 的解析式为y=k 1x,由点B(4,4),得4=4k 1,解得k 1=1.∴直线OB 的解析式是y=x.∴直线OB 向下平移m 个单位长度后的解析式为y=x-m.∵点D 在抛物线y=x 2-3x 上.∴可设D(x,x 2-3x).又点D 在直线y=x-m 上,∴x 2-3x=x-m,即x 2-4x+m=0.∵抛物线与直线只有一个公共点,∴Δ=16-4m=0,解得m=4.此时x 1=x 2=2,y=x 2-3x=-2,∴D 点坐标为(2,-2).(3)∵直线OB 的解析式为y=x,且A(3,0),∴点A 关于直线OB 的对称点A'的坐标是(0,3).设直线A'B 的解析式为y=k 2x+3,过点B(4,4),∴4k 2+3=4,解得k 2=14.∴直线A'B 的解析式是y=14x+3. ∵∠NBO=∠ABO,∴点N 在直线A'B 上,∴设点N (n,14n +3),又点N 在抛物线y=x 2-3x 上, ∴14n+3=n 2-3n,解得n 1=-34,n 2=4(不合题意,舍去),∴点N 的坐标为(-34,4516).图1解法一:如图1,将△NOB沿x轴翻折,得到△N1OB1,则N1(-34,-4516),B1(4,-4),∴O、D、B1都在直线y=-x上.∵△P1OD∽△NOB,∴△P1OD∽△N1OB1,∴OP1ON1=ODOB1=12,∴点P1的坐标为(-38,-45 32).将△OP1D沿直线y=-x翻折,可得另一个满足条件的点P2(4532,3 8 ).综上所述,点P的坐标是(-38,-4532)或(4532,38).解法二:如图2,将△NOB绕原点顺时针旋转90°,得到△N2OB2,则N2(4516,34),B2(4,-4),图2∴O、D、B2都在直线y=-x上.∵△P1OD∽△NOB,∴△P1OD∽△N2OB2,∴OP1ON2=ODOB2=12,∴点P1的坐标为(4532,3 8 ).将△OP1D沿直线y=-x翻折,可得另一个满足条件的点P2(-38,-45 32).综上所述,点P的坐标是(-38,-4532)或(4532,38).评析本题以平面直角坐标系为依托,考查一次函数、二次函数、三角形的相似等知识的综合应用,最后一问是关于点P坐标的开放性问题,考查学生通过观察、作图、分析不重不漏得到答案的能力,属难题.。

福建省各市2012年中考数学分类解析 专题1 实数

福建省各市2012年中考数学分类解析 专题1 实数

某某9市2012年中考数学试题分类解析汇编专题1:实数一、选择题1. 计算:2-3 =【 】 A .-1 B .1C .-5D .5【答案】A 。

【考点】有理数的加减法。

【分析】根据有理数的加减法运算法则直接得到结果:2-3 =-1。

故选A 。

2. (2012某某某某4分)-3的相反数是【 】A .13 B .-13C .3D .-3 【答案】C 。

【考点】相反数。

【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。

因此-3的相反数是3。

故选C 。

3.(2012某某某某4分)计算102【 】A 5.5 C 5 D 10 【答案】A 。

【考点】二次根式的乘除法)a b =ab a 0b 0>≥,102=102=5÷A 4.(2012某某某某4分)2012的相反数是【 】A .-2012B .2012C .-12012D .12012【答案】A 。

【考点】相反数。

【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。

因此2012的相反数是-2012。

故选A 。

5. (2012某某某某4分)2012年伦敦奥运会体育场位于伦敦东部的斯特拉特福,因外形上阔下窄,又被 称为“伦敦碗”,预计可容纳80000人.将80000用科学记数法表示为【 】 A .80×103B .0.8×105C .8×104D .8×103【答案】C 。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。

在确定n 的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。

2012福建省九地市中考数学试题汇编(3月更新)

2012福建省九地市中考数学试题汇编(3月更新)

23.(本小题满分 10 分) 如图,一次函数 y k1 x b 的图象过点 A(0,3),且与反比例函数 y 的图象相交于 B、C 两点. (1)(5 分)若 B(1,2),求 k1 k 2 的值; (2)(5 分) 若 AB=BC,则 k1 k 2 的值是否为定值?若是,请求出该定值; 若不是,请说明理由.
1 2 1 x x (0 x 10) .发射 3 s 18 6
后,导弹到达 A 点,此时位于与 L 同一水平面的 R 处雷达站测得 AR 的距离是 2 km, 再过 3s 后,导弹到达 B 点. (1)(4 分)求发射点 L 与雷达站 R 之间的距离; (2)(4 分)当导弹到达 B 点时,求雷达站测得的仰角(即∠BRL)的正切值.




(满分:150 分;考试时间:120 分钟) 一、精心选一选:本大题共 8 小题,每小题 4 分,共 32 分.每小题给出的四个选项中有且只有一个选项是符合题目要 求的.答对的得 4 分,答错、不答或答案超过一个的一律得 O 分. 1.下列各数中,最小的数是( ) A.-l B.O C.1 ) D. 3 2.下列图形中,是 中心对称图形,但不是 轴对称图形的是( . ..
2
_______ _______
0 甲班 乙班 0 0
1 1 1
2 1 0
3 3 2
4 4 5
5 11 12
6 16 15
7 12 13
8 2 2
请根据以上信息解答下列问题: (1)(2 分)甲班学生答对的题数的众数是______; (2)(2 分)若答对的题数大于或等于 7 道的为优秀,则乙班该次考试中选择题答题的优秀率=______ (优秀率=
2012 福建省九地市中考数学试题汇编

2012中考数学试题及答案

2012中考数学试题及答案

2012中考数学试题及答案第一节:选择题1. 若 a + b = 8,且 a - b = 4,则 a 的值是多少?A. 12B. 6C. 4D. 2答案:C. 4解析:将两个等式相加得到 2a = 12,因此 a = 6。

将 a = 6 代入第一个等式得到 6 + b = 8,从而可以得到 b = 2。

因此 a 的值是 4。

2. 已知一个等腰直角三角形的两条直角边分别为 5 cm。

那么斜边的长是多少?A. 5 cmB. 10 cmC. 7.07 cmD. 4.24 cm答案:C. 7.07 cm解析:根据勾股定理,斜边的长可以计算为√(a^2 + a^2),其中 a 代表直角边的长度。

代入 a = 5 cm,得到斜边的长约为 7.07 cm。

3. 若 3x - 4 = 7,则 x 的值是多少?A. 2B. 3C. 4D. 5答案:D. 5解析:将等式两边同时加上 4,得到 3x = 11。

接着将等式两边同时除以 3,得到 x = 11/3 或约等于 3.67。

因此 x 的值是 5。

第二节:填空题1. 若 f(x) = 2x^2 + 3x - 5,则 f(-1) 的值是多少?答案:-6解析:将 x = -1 代入函数 f(x) = 2x^2 + 3x - 5,得到 f(-1) = 2(-1)^2 + 3(-1) - 5 = 2 - 3 - 5 = -6。

2. 在一个等差数列中,首项为 3,公差为 4。

第 n 项为多少?答案:3 + 4(n-1)解析:在一个等差数列中,第 n 项可以通过首项加上 (n-1) 倍的公差得到。

代入首项为 3,公差为 4,得到第 n 项为 3 + 4(n-1)。

第三节:解答题1. 请用因数分解法求解方程 x^2 + 6x + 8 = 0 的解。

解答:首先,我们可以尝试将方程进行因数分解。

将方程右侧的 8 进行因式分解得到 8 = 2 * 2 * 2 或者 8 = 1 * 2 * 4。

福建省各市2012年中考数学分类解析专题10:四边形

福建省各市2012年中考数学分类解析专题10:四边形

福建9市2012年中考数学试题分类解析汇编专题10:四边形一、选择题1. (2012福建宁德4分)如图,在矩形ABCD中,AB=2,BC=3,点E、F、G、H分别在矩形ABCD的各边上,EF∥HG,EH∥FG,则四边形EFGH的周长是【】A.10 B.13 C.210 D.213【答案】D。

【考点】矩形的性质,三角形中位线定理,平行四边形的判定和性质,勾股定理,相似三角形的判定和性质。

【分析】∵在矩形ABCD中,AB=2,BC=3,∴AC BD==又∵点E、F、G、H分别在矩形ABCD的各边上,EF∥HG,EH∥FG,∴不妨取特例,点E、F、G、H分别在矩形ABCD的各边的中点,满足EF∥HG,EH∥FG。

∴CG=x,CF=32,∴FG=2。

∴四边形EFGH的周长是D。

对于一般情况,可设CG=x,则CF=32x,DG=2-x,BF=3-32x。

由△CFG∽△CBD得FG CGBD CD=x2=,∴FG=。

由△BEF∽△BAC得EF BFAC BC=3323-=x,∴EF x=。

∴四边形EFGH的周长是2(EF+EG)=2. (2012福建厦门3分)如图,在菱形ABCD中,AC、BD是对角线,若∠BAC=50°,则∠ABC等于【】A.40°B.50°C.80°D.100°【答案】C。

【考点】菱形的性质,平行的性质。

【分析】∵四边形ABCD是菱形,∴∠BAC=12∠BAD,CB∥AD。

∵∠BAC=50°,∴∠BAD=100°。

∵CB∥AD,∴∠ABC+∠BAD=180°。

∴∠ABC=180°-100°=80°。

故选C。

3. (2012福建漳州4分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC,∠B=80o,则∠D的度数是【】A.120o B.110o C.100o D.80o【答案】C。

2012年中考数学样题参考答案.doc

2012年中考数学样题参考答案.doc

2012年中考数学样题参考答案选择题(每题3分,共30分)一、BADCD BADBA二、填空题(每题3分,共18分)11. 15; 12. 6; 13. (-4,3) 14.38; 15.53; 16. 4n ;三、解答题(每小题8分,共16分)17..解:原式21=····································································· 6分3=··················································································· 8分18. 解:原式=213(3)32(2)(2)a a a a a a a +---÷-++- ······················································ 2分 =213(2)(2)32(3)a a a a a a a +-+---+-· ··········································································· 3分 1233a a a a +-=--- ······························································································ 4分 =33a - ········································································································ 6分 a 取值时只要不取2,2-,3就可以. ······························································· 7分求值正确.原式 ····························································································· 9分四、解答题(每小题9分,共18分)19.(1)200 ······································································································· 2分 (2)补充图:扇形图中补充的 跳绳25% ························································· 3分 其它20% ······································································································ 4分 条形图中补充的高为50 ···················································································· 5分(3)54 ········································································································ 7分 (4)解:1860×40%=744(人)答:最喜欢“球类”活动的学生约有744人. ······················································ 9分 20.解:(1)根据题意可列表或树状图如下:第一次第二次12341 —— (1,2) (1,3) (1,4)2 (2,1) —— (2,3) (2,4)3 (3,1) (3,2) —— (3,4) 4(4,1)(4,2)(4,3)——·············································································· 5分···························································································· 5分从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种, ∴P (和为奇数)23= ···················································································· 7分 (2)不公平.∵小明先挑选的概率是P (和为奇数)23=,小亮先挑选的概率是P (和为偶数)13=,∵2133≠,∴不公平. ····················································································· 9分五、解答证明题(每小题8分,共16分) 21.(1)证明:∵AD 平分∠BAC∴∠BAD=21∠BAC . (1,2) (1,3) (1,4) 2341 (1,1) (2,3) (2,4) 1342 (3,1) (3,2) (3,4) 1243 (4,1) (4,2) (4,3)1234 第一次摸球第二次摸球∵AE 平分∠BAF . ∴∠BAE=21∠BAF . 2分 ∵∠BAC+∠BAF=180°∴∠BAD+∠BAE=21 (∠BAC+∠BAF )= 21×180°=90° ∴∠DAE=90°.即DA ⊥AE . 4分 (2)AB=DE 5分 理由是:∵AB=AC ,AD 平分∠BAC . ∴AD ⊥BC ,即∠ADB=90°. ∵BE ⊥AE .∴∠AEB=90° 又∵∠DAE=90°(已证),∴四边形AEBD 是矩形.故AB=DE . 8分22、解:(1)不同.理由如下:往、返距离相等,去时用了2小时,而返回时用了2.5小时,∴往、返速度不同. ··················································································· 2分(2)设返程中y 与x 之间的表达式为y kx b =+,则120 2.505.k b k b =+⎧⎨=+⎩,解之,得48240.k b =-⎧⎨=⎩,···················································································· 5分∴48240y x =-+.(2.55x x ≤≤)(评卷时,自变量的取值范围不作要求) ······ 6分 (3)当4x =时,汽车在返程中,48424048y ∴=-⨯+=.∴这辆汽车从甲地出发4h 时与甲地的距离为48km . ········································· 8分六、解答证明题(23小题10分,24小题12分,共22分) 23、证明:(1) 连结AC ,如图∵C 是弧BD 的中点∴∠BDC =∠DBC 1分 又∠BDC =∠BAC在三角形ABC 中,∠ACB =90°,CE ⊥AB ∴ ∠BCE=∠BAC∠BCE =∠DBC 3分 ∴ CF =BF 4分因此,CF =BF . (2)解法一:作CG ⊥AD 于点G , ∵C 是弧BD 的中点∴ ∠CAG =∠BAC , 即AC 是∠BAD 的角平分线.·············· 5分 ∴ CE =CG ,AE =AG 6分 在Rt △BCE 与Rt △DCG 中,CE =CG , CB =CD ∴Rt △BCE ≌Rt △DCG∴BE =DG 7分 ∴AE =AB -BE =AG =AD +DG 即 6-BE =2+DG∴2BE =4,即 BE =2 8分又 △BCE ∽△BAC∴ 212BC BEAB ==· 9分 32±=BC (舍去负值)∴32=BC 10分(2)解法二:∵AB 是⊙O 的直径,CE ⊥AB∴∠BEF=︒=∠90ADB , 5分 在Rt ADB △与Rt FEB △中,∵FBE ABD ∠=∠ ∴ADB △∽FEB △,则BFABEF AD =即BFEF 62=, ∴EF BF 3= 6分 又∵CF BF =, ∴EF CF 3= 利用勾股定理得:EF EF BF BE 2222=-= 7分又∵△EBC ∽△ECA 则CEBE AE CE =,即则BE AE CE ⋅=28分 ∴BE BE EF CF ⋅-=+)6()(2即EF EF EF EF 22)226()3(2⋅-=+∴22=EF 9分 ∴3222=+=CE BE BC 10分24.解:(1)解方程01682=+-x x ,得421==x x由实数m 是方程01682=+-x x 的一个实数根,得m=4 ∴点A ,C 的坐标分别是A (4,0)和C (0,4). 1分将A (4,0)和C (0,4)的坐标分别代人c bx x y ++-=221 得⎩⎨⎧==⇒⎩⎨⎧==++-414048c b c c b ∴抛物线的解析式为4212++-=x x y 3分 (2)由4212++-=x x y ,令y=0,得04212=++-x x ,解此方程得2,421-==x x∴点B 的坐标为B (2,0),故AB=6, S △ABC =21·AB ·CO=12 4分设AD=k (0≤k ≤6), ∵ED ∥BC ∴△ADE ∽△ABC ,从而36)6()(222k k AB AD S S ABC ADE ===∆∆ ∴32k S ADE=∆ (5分) 同理可知,3)6(2-=∆k S BDF6分∴S 四边形DECF =S △ABC -S △ADE -S △BDF=6)3(3243222+--=+-k k k (7分) 当且仅当k =3时,S 四边形DECF 有最大值为6,此时D (1,0) 8分 (3)存在满足条件的点N ,使得∠NOB=∠AMO ,设点N (y x ,) ∵若M 是⊙G 的优弧ACO 上的一个动点∴∠NOB=∠AMO=∠ACO=45° 9分 ①当点N 在x 轴上方时,tan45°=x y xy-=⇒=-1 又∵4212++-=x x y ∴4212++-x x 3220842±=⇒=--⇒-=x x x x ∵点N 在这个抛物线位于y 轴左侧的图象上,从而有N (232,322--) 10分 ②当点N 在x 轴下方时,tan45°=x y xy=⇒=--1 又∵4212++-=x x y ∴22842122±=⇒=⇒=++-x x x x x ∵点N 在这个抛物线位于y 轴左侧的图象上,从而有N (22,22--) 12分。

2012年三明市中考(数学卷及答案)

2012年三明市中考(数学卷及答案)

2012年三明市初中毕业暨高级中等学校招生统一考试数 学 试 题(满分:150分 考试时间:120分钟)友情提示:1.作图或画辅助线等需用签字笔描黑.2.未注明精确度的计算问题,结果应为准确数.... 3.抛物线2y ax bx c =++(0a ≠)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,,对称轴a bx 2-=. 一、选择题(共10小题,每小题4分,满分40分.每小题只有一个正确选项,请在答题卡...的相应位置填涂) 1. 在-2,-12,0,2四个数中,最大的数是( ) A. -2 B. -12C. 0D. 22.据《2011年三明市国民经济和社会发展统计公报》数据显示,截止2011年末三明市常住人口约为2 510 000人,2 510 000用科学记数法表示为( )A .425110⨯B .525.110⨯C .62.5110⨯ D.70.25110⨯ 3.如图,AB //CD ,∠CDE =140︒,则∠A 的度数为( ) A .140︒ B .60︒ C .50︒ D .40︒ 4.分式方程523x x=+的解是( ) A .2x = B .1x = C .12x =D .2x =- 5.右图是一个由相同小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置上的小正方体的个数,则这个几何体的左视图是( )6.一个多边形的内角和是720︒,则这个多边形的边数为( ) A .4 B .5 C .6 D .7 7.下列计算错误..的是( ) AB= C2 D=8.如图,AB 是⊙O 的切线,切点为A ,OA =1,∠AOB =60︒,则图中阴影部分的面积是( )A16π B13π C16π- D13π- 9.在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为( ) A .23 B .59 C .49 D .1310.如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有( )A . 2个B . 3个C .4个D .5个二、填空题(共6小题,每小题4分,满分24分.请将答案填在答题卡...的相应位置) 11.分解因式:2x xy += .12.如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,若BC =6,则DE = . 13.某校九(1)班6位同学参加跳绳测试,他们的成绩(单位:次/分钟)分别为:173, 160,168,166,175,168.这组数据的众数是 .14.如图,在△ABC 中,D 是BC 边上的中点,∠BDE =∠CDF ,请你添加一个..条件, 使DE =DF 成立.你添加的条件是 .(不再添加辅助线和字母)15.如图,点A 在双曲线2(0)y x x =>上,点B 在双曲线4(0)y x x=>上,且AB //y 轴, 点P 是y 轴上的任意一点,则△P AB 的面积为 .16.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是 .三、解答题(共7题,满分86分.请将解答过程写在答题卡...的相应位置) 17. (本题满分14分)(1)计算:0111)22-+--;(7分) (2)化简:2112()4416x x x +÷-+-.(7分) 18. (本题满分16分)(1)解不等式组231,110.2x x -≤⎧⎪⎨+>⎪⎩ 并把解集在数轴上表示出来;(8分)(2)如图,已知△ABC 三个顶点的坐标分别为A (-2,-1),B (-3,-3),C (-1,-3).①画出△ABC 关于x 轴对称的△111A B C ,并写出点1A 的坐标;(4分) ②画出△ABC 关于原点O 对称的△222A B C ,并写出点2A 的坐标.(4分)19. (本题满分10分)为了解某县2012年初中毕业生数学质量检测成绩等级的分布情况,随机抽取了该县若干名初中毕业生的数学质量检测成绩,按A ,B ,C ,D 四个等级进行统计分析,并绘制了如下尚不完整的统计图:请根据以上统计图提供的信息,解答下列问题: (1)本次抽取的学生有___ 名;(2分) (2)补全条形统计图;(2分)(3)在抽取的学生中C 级人数所占的百分比是__ ;(2分)(4)根据抽样调查结果,请你估计2012年该县1430名初中毕业生数学质量检测成绩为A 级的人数.(4分) 20.(本题满分10分)某商店销售A ,B 两种商品,已知销售一件A 种商品可获利润10元,销售一件B 种商品可获利润15元. (1)该商店销售A ,B 两种商品共100件,获利润1350元,则A ,B 两种商品各销售多少件?(5分)(2)根据市场需求,该商店准备购进A ,B 两种商品共200件,其中B 种商品的件数不多于A 种商品件数的3倍.为了获得最大利润,应购进A ,B 两种商品各多少件?可获得最大利润为多少元?(5分)21. (本题满分10分)如图,在△ABC 中,点O 在AB 上,以O 为圆心的圆经过A ,C 两点,交AB 于点D ,已 知∠A =α,∠B =β,且2α+β=90︒.(1)求证:BC 是⊙O 的切线;(5分)(2)若OA =6,3sin 5β=,求BC 的长.(5分)22.(本题满分12分)已知直线25y x =-与x 轴和y 轴分别交于点A 和点B ,抛物线2y x bx c =-++的顶点M 在直线AB 上,且抛物线与直线AB 的另一个交点为N .(1)如图①,当点M 与点A 重合时,求:①抛物线的解析式;(4分)②点N 的坐标和线段MN 的长;(4分) (2)抛物线2y x bx c =-++在直线AB 上平移,是否存在点M ,使得△OMN 与△AOB 相似?若存在,直接写出点M 的坐标;若不存在,请说明理由.(4分)23.(本题满分14分)在正方形ABCD 中,对角线AC ,BD 交于点O ,点P 在线段BC 上(不含点B ), ∠BPE =12∠ACB ,PE 交BO 于点E ,过点B 作BF ⊥PE ,垂足为F ,交AC 于点G . (1) 当点P 与点C 重合时(如图①).求证:△BOG ≌△POE ;(4分) (2)通过观察、测量、猜想:BFPE= ,并结合图②证明你的猜想;(5分) (3)把正方形ABCD 改为菱形,其他条件不变(如图③),若∠ACB =α,求BFPE的值.(用含α的式子表示)(5分)2012年三明市初中毕业暨高级中等学校招生统一考试数学试卷参考答案及评分标准说明:以下各题除本参考答案提供的解法外,其他解法参照本评分标准,按相应给分点评分. 一、选择题(每小题4分,共40分)1. D2. C3. D4. A5. B6. C7. B8. C9. A 10. C 二、填空题(每小题4分,共24分)11. ()x x y + 12. 3 13. 168 14. 答案不唯一;如:AB =AC ;或∠B =∠C ;或∠BED =∠CFD ;或∠AED =∠AFD 等;15. 1 16. 900 三、解答题(共86分) 17.(1)解:原式=11122+- ……………6分 =1.……………7分(2)解法一:原式=11(4)(4)()442x x x x +-+⋅-+ ……………2分 = 4422x x +-+……………6分 =x .……………7分 解法二:原式=(4)(4)(4)(4)(4)(4)2x x x x x x ++-+-⋅+-……………4分=442x x ++- ……………6分 =x .……………7分 18.解:(1)解不等式①,得 2x ≤,……………2分 解不等式②,得 x >-2.……………4分不等式①,②的解集在数轴上表示如下:……………6分 所以原不等式组的解集为22x -<≤.……………8分(2)①如图所示,1(2, 1)A -;画图正确3分,坐标写对1分; ②如图所示,2(2, 1)A . 画图正确3分,坐标写对1分;19.解:(1)100; …………2分(2)如图所示; …………4分(3)30%; …………6分 (4)1430×20%=286(人) …………9分 答:成绩为A 级的学生人数约为286人.…10分20.解:(1)解法一:设A 种商品销售x 件,则B 种商品销售(100- x )件.……………1分 依题意,得 1015(100)1350x x +-= ……………3分 解得x =30.∴ 100- x =70.……………4分答:A 种商品销售30件,B 种商品销售70件. ……………5分 解法二:设A 种商品销售x 件, B 种商品销售y 件. ……1分依题意,得 100,10151350.x y x y +=⎧⎨+=⎩ ……………3分解得30,70.x y =⎧⎨=⎩ ……………4分答:A 种商品销售30件,B 种商品销售70件. ……………5分(2)设A 种商品购进x 件,则B 种商品购进(200- x )件. ………6分依题意,得0≤ 200- x ≤3x解得 50≤x ≤200 ……………7分设所获利润为w 元,则有w =10x +15(200- x )= - 5x +3000 ……………8分 ∵- 5<0,∴w 随x 的增大而减小. ∴当x =50时,所获利润最大5503000w =-⨯+最大=2750元. ……………9分200- x =150.答:应购进A种商品50件,B种商品150件,可获得最大利润为2750元. ……………10分21.(1)证明:证法一:连接OC(如图①),∴∠BOC =2∠A=2α,……2分∴∠BOC+∠B=2α+β=90︒.∴∠BCO=90︒.即OC⊥BC.……4分∴BC是的⊙O切线.……5分证法二:连接OC(如图①),∵OA=OC,.∴∠ACO =∠A =α.……1分∵∠BOC =∠A+∠ACO=2α,……2分∴∠BOC+∠B=2α+β=90︒.……3分∴∠BCO=90︒.即OC⊥BC.……4分∴BC是的⊙O切线.……5分证法三:连接OC(如图①),∵OA=OC,∴∠OCA=∠A=α. ……1分在△ACB中,∠ACB=180︒-(∠A+∠B)=180︒-(α+β)∴∠BCO=∠ACB-∠ACO =180︒-(α+β)-α=180︒-(2α+β). ……3分= .即OC⊥BC.……4分∵2α+β=90︒,∴∠BCO90∴BC是⊙O的切线. ……5分证法四:连接OC,延长BC(如图②),∴∠ACE=∠A+∠B=α+β. ……1分又∵OA=OC,∴∠OCA=∠A=α. ……2分∴∠OCE=∠OCA+∠ACE=α+α+β=2α+β=90 . …4分即OC⊥BC.∴BC是⊙O的切线. …5分证法五:过点A作AE⊥BC,交BC的延长线于点E,连接OC(如图③),在Rt△AEB中,∠EAB+∠B=90︒. ……1分∵∠CAB=α,∠B=β,且2α+β=90︒,∴∠EAB=2α.∴∠EAC=∠CAB=α. ……2分∵OC=OA,∴∠OAC=∠OCA=α,∠EAC=∠OCA. ……3分∴OC//AE. ∴OC⊥BC. ……4分∴BC是⊙O的切线. ……5分(2)∵OC =OA =6,由(1)知,OC ⊥BC ,在Rt △BOC 中,sin β=OCOB,∵sin β=35,∴35=6OB . …… 8分∴OB =10. …… 9分∴BC =8. …… 10分22.(1)解:①∵直线25y x =-与x 轴和y 轴交于点A 和点B ,∴5(,0)2A ,(0,5)B -. ……1分解法一:当顶点M 与点A 重合时,∴5(,0)2M . ……2分 ∴抛物线的解析式是:25()2y x =--.即22554y x x =-+-. ……4分 解法二:当顶点M 与点A 重合时,∴5(,0)2M . ……2分 ∵ 52(1)2b -=⨯-, ∴5b =.又∵24(1)04(1)c b ⨯--=⨯-,∴254c =-. ……3分 ∴抛物线的解析式是:22554y x x =-+-. ……4分 ②∵N 在直线25y x =-上,设(,25)N a a -,又N 在抛物线22554y x x =-+-上,∴2252554a a a -=-+-. ……5分解得 112a = , 252a =(舍去)∴1(,4)2N -. ……6分过N 作NC ⊥x 轴,垂足为C (如图①). ∵1(,4)2N -,∴1(,0)2C . ∴4NC =. 51222MC OM OC =-=-=. ……7分∴MN =. ……8分(2)存在.1(2,1),M - ………………10分2(4,3)M . ………………12分 23.(1)证明:∵四边形ABCD 是正方形,P 与C 重合, ∴OB =OP , ∠BOC =∠BOG =90°. ……2分 ∵PF ⊥BG ,∠PFB =90°,∴∠GBO =90°—∠BGO ,∠EPO =90°—∠BGO , ∴∠GBO =∠EPO . ……3分∴△BOG ≌△POE . ……4分 (2)12BF PE =. ……5分 证明:如图②,过P 作PM//AC 交BG 于M ,交BO 于N , ∴∠PNE =∠BOC =90°, ∠BPN =∠OCB . ∵∠OBC =∠OCB =45︒, ∴ ∠NBP =∠NPB . ∴NB =NP .∵∠MBN =90°—∠BMN , ∠NPE =90°—∠BMN ,∴∠MBN =∠NPE . ……6分 ∴△BMN ≌△PEN . ……7分 ∴BM =PE .∵∠BPE =12∠ACB , ∠BPN =∠ACB , ∴∠BPF =∠MPF .∵PF ⊥BM ,∴∠BFP =∠MFP =90 . 又PF =PF ,∴△BPF ≌△MPF . ……8分∴BF =MF . 即BF =12BM .∴BF =12PE . 即12BF PE =. ……9分 (3)解法一:如图③,过P 作PM //AC 交BG 于点M ,交BO 于点N ,∴∠BPN =∠ACB =α,∠PNE =∠BOC =90°. ……10分 由(2)同理可得BF =12BM , ∠MBN =∠EPN . ……11分 ∵∠BNM =∠PNE =90°,∴△BMN ∽△PEN . ……12分∴BM BNPE PN=. ……13分 在Rt △BNP 中,tan BNPNα=,∴tan BM PE α=.即2tan BF PE α=.∴1tan 2BF PE α=. ……14分 解法二:如图③,过P 作PM //AC 交BG 于点M ,交BO 于点N ,∴BO ⊥PM ,∠BPN =∠ACB =α. ……10分∵∠BPE =12∠ACB=12α,PF ⊥BM , ∴∠EPN=12α. ∠MBN =∠EPN=∠BPE=12α.设,,BF x PE y EF m ===, 在Rt △PFB 中, t a n 2BFPFα=, ……11分∵PF =PE +EF =y m +,∴()tan 2x y m α=+ ……12分在Rt △BFE 中,tan2EF m BF x α==, ∴tan 2m x α=⋅. ∴(tan )tan22x y x αα=+. 2tantan 22x y x αα=⋅+⋅.2(1tan )tan 22x y αα-=⋅.……13分∴2t a n21t a n 2x y αα=-. 即2tan21tan 2BF PE αα=-. ……14分 解法三:如图③,过P 作PM //AC 交BG 于点M ,交BO 于点N , ∴ ∠BNP =∠BOC =90°. ∴ ∠EPN +∠NEP =90°.又∵BF ⊥PE ,∴ ∠FBE +∠BEF =90°.∵∠BEF =∠NEP ,∴ ∠FBE =∠EPN . …… 10分∵PN //AC ,∴∠BPN =∠BCA =α.又∵∠BPE =12∠ACB=12α,∴∠NPE =∠BPE =12α. ∴∠FBE =∠BPE =∠EPN =12α.∵ sin BFFPB BP ∠=,∴ sin 2BF BP α=. …… 11分∵ cos PN EPN PE ∠=,∴ cos 2PN PE α=⋅. …… 12分∵ cos PNNPB BP∠=,∴ cos PN BP α=⋅. …… 13分∴ cos cos 2EP BP αα⋅=⋅. ∴ cos cos 2sin 2BF EP ααα⋅=⋅. ∴ sincos22cos BFPEααα⋅=. …… 14分11。

2012年福建中考数学真题卷含答案解析

2012年福建中考数学真题卷含答案解析

二〇一二年福州市初中毕业会考、高级中等学校招生考试数学14A(满分:150分 时间:120分钟)第Ⅰ卷(选择题,共40分)一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项)1.3的相反数是( )A.-3B.13 C.3 D.-132.今年参观“5·18”海交会的总人数约为489 000人,将489 000用科学记数法表示为( ) A.48.9×104 B.4.89×105 C.4.89×104 D.0.489×1063.如图是由4个大小相同的正方体组合而成的几何体,其主视图...是( )4.如图,直线a ∥b,∠1=70°,那么∠2的度数是( )A.50°B.60°C.70°D.80° 5.下列计算正确的是( ) A.a+a=2a B .b 3·b 3=2b 3 C.a 3÷a=a 3 D.(a 5)2=a 76.式子√x -1在实数范围内有意义,则x 的取值范围是( ) A.x<1 B.x ≤1 C.x>1 D.x ≥17.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是( ) A.8,8 B.8.4,8 C.8.4,8.4 D.8,8.48.☉O 1和☉O 2的半径分别是3 cm 和4 cm,如果O 1O 2=7 cm,则这两圆的位置关系是( ) A.内含 B.相交 C.外切 D.外离9.如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则A 、B 两点的距离是( )A.200米B.200√3米C.220√3米D.100(√3+1)米10.如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=-x+6于A、B两点,若反比例函数y=kx(x>0)的图象与△ABC有公共点,则k的取值范围是()A.2≤k≤9B.2≤k≤8C.2≤k≤5D.5≤k≤8第Ⅱ卷(非选择题,共110分)二、填空题(共5小题,每题4分,满分20分)11.分解因式:x2-16=.12.一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率为.13.若√20n是整数,则正整数n的最小值为.14.计算:x-1x +1x=.15.如图,已知△ABC,AB=AC=1,∠A=36°,∠ABC的平分线BD交AC于点D,则AD的长是,cos A的值是.(结果保留根号)三、解答题(满分90分)16.(每小题7分,共14分)(1)计算:|-3|+(π+1)0-√4;(2)化简:a(1-a)+(a+1)2-1.17.(每小题7分,共14分)(1)如图(i),点E、F在AC上,AB∥CD,AB=CD,AE=CF.求证:△ABF≌△CDE.(2)如图(ii),方格纸中的每个小方格是边长为1个单位长度的正方形.①画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1;②再将Rt△A1B1C1绕点C1顺时针...旋转90°,画出旋转后的Rt△A2B2C1,并求出旋转过程中线段A1C1所扫过的面积(结果保留π).18.(满分12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1)m=%,这次共抽取名学生进行调查;并补全条形图;(2)在这次抽样调查中,采用哪种上学方式的人数最多?(3)如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名?19.(满分11分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1)小明考了68分,那么小明答对了多少道题?(2)小亮获得二等奖(70~90分),请你算算小亮答对了几道题?14B20.(满分12分)如图,AB为☉O的直径,C为☉O上一点,AD和过C点的切线互相垂直,垂足为D,AD交☉O 于点E.(1)求证:AC平分∠DAB;(2)若∠B=60°,CD=2√3,求AE的长.21.(满分13分)如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=,PD=;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图②,在整个运动过程中,求出线段PQ中点M所经过的路径长.22.(满分14分)如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图②,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应).二〇一二年福州市初中毕业会考、高级中等学校招生考试一、选择题1.A只有符号不同的两个数互为相反数,所以3的相反数是-3,故选A.2.B科学记数法即将数字写成a×10n(1≤|a|<10,n为整数)的形式,489000=4.89×105,故选B.3.C主视图即从正面看几何体得到的图形,根据几何体的形状可知C正确,故选C.4.C因为a∥b,所以∠1=∠2(两直线平行,同位角相等).又因为∠1=70°,所以∠2=70°,故选C.5.A合并同类项:字母及字母的指数不变,系数相加减,所以a+a=2a,故A正确;同底数幂的乘法:底数不变,指数相加,所以b3·b3=b6,故B错;同底数幂的除法:底数不变,指数相减,所以a3÷a=a2,故C错;幂的乘方,底数不变,指数相乘,所以(a5)2=a10,故D错.综上,应选A.6.D二次根式有意义,要求被开方数大于或等于零,即x-1≥0,x≥1,故选D.7.B这组数据的平均数为(8+9+8+7+10)÷5=8.4;将这组数据从大到小(从小到大)排列,中位数是8,故选B.8.C圆心距等于两圆半径的和,则两圆的位置关系是外切,故选C.9.D由题目条件易得∠A=30°,∠B=45°,在Rt△CDB中,CD=DB=100米,在Rt△CAD中AD=CD=100√3米,所以A、B两点之间的距离为100(√3+1)米,故选D.tanA评析本题考查俯角的概念及利用三角函数解直角三角形的知识,综合性较强,属中等难度题.10.A当反比例函数图象经过点C时,将C(1,2)代入y=k中,解得k=2;当反比例函数图象与直x,因为切线相切时,设切点的横坐标为a,因为切点在反比例函数图象上,则切点的纵坐标为y=ka点在直线上,若横坐标为a,则切点的纵坐标为y=-a+6,所以有k=-a+6,a2-6a+k=0,若反比例函数a图象与直线AB相切,则(-6)2-4×1×k=0,k=9.综上,当2≤k≤9时,反比例函数图象与△ABC有公共点,故选A.评析本题以反比例函数、一次函数图象为背景,考查函数、方程、不等式等知识,综合性较强,题目难度较大.二、填空题11.答案(x+4)(x-4)解析利用平方差公式对x2-16进行因式分解,x2-16=x2-42=(x+4)(x-4).12.答案35解析从袋子中随机摸出一个球的等可能结果有5个,其中恰好摸到红球的等可能结果为3.个,所以摸到红球的概率为3513.答案5解析当n=5时,√20n=√20×5=√100=10,n=1,2,3,4时,√20n都不是整数,故n的最小值是5.评析本题考查二次根式的相关知识,以及分类讨论的数学思想,题目灵活,考查学生的分析、解决问题的能力.14.答案 1 解析x -1x+1x =x -1+1x=1. 15.答案√5-12;√5+14解析 由已知易得∠ABC=∠C=∠BDC=72°,∠A=∠ABD=∠DBC=36°.因为∠A=∠ABD,所以AD=BD;同理∠BDC=∠C,所以BD=BC.综上述AD=BD=BC.又∠A=∠CBD,∠BDC=∠ACB,所以△ABC ∽△BCD,所以BCAB=CD BC,BC 1=1-BC BC,解得BC=-1±√52,根据BC>0,得BC=-1+√52,所以AD=√5-12.过点D 作AB 的垂线交AB 于点E,cos A=AE AD =12÷-1+√52=√5+14.评析 本题考查相似三角形的判定及性质,并利用对应边成比例考查解方程的知识,同时考查三角函数的相关知识,题目设置巧妙,综合性强,难度较大. 三、解答题16.解析 (1)原式=3+1-2=2; (2)原式=a-a 2+a 2+2a+1-1=3a. 17.解析 (1)证明:∵AB ∥CD, ∴∠A=∠C. ∵AE=CF,∴AE+EF=CF+EF, 即AF=CE. 又∵AB=CD,∴△ABF ≌△CDE. (2)①如图所示. ②如图所示.在旋转过程中,线段A 1C 1所扫过的面积等于90·π·42360=4π.18.解析 (1)26;50.条形图如图所示.(2)采用乘公交车上学的人数最多.(3)该校骑自行车上学的学生约为1 500×20%=300名. 19.解析 (1)设小明答对了x 道题, 依题意得5x-3(20-x)=68,解得x=16.答:小明答对了16道题. (2)设小亮答对了y 道题,依题意得{5y -3(20-y)≥70,5y -3(20-y)≤90.因此不等式组的解集为1614≤y ≤1834. ∵y 是正整数, ∴y=17或18.答:小亮答对了17道题或18道题.评析 本题考查运用一元一次不等式(组)解决实际问题的能力,根据实际问题中数量关系构建恰当的不等式是解决问题的关键,属中等难度题. 20.解析图1(1)证明:如图1,连结OC, ∵CD 为☉O 的切线, ∴OC ⊥CD, ∴∠OCD=90°. ∵AD ⊥CD, ∴∠ADC=90°.∴∠OCD+∠ADC=180°, ∴AD ∥OC, ∴∠1=∠2. ∵OA=OC, ∴∠2=∠3, ∴∠1=∠3,即AC 平分∠DAB.图2(2)解法一:如图2, ∵AB 为☉O 的直径, ∴∠ACB=90°. 又∵∠B=60°, ∴∠1=∠3=30°.在Rt △ACD 中,CD=2√3, ∴AC=2CD=4√3.在Rt △ABC 中,AC=4√3, ∴AB=ACcos ∠CAB =4√3cos30°=8. 连结OE,∵∠EAO=2∠3=60°,OA=OE,∴△AOE是等边三角形,∴AE=OA=12AB=4.图3解法二:如图3,连结CE.∵AB为☉O的直径,∴∠ACB=90°.又∵∠B=60°,∴∠1=∠3=30°.在Rt△ADC中,CD=2√3,∴AD=CDtan∠DAC =2√3tan30°=6.∵四边形ABCE是☉O的内接四边形,∴∠B+∠AEC=180°.又∵∠AEC+∠DEC=180°,∴∠DEC=∠B=60°.在Rt△CDE中,CD=2√3,∴DE=DCtan∠DEC =2√3tan60°=2,∴AE=AD-DE=4.评析本题考查运用圆与直线相切、圆的基本性质及三角函数知识解决问题的能力,作出恰当的辅助线能够使问题解决得更加快捷,题目综合性强,难度较大.21.解析(1)QB=8-2t,PD=43t.(2)不存在.在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10.∵PD∥BC,∴△APD∽△ACB,∴ADAB =APAC,即AD10=t6,∴AD=53t,∴BD=AB-AD=10-53t.∵BQ∥DP,∴当BQ=DP时,四边形PDBQ是平行四边形.即8-2t=43t,解得t=125.当t=125时,PD=43×125=165,BD=10-53×125=6,∴DP≠BD,∴▱PDBQ不能为菱形.设点Q的速度为每秒v个单位长度,则BQ=8-vt,PD=43t,BD=10-53t.要使四边形PDBQ 为菱形,则PD=BD=BQ, 当PD=BD 时,即43t=10-53t,解得t=103.当PD=BQ,t=103时,即43×103=8-103v,解得v=1615.∴当点Q 的速度为每秒1615个单位长度时,经过103秒,四边形PDBQ 是菱形.图1(3)解法一:如图1,以C 为原点,以AC 所在直线为x 轴,建立平面直角坐标系. 依题意,可知0≤t ≤4,当t=0时,点M 1的坐标为(3,0); 当t=4时,点M 2的坐标为(1,4). 设直线M 1M 2的解析式为y=kx+b, ∴{3k +b =0,k +b =4.解得{k =-2,b =6.∴直线M 1M 2的解析式为y=-2x+6. ∵点Q(0,2t),P(6-t,0),∴在运动过程中,线段PQ 中点M 3的坐标为(6-t2,t). 把x=6-t2代入y=-2x+6,得y=-2×6-t2+6=t.∴点M 3在直线M 1M 2上.过点M 2作M 2N ⊥x 轴于点N,则M 2N=4,M 1N=2. ∴M 1M 2=2√5.∴线段PQ 中点M 所经过的路径长为2√5个单位长度. 解法二:如图2,设E 是AC 的中点,连结ME. 当t=4时,点Q 与点B 重合,运动停止.图2设此时PQ 的中点为F,连结EF.过点M 作MN ⊥AC,垂足为N,则MN ∥BC. ∴△PMN ∽△PQC. ∴MN QC =PN PC =PMPQ ,即MN 2t =PN 6-t =12. ∴MN=t,PN=3-12t,∴CN=PC-PN=(6-t)-(3-12t)=3-12t.∴EN=CE-CN=3-(3-12t)=12t.∴tan ∠MEN=MN EN =2. ∵tan ∠MEN 的值不变,∴点M 在直线EF 上.过F 作FH ⊥AC,垂足为H.则EH=2,FH=4.∴EF=2√5.∵当t=0时,点M 与点E 重合;当t=4时,点M 与点F 重合,∴线段PQ 中点M 所经过的路径长为2√5个单位长度.评析 本题主要考查一次函数、三角形的相似、平行四边形(菱形)、三角函数等知识的综合应用,确定运动元素的各种状态,正确建立满足题意的等量关系是解题的关键,属较难题.22.解析 (1)∵抛物线y=ax 2+bx(a ≠0)经过点A(3,0)、B(4,4).∴{9a +3b =0,16a +4b =4.解得{a =1,b =-3. ∴抛物线的解析式是y=x 2-3x.(2)设直线OB 的解析式为y=k 1x,由点B(4,4),得4=4k 1,解得k 1=1.∴直线OB 的解析式是y=x.∴直线OB 向下平移m 个单位长度后的解析式为y=x-m.∵点D 在抛物线y=x 2-3x 上.∴可设D(x,x 2-3x).又点D 在直线y=x-m 上,∴x 2-3x=x-m,即x 2-4x+m=0.∵抛物线与直线只有一个公共点,∴Δ=16-4m=0,解得m=4.此时x 1=x 2=2,y=x 2-3x=-2,∴D 点坐标为(2,-2).(3)∵直线OB 的解析式为y=x,且A(3,0),∴点A 关于直线OB 的对称点A'的坐标是(0,3).设直线A'B 的解析式为y=k 2x+3,过点B(4,4),∴4k 2+3=4,解得k 2=14.∴直线A'B 的解析式是y=14x+3. ∵∠NBO=∠ABO,∴点N 在直线A'B 上,∴设点N (n,14n +3),又点N 在抛物线y=x 2-3x 上, ∴14n+3=n 2-3n,解得n 1=-34,n 2=4(不合题意,舍去),∴点N 的坐标为(-34,4516).图1解法一:如图1,将△NOB沿x轴翻折,得到△N1OB1,则N1(-34,-4516),B1(4,-4),∴O、D、B1都在直线y=-x上.∵△P1OD∽△NOB,∴△P1OD∽△N1OB1,∴OP1ON1=ODOB1=12,∴点P1的坐标为(-38,-45 32).将△OP1D沿直线y=-x翻折,可得另一个满足条件的点P2(4532,3 8 ).综上所述,点P的坐标是(-38,-4532)或(4532,38).解法二:如图2,将△NOB绕原点顺时针旋转90°,得到△N2OB2,则N2(4516,34),B2(4,-4),图2∴O、D、B2都在直线y=-x上.∵△P1OD∽△NOB,∴△P1OD∽△N2OB2,∴OP1ON2=ODOB2=12,∴点P1的坐标为(4532,3 8 ).将△OP1D沿直线y=-x翻折,可得另一个满足条件的点P2(-38,-45 32).综上所述,点P的坐标是(-38,-4532)或(4532,38).评析本题以平面直角坐标系为依托,考查一次函数、二次函数、三角形的相似等知识的综合应用,最后一问是关于点P坐标的开放性问题,考查学生通过观察、作图、分析不重不漏得到答案的能力,属难题.。

最新整理福建省三明市初中毕业生业考试数试题及答案.doc

最新整理福建省三明市初中毕业生业考试数试题及答案.doc

福建省三明市初中毕业生学业考试数学试题(满分:150分;考试时间:7月2日上午8:00-10:00)题号 一 二 三总分18 19 20 21 22 23 24 25 26得分第26题另加 分考生注意:本卷中凡涉及实数运算,若无特别要求,结果应该为准确数一、填空题:本大题共12小题,1-8题每小题3分,9-12题,每小题4分,计40分,把答案填在题中横线上.1、列代数式:比m 小3的数是_________________.2、如图,若a ∥b ,∠1=50°,则∠2=______度。

3、计算:_____211=⎪⎭⎫⎝⎛-。

4、计算:______28=+。

5、如图,直角∠AOB 内的任意一点P ,到这个角的两边的距离之和为6,则图中四边形的周长为__________。

第5题图 第7题图6、四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,若EH=5,则FG=_____。

7、如图,在⊙O 中,弦AB 、DC 相交于点P ,P 是AB 的中点,若PA=4,PC=2,则PD=______。

8、已知点P 1()3,a 与P 2()3,2--关于原点对称,则______=a 。

9、二次函数()112+-=x y 图象的顶点坐标是____________。

10、三明市 社会消费品零售总额增长速度如图所示,估计5月份的增长速度约为________%。

11、已知不等式组⎩⎨⎧<-≥11x x 的解集如图所示,则不等式组的整数解为__________。

12、写出一个图象在第二、四象限的反比例函数的解析式__________________。

二、选择题:本大题共5小题,每小题4分,计20分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1 2 abc第2题图APOB13、下列运算正确的是( ) A 、532a a a =∙ B 、()532a a = C 、532a a a =+ D 、5210a a a =÷14、一副三角板不能拼出的角的度数是( ) (拼接要求:既不重叠又不留空隙) A 、75° B 、105° C 、120° D 、125°15、下列四个图形分别是正三角形、等腰梯形、正方形、圆,它们全部是轴对称图形,其中对称轴的条数最少的图形是 ( )A 、B 、C 、 16、某施工队挖掘一条长96米的隧道,开工后每天比原计划多挖2米,结果提前4天完成任务,原计划每天挖多少米?若设原计划每天挖x 米,则依题意列出正确的方程为( )A 、496296=--x x ; B 、429696=--x x ; C 、429696=+-x x ; D 、496296=-+xx17、根据图中信息,经过估算,下列数值与αtan 的值最接近的是( )A 、0.3640B 、0.8970C 、0.4590D 、2.1785三、解答题:本大题共9小题,计90分。

福建三明市中考数学试题及参考答案

福建三明市中考数学试题及参考答案

OA BCD 三明市中考数学试题一、填空题(本大题共10小题,1~6题每小题3分,7~10每小题4分,共34分) 1.-6的绝对值是.2.分解因式:2a 2-4ab =. 3.“x 的2倍与5的差小于0”用不等式表示为.4.学校团委组织九年级的共青团员参加植树活动,七个团支部植树的棵数为:16,13,15,16,14,17,17,则这组数据的中位数是.5.写出一个含有字母x 、y 的四次单项式.6.如图,AB ∥CD ,AD 与BC 相交于点O ,OA =4,OD =6, 则△AOB 与△DOC 的周长比是. 7.计算:a 2a -3-9a -3=.8.如图,在以O 为圆心的两个同心圆中,大圆的直径AB 交小圆于C 、D 两点,AC =CD =DB ,分别以C 、D 为圆心,以CD 为半径作圆.若AB =6cm ,则图中阴影部分的面积为cm 2.9.在a 2□2ab □b 2的空格中,任意填上“+”或“-”,得到的所有多项式中是完全平方式的概率为. 10.把边长为3的正三角形各边三等分,分割得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,分割得到图②,图中含有3个边长是1的正六边形; 把边长为5的正三角形各边五等分,分割得到图③,图中含有6个边长是1的正六边形; …依此规律,把边长为7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有个边长是1的正六边形.二、选择题(本大题共6小题,每小题4分,共24分) 11.计算的结果是( )A .4B .-4C .14D .-1412. 北京奥运会火炬传递的路程约为13.7万公里.近似数13.7万精确到( )A .十分位B .十万位C .万位D .千位13.已知圆锥的母线长是5cm ,侧面积是15πcm 2,则这个圆锥底面圆的半径是( )A .1.5cmB .3cmC .4cmD .6cm 14.如图,AB 是⊙O 的直径,CD 是弦,CD ⊥AB 于点E ,则下列结论中不一定...正确的是( ) A .∠COE =∠DOEB .CE =DEC .AC ⌒=AD ⌒D .OE =BE 15.下列命题:①4的平方根是2; ②所有的矩形都相似;…图①图②图③B图① 图②③“在一个标准大气压下,将水加热到100℃就会沸腾”是必然事件;④在同一盏路灯的灯光下,若甲的身高比乙高,则甲的影子比乙的影子长. 其中正确的命题有( )A .1个B .2个C .3个D .4个 16.右图是一个由相同小正方体搭成的几何体的俯视图,若小正方形中的数字表示该位置上的小正方体的个数,则这个几何体的主视图是( )三、解答题(本大题共10小题,共92分)17.(8分)先化简,再求值:(2a +b )(2a -b )+b (2a +b )-4a 2b ÷b ,其中a =-12,b =2.18.(8分)解不等式组⎩⎪⎨⎪⎧1-2(x -1)≤5,3x -22<x +12,并把解集在数轴上表示出出来.19.(8分)已知一次函数y =x +3的图象与反比例函数y =kx都经过点A (a ,4).(1)求a 和k 的值;(2)判断点B (22,-2)是否在该反比例函数的图象上.20.(8分)如图,方格纸上的每个小正方形的边长均为1.(1)观察图①、②中所画的“L ”型图形,然后补画一个小正方形,使图①中所成的图形是轴对称图形,图②中所成的图形是中心对称图形;(2)补画后,图①、②中所成图形的是不是正方体的表面展开图(在括号内填“是”或“不A B C D2 31 2 1 1A B C D F E 是”):答:图①中的图形(),图②中的图形().21.(10分)阅读对人成长的影响是很大的.希望中学共1500名学生,为了了解学生课外阅读的情况,就“你最喜欢的图书类别”(只选一项)随机调查了部分学生,并将调查结果统计后绘成如下统计表和统计图.请你根据统计图表提供的信息解答下列问题: (1)这次随机调查了名学生;(2)把统计表和条形统计图补充完整;(3)随机调查一名学生,估计恰好是喜欢文学类图书的概率是.22.(10分)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BE =2DE ,延长DE 到点F ,使得EF =BE ,连接CF .(1)求证:四边形BCFE 是菱形; (2)若CE =4,∠BCF =130°,求菱形BCFE 的面积(结果保留三个有效数字).23.(10分)为了支援四川汶川地震灾区人民重建家园,我市某校号召师生自愿捐款.已知第一次共捐款90000元,第二次共捐款120000元,第二次人均捐款额是第一次人均捐款额的1.2倍,捐款人数比比第一次多100人.问第一次和第二次捐款各多少元?24.(10分)如图,在正方形ABCD 中,E 是AB 边上任意一点,∠ECF =45°,CF 交AD 于点F ,将△CBE 绕点C 顺时针旋转到△CDP ,点P 恰好在AD 的延长线上.(1)求证:EF =PF ;(2)直线EF 与以C 为圆心,CD 为半径的圆相切吗?为什么?25.(12分)如图,抛物线y =12x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (-1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小 时,求m 的值.26.(12分)如图,AB 是⊙O 的直径,点C 在⊙O 上,∠BOC =108°,过点C 作直线CD 分别交直线AB 和⊙O 于点D 、E ,连接OE ,DE =12AB ,OD =2.(1)求∠BDC 的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于5-12. ①写出图中所有的黄金三角形,选一个说明理由; ②求弦CE 的长;③在直线AB 或CD 上是否存在点P (点C 、D 除外),使△POE 是黄金三角形?若存在,画出点P ,简要说明画出点P 的方法(不要求证明);若不存在,说明理由.。

2006--2011年福建省三明市中考数学试题及答案(6套)

2006--2011年福建省三明市中考数学试题及答案(6套)

新疆生产建设兵团2004年中考数学试题I 卷一、合理填空(每小题4分,共40分)1.兵团现有中小学生约47万人,用科学记数法表示为 人. 2.如图,小明的父亲在院子的门板上钉了一个加固板,从数学的角度看,这样做的道理是 .3.在数轴上,离原点距离等于3的数是4.如图,P 是⊙O 内一定点,请你在⊙O 内作出过P 点的最长弦和最短弦,标上字母,并指出最长弦是 ,最短弦是 .5.如图,点D 、E 、F 分别是△ABC 的边AB 、BC 、AC 的中点,连结DE 、EF ,要使四边形ADEF 为正方形,还需增加条件:6.如图,已知AB 是⊙O 的直径,AD∥OC,︵AD 的度数为80°,则∠BOC = 7.随机抽查某校5月份某星期5天中每天的用电量,数据如下:494,505,485,506,510.已知2004年5月1日是星期六,国家规定五一节放假3天,若遇星期六、星期目可以补休.请你估计该校5月份的用电量约为 度.(放假期间学校不用电)8.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活中的图形都有圆.上述四个图形中是轴对称图形的有 ;是中心对称图形的有 (用a 、b 、c 、d 代号填写).9.2004年4月18日零时起,全国铁路第五次大提速,其中进出新疆列车提速幅度最大的是乌鲁木齐至重庆的1084次列车,全程缩短了9小时.已知乌鲁木齐至重庆的行程为3405千米,提速前的平均速度约为52千米/时,求提速后的平均速度.设提速后的平均速度为x 千米/时,则可列出方程10.为庆祝兵团成立50周年,某校组织合唱汇演.初三年级排练队形为1O 排,第一排20人,后面每排比前排多1人,写出每排的人数m 与这排的排数n 之间的函数关系式 ,自变量n 的取值范围是 .二、正确选择(每小题只有一个正确答案。

每小题4分,共20分) 111.下列运算中正确的是 ( )A .2x 3+5 x 2=7x 5B .a -3·a 3=a C .23+32=55 D .a -1+b -1=abba + 12.下列方程没有实数根的是 ( )A .4(x 2+2)=3xB .5(x 2-1)-x=0.C .x 2-x=100D .9 x 2-24x+16=013.1993年版人民币的一角硬币正面图案中有一个正九边形,如果这个正九边形的半径是R ,那么它的边长是 ( )A .Rsin20° B.Rsin40° C.2Rsin 20° D.2Rsin40°14.如图,在同一平面上有两个大小相同的圆,其中⊙O 1固定不动,⊙O 2在其外围相切滚动一周,则⊙O 2自转( )周. A .1 B .2 C .3D .415.△ABC 中,∠A=30°,BD 是AC 边上的高,若BDCDAD BD =,则∠ABC= ( )A .30° B.60°C. 90° D.30° 或90°三、下面是解答题,请认真读题。

2012中考数学试题及答案

2012中考数学试题及答案

2012中考数学试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 2答案:C2. 一个圆的半径是5厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B3. 如果一个等腰三角形的底边长为6厘米,腰长为5厘米,那么它的周长是多少厘米?A. 16B. 21C. 22D. 26答案:B4. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/12答案:C5. 一个数的平方根是4,这个数是?A. 16B. 8C. 4D. 2答案:A6. 一个长方体的长、宽、高分别是2米、3米和4米,它的体积是多少立方米?A. 24B. 12C. 8D. 6答案:B7. 一个数的倒数是1/5,这个数是?A. 5B. 1/5C. 1/4D. 4/5答案:A8. 一个直角三角形的两条直角边分别是3和4,斜边长是多少?A. 5B. 6C. 7D. 8答案:A9. 一个分数的分子是8,分母是它的4倍,这个分数是多少?A. 1/4B. 1/3C. 1/2D. 2/3答案:A10. 一个数的立方是27,这个数是?A. 3B. 9C. 27D. 81答案:A二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是______或______。

答案:5或-512. 如果一个数的平方是25,那么这个数是______或______。

答案:5或-513. 一个数的立方是-8,这个数是______。

答案:-214. 一个数的平方根和立方根相等,这个数是______。

答案:0或115. 如果一个数的对数是2,那么这个数是______。

答案:10016. 一个数的平方是36,那么这个数是______或______。

答案:6或-617. 一个数的倒数是2/3,这个数是______。

答案:3/218. 如果一个数的立方是-27,那么这个数是______。

福建三明中考数学试卷及答案(word解析版)

福建三明中考数学试卷及答案(word解析版)

初中毕业生重点卷初中毕业生重点卷 2013年三明市初中毕业暨高级中等学校招生统一考试数 学 试 题(满分:150分考试时间月21日上午8: 30-10: 30)友情提示:1.作图或画辅助线等需用签字笔描黑.2.未注明精确度的计算问題,结果应为准确数.3.抛物线y =ax 2+bx +c 的顶点式24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴是2b x a =-. 一、选择题(共10题,每题4分,满分40分,毎题只有一个正确选项,请在答题卡的相应位置填涂)1.(2013福建省三明市,1,4分)-6的绝对值是( )A .-6B .-16C .16D . 6 【答案】D2.(2013福建省三明市,2,4分)三明市地处福建省中西部,面积为22 900平方千米,将22 900用科学记数法表示为( )A .229×102B .22.9×103C .2.29×104D .0.229×105【答案】C3.(2013福建省三明市,3,4分)下列图形中,不是轴对称图形的是( )A .B .C .D .【答案】A4. (2013福建省三明市,4,4分)计算555a a a ---的结果是( ) A .1 B .-1 C .0 D .a -5【答案】A5.(2013福建省三明市,5,4分)如图,直线a ∥b ,三角板的直角顶点在直线a 上,已知∠l=25°,则∠2的度数是( )A .25°B .55°C .65°D .155°【答案】C6.(2013福建省三明市,6,4分)如图,A ,B ,C 是⊙O 上的三点,已知∠AOC =110°,则∠ABC。

2012年中考数学试题及答案

2012年中考数学试题及答案

2012年中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 5D. -1答案:C2. 如果一个角的度数是30°,那么它的补角是:A. 30°B. 45°C. 60°D. 120°答案:D3. 一个圆的半径是5厘米,那么它的面积是:A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B4. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. 8答案:A5. 一个三角形的三边长分别为3,4,5,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能构成三角形答案:B6. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. 1/3D. 1答案:A7. 一个长方体的长、宽、高分别是4cm,3cm,2cm,那么它的体积是:A. 24 cm³B. 36 cm³C. 48 cm³D. 52 cm³答案:A8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 3D. 5 或 -5答案:D9. 一个分数的分子是3,分母是5,那么它的最简形式是:A. 3/5B. 1/5C. 3/1D. 5/3答案:A10. 如果一个数的立方根是3,那么这个数是:A. 27B. 3C. 9D. 81答案:A二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是____。

答案:±412. 一个数的立方是-27,这个数是____。

答案:-313. 一个圆的直径是14cm,那么它的半径是____cm。

答案:714. 如果一个三角形的内角和是180°,那么一个四边形的内角和是____°。

答案:36015. 一个数的相反数是-5,这个数是____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012 年三明市初中毕业暨高级中等学校招生统一考试
数学试题
(满分:150 分 考试时间:120 分钟)
友情提示:
1.作图或画辅助线等需用签字笔描黑.
2.未注明精确度的计算问题,结果应为准.确.数..
3.抛物线
y
=
ax2
+
bx
+
c
(
a
0
)的顶点坐标为

b 2a
,4ac − 4a
b2
,对称轴
x
=

b 2a
23.(本题满分 14 分)
在正方形 ABCD 中,对角线 AC,BD 交于点 O,点 P 在线段 BC 上(不含点 B),
∠BPE= 1 ∠ACB,PE 交 BO 于点 E,过点 B 作 BF⊥PE,垂足为 F,交 AC 于点 G. 2
(1) 当点 P 与点 C 重合时(如图①).求证:△BOG≌△POE;(4 分) (2)通过观察、测量、猜想: BF = ▲ ,并结合图②证明你的猜想;(5 分)
……5 分
证法三:连接 OC(如图①),
∵OA=OC,∴ ∠OCA=∠A= .
……1 分
在△ACB 中,
∠ACB=180 -(∠A+∠B)=180 -( + )
∴ ∠BCO=∠ACB-∠ACO =180 -( + )-
=180 -(2 + ).
……3 分
……2 分 ……4 分 ……5 分
∵2 + =90 ,∴ ∠BCO = 90o .即 OC⊥BC. ……4 分
解法二:设 A 种商品销售 x 件, B 种商品销售 y 件. ……1 分
依题意,得
x + y = 100, 10x +15y =1350.
……………3 分
解得
x
y
= =
30, 70.
……………4 分
答:A 种商品销售 30 件,B 种商品销售 70 件. ……………5 分
(2)设 A 种商品购进 x 件,则 B 种商品购进(200- x)件. ………6 分
20.(本题满分 10 分) 某商店销售 A,B 两种商品,已知销售一件 A 种商品可获利润 10 元,销售一件 B 种商品 可获利润 15 元. (1)该商店销售 A,B 两种商品共 100 件,获利润 1350 元,则 A,B 两种商品各销售多 少件?(5 分) (2)根据市场需求,该商店准备购进 A,B 两种商品共 200 件,其中 B 种商品的件数 不多于 A 种商品件数的 3 倍.为了获得最大利润,应购进 A,B 两种商品各多少件? 可获得最大利润为多少元?(5 分)
答:成绩为 A 级的学生人数约为 286 人.…10 分
20.解:(1)解法一:设 A 种商品销售 x 件,
则 B 种商品销售(100- x)件. 依题意,得 10x +15(100 − x) =1350
……………1 分 ……………3 分
解得 x=30.∴ 100- x =70.
……………4 分
答:A 种商品销售 30 件,B 种商品销售 70 件. ……………5 分
17.(1)解:原式=1+ 1 − 1 22
=1.
(2)解法一:原式= ( 1 + 1 ) (x + 4)(x − 4)
x−4 x+4
2
= x+4+ x−4 22
=x.
……………6 分 ……………7 分 ……………2 分
……………6 分 ……………7 分
解法二:原式= (x + 4) + (x − 4) (x + 4)(x − 4)
除数字外其他均相同.充分摇匀后,先摸出 1 个球不放回,再摸出
1 个球,那么这两个球上的数字之和为奇数的概率为(▲)
A. 2 3
B. 5 9
C. 4 9
D. 1 3
10.如图,在平面直角坐标系中,点 A 在第一象限,点 P 在 x 轴上,
若以 P,O,A 为顶点的三角形是等腰三角形,则满足条件的
点 P 共有(▲)
PE (3)把正方形 ABCD 改为菱形,其他条件不变(如图③),若∠ACB= ,
求 BF 的值.(用含 的式子表示)(5 分) PE
2012 年三明市初中毕业暨高级中等学校招生统一考试
数学试卷参考答案及评分标准
说明:以下各题除本参考答案提供的解法外,其他解法参照本评分标准,按相应给分ቤተ መጻሕፍቲ ባይዱ评分.
一、选择题(每小题 4 分,共 40 分)
∴ BC 是 的 ⊙O 切 线 .
证法二:连接 OC(如图①), ∵ OA=OC ,
.
∴∠ACO =∠A = .
……1 分
∵ ∠BOC =∠A+∠ACO=2 , ∴∠BOC+∠B=2 + =90 .
……2 分 ……3 分
∴ ∠BCO=90 .即 OC⊥BC.
……4 分
∴ BC 是 的 ⊙O 切 线 .
∴ BC 是⊙O 的切线. 证法四:连接 OC,延长 BC(如图②),
∴ ∠ACE=∠A+∠B= + . 又∵OA=OC,∴ ∠OCA=∠A= .
……5 分
…… 1 分 …… 2 分
∴ ∠OCE=∠OCA+∠ACE= + + =2 + = 90o . … 4 分
即 OC⊥BC.∴ BC 是⊙O 的切线.
(x + 4)(x − 4)
2
……………4 分
x+4+ x−4 =
2 =x. 18.解:(1)解不等式①,得 x 2 , 解不等式②,得 x -2. 不等式①,②的解集在数轴上表示如下:
……………6 分
……………7 分 ……………2 分 ……………4 分
所以原不等式组的解集为 −2 x 2 .
A. 2 3 = 6
B. 2 + 3 = 6 C. 12 3 = 2
D. 8 = 2 2
8.如图,AB 是⊙O 的切线,切点为 A,OA=1,∠AOB= 60 ,则图
中阴影部分的面积是(▲)
A. 3 − 1 6
B. 3 − 1 3
C. 3 − 1 26
D. 3 − 1 23
9.在一个不透明的盒子里有 3 个分别标有数字 5,6,7 的小球,它们
1. D 2. C 3. D 4. A 5. B 6. C 7. B 8. C 9. A 10. C 二、填空题(每小题 4 分,共 24 分) 11. x(x + y) 12. 3 13. 168 14. 答案不唯一;如:AB=AC;或∠B=∠C;
或∠BED=∠CFD;或∠AED=∠AFD 等;15. 1 16. 900 三、解答题(共 86 分)
… 5分
证法五:过点 A 作 AE⊥BC,交 BC 的延长线于点 E,连接 OC(如图③),
在 Rt △AEB 中,∠EAB+∠B=90 . ∵∠CAB= ,∠B= ,且 2 + =90 ,
…… 1 分
∴ ∠EAB=2 .∴ ∠EAC=∠CAB= .
.
一、选择题(共 10 小题,每小题 4 分,满分 40 分.每小题只有一个正确选项,请在答.题.卡. 的相应位置填涂)
1. 在-2,- 1 ,0,2 四个数中,最大的数是( ▲ ) 2
A. -2
B. - 1
C. 0
D. 2
2
2.据《2011 年三明市国民经济和社会发展统计公报》数据显示,截止 2011 年末三明市
22.(本题满分 12 分) 已知直线 y = 2x − 5 与 x 轴和 y 轴分别交于点 A 和点 B,抛物线 y = −x2 + bx + c 的顶点 M 在直线 AB 上,且抛物线与直线 AB 的另一个交点为 N. (1)如图①,当点 M 与点 A 重合时,求: ①抛物线的解析式;(4 分) ②点 N 的坐标和线段 MN 的长;(4 分) (2)抛物线 y = −x2 + bx + c 在直线 AB 上平移,是否存在点 M,使得△OMN 与△AOB 相似?若存在,直接写出点 M 的坐标;若不存在,请说明理由.(4 分)
……………6 分 ……………8 分
(2)①如图所示, A1(−2, 1) ; 画图正确 3 分,坐标写对 1 分; ②如图所示, A2 (2, 1) . 画图正确 3 分,坐标写对 1 分;
19.解:(1)100;
…………2 分
(2)如图所示;
…………4 分
(3)30%;
…………6 分
(4)1430×20%=286(人) …………9 分
请根据以上统计图提供的信息,解答下列问题: (1)本次抽取的学生有___▲ 名;(2 分) (2)补全条形统计图;(2 分) (3)在抽取的学生中 C 级人数所占的百分比是__▲ ;(2 分) (4)根据抽样调查结果,请你估计 2012 年该县 1430 名初中毕业生数学质量检测成绩为
A 级的人数.(4 分)
常住人口约为 2 510 000 人,2 510 000 用科学记数法表示为(▲)
A. 251104
B. 25.1105
C. 2.51106
D. 0.251107
3.如图,AB//CD,∠CDE=140 ,则∠A 的度数为(▲)
A.140
B. 60
C. 50
4.分式方程 5 = 2 的解是(▲) x+3 x
18. (本题满分 16 分)
2x − 3 1,
(1)解不等式组
1 2
x
+1
0.
并把解集在数轴上表示出来;(8 分)
(2)如图,已知△ABC 三个顶点的坐标分别为 A(-2,-1),B(-3,-3), C(-1,-3). ①画出△ABC 关于 x 轴对称的△ A1B1C1 ,并写出点 A1 的坐标;(4 分)
相关文档
最新文档