实数章节复习知识点归纳-总结

合集下载

实数章节总结复习学习知识点归纳总结计划

实数章节总结复习学习知识点归纳总结计划

一、引言二、实数章节知识点梳理1.实数定义及分类实数是数学中的一种数,可以表示为数轴上的点。

实数包括有理数和无理数。

有理数是可以表示为两个整数比的数,包括整数、分数和小数(有限小数和循环小数)。

无理数是不能表示为两个整数比的数,如π和e等。

2.实数运算实数的运算包括加、减、乘、除、乘方、开方等。

实数运算遵循四则运算法则、乘方运算法则和开方运算法则。

3.实数的大小比较实数的大小比较方法与有理数类似,遵循比较大小的规则。

正实数大于负实数,零大于负实数,两个负实数绝对值大的反而小。

4.实数的数轴表示实数可以用数轴上的点表示,数轴上的点与实数是一一对应的。

数轴上的点具有方向和距离,可以用来表示实数的大小和位置。

5.实数的近似计算实数的近似计算是数学和工程领域中常用的方法,常用的近似计算方法有四舍五入、进一法、去尾法等。

三、实数章节重点难点解析1.实数定义及分类是实数章节的基础,要理解实数的概念和分类,掌握有理数和无理数的特点。

2.实数运算是对实数进行运算的方法,要熟练掌握实数的加、减、乘、除、乘方、开方等运算方法,遵循运算规则。

3.实数的大小比较是实数运算的基础,要熟悉实数大小比较的规则,能够正确判断实数的大小关系。

4.实数的数轴表示是实数章节的重要内容,要理解数轴的概念,掌握数轴上点的表示方法,能够运用数轴解决实际问题。

5.实数的近似计算在实际应用中具有重要意义,要学会运用四舍五入、进一法、去尾法等方法进行实数的近似计算。

四、实数章节复习策略1.回顾实数章节的基本概念,如实数的定义、分类、特点等,加深对实数概念的理解。

2.梳理实数运算的规则和方法,通过练习题目,提高实数运算的速度和准确性。

3.掌握实数的大小比较方法,能够在实际问题中正确判断实数的大小关系。

4.理解实数的数轴表示方法,能够运用数轴解决实际问题。

5.学习实数的近似计算方法,能够在实际应用中进行实数的近似计算。

五、实数章节是数学学习中的重要内容,通过本篇文章的梳理,相信你对实数章节的知识点有了更深入的了解。

初二(下)实数的知识点与练习题

初二(下)实数的知识点与练习题

第十三章 实数知识要点一: 1.实数的性质(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数);(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小;(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方;(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3.实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数4.实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数.【典型例题】2-1C B A 例1若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例2 实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A. 5-2 B. 2-5 C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。

实数知识点总结概括初中

实数知识点总结概括初中

实数知识点总结概括初中一、实数的基本概念1. 实数的定义实数是包括有理数和无理数的数的集合,记作R。

有理数包括整数和分数,而无理数是那些无法写成有理数形式的数,如π和√2等。

实数的概念是对数的一个总称,它是数学研究和运用的基础。

2. 实数的表示实数可以用小数表示,小数可以是有限的,也可以是无限的循环小数。

有理数可以表示为有限小数或无限循环小数,而无理数通常用无限不循环小数表示。

3. 实数的分布实数可以用数轴表示,数轴上的点对应着实数。

实数在数轴上是连续的,任意两个实数之间都存在着无穷多个实数。

这种连续的性质是实数的重要特点之一。

二、实数的性质1. 实数的比较实数之间可以比较大小,可以用不等式表达实数的大小关系。

对于任意两个实数a和b,有a<b、a=b或a>b三种可能的关系。

2. 实数的绝对值实数的绝对值是这个实数到原点的距离,记作|a|,其中a是实数。

绝对值有以下性质:(1)若a>0,则|a|=a;(2)若a<0,则|a|=-a;(3)|a|=0的充分必要条件是a=0。

3. 实数的有序性实数集合是有序的,即实数集合中的每个实数都可以和实数集合中的其他实数相比较大小。

这种有序性是实数与数学中其他集合的一个重要区别。

4. 实数的密度实数在数轴上是连续分布的,任意两个实数之间都存在着无穷多个实数。

这种性质体现了实数的密度,也是实数在数学中的重要性质之一。

三、实数的运算1. 实数的加法和减法实数的加法和减法是最基本的运算,可以利用数轴对实数的加法和减法进行图形化表示,以便更直观地理解实数的运算。

2. 实数的乘法和除法实数的乘法和除法是对实数进行组合和分解的运算,可以用数轴对实数的乘法和除法进行图形化表示,以便更直观地理解实数的运算。

3. 实数的乘方和开方实数的乘方和开方是对实数进行多次相乘或多次开方的运算,可以用数轴对实数的乘方和开方进行图形化表示,以便更直观地理解实数的运算。

4. 实数的混合运算实数的混合运算是实数运算的综合应用,包括加减乘除、乘方开方等多种运算的组合和应用。

(完整版)第六章实数知识点总结

(完整版)第六章实数知识点总结

第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16π是有理数,而不是无理数。

3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。

考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。

(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

如果,那么x叫做a的平方根。

(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

如果,那么x叫做a的立方根。

2、运算名称(1)求一个正数a的平方根的运算,叫做开平方。

平方与开平方互为逆运算。

(2)求一个数的立方根的运算,叫做开立方。

开立方和立方互为逆运算。

3、运算符号(1)正数a的算术平方根,记作“a”。

(2)a(a≥0)的平方根的符号表达为。

(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。

4、运算公式4、开方规律小结(1)若a≥0,则a的平方根是a a a它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。

实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。

正数的立方根是正数,负数的立方根是负数,0的立方根是0。

(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。

苏科版八年级数学上册考点必刷练精编讲义必刷知识点【第4章《实数》章节复习巩固】(原卷版+解析)

苏科版八年级数学上册考点必刷练精编讲义必刷知识点【第4章《实数》章节复习巩固】(原卷版+解析)

2022-2023学年八年级数学上册考点必刷练精编讲义(苏科版)第4章《实数》 章节复习巩固知识点01:平方根和立方根知识点02:实数有理数和无理数统称为实数. 1.实数的分类 按定义分: 实数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数知识要点:(1)所有的实数分成三类: .其中有限小数和无限循环小数统称有理数,无限不循环小数叫做⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数(2等;②有特殊意义的数,如π; ③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都 ,并且无理数不能写成 (4)实数和数轴上点是 的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都 ,反之任何一个实数都能在 找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为 。

我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是 ,即|a |≥0; (2)任何一个实数a 的平方是 ,即≥0; (3)任何非负数的是非负数,即 (). 非负数具有以下性质:(1)非负数有 零;(2)有限个非负数之和仍是 ; (3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算:数a 的相反数是-a ;一个正实数的 是它本身;一个 的绝对值是它的相反数;0的绝对值是有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里. 5.实数的大小的比较:有理数大小的比较法则在 范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的 ; 法则3. 两个数比较大小常见的方法有:知识点03:近似数及精确度2a 0≥0a ≥1. 近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.知识要点:一般采用四舍五入法取近似数,只要看2. 精确度:一个近似数四舍五入到哪一位,就称,也叫做这个近似数的精确度.知识要点:①精确度是指 .②精确度一般用“精确到哪一位”的形式的来表示,一般来说精确到哪一位表示,0.10.05例如精确到米,说明结果与实际数相差不超过米.2022-2023学年八年级数学上册考点必刷练精编讲义(苏科版)第4章《实数》 章节复习巩固知识点01:平方根和立方根有理数和无理数统称为实数. 1.实数的分类 按定义分:实数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数知识要点:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数数和无限循环小数统称有理数,无限不循环小数叫做无理数. (2等;②有特殊意义的数,如π; ③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

实数的知识点总结

实数的知识点总结

实数的知识点总结实数的知识点总结篇1一、实数的有关概念1、无理数:无限不循环小数叫做无理数,这说明无理数有两个基本特征:一是小数位数无限多,二是不循环。

2、无理数的表现形式在中学阶段,无理数的表现形式有几下三种:①开方开不尽而得到的数,如、、等②含有π的数,如π、等③无限不循环的小数,如1.1010010001······(每二个1之间依次多一个0)二、实数的分类有理数、无理数统称实数;它可以按以下两种方式分类实数或实数三、实数的重要性质1、有理数范围内的一些定义,概念和性质在实数范围内仍旧适用,如绝对值、相反数、倒数等。

2、两个实数大小的比较;正数大于0;0大小一切负数;二个负实数,绝对值大的反而小3、在实数范围内,加、减、乘、除(除数不能为0)、乘方五种运算畅通无阻,在开方运算中,正实数和0总能进行开方运算,负实数只能开立方,不能开平方,4、在有理数范围内的运算顺次和运算律在实数范围内仍旧适用。

四、实数和数轴的关系实数和数轴上的点存在着一一对应关系,即:任何一个实数都可以用数轴上的一个点表示,反之,数轴上的任何一个点都表示一个实数。

因此,我们不但可以将一个有理数用数轴上的一个点表示,同时,也可以将一个无理数用数轴上的点表示出来。

实数的知识点总结篇2实数:—有理数与无理数统称为实数。

有理数:整数和分数统称为有理数。

无理数:无理数是指无限不循环小数。

自然数:表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。

数轴:规定了圆点、正方向和单位长度的直线叫做数轴。

相反数:符号不同的两个数互为相反数。

倒数:乘积是1的两个数互为倒数。

绝对值:数轴上表示数a的点与圆点的距离称为a的绝对值。

一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

实数的知识点总结篇3一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数负有理数正无理数无理数无限不循环小数负无理数整数包括正整数、零、负整数。

关于实数的知识点总结

关于实数的知识点总结

关于实数的知识点总结一、基本概念1.1 实数的定义实数是一切有理数和无理数的总称。

有理数指整数和分数的集合,无理数指不能表示为分数形式的数。

实数包括了整数、有理数和无理数三种类型的数。

1.2 实数的表示实数可以用十进制、分数、无限不循环小数等形式表示。

其中,十进制形式是常见的实数表示形式,可以直观地表示出实数的大小。

1.3 实数的性质实数具有加法、减法、乘法、除法等运算性质,满足交换律、结合律、分配律等基本性质。

此外,实数还满足最大值和最小值的性质,即任何有上界的非空有限实数集合必有上确界,并且同样地有下确界。

二、实数的子集2.1 有理数集有理数包括整数和分数,其中整数是不含小数部分的数,分数是两个整数的比,可以用分数形式表示。

2.2 无理数集无理数是不能表示为有理数的数,其十进制表示形式为无限不循环小数。

无理数包括了无限多的十进制无限不循环小数,如$\sqrt{2}$、$\pi$等。

2.3 实数集实数集是有理数和无理数的总称,它包括了一切可以表示为十进制数的数。

三、实数的运算3.1 加法和减法实数的加法和减法满足交换律和结合律,对任意两个实数a和b,有a+b=b+a,a-b≠b-a。

3.2 乘法和除法实数的乘法和除法满足交换律和结合律,对任意两个实数a和b,有a×b=b×a,a/b≠b/a。

3.3 幂运算实数的幂运算是指a的n次方,其中a是实数,n是自然数。

幂运算的性质包括a的m 次方与a的n次方的乘积等。

3.4 开方实数的开方是指对任意非负实数a,存在唯一的非负实数b,使得b的平方等于a。

开方的性质包括平方根存在性和唯一性等。

四、实数的序关系4.1 实数的大小比较实数之间可以进行大小比较,对于任意两个实数a和b,有a<b、a>b或a=b中的一种关系。

4.2 实数的绝对值实数a的绝对值是指a到原点的距离,用|a|表示。

如果a≥0,则|a|=a;如果a<0,则|a|=-a。

完整版)实数知识点总结

完整版)实数知识点总结

完整版)实数知识点总结第一章实数考点一:实数的概念及分类(3分)实数可以分为以下几类:1.正有理数2.零、有限小数和无限循环小数的有理数3.实数负有理数4.正无理数5.无限不循环小数的无理数6.负无理数7.整数,包括正整数、零和负整数。

8.正整数又称自然数。

9.有理数包括正整数、零、负整数、正分数和负分数。

10.无理数包括开方开不尽的数、有特定意义的数、有特定结构的数和某些三角函数。

考点二:实数的倒数、相反数和绝对值1.相反数是指符号相反的两个数,互为相反数的两个数在数轴上关于原点对称。

2.如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

3.一个数的绝对值是表示这个数的点与原点的距离,|a|≥0.4.零的绝对值是它本身,若|a|=a,则a≥0;若|a|=-a,则a≤0.5.正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

6.如果a与b互为倒数,则有ab=1,反之亦成立。

7.倒数等于本身的数是1和-1,零没有倒数。

考点三:平方根、算数平方根和立方根1.如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。

2.一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

3.正数a的正的平方根叫做a的算术平方根,记作“a”。

4.正数和零的算术平方根都只有一个,零的算术平方根是零。

5.如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。

6.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

7.注意:3-√a=-3√a,这说明三次根号内的负号可以移到根号外面。

考点四:科学记数法和近似数1.一个近似数四舍五入到哪一位,就说它精确到哪一位,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2.科学记数法是将一个数写成n±a×10的形式,其中1≤a<10.1.科学记数法当一个数的绝对值非常大或非常小时,我们可以使用科学记数法来表示。

实数知识点详细总结

实数知识点详细总结

第4章 实数知识结构:实数1.平方根(1)定义:如果x 2=a(a ≥0),那么x 叫做a 的平方根(1)一个正数有两个平方根,它们互为相反数(2)性质 (2)0的平方根是0(3)负数没有平方根 (3)开平方:求一个数的平方根的运算叫做开平方(4)算术平方根(1)定义:正数a 的正的平方根叫做a 的算术平方根(2)规定:0的算术平方根是0(3)性质:√a 具有双重非负性,即√a ≥0,a ≥0 (5)意义:(√a )2=a(a ≥0)a(a ≥0)√a 2=∣a ∣=-a(a <0)2.立方根(1)定义:如果x 3=a,那么x 叫做a 的立方根(2)性质(1)正数的立方根是正数 (2)0的立方根是0 (3)负数的立方根是负数(3)开立方:求一个数的立方根的运算叫做开立方(4)意义√a 33=a(√a 3)3=a3.实数(1)实数的分类1.按性质 (1)正实数 (2)0 (3)负实数2.按概念(1)有理数(2)无理数-----无限不循环小数(2)实数的性质实数范围内的相反数、倒数、绝对值意义与有理数范围内完全一样 实数与数轴上的点是一一对应关系有理数的大小比较方法在实数范围内仍然适用 与有理数的运算法则、运算律相同4.近似数定义:接近准确数而不等于准确数的数叫做近似数 精确度:常用四舍五入法对近似数进行精确4.1平方根一、平方根的概念及表示拓展延伸:(1)由平方根的意义可知,x=±√a,把x=±√a代入x2=a,得(±√a)2=a(a≥0).(2)当a≥0时,我们说式子√a有意义,当a<0时,式子√a无意义。

二、平方根的性质1.正数有两个平方根,它们互为相反数。

如果a>0,那么a的平方根为±√a2.0有一个平方根,就是0,即√0=03.负数没有平方根三、开平方注意:开平方是求一个非负数的平方根的运算,开平方与平方互为逆运算,只不过一个数的平方是一个数,而一个数(正数)的平方根是一对相反数。

第六章实数知识点总结

第六章实数知识点总结

第六章实数知识点总结摘要:一、实数的定义与分类1.实数的定义2.实数的分类二、实数的性质与运算1.实数的性质2.实数的运算三、实数与数轴1.数轴的概念2.实数与数轴的关系四、实数的比较与大小1.实数的大小比较2.实数的大小关系五、实数的应用1.实数在数学中的应用2.实数在其他学科中的应用正文:实数是数学中的一个重要概念,它包括有理数和无理数。

实数的定义是指数轴上的点,可以表示为有序对(a,b),其中a 表示点的横坐标,b 表示点的纵坐标。

根据横坐标a 的值,实数可以分为负数、零和正数。

实数的性质包括:1.实数具有连续性,即任意两个实数之间总存在一个实数;2.实数具有完备性,即每个实数都可以用无限接近的有理数表示;3.实数具有可数性,即实数集中的每个元素都可以与自然数集建立一一对应关系。

实数的运算包括加法、减法、乘法、除法、乘方和开方。

这些运算遵循交换律、结合律和分配律等基本运算法则。

实数的运算不仅限于实数,还可以扩展到复数。

实数与数轴有密切的关系。

数轴是一个直线,规定了原点、正方向和单位长度。

实数可以表示为数轴上的点,根据横坐标a 的值,实数可以分为负数、零和正数。

数轴上的点与实数之间的对应关系是一一映射。

实数的大小比较和大小关系是数学中常见的问题。

实数的大小比较遵循“大于一切小于它的数,小于一切大于它的数”的原则。

实数的大小关系可以通过数轴来直观表示。

实数在数学中有广泛的应用,如微积分、实分析等。

实数在其他学科中也有应用,如物理、化学、生物等。

实数的概念、性质和运算等基础知识是解决实际问题的关键。

总之,实数是数学中的一个基本概念,它具有重要的理论意义和实际应用价值。

实数章节总结知识点

实数章节总结知识点

实数章节总结知识点一、实数的定义实数的定义并不是一个简单的概念,它需要通过一系列的概念和引理来建立。

在数学中,实数的定义通常是通过有理数和无理数来构建。

有理数是可以表示为分数形式的数,例如1/2、3/4、-2/3等,而无理数则不能用分数形式表示,如π、√2等。

实数就是有理数和无理数的集合,它包括了所有可以表示为小数形式的数,而且这些数都可以在数轴上表示出来。

在实数的定义中,除了有理数和无理数的概念外,还涉及到了序关系和等价关系。

实数具有天然的序关系,即对于任意的两个实数a和b,要么a<b,要么a=b,要么a>b。

这个序关系决定了实数在数轴上的排列顺序,可以直观地表示出实数之间的大小关系。

而等价关系则是指实数之间可以进行加法、减法、乘法和除法等运算,这些运算满足一系列的性质,例如封闭性、结合性、交换性和分配性等。

二、实数的性质实数具有一系列重要的性质,这些性质包括了实数的基本运算性质、序关系性质和等价关系性质等。

下面我们将分别对这些性质进行详细的讨论。

1. 实数的基本运算性质实数具有加法、减法、乘法和除法等基本运算性质。

这些运算性质包括了封闭性、结合性、交换性和分配性等。

封闭性指的是对于任意的两个实数a和b,它们的和、差、积和商都是实数,即a+b、a-b、a×b和a÷b都是实数。

结合性指的是对于任意的三个实数a、b和c,它们的和、差、积和商的结果都是唯一的,即(a+b)+c=a+(b+c)、(a-b)-c=a-(b-c)、(a×b)×c=a×(b×c)和(a÷b)÷c=a÷(b÷c)。

交换性指的是对于任意的两个实数a和b,它们的和、积满足交换律,即a+b=b+a和a×b=b×a。

分配性指的是对于任意的三个实数a、b和c,它们的积和和之间满足分配律,即a×(b+c)=a×b+a×c。

实数章节复习(含知识点)

实数章节复习(含知识点)

实数章节复习 一、归纳总结 1.平方根 平方根的定义:一般地,如果 ,那么这个数叫作a 的平方根 平方根的性质: ①正数有且有 个平方根,他们互为 ;0的平方根是 ;负数 平方根。

②()2a = (0a ≥) ③2a a ⎧==⎨⎩ a 的平方根的表示: 2.算术平方根 一般地,如果一个 的平方等于a ,即 ,那么这个 叫做a 的算术平方根。

a 的算术平方根记为 ,a 叫作 算术平方根具有 性:即(1)被开方数是 (2)a 0 3.立方根 定义:一般地,如果 ,就说 性质:①正数有一个 的立方根,0的立方根是 ,负数有一个 的立方根。

②33a = ;()33a = ③33a a -=- 表示:a 的立方根是 4.平方根等于其本身的数是 算术平方根等于其本身的数是 立方根等于其本身的数是 5.实数的概念:有理数和无理数的统称。

6.实数的分类:考室号: 座位号: 姓名: 班级:7.无理数:无限不循环小数。

包括:① ② ③ 二、典例精析 例1:16的平方根是 ,16的算术平方根是 16的平方根是 ,16的算术平方根是例2.553y x x =-+-+,则xy =例3:如果一个数的平方根是1a +和27a -,求这个数。

例3.用平方根定义解方程(1)24250x -= (2)216(2)49x +=例4.已知11的小数部分是m ,411-的小数部分是n ,则m n +=例5.已知3 1.732,30 5.477,(1)300≈≈≈ ;(2)0.3≈例6.已知3333 1.442,30 3.107,300 6.694≈≈≈,那么30.3≈ ;33000≈例7. 数在数轴上的位置如图:化简()2a b b c -+-变式:已知 ,,a b c 位置如图所示:化简()22a a b c a b c --+-+-【当堂测评】1.如果一个实数的平方根与它的立方根相等,则这个数是( )A . 0B . 正整数C . 0和1D . 12.能与数轴上的点一一对应的是( )A 整数B 有理数C 无理数D 实数3. 下列各数中,不是无理数的是 ( )A. 7B. 0.5C. 2πD. 0.151151115…(两个5之间依次多一个1) 4.在数轴上表示3-的点离原点的距离是 。

初中数学实数代数式整式知识点归纳

初中数学实数代数式整式知识点归纳

第一章 数与式第⼀节 实数考点⼀:实数的分类与实数的有关概念<实数的分类>实数:是有理数和⽆理数的总称。

定义为与数轴上的点相对应的数。

有理数:整数和分数统称为有理数整数:正整数、零和负整数统称为整数正数:⼤于零的数,正数前⾯可以放上正号“+”来表⽰(常省略不写)负数:⼩于零的数,⽤⼤于零的数前⾯放上负号“-”来表⽰0既不是正数也不是负数分数:正分数、负分数统称为分数⽆理数:⽆限不循环⼩数叫⽆理数。

即⾮有理数之实数,不能写作两整数之⽐。

若将它写成⼩数形式,⼩数点之后的数字有⽆限多个,并且不会循环。

常见的⽆理数有⼤部分的平⽅根、π等。

<数轴、相反数、绝对值、倒数>数轴:规定了原点、单位长度和正⽅向的直线叫做数轴。

任何⼀个有理数都可以在数轴上表⽰。

相反数:如果两个数只有符号不同,那么我们称其中⼀个数为另⼀个数的相反数,也称这两个数互为相反数。

零的相反数是零。

数轴上,表⽰互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。

绝对值:把⼀个数载数轴上对应的点到原点的距离叫做这个数的绝对值。

⼀个正数的绝对值是它本⾝;⼀个负数的绝对值是它的相反数;零的绝对值是零。

互为相反数的两个数的绝对值相等。

在数轴上表⽰的两个数,右边的数总⽐左边的数⼤。

倒数:如果两个数互为倒数,则它们的乘积为1。

注意:1.零没有倒数2.求分数的倒数,就是把分数的分⼦分母颠倒位置。

⼀个带分数要先化成假分数。

3.正数的倒数是正数,负数的倒数是负数。

⾃然数⽆理数实数<平⽅根、算术平⽅根、⽴⽅根>平⽅根:⼀般地如果⼀个数的平⽅等于a,那么这个数叫做a的平⽅根,也叫a的⼆次⽅根.⼀个正数有正负两个平⽅根,它们互为相反数;0的平⽅根是0;负数没有平⽅根。

开平⽅:求⼀个数的平⽅根的运算叫做开平⽅。

开平⽅是平⽅运算的逆运算,因此,可以运⽤平⽅运算求⼀个数的平⽅根。

算数平⽅根:正数的正平⽅根称为算数平⽅根。

实数全章知识点总结

实数全章知识点总结

实数全章知识点总结1. 实数的定义和性质实数是指所有的正数、负数、零以及所有有理数和无理数的总称,即实数包括有理数和无理数。

有理数是可以用分数表示的数,无理数是不能用分数表示的数,它们的和、差、积和商都是实数。

实数可以用有理数和无理数的集合表示为R={x | x是有理数或无理数}。

实数具有以下性质:(1)实数集合是有序的,即任意两个实数都可以比较大小;(2)实数集合是稠密的,即任意两个不相等的实数之间必定存在有理数和无理数;(3)实数集合是完备的,即实数集合中的任何一个有界非空集合都有上确界和下确界。

2. 实数的运算规则(1)加法与减法:实数的加法和减法满足交换律、结合律和分配律,即对任意的实数a、b和c,有a+b=b+a,a+(b+c)=(a+b)+c,a(b+c)=ab+ac;(2)乘法与除法:实数的乘法和除法满足交换律、结合律和分配律,即对任意的实数a、b和c,有ab=ba,a(bc)=(ab)c,a(b+c)=ab+ac;(3)幂运算:实数的幂运算满足幂运算法则,即对任意的实数a、b和c,有a^0=1,a^1=a,a^m·a^n=a^(m+n),(a^m)^n=a^(mn),(ab)^n=a^n·b^n。

3. 实数的代数式代数式是由实数和各种运算符号组合而成的式子,包括有理数和无理数等。

实数的代数式可以进行加减乘除和幂运算,可以用代数式表示各种数学问题,如方程、不等式和函数等,是数学中非常重要的基本概念之一。

4. 实数的绝对值实数的绝对值是指实数到原点的距离,记作|a|,如果a≥0,则|a|=a,如果a<0,则|a|=-a。

实数的绝对值有以下性质:(1)非负性:对任意的实数a,有|a|≥0;(2)非负性:对任意的实数a,有|a|=0当且仅当a=0;(3)三角不等式:对任意的实数a和b,有|a+b|≤|a|+|b|。

5. 实数的大小关系实数的大小关系是研究实数大小顺序的一门数学理论。

实数的知识点全总结

实数的知识点全总结

实数的知识点全总结一、实数的定义实数是指包括有理数和无理数在内的所有实际存在的数。

有理数是可以表示为两个整数的比的数,而无理数是不能表示为两个整数的比的数。

例如,根号2就是一个无理数,它不能被表示为两个整数的比。

实数的定义是数学上一个很基础的定义,但是实数的性质和运算规则却有很多深刻的内容,需要深入研究和探讨。

二、实数的性质1. 实数的闭包性:任意两个实数相加、相减、相乘得到的仍然是一个实数,这就是实数的闭包性。

实数集合对于加法和乘法是封闭的,这也是实数集合与有理数集合的一个重要区别。

2. 实数的稠密性:实数集合是一个稠密集合,任意两个实数之间都存在有理数,也存在无理数。

这就意味着实数集合是一个非常密集的数学概念,包含了所有可能的数。

3. 实数的有序性:实数集合是一个有序集合,任意两个实数都可以进行比较大小。

这是实数集合与无理数集合的一个重要区别,也是实数集合在数学分析中应用广泛的一个性质。

4. 实数的无限性:实数集合是一个无限集合,它包括了所有可能的有理数和无理数。

实数集合的无限性是数学中一个非常重要的概念,它在分析、代数、几何等不同领域都有重要的应用。

5. 实数的稳定性:实数集合是一个稳定的数学概念,它对于加法、乘法、取绝对值等运算都是稳定的。

这也是实数集合与有理数集合的一个重要区别,有理数集合在进行除法运算时往往会出现不稳定的情况。

三、实数的运算规则1. 实数的加法:对于任意两个实数a和b,它们的和a+b也是一个实数。

加法满足交换律、结合律和分配律等运算规则。

2. 实数的减法:对于任意两个实数a和b,它们的差a-b也是一个实数。

减法是加法的逆运算,减法也满足交换律和结合律。

3. 实数的乘法:对于任意两个实数a和b,它们的积ab也是一个实数。

乘法满足交换律、结合律和分配律等运算规则。

4. 实数的除法:对于任意两个实数a和b,如果b不等于0,那么它们的商a/b也是一个实数。

实数的除法是乘法的逆运算,除法满足交换律和结合律。

实数章节知识点总结

实数章节知识点总结

实数章节知识点总结一、实数的基本概念1. 实数的定义实数是所有有理数和无理数的集合,用R表示,即R={x|x是有理数或无理数}。

2. 实数的分类实数可以分为有理数和无理数两大类。

(1)有理数是可以表示为分数形式的数,包括正整数、负整数、零、分数等。

有理数的集合用Q表示,即Q={x|x=m/n,m和n为整数,且n≠0}。

(2)无理数是不能表示为分数形式的数,并且无限不循环小数。

无理数的集合用R-Q表示,即R-Q={x|x不是有理数}。

3. 实数的表示实数可以用小数、分数、根式等形式表示,例如:π,e,√2等就是无理数的例子。

二、实数的性质1. 有理数的性质(1)有理数的四则运算有理数的加减乘除运算仍然是有理数,即有理数集合对于加减乘除封闭。

(2)有理数的比较对于任意两个有理数a和b,有以下性质:① 若a>b,则a+c>b+c(c为任意有理数)② 若a>b且c>0,则ac>bc③ 若a>b且c<0,则ac<bc2. 实数的性质(1)实数集合的稠密性实数集合中的有理数和无理数是密集分布的,即任意两个实数之间都存在无限多的有理数和无理数。

(2)实数的有序性任意两个实数a和b,必属于下列三种关系中的一种:① a=b② a<b③ a>b(3)实数的加法封闭性和乘法封闭性任意两个实数的和、差、积仍然是实数。

三、实数的运算规则1. 实数的加法和减法(1)同号相加:两个正数相加,结果仍为正数;两个负数相加,结果仍为负数。

(2)异号相加:一个正数与一个负数相加,结果的绝对值为它们的差,符号取绝对值较大的数的符号。

2. 实数的乘法和除法(1)同号相乘:两个正数相乘,结果为正数;两个负数相乘,结果为正数。

(2)异号相乘:一个正数与一个负数相乘,结果为负数。

(3)除法:除数不为0时,实数的除法遵循乘法的性质。

3. 实数的乘方和开方实数的n次乘方和n次开方都有以下规律:(1)同号实数的n次乘方是正数,异号实数的n次乘方是负数。

实数章节复习(含知识点)

实数章节复习(含知识点)

实数章节复习 一、归纳总结 1.平方根 平方根的定义:一般地,如果 ,那么这个数叫作a 的平方根 平方根的性质: ①正数有且有 个平方根,他们互为 ;0的平方根是 ;负数 平方根。

②()2a = (0a ≥) ③2a a ⎧==⎨⎩ a 的平方根的表示: 2.算术平方根 一般地,如果一个 的平方等于a ,即 ,那么这个 叫做a 的算术平方根。

a 的算术平方根记为 ,a 叫作 算术平方根具有 性:即(1)被开方数是 (2)a 0 3.立方根 定义:一般地,如果 ,就说 性质:①正数有一个 的立方根,0的立方根是 ,负数有一个 的立方根。

②33a = ;()33a = ③33a a -=- 表示:a 的立方根是 4.平方根等于其本身的数是 算术平方根等于其本身的数是 立方根等于其本身的数是 5.实数的概念:有理数和无理数的统称。

6.实数的分类:考室号: 座位号: 姓名: 班级:7.无理数:无限不循环小数。

包括:① ② ③ 二、典例精析 例1:16的平方根是 ,16的算术平方根是 16的平方根是 ,16的算术平方根是例2.553y x x =-+-+,则xy =例3:如果一个数的平方根是1a +和27a -,求这个数。

例3.用平方根定义解方程(1)24250x -= (2)216(2)49x +=例4.已知11的小数部分是m ,411-的小数部分是n ,则m n +=例5.已知3 1.732,30 5.477,(1)300≈≈≈ ;(2)0.3≈例6.已知3333 1.442,30 3.107,300 6.694≈≈≈,那么30.3≈ ;33000≈例7. 数在数轴上的位置如图:化简()2a b b c -+-变式:已知 ,,a b c 位置如图所示:化简()22a a b c a b c --+-+-【当堂测评】1.如果一个实数的平方根与它的立方根相等,则这个数是( )A . 0B . 正整数C . 0和1D . 12.能与数轴上的点一一对应的是( )A 整数B 有理数C 无理数D 实数3. 下列各数中,不是无理数的是 ( )A. 7B. 0.5C. 2πD. 0.151151115…(两个5之间依次多一个1) 4.在数轴上表示3-的点离原点的距离是 。

实数 知识点总结

实数 知识点总结

实数知识点总结一、实数的基本概念实数是指所有有理数和无理数的集合,用符号R表示。

有理数是可以表示为两个整数之比的数,包括整数和分数;无理数是不能表示为有理数的数,如根号2、圆周率等。

实数包括正实数、负实数和零。

正实数是大于零的实数,用正数符号+表示;负实数是小于零的实数,用负号-表示;零是没有方向的实数,用0表示。

二、实数的性质1. 实数集的有序性:实数集是有序的,任意两个实数a和b之间一定有大小关系,即a <b、a = b、a > b。

2. 实数集的稠密性:实数集中任意两个不相等的实数之间永远存在另一个实数。

3. 实数集的等差性:实数集中的任意两个数相减得到的差总是一个实数。

4. 实数集的无限性:实数集是无限的,不仅包括无限的有理数,还包括无限的无理数。

5. 实数集的稳定性:实数集中的任意两个数进行加法、减法、乘法、除法等运算后,得到的结果仍然是一个实数。

三、实数的表示与比较实数可以用小数、分数、根式等形式进行表示。

对于小数,可以用有限小数和无限循环小数两种形式;对于分数,可以用最简分数形式进行表示;对于根式,可以用开平方、开立方等形式进行表示。

对于实数的比较,可以通过大小关系符号进行比较。

当a > b时,表示a比b大;当a < b 时,表示a比b小;当a = b时,表示a等于b。

四、实数的运算规则1. 实数的加法:实数a和b的加法运算按照一般的加法规则进行,即a + b = b + a。

其中,满足交换律、结合律和单位元。

2. 实数的减法:实数a和b的减法运算可以看作加法运算的逆运算,即a - b = a + (-b)。

其中,a减b等于a加上b的相反数。

3. 实数的乘法:实数a和b的乘法运算按照一般的乘法规则进行,即a * b = b * a。

其中,满足交换律、结合律和单位元。

4. 实数的除法:实数a和b的除法运算可以看作乘法运算的逆运算,即a / b = a * (1/b)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章实数
一.知识结构图:
二.知识定义
算术平方根
正数a的算术平方根记作: .
正数和零的算术平方根都只有个,零的算术平方根是,负数算术平方根。




=
=|
|
2a
a()=2a
;
例:1. 25的算术平方根是;16的算术平方根是。

2.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是()
A.1+a B. 1+a C. 1
2+
a D. 1
2+
a
3.面积为11的正方形边长为x,则x的范围是()
A.3
1<
<x B. 4
3<
<x C. 10
5<
<x D. 100
10<
<x
4.若∣a∣=6,b=3,且ab0,则a-b= 。

平方根
正数a 的平方根记作: .
一个正数有 平方根,他们互为 ; 零的平方根是 ;负数 平方根。

例1.
16
的平方根是( ) A .4 B. 4± C. 2 D. 2±
|
2.一个正数x 的两个平方根分别是a+2和a-4,则a=____,x=___。

3.已知2a-1的算术平方根式3,4是3a+b-1的算术平方根,求a+2b 的平方根。

立方根
a 的立方根记作: . {
一个 数有一个 的立方根;一个 数有一个 的立方根;零的立方
根是 。

3
3a
a -=-
=3
3
a ()=3
3
a
例:1. 4
12=_____,
169
±=_____,3
27
8-_____.
2.下列说法中正确的是( ) A 、81的平方根是±3
B 、1的立方根是±1
C 、
1=±1 D 、5-是
5的平方根的相反数
3.判断下列说法是否正确 (1)
的算术平方根是-3; (2)
225
的平方根是±15.
(3)当x=0或2时,02=-x x
(4)2
3是分数
4.已知∣x ∣的算术平方根是8,那么x 的立方根是_____。

5.如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( ) <
A 、2
11 B 、 C 、2 D 、3
5.求下列各式中的 (1)252=x (2)
912
=-)(x (3)643-=x
实数
?
例:1.下列各数:①、②……、③7
±、⑥、⑦……
5、④π、⑤25.2
-
(相邻两个3之间0的个数逐次增加2)、⑧0中,其中是有理数的
有;无理数的有.(填序号)
相反数
实数a的相反数是;如果a与b互为相反数,则有。

绝对值
整数的绝对值是;零的绝对值是;负数的绝对值是。

倒数
如果a与b互为倒数,则有。

实数a的倒数是(a≠0)。

;
零倒数。

(填“有”或者“没有”)
例:1.6
-的相反数是____,绝对值等于2的数是_____,∣π-3∣=____。

2.化简:|3
|+
+
+
-
3
-
|2
|
2
2
|3
2
|。

3.已知实数、、在数轴上的位置如图所示: 化简 |b -c -a |-|b a |-|b -c ||a -2c |++

0+0题型
| |+| |=0 ( )2+( )2=0 0=+
任意几种组合都是等于0的形式 例:1.若∣2a-5∣与
2+b 互为相反数,则
a= ,b=_____。

2. 已知(x-6)2+2
62)(y x -+|y+2z|=0,求(x-y)3-z 3的值
"
无理数的整数和小数部分 例1.
29
的整数部分为 ,小数部分为
2. 已知3-24的整数部分为
a ,小数部分为
b ,求a 2-b 的值
等于本身的数总结

算术平方根等于本身的数有:
平方根等于本身的数有: 立方根等于本身的数有: 相反数等于本身的数有: 绝对值等于本身的数有: 倒数等于本身的数有:
<
三.章节巩固练习
四.1.下列各式中正确的是( ) 五.A .
416±=
B.
4643
= C. -39= D.
3
159125
= 2.一个正数x 的两个平方根分别是a+2和-2a ,则这个数为 。

3. 81的平方根是_______;364的算术平方根是 。

4.|
5.
大于2-,小于10的整数有 个。

5.对于3-2来说(

6.A .有平方根 B.只有算术平方根 C.没有平方根D.不能确定 7.6.面积为48的正方形边长为x ,则x 的范围是( ) 8.A .31<<x B. 43<<x C. 105<<x D. 10010<<x
9.7.-8的立方根与4的平方根之和是( ) 10.A .0 B. 4 C. 0或-4 D. 0或4
11.8. 下列说法中 ①无限小数都是无理数 ②无理数都是无限小数 ③-2是4的平方根 ④带根号的数都是无理数。

其中正确的说法有( )
A .3个 B. 2个 C. 1个 D. 0个
9.数轴上点A ,点B 分别表示实数5,2-5则A 、B 两点间的距离为 。

10.和数轴上的点一一对应的是( )
A .整数 B.有理数 C. 无理数 D. 实数 11.下列各组数中,互为相反数的是( )
A .-2与2
1- B.|2-|与2 C. 2
2-)(与38- D.
3
8-与38-
12.计算: (1)
21-- (2)
34
+
&
(3) 822=x (4) ()823-=x
21.已知 0144252=-x ,且x 是正数,求代数式1352+x 的值。

<
22.若|2x+1|与x y 48
1
+互为相反数,求-xy 的平方根。

23.已知实数x 、y 、z 在数轴上的对应点如图,试化简:x z x y y z x z x z
---++++
-。

24.已知
3-10的整数部分为
a ,2-11小数部分为
b ,求-2a+(b+3)2的算
术平方根。

25.a 的算术平方根是4,b 的81的一个平方根,c 的立方根是-3,求-2a+b-c 的值。

相关文档
最新文档