定义域和值域的求法(经典)

合集下载

求函数的定义域与值域的常用方法

求函数的定义域与值域的常用方法

求函数的定义域与值域的常用方法在数学中,函数的定义域和值域是非常重要的概念。

定义域是指函数可以接受的输入值的集合,而值域则是函数能够取得的输出值的集合。

正确确定函数的定义域和值域是解决函数相关问题的关键,下面我们将详细介绍求函数定义域和值域的常用方法。

一、函数的定义域的常用方法:1. 显式定义法:对于一些常见的函数,我们可以直接根据其表达式来确定其定义域。

例如,对于一元多项式函数f(x)=ax^n+bx^m+...+c,其定义域可以是实数集或者区间。

2.隐式定义法:对于一些函数可能没有明确的表达式,或者函数的定义域和表达式没有直接的关系,我们可以根据函数的特性和性质来确定其定义域。

例如,对于分式函数f(x)=1/(x-1),我们可以得知分母不能为0,所以其定义域是实数集减去1的那部分实数。

3.已知条件法:有时候我们可以根据函数在一些点的取值情况来确定其定义域。

例如,对于一个连续函数f(x),如果我们知道在一些区间上f(x)恒大于0,那么可以确定该区间为函数的定义域。

4.集合运算法:当函数的定义域可以表示为多个区间或集合的并、交、差等运算时,我们可以利用这些运算来求解函数的定义域。

例如,对于函数f(x)=√(x+1)-√(x-1),我们可以先求出√(x+1)和√(x-1)的定义域,然后求出它们的交集。

二、函数的值域的常用方法:1.考察函数表达式法:对于一些常见的函数,我们可以观察其表达式,根据其中的字母、常数等特性来确定其值域的范围。

例如,对于平方函数f(x)=x^2,我们可以观察到平方函数的输出恒为非负数,所以其值域是[0,+∞)。

2.定义域与函数性质法:当我们已经确定了函数的定义域后,可以根据函数的性质来确定其值域。

例如,对于连续函数f(x)在一些区间上单调增加或者单调减少,我们可以确定函数在该区间上取值范围。

3.极限与极大极小值法:利用函数的极限性质、导数等衍生性质来确定函数的值域。

例如,对于函数f(x)=x^3-3x+2,我们可以求出其导数为f'(x)=3x^2-3,然后根据导数的符号确定函数的单调性和极值点,从而确定其值域。

值域和定义域公式的解题过程

值域和定义域公式的解题过程

值域和定义域公式的解题过程
我们要探讨值域和定义域的解题过程。

首先,我们需要理解这两个概念。

定义域是指一个函数可以被输入的x的取值范围。

值域是指函数在定义域内可以得到的y的取值范围。

对于函数 y = f(x),其定义域为 D,值域为 R。

对于函数 y = f(x),其定义域和值域可以通过以下公式得到:
1. 定义域 D = { x x 满足 f(x) 有定义 }
2. 值域 R = { y y 是 f(x) 在 D 上的可能取值 }
为了更好地理解这两个概念,我们将通过一些具体的例子来展示如何使用这些公式。

对于函数 y = x^2,其定义域为 D = (-∞, +∞),值域为R = [0, +∞)。

对于函数 y = 1/x,其定义域为 D = (-∞, 0) ∪ (0, +∞),值域为 R = (-∞, 0) ∪ (0, +∞)。

通过这些例子,我们可以看到定义域和值域是描述函数行为的重要概念。

它们帮助我们理解函数在哪些点上有定义,以及函数在这些点上可以取哪些值。

在解决实际问题时,了解函数的定义域和值域是非常重要的,因为它们可以帮助我们避免数学上的错误和不合理的解。

函数的定义域和值域的求法

函数的定义域和值域的求法

3x x2+4 的值域 2x2+4x-7 x2+2x+3 的值域
方法五、换元法
例5.求下列函数的值域 y5x3x1
解:令 t 3 x 1 , 则 x 1( t 2 1) 3
且 t 0,
y 5 1 ( t 2 1) t 1 ( t 3 ) 2 6533 2 123
65
2 0 , y max 12
(2)已知函数y=-2x+1,x∈(3,6),求该函 数的值域
变 式 练 习 : 求 下 列 函 数 的 值 域 : (观 察 法 )
(1)y = x 1;
(2)y = 1 , y 1 , y 1 3,
x
x 1
x 1
方法二、分离常数法
例2:求函数y 2x1 的值域 x3
求函数y 2x1 的值域
已 知 f ( 2 x 1 ) 的 定 义 域 1 , 5 , 求 f ( 2 5 x ) 的 定 义 域
解: 由题意知:
1x5
32x19
325x9
7 x 1 5
f25x的定义[域 7,1是 )
5
总结: 已知f(x)的定义域为A,求f[g(x)]的定 义域:实质是由g(x)∈A求x的范围。
0x2 2
2x 2
故 :fx2的定[ 义 2 , 2 域 ] 是
(题):已 型 fg x 知 二 的定 ,求 f(x ) 的 义定 域
例 2 .已 f2 x 知 1 的定 ( 1 ,5 ]求 ,f 义 (x ) 的 域 定
解: 由题意知:
1x5
32x 19
f(x)的定义 3,域 9 为
变式练习
已知f[g(x)] 的定义域为A,求f(x)的定 义域:实质是由x的范围求g(x)的范围。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)
解:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,如图。
文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x

22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。

高中数学知识点:函数的定义域、值域

高中数学知识点:函数的定义域、值域

高中数学知识点:函数的定义域、值域
定义域、值域的概念:
自变量取值范围叫做函数的定义域,函数值的集合叫做函数的值域。

1、求函数定义域的常用方法有:
(1)根据解析式要求如偶次根式的被开方大于零,分母不能为零等;
(2)根据实际问题的要求确定自变量的范围;
(3)根据相关解析式的定义域来确定所求函数自变量的范围;
(4)复合函数的定义域:如果y是u的函数,而u是x的函数,即y=f(u),u=g(x),那么y=f[g(x)]叫做函数f与g的复合函数,u叫做中间变量,设f(x)的定义域是x∈M,g(x)的定义域是x∈N,求y=f[g(x)]的定义域时,则只需求满足的x的集合。

设y=f[g(x)]的定义域为P,则。

3、求函数值域的方法:
(1)利用一些常见函数的单调性和值域,如一次函数,二次函数,反比例函数,指数函数,对数函数,三角函数,形如(a,b为非零常数)的函数;
(2)利用函数的图象即数形结合的方法;
(3)利用均值不等式;
(4)利用判别式;
(5)利用换元法(如三角换元);
(6)分离法:分离常数与分离参数两种形式;
(7)利用复合函数的单调性。

(注:二次函数在闭区间上的值域要特别注意对称轴与闭区间的位置关系,含字母时要注意讨论)。

函数值域定义域方法总结

函数值域定义域方法总结

函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)y=tanx 中x ≠k π+π/2; ( 5 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法)(7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。

三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

例6已知已知f(x)的定义域为[-1,1],求f(x 2)的定义域。

2、求值域问题利用常见函数的值域来求(直接法)一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{ab ac y y 4)4(|2-≤}. 例1 求下列函数的值域① y=3x+2(-1≤x ≤1) ②)(3x 1x32)(≤≤-=x f ③ xx y 1+=(记住图像) 二次函数在区间上的值域(最值):例2 求下列函数的最大值、最小值与值域:①142+-=x x y ; ②;]4,3[,142∈+-=x x x y ③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;练习:1、求函数[]5,0,522∈+-=x x x y 的值域 法二:换元法(下题讲)例4 求函数x x y -+=12 的值域例7 求13+--=x x y 的值域例8 求函数[])1,0(239∈+-=x y x x 的值域例9求函数xx y 2231+-⎪⎭⎫⎝⎛= 的值域例10 求函数 )0(2≤=x y x 的值域 例11 求函数21+-=x x y 的值域小结:已知分式函数)0(≠++=c dcx bax y ,如果在其自然定义域(代数式自身对变量的要求)内,值域为⎭⎬⎫⎩⎨⎧≠c a y y ; 例12 求函数133+=x xy 的值域例14 求函数34252+-=x x y 的值域 例15 函数11++=xx y 的值域复合函数单调性一、 函数的单调区间1.一次函数y=kx+b(k ≠0).2.反比例函数y=x k(k ≠0). 3.二次函数y=ax 2+bx+c(a ≠0). 4.指数函数y=ax(a >0,a ≠1). 5.对数函数y=log a x(a >0,a ≠1). 三、复合函数单调性相关定理规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数。

定义域和值域的求法(经典)

定义域和值域的求法(经典)

函数定义域求法总结一、定义域就是函数y=f(x)中得自变量x得范围。

(1)分母不为零(2)偶次根式得被开方数非负。

(3)对数中得真数部分大于0。

(4)指数、对数得底数大于0,且不等于1(5)y=tanx中x≠kπ+π/2;y=cotx中x≠kπ等等。

( 6 )中x二、抽象函数得定义域1、已知得定义域,求复合函数得定义域由复合函数得定义我们可知,要构成复合函数,则内层函数得值域必须包含于外层函数得定义域之中,因此可得其方法为:若得定义域为,求出中得解得范围,即为得定义域。

2、已知复合函数得定义域,求得定义域方法就是:若得定义域为,则由确定得范围即为得定义域.3、已知复合函数得定义域,求得定义域结合以上一、二两类定义域得求法,我们可以得到此类解法为:可先由定义域求得得定义域,再由得定义域求得得定义域。

4、已知得定义域,求四则运算型函数得定义域若函数就是由一些基本函数通过四则运算结合而成得,其定义域为各基本函数定义域得交集,即先求出各个函数得定义域,再求交集。

函数值域求法四种在函数得三要素中,定义域与值域起决定作用,而值域就是由定义域与对应法则共同确定。

研究函数得值域,不但要重视对应法则得作用,而且还要特别重视定义域对值域得制约作用。

确定函数得值域就是研究函数不可缺少得重要一环。

对于如何求函数得值域,就是学生感到头痛得问题,它所涉及到得知识面广,方法灵活多样,在高考中经常出现,占有一定得地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍得作用。

本次课就函数值域求法归纳如下,供参考.1、直接观察法对于一些比较简单得函数,其值域可通过观察得到。

例1、求函数得值域。

∴显然函数得值域就是:例2、求函数得值域。

解:∵故函数得值域就是:2、配方法配方法就是求二次函数值域最基本得方法之一。

例3、求函数得值域。

解:将函数配方得:∵由二次函数得性质可知:当x=1时,,当时,故函数得值域就是:[4,8]3、判别式法例4、求函数得值域。

函数定义域、值域经典习题及答案

函数定义域、值域经典习题及答案

函数定义域、值域经典习题及答案1、求函数的定义域⑴ $y=\frac{x^2-2x-15}{x+3-3}$,化简得 $y=\frac{x-5}{x-3}$,所以定义域为 $(-\infty,-3)\cup(3,5)\cup(5,\infty)$。

⑵$y=1-\frac{1}{x-1}$,要使分母不为0,所以$x\neq1$,即定义域为 $(-\infty,1)\cup(1,\infty)$。

⑶ $y=\frac{1}{1+x-1}+\frac{2x-1+4-x^2}{2}$,化简得$y=\frac{5-2x-x^2}{2(1+x-1)}=\frac{-x^2-2x+5}{2x}$,要使分母不为0,所以 $x\neq0$,即定义域为 $(-\infty,0)\cup(0,\infty)$。

2、设函数 $f(x)$ 的定义域为 $[-1,1]$,则 $f(x^2)$ 的定义域为 $[0,1]$,$f(x-2)$ 的定义域为 $[-3,-1]$。

若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则 $f(2x-1)$ 的定义域为 $[-\frac{1}{2},2]$,$f(-2)$ 的定义域为 $[-3,-1]$。

3、根据复合函数的定义,要使 $f(x+1)$ 有定义,$x+1$ 必须在定义域 $[-2,3]$ 中,即 $-2\leq x+1\leq 3$,解得$-4\leq x\leq 2$。

同理,要使 $f(2x-1)$ 有定义,$2x-1$ 必须在$[-2,3]$ 中,即 $-\frac{1}{2}\leq 2x-1\leq 3$,解得 $-\frac{1}{2}\leq x\leq 2$。

要使 $f(-2)$ 有定义,$-2$ 必须在 $[-2,3]$ 中,即 $-2\leq -2\leq 3$,显然成立。

根据 $f(x)$ 的定义域为 $[-1,1]$,$f(x+m)$ 和 $f(x-m)$ 的定义域也必须在 $[-1,1]$ 中,即 $-1\leq x+m\leq 1$,$-1\leq x-m\leq 1$,解得 $-m-1\leq x\leq m-1$。

高一数学求函数的定义域与值域的常用方法(含答案)

高一数学求函数的定义域与值域的常用方法(含答案)

高一数学求函数的定义域与值域的常用方法一. 求函数的定义域与值域的常用方法求函数的解析式,求函数的定义域,求函数的值域,求函数的最值二. 求函数的解析式3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y 。

(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值; (3)换元法:若给出了复合函数f [g (x )]的表达式,求f (x )的表达式时可以令t =g (x ),以换元法解之; (4)构造方程组法:若给出f (x )和f (-x ),或f (x )和f (1/x )的一个方程,则可以x 代换-x (或1/x ),构造出另一个方程,解此方程组,消去f (-x )(或f (1/x ))即可求出f (x )的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y 的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。

(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y =f [g (x )]的定义域的求解,应先由y =f (u )求出u 的范围,即g (x )的范围,再从中解出x 的范围I 1;再由g (x )求出y =g (x )的定义域I 2,I 1和I 2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。

函数定义域值域求法总结精彩

函数定义域值域求法总结精彩

函数定义域值域求法总结精彩GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

这些解题思想与方法贯穿了高中数学的始终。

常用的求值域的方法:(1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义,∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒ ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f ③=)(x f x11111++④xx x x f -+=0)1()( ⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x ∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧x x x ⇒ 2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax 第一页∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

高中数学求解函数的定义域和值域的基本方法(附例题)

高中数学求解函数的定义域和值域的基本方法(附例题)

求解函数定义域和值域的基本方法(附例题)一、求解函数的定义域函数定义域,即函数自变量的取值范围。

在具体题目中,有求解具体函数和抽象函数的定义域两类。

针对不同类型的题目,解题方法也不相同。

1、求解具体函数的定义域在给定函数的定义域求解过程中,要善于挖掘题目中的隐含条件,并以此求解得出正确答案。

一般隐含条件有以下几点: (1)整式函数的定义域为:R (全体实数) (2)分式函数中,分母不等于0(3)含偶次根式的函数中,被开方数大于或等于零 (4)指数函数的定义域:R(5)对数函数的定义域:(0,+∞)(6)幂函数中,当指数为-1、0时,底数不得为零[)∞+≥≥≥--=,的定义域为综上所述,解得:有意义,要使解:的定义域函数求示例一:2)(2,1log 01log )(1log )(222x f x x x x f x x f解题步骤:①列出使函数有意义的不等式(组) ②解不等式(组)③若为不等式组,在取交集时借助数轴,表明是否取端点值④汇总,写成集合形式(注意区间的开闭) 练习一:的定义域求函数321)2(log 1)(21-+-=x x x f2、抽象函数的定义域一直以来 ,抽象函数是高考热点。

抽象函数中,内层函数的值域是外层函数的定义域,在计算抽象函数的定义域时,一定要多留意。

[]⎥⎦⎤⎢⎣⎡-≤≤-≤+≤+3,21)(3219322)32(,9,2)(的定义域为综上所述,解得:由题意可知:解:的定义域求的定义域为若函数示例二:x f x x x f x f解题步骤:1、若已知y= f(x) 的定义域 [a,b] , 则复合函数 y=f[g(x)] 的定义域由 a ≤g(x)≤b 解得2、若已知复合函数 y=f[g(x)] 的定义域为 [a,b] ,则y= f(x) 的定义域为函数g(x)在 [a,b]上的值域 练习二:[]的定义域,求的定义域为已知函数1)2()(g 2,0)(2-=x x f x x f3、求自变量取值范围在一定条件下,求自变量取值范围,是基于定义域上的一类考题。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

实用标准高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。

2x2x 15例 1 求函数 y的定义域。

| x 3| 8解:要使函数有意义,则必须满足2x 2x 15 0① | x 3 | 8 0②由①解得 x 3或 x 5。

③由②解得x5或 x 11 ④ ③和④求交集得 x 3且 x 11或 x>5。

故所求函数的定义域为 {x | x 3且x 11} {x | x 5} 。

例 2 求函数1ysin x的定义域。

216 x解:要使函数有意义,则必须满足sin x0 ① 216 x② 由①解得 2kx2k ,kZ③ 由②解得 4 x 4 ④由③和④求公共部分,得4 x 或0 x 故函数的定义域为 ( 4, ] (0, ]评注:③和④怎样求公共部分?你会吗? 二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。

(1)已知 f (x) 的定义域,求 f[g(x )] 的定义域。

(2)其解法是:已知 f (x) 的定义域是[a ,b ]求 f [g(x)] 的定义域是解 a g(x) b ,即为所求的定义域。

2 例3 已知 f (x) 的定义域为[-2,2],求 f ( x 1)的定义域。

2 解:令 2 x 1 2 2 ,得 1 x 32,即 0x3,因此 0 | x |3 ,从而3 x 3 ,故函数的定义域是 { x | 3 x 3} 。

(2)已知 f [g( x)] 的定义域,求 f(x) 的定义域。

其解法是:已知 f [g(x )] 的定义域是[a , b ],求 f(x) 定义域的方法是:由 a x b ,求g(x)的值域,即所求 f(x) 的定义域。

例 4 已知 f (2x 1) 的定义域为[1,2],求 f(x) 的定义域。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

高中函数 【2 】界说域和值域的求法总结一.常规型即给出函数的解析式的界说域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的界说域.例1 求函数8|3x |15x 2x y 2-+--=的界说域.解:要使函数有意义,则必须知足⎩⎨⎧≠-+≥--②①08|3x |015x 2x 2由①解得 3x -≤或5x ≥.③ 由②解得 5x ≠或11x -≠④③和④求交集得3x -≤且11x -≠或x>5.故所求函数的界说域为}5x |x {}11x 3x |x {>-≠-≤ 且.例2 求函数2x 161x sin y -+=的界说域.解:要使函数有意义,则必须知足⎩⎨⎧>-≥②①0x 160x sin 2由①解得Z k k 2x k 2∈π+π≤≤π,③由②解得4x 4<<-④由③和④求公共部分,得π≤<π-≤<-x 0x 4或故函数的界说域为]0(]4(ππ--,,评注:③和④如何求公共部分?你会吗?二.抽象函数型抽象函数是指没有给出解析式的函数,不能常规办法求解,一般表示为已知一个抽象函数的界说域求另一个抽象函数的解析式,一般有两种情形.(1)已知)x (f 的界说域,求)]x (g [f 的界说域.(2)其解法是:已知)x (f 的界说域是[a,b ]求)]x (g [f 的界说域是解b )x (g a ≤≤,即为所求的界说域.例3 已知)x (f 的界说域为[-2,2],求)1x (f 2-的界说域. 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,是以3|x |0≤≤,从而3x 3≤≤-,故函数的界说域是}3x 3|x {≤≤-.(2)已知)]x (g [f 的界说域,求f(x)的界说域.其解法是:已知)]x (g [f 的界说域是[a,b ],求f(x)界说域的办法是:由b x a ≤≤,求g(x)的值域,即所求f(x)的界说域.例4 已知)1x 2(f +的界说域为[1,2],求f(x)的界说域.解:因为51x 234x 222x 1≤+≤≤≤≤≤,,. 即函数f(x)的界说域是}5x 3|x {≤≤.三.逆向型即已知所给函数的界说域求解析式中参数的取值规模.特别是对于已知界说域为R,求参数的规模问题平日是转化为恒成立问题来解决.例5 已知函数8m m x 6m x y 2++-=的界说域为R 求实数m 的取值规模. 剖析:函数的界说域为R,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项的系数是m,所以应分m=0或0m ≠进行评论辩论.解:当m=0时,函数的界说域为R;当0m ≠时,08m mx 6mx 2≥++-是二次不等式,其对一切实数x 都成立的充要前提是1m 00)8m (m 4)m 6(0m 2≤<⇒⎩⎨⎧≤+--=∆>综上可知1m 0≤≤.评注:不少学生轻易疏忽m=0的情形,愿望经由过程此例解决问题.例6 已知函数3kx 4kx 7kx )x (f 2+++=的界说域是R,求实数k 的取值规模.解:要使函数有意义,则必须3kx 4kx 2++≠0恒成立,因为)x (f 的界说域为R,即03kx 4kx 2=++无实数①当k ≠0时,0k 34k 162<⨯-=∆恒成立,解得43k 0<<;②当k=0时,方程左边=3≠0恒成立.综上k 的取值规模是43k 0<≤.四.现实问题型 这里函数的界说域除知足解析式外,还要留意问题的现实意义对自变量的限制,这点要加倍留意,并形成意识.例7 将长为a 的铁丝折成矩形,求矩形面积y 关于一边长x 的函数的解析式,并求函数的界说域.解:设矩形一边为x,则另一边长为)x 2a (21-于是可得矩形面积.2x ax 21)x 2a (21x y -=-⋅=ax 21x 2+-=.由问题的现实意义,知函数的界说域应知足⎩⎨⎧>->⇒⎪⎩⎪⎨⎧>->0x 2a 0x 0)x 2a (210x2ax 0<<⇒.故所求函数的解析式为ax 21x y 2+-=,界说域为(0,2a ). 例8 用长为L 的铁丝弯成下部为矩形上部为半圆的框架,如图,若矩形底边长为2x,求此框架围成的面积y 与x 的函数关系式,并求界说域.解:由题意知,此框架围成的面积是由一个矩形和一个半圆构成的图形的面积,如图.因为CD=AB=2x,所以x CD π=⋂,所以2x x 2L 2CD AB L AD π--=--=⋂, 故2x 2x x 2L x 2y 2π+π--⋅= Lx x )22(2+π+-=依据现实问题的意义知2L x 002x x 2L 0x 2+π<<⇒⎪⎩⎪⎨⎧>π--> 故函数的解析式为Lx x )22(y 2+π+-=,界说域(0,2L +π).五.参数型对于含参数的函数,求界说域时,必须对分母分类评论辩论.例9 已知)x (f 的界说域为[0,1],求函数)a x (f )a x (f )x (F -++=的界说域.解:因为)x (f 的界说域为[0,1],即1x 0≤≤.故函数)x (F 的界说域为下列不等式组的解集:⎩⎨⎧≤-≤≤+≤1a x 01a x 0,即⎩⎨⎧+≤≤-≤≤-a 1x a a 1x a即两个区间[-a,1-a ]与[a,1+a ]的交集,比较两个区间左.右端点,知(1)当0a 21≤≤-时,F (x )的界说域为}a 1x a |x {+≤≤-; (2)当21a 0≤≤时,F (x )的界说域为}a 1x a |x {-≤≤; (3)当21a >或21a -<时,上述两区间的交集为空集,此时F (x )不能构成函数.六.隐含型有些问题从表面上看并不求界说域,但是不留意界说域,往往导致错解,事实上界说域隐含在问题中,例如函数的单调区间是其界说域的子集.是以,求函数的单调区间,必须先求界说域.例10 求函数)3x 2x (log y 22++-=的单调区间.解:由03x 2x 2>++-,即03x 2x 2<--,解得3x 1<<-.即函数y 的界说域为(-1,3).函数)3x 2x (log y 22++-=是由函数3x 2x t t log y 22++-==,复合而成的. 4)1x (3x 2x t 22+--=++-=,对称轴x=1,由二次函数的单调性,可知t 在区间]1(,-∞上是增函数;在区间)1[∞+,上是减函数,而t log y 2=在其界说域上单调增; 3)[1)[1)31(]11(]1()31(,,,,,,,=∞+--=-∞- ,所以函数)3x 2x (log y 22++-=在区间]11(,-上是增函数,在区间)31[,上是减函数. 函数值域求法十一种1. 直接不雅察法对于一些比较简略的函数,其值域可经由过程不雅察得到.例1. 求函数x 1y =的值域. 解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域. 解:∵0x ≥3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞2. 配办法配办法是求二次函数值域最根本的办法之一.例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域. 解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法例4. 求函数22x 1x x 1y +++=的值域.解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域.解:双方平方整顿得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的界说域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的规模可能比y 的现实规模大,故不能肯定此函数的值域为⎥⎦⎤⎢⎣⎡23,21.可以采取如下办法进一步肯定原函数的值域.∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1) 解得:]2,0[22222x 41∈-+= 即当22222x 41-+=时, 原函数的值域为:]21,0[+注:由判别式法来断定函数的值域时,若原函数的界说域不是实数集时,应分解函数的界说域,将扩展的部分剔除.4. 反函数法直接求函数的值域艰苦时,可以经由过程求其原函数的界说域来肯定原函数的值域.例6. 求函数6x 54x 3++值域. 解:由原函数式可得:3y 5y 64x --= 则其反函数为:3x 5y 64y --=,其界说域为:53x ≠ 故所求函数的值域为:⎪⎭⎫ ⎝⎛∞-53,5. 函数有界性法直接求函数的值域艰苦时,可以应用已学过函数的有界性,反宾为主来肯定函数的值域.例7. 求函数1e 1e y x x +-=的值域. 解:由原函数式可得:1y 1y e x -+=∵0e x >∴01y 1y >-+解得:1y 1<<-故所求函数的值域为)1,1(-例8. 求函数3x sin xcos y -=的值域.解:由原函数式可得:y 3x cos x sin y =-,可化为:y 3)x (x sin 1y 2=β++ 即1y y3)x (x sin 2+=β+∵R x ∈ ∴]1,1[)x (x sin -∈β+ 即11y y312≤+≤- 解得:42y 42≤≤- 故函数的值域为⎥⎥⎦⎤⎢⎢⎣⎡-42,42 6. 函数单调性法例9. 求函数)10x 2(1x log 2y 35x ≤≤-+=-的值域. 解:令1x log y ,2y 325x 1-==-则21y ,y 在[2,10]上都是增函数所以21y y y +=在[2,10]上是增函数当x=2时,8112log 2y 33min =-+=-当x=10时,339log 2y 35max =+= 故所求函数的值域为:⎥⎦⎤⎢⎣⎡33,81例10. 求函数1x 1x y --+=的值域.解:原函数可化为:1x 1x 2y -++= 令1x y ,1x y 21-=+=,显然21y ,y 在],1[+∞上为无上界的增函数 所以1y y =,2y 在],1[+∞上也为无上界的增函数所以当x=1时,21y y y +=有最小值2,原函数有最大值222=显然0y >,故原函数的值域为]2,0( 7. 换元法 经由过程简略的换元把一个函数变为简略函数,其题型特点是函数解析式含有根式或三角函数公式模子,换元法是数学办法中几种最重要办法之一,在求函数的值域中同样施展感化.例11. 求函数1x x y -+=的值域.解:令t 1x =-,)0t (≥则1t x 2+= ∵43)21t (1t t y 22++=++= 又0t ≥,由二次函数的性质可知当0t =时,1y min =当0t →时,+∞→y故函数的值域为),1[+∞例12. 求函数2)1x (12x y +-++=的值域.解:因0)1x (12≥+- 即1)1x (2≤+ 故可令],0[,cos 1x π∈ββ=+ ∴1cos sin cos 11cos y 2+β+β=β-++β=1)4sin(2+π+β= ∵π≤π+β≤π≤β≤4540,0211)4sin(201)4sin(22+≤+π+β≤∴≤π+β≤-∴ 故所求函数的值域为]21,0[+例13. 求函数1x 2x x x y 243++-=的值域. 解:原函数可变形为:222x 1x 1x 1x 221y +-⨯+⨯=可令β=tg x ,则有β=+-β=+2222cos x 1x 1,2sin x 1x 2β-=β⨯β-=∴4sin 412cos 2sin 21y 当82k π-π=β时,41y max = 当82k π+π=β时,41y min -=而此时βtan 有意义. 故所求函数的值域为⎥⎦⎤⎢⎣⎡-41,41 例14. 求函数)1x )(cos 1x (sin y ++=,⎥⎦⎤⎢⎣⎡ππ-∈2,12x 的值域.解:)1x )(cos 1x (sin y ++=1x cos x sin x cos x sin +++=令t x cos x sin =+,则)1t (21x cos x sin 2-=22)1t (211t )1t (21y +=++-= 由)4/x sin(2x cos x sin t π+=+= 且⎥⎦⎤⎢⎣⎡ππ-∈2,12x 可得:2t 22≤≤∴当2t =时,223y max +=,当22t =时,2243y +=故所求函数的值域为⎥⎥⎦⎤⎢⎢⎣⎡++223,2243. 例15. 求函数2x 54x y -++=的值域.解:由0x 52≥-,可得5|x |≤故可令],0[,cos 5x π∈ββ= 4)4sin(10sin 54cos 5y +π+β=β++β=∵π≤β≤04544π≤π+β≤π∴当4/π=β时,104y max += 当π=β时,54y min -=故所求函数的值域为:]104,54[+-8. 数形结正当其题型是函数解析式具有显著的某种几何意义,如两点的距离公式直线斜率等等,这类标题若应用数形结正当,往往会加倍简略,一目了然,心旷神怡.例16. 求函数22)8x ()2x (y ++-=的值域.解:原函数可化简得:|8x ||2x |y ++-=上式可以算作数轴上点P (x )到定点A (2),)8(B -间的距离之和. 由上图可知,当点P 在线段AB 上时,10|AB ||8x ||2x |y ==++-=当点P 在线段AB 的延伸线或反向延伸线上时,10|AB ||8x ||2x |y =>++-=故所求函数的值域为:],10[+∞例17. 求函数5x 4x 13x 6x y 22++++-=的值域. 解:原函数可变形为:2222)10()2x ()20()3x (y ++++-+-=上式可算作x 轴上的点)0,x (P 到两定点)1,2(B ),2,3(A --的距离之和, 由图可知当点P 为线段与x 轴的交点时,43)12()23(|AB |y 22min =+++==,故所求函数的值域为],43[+∞例18. 求函数5x 4x 13x 6x y 22++-+-=的值域. 解:将函数变形为:2222)10()2x ()20()3x (y -++--+-=上式可算作定点A (3,2)到点P (x,0)的距离与定点)1,2(B -到点)0,x (P 的距离之差.即:|BP ||AP |y -=由图可知:(1)当点P 在x 轴上且不是直线AB 与x 轴的交点时,如点'P ,则构成'ABP ∆,依据三角形双方之差小于第三边,有26)12()23(|AB |||'BP ||'AP ||22=-++=<-即:26y 26<<-(2)当点P 正好为直线AB 与x 轴的交点时,有26|AB |||BP ||AP ||==-综上所述,可知函数的值域为:]26,26(-注:由例17,18可知,求两距离之和时,要将函数式变形,使A.B 两点在x 轴的两侧,而求两距离之差时,则要使A,B 两点在x 轴的同侧. 如:例17的A,B 两点坐标分离为:(3,2),)1,2(--,在x 轴的同侧;例18的A,B 两点坐标分离为(3,2),)1,2(-,在x 轴的同侧.9. 不等式法应用根本不等式abc 3c b a ,ab 2b a 3≥++≥+)R c ,b ,a (+∈,求函数的最值,其题型特点解析式是和式时请求积为定值,解析式是积时要乞降为定值,不过有时须要用到拆项.添项和双方平方等技能.例19. 求函数4)x cos 1x (cos )x sin 1x (sin y 22-+++=的值域.解:原函数变形为:52x cot x tan 3xcot x tan 3xsec x ces 1x cos 1x sin 1)x cos x (sin y 22322222222=+≥++=++=+++=当且仅当x cot x tan =即当4k x π±π=时)z k (∈,等号成立故原函数的值域为:),5[+∞例20. 求函数x 2sin x sin 2y =的值域.解:x cos x sin x sin 4y =x cos x sin 42=2764]3/)x sin 22x sin x [(sin 8)x sin 22(x sin x sin 8xcos x sin 16y 322222224=-++≤-== 当且仅当x sin 22x sin22-=,即当32x sin 2=时,等号成立. 由2764y 2≤可得:938y 938≤≤- 故原函数的值域为:⎥⎥⎦⎤⎢⎢⎣⎡-938,938 10. 一一映射法 道理:因为)0c (d cx b ax y ≠++=在界说域上x 与y 是一一对应的.故两个变量中,若知道一个变量规模,就可以求另一个变量规模.例21. 求函数1x 2x31y +-=的值域. 解:∵界说域为⎭⎬⎫⎩⎨⎧->-<21x 21x |x 或 由1x 2x 31y +-=得3y 2y 1x +-= 故213y 2y 1x ->+-=或213y 2y 1x -<+-= 解得23y 23y ->-<或 故函数的值域为⎪⎭⎫ ⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,2323, 11. 多种办法分解应用例22. 求函数3x 2x y ++=的值域. 解:令)0t (2x t ≥+=,则1t 3x 2+=+(1)当0t >时,21t 1t 11t t y 2≤+=+=,当且仅当t=1,即1x -=时取等号,所以21y 0≤<(2)当t=0时,y=0.综上所述,函数的值域为:⎥⎦⎤⎢⎣⎡21,0注:先换元,后用不等式法例23. 求函数42432x x 21x x x 2x 1y ++++-+=的值域. 解:4234242x x 21x x x x 21x x 21y +++++++-=2222x 1x x 1x 1++⎪⎪⎭⎫ ⎝⎛+-= 令2tan x β=,则β=⎪⎪⎭⎫ ⎝⎛+-2222cos x 1x 1β=+sin 21x 1x 21sin 21sin sin 21cos y 22+β+β-=β+β=∴161741sin 2+⎪⎭⎫ ⎝⎛-β-= ∴当41sin =β时,1617y max =当1sin -=β时,2y min -= 此时2tan β都消失,故函数的值域为⎥⎦⎤⎢⎣⎡-1617,2 注:此题先用换元法,后用配办法,然后再应用βsin 的有界性. 总之,在具体求某个函数的值域时,起首要细心.卖力不雅察其题型特点,然后再选择适当的办法,一般优先斟酌直接法,函数单调性法和根本不等式法,然后才斟酌用其他各类特别办法.。

(完整版)求函数定义域及值域方法及典型题归纳

(完整版)求函数定义域及值域方法及典型题归纳

<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。

则称f:为A 到B 的一个函数。

2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。

由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。

3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。

(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。

4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。

(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。

(2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。

二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。

(1)常见要是满足有意义的情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。

③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)高中函数定义域和值域的求法总结一、常规型常规型是指已知函数的解析式,求函数的定义域和值域。

解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例如,对于函数 $y=\frac{x^2-2x-15}{|x+3|-8}$,要使函数有意义,则必须满足 $x^2-2x-15\geq 0$ 且 $|x+3|\neq 8$。

解得$x\leq -3$ 或 $x\geq 5$,且 $x\neq -11$ 或 $x\neq 5$。

将两个条件求交集得 $x\leq -3$ 且 $x\neq -11$ 或 $x>5$,即函数的定义域为 $\{x|x\leq -3\text{ 且 }x\neq -11\}\cup\{x|x>5\}$。

二、抽象函数型抽象函数型是指没有给出解析式的函数,需要根据已知条件求解。

一般有两种情况:1)已知 $f(x)$ 的定义域,求 $f[g(x)]$ 的定义域。

解法是:已知 $f(x)$ 的定义域为 $[a,b]$,则 $f[g(x)]$ 的定义域为解$a\leq g(x)\leq b$。

例如,已知 $f(x)$ 的定义域为 $[-2,2]$,求 $f(x^2-1)$ 的定义域。

令 $-2\leq x^2-1\leq 2$,得 $-1\leq x^2\leq 3$,即 $-|x|\leq x\leq |x|$。

因此,$-3\leq x\leq 3$,即函数的定义域为$\{x|-3\leq x\leq 3\}$。

2)已知 $f[g(x)]$ 的定义域,求 $f(x)$ 的定义域。

解法是:已知 $f[g(x)]$ 的定义域为 $[a,b]$,则 $f(x)$ 的定义域为$g(x)$ 的值域。

例如,已知 $f(2x+1)$ 的定义域为 $[1,2]$,求 $f(x)$ 的定义域。

因为 $1\leq x\leq 2$,所以 $2\leq 2x\leq 4$,$3\leq2x+1\leq 5$。

定义域与值域的求法

定义域与值域的求法

1、 定义域R 上函数y=f(x)值域为[a,b],则y=f(2x+5)值域为( ) 解:由于y=f(x)的定义域为R ,所以y=f(2x+5)的定义域也为R ,且2x+5能取到任意值,即y=f(2x+5)值域也为[a,b]。

2、 函数y=f(x),定义域为R,值域为【-2,2】,则y=f(x+1)-1的值域 ( ) 解:因为y=f(x),定义域为R ,值域为[-2,2],所以不论x 取何值,函数的值域都是[-2,2],所以将x 换成(x+1)后,(x+1)的取值范围依然是R ,所以函数f(x+1)的值域依然时[-2,2], 即,-2≤f(x+1)≤2,所以,-2-1≤f(x+1)-1≤2-1,即,-3≤f(x+1)-1≤1,综上所述,y=f(x+1)-1的值域是:[-3,1]. 3、 已知函数y=1/2(x-1)^2+1的定义域和值域都是区间[1,b](b >1)求b 的值已知函数y=1/2(x-1)^2+1为开口向上得抛物线,对称轴x=1 区间[1,b]在对称轴右边,单增所以f(x)最小=f(1)=1f(x)最大=f(b)=(1/2)(b-1)²+1由题意f(b)=b于是(1/2)(b-1)²+1=b即b ²-4b+3=0 (b-1)(b-3)=0因b>1所以b=3函数解析式,复合函数的定义域,值域定 义 域:例1、 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 例2、设f(x)的定义域为[0,2],求函数f(x+a)+f(x-a)(a >0)的定义域.练习:若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 1、函数x x x f -=13)(2的定义域是( )A.),1(+∞B. )1,0(C. )1,(-∞D. ]1,(--∞2、函数x x x x f -+=0)1()(的定义域是( )A.{}0|<x xB. {}0|>x xC. {}10|-≠<x x x 且D. {}10|-≠≠x x x 且3、xx x f -++=211)(的定义域是( )A.),1[+∞-B. ),2[+∞C. )2,1(-D. {}21|≠-≥x x x 且4、2384)(3-+=x x x f 的定义域是( ) A.),32[+∞ B. ⎭⎬⎫⎩⎨⎧≠32|x x C. ),2[+∞ D. ]1,(--∞ 5、若函数()f x 的定义域[0,2],则函数1)2()(-=x x f x g 的定义域是( ) A [0,1] B [)1,0 C [)(]4,11,0⋃ D ()1,0 6、已知函数)(x f 的定义域为[a ,b],其中b a b a ><<,0,则函数()()x f x f x g -+=)(的定义域是( )A ],(b b -B ],(b a -C ],[b b -D ],[a a -7、已知函数)1(+=x f y 的定义域为[-2,3],则()12-=x f y 的定义域是_________8.已知(1)f x +的定义域为[2,3]-,则(21)f x -定义域是: A.5[0,]2 B.[1,4]- C.[5,5]- D.[3,7]-9.已知函数()f x 的定义域为[0,1],函数2()f x 的定义域为:___________函数的值域1. 直接观察法:对于一些比较简单的函数,其值域可通过观察得到。

求定义域及值域方法汇总

求定义域及值域方法汇总

①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈. ⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.①观察法:通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()=可以化成一个系数含有y的关于x的y f x二次方程2++=,则在()0()()()0a y xb y xc ya y≠时,由于,x y为实数,故必须有2()4()()0∆=-⋅≥,从而确定函数的值域或最值.b y a yc y④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例1 求函数8|3x |15x 2x y 2-+--=的定义域。

解:要使函数有意义,则必须满足⎩⎨⎧≠-+≥--②①8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。

③ 由②解得 5x ≠或11x -≠ ④③和④求交集得3x -≤且11x -≠或x>5。

故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤Y 且。

例2 求函数2x161x sin y -+=的定义域。

解:要使函数有意义,则必须满足⎩⎨⎧>-≥②①0x 160x sin 2由①解得Z k k 2x k 2∈π+π≤≤π, ③由②解得4x 4<<-④由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,,Y 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。

(1)已知)x (f 的定义域,求)]x (g [f 的定义域。

(2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。

例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。

解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。

(2)已知)]x (g [f 的定义域,求f(x)的定义域。

其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求g(x)的值域,即所求f(x)的定义域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数定义域求法总结
一、定义域是函数y=f(x)中的自变量x 的范围。

(1)分母不为零
(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1
(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠
二、抽象函数的定义域
1.已知)(x f 的定义域,求复合函数()][x g f 的定义域
由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。

2.已知复合函数()][x g f 的定义域,求)(x f 的定义域
方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域
结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。

4.已知()f x 的定义域,求四则运算型函数的定义域
若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。

函数值域求法四种
在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。

研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。

确定函数的值域是研究函数不可缺少的重要一环。

对于如何求函数的值域,是学生感到头痛的问题,它所
涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。

本次课就函数值域求法归纳如下,供参考。

1. 直接观察法
对于一些比较简单的函数,其值域可通过观察得到。

例1. 求函数
x 1y =的值域。

解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞
例2. 求函数x 3y -
=的值域。

解:∵0x ≥ 3x 3,0x ≤-≤-∴
故函数的值域是:]3,[-∞
2. 配方法
配方法是求二次函数值域最基本的方法之一。

例3. 求函数]2,1[x ,5x 2x
y 2-∈+-=的值域。

解:将函数配方得:
4)1x (y 2+-= ∵]2,1[x -∈
由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]
3. 判别式法
例4. 求函数22
x 1x x 1y +++=的值域。

解:原函数化为关于x 的一元二次方程
0x )1y (x )1y (2=-+-
(1)当1y ≠时,R x ∈
0)1y )(1y (4)1(2≥----=∆
解得:23y 2
1≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211
故函数的值域为⎥⎦⎤⎢⎣⎡23,21
例5. 求函数)x 2(x x y -+
=的值域。

解:两边平方整理得:0y x )1y (2x 222=++-(1)
∵R x ∈
∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-
但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤ 由0≥∆,仅保证关于x
的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。

可以采取如下方法进一步确定原函数的值域。

∵2x 0≤≤
0)x 2(x x y ≥-+=∴
21y ,0y min +==∴代入方程(1)
解得:]2,0[22
222x 41∈-+=
即当22222x 41-+=时,
原函数的值域为:]21,0[+
注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。

4. 换元法
通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。

例6. 求函数1x x y -+
=的值域。

解:令t 1x =-,)0t (≥
则1t x 2+= ∵43)21t (1t t y 22++=++= 又0t ≥,由二次函数的性质可知
当0t =时,1y min =
当0t →时,+∞→y
故函数的值域为),1[+∞
课堂练习
一、 求函数的定义域
1、求下列函数的定义域:
⑴y = ⑵y =
⑶01
(21)1
11y x x =+-++-
2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()
-2的定义域为________;
3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数
1(2)f x
+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,
求实数m 的取值范围。

5、若函数()f x =
3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )
A 、(-∞,+∞)
B 、(0,43]
C 、(43,+∞)
D 、[0, 43) 6
、若函数()f x =的定义域为R ,则实数m 的取值范围是( )
(A)04m << (B) 04m ≤≤(C) 4m ≥ (D) 04m <≤
7.已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域.
8.若函数)(x f y =的定义域为⎥⎦
⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为 。

9.已知函数2
(22)f x x -+的定义域为[]03,,求函数()f x 的定义域.
10.已知函数的定义域为,则的定义域为________。

11. 函数定义域是,则的定义域是( ) A. B. C. D.
12.已知函数f(2x )的定义域是[-1,1],求f(log 2x)的定义域.
13.若()f x 的定义域为[]35-,,求()()(25)x f x f x ϕ=-++的定义域.
14.已知函数的定义域是,求的定义域。

15.若函数f (x +1)的定义域为[-
2
1,2],求f (x 2)的定义域.
二、 求函数的值域
1.函数()()2
11f x x R x =∈+的值域是_________ 2.2222
x x y x -+-=+的值域是________
3.y x =+__________
4.二次函数(]2
47,0,3y x x x =-+-∈的值域为 。

5.函数y =的值域是 15函数2y x =+的值域是
6.函数2y = )
A [2,2]-
B [1,2]
C [0,2]
D [ 7.若函数y =x 2
-3x -4的定义域为[0,m ],值域为[-4
25,-4],则m 的取值范围是( ) A.(0,]4 B.[23,4] C.[23,3] D.[23,+∞) 8.221
x x y x x -=-+ 9.如何求函数23(1)1x y x x +=>-+的值域?21(1)3
x y x x +=>-+呢?
课后小结:
(1) 求函数定义域时,不要化简所给解析式,而是直接从所给的解析式寻找使解析式有
意义时自变量满足的条件。

(2) 函数的定义域要用集合或区间形式表示,这一点初学者易忽视。

(3) 定义域的求法:见上面讲义。

(4) 求函数值域时要先观察函数的结构特征,然后选好所适合的方法来解题,尤其要注
意根据定义域来求值域,不要忽略定义域的范围。

家庭作业
1. 设函数的定义域为,则 (1)函数
的定义域为________。

(2)函数
的定义域为__________。

2、已知函数的定义域为,则的定义域为__________
3、已知函数的定义域为,则y=f(3x-5)的定义域为________。

4、4.设函数y=f(x)的定义域为[0,1],求y=f()3
1()31
-++x f x 定义域。

5
.55、若函数a
ax ax y 12+-=的定义域是R ,求实数a 的取值范围
6.求下列函数的值域
223y x x =+- ()x R ∈
223y x x =+- [1,2]x ∈
225941
x x y x +=-+
y =
4y =
y x =。

相关文档
最新文档