极化恒等式学生版修订版

合集下载

极化恒等式课件-2025届高三数学一轮复习

极化恒等式课件-2025届高三数学一轮复习
极化恒等式
磨尖点一 求向量数量积的定值
磨尖点二 求向量数量积的最值(范围)
磨尖点三 求参数及其他问题
磨尖课04 极化恒等式
1
4
1. 极化恒等式: ⋅ = [ +
2
2
− − 2 ].
(1)公式推导:
+
2
+ ሻ2 −
=
2
+ 2 ⋅ +
2 ,

2
=
2
− 2 ⋅
(3)记忆规律:向量的数量积等于第三边的中线长与第三边边长的一半的平方差.
磨尖课04 极化恒等式
4
磨尖点一 求向量数量积的定值
磨尖课04 极化恒等式
6
典例1 (2023 ·全国乙卷)正方形的边长是2,是的中点,则 ⋅ =
( B ) .
A. 5
B.3
C.2 5
解析 设的中点为,由极化恒等式可得 ⋅ =
为△ 所在平面内的动点,且 = 1,则 ⋅ 的取值范围是( D ) .
A.[−5,3]
B.[−3,5]
C.[−6,4]
D.[−4,6]
磨尖课04 极化恒等式
11
解析 (法一)依题意建立如图所示的平面直角坐标系,则 0,0 , 3,0 , 0,4 ,
磨尖课04 极化恒等式
4sin +
sin2
= 1 − 3cos − 4sin = 1 − 5sin + ,其中tan =
因为−1 ≤ sin + ≤ 1,所以−4 ≤ 1 − 5sin + ≤ 6,
3

4
磨尖课04 极化恒等式
13

极化恒等式学生版

极化恒等式学生版

极化恒等式(学生版) 极化恒等式是线性代数中的一个重要恒等式,它反映了矩阵和向量之间的内在关系。

这个恒等式可以表示为:A⋅(β+γ)=Aβ+Aγ,其中A是一个矩阵,β和γ是向量,A⋅表示矩阵A和向量的乘积。

在证明极化恒等式之前,我们需要先了解一下矩阵和向量的乘法。

矩阵和向量的乘法是通过将矩阵的每一行与向量相乘,然后将这些乘积相加得到的。

例如,如果A是一个3×2的矩阵,β是一个2×1的向量,那么A⋅β可以通过以下步骤计算:1.将第一行a11a12与向量β相乘得到第一个乘积a11β1+a12β2,将第二行a21a22与向量β相乘得到第二个乘积a21β1+a22β2,将第三行a31a32与向量β相乘得到第三个乘积a31β1+a32β2。

2.将上述三个乘积相加得到A⋅β=(a11β1+a12β2)+(a21β1+a22β2)+(a31β1+a32β2)=a11β1+a12β2 +a21β1+a22β2+a31β1+a32β2=∑i=13∑j=12Aijβj。

现在我们可以证明极化恒等式。

首先,我们需要将矩阵A拆分成两个部分,即A=A−+A+,其中A−=(A−1)ij=−∑k=1nAkij(i=1,m;j=1,n)是一个(m×n)矩阵,A+=εijk(i=1,m;j=1,n;k=−m−(+j)=i)也是一个(m×n)矩阵。

其中εijk是一个排列符号,当i、j、k三个指标循环排列时,其值为1或−1。

根据矩阵拆分的定义,我们可以将极化恒等式表示为:(A−+A+)⋅(β+γ)=A−⋅β+A−⋅γ+A+⋅β+A+⋅γ对于右侧第一项A−⋅β,根据矩阵和向量的乘法计算规则可得:A−⋅β=(−∑k=1nAkij)⋅β=(−Akij)⋅βk=(−∑k=1n(Aiuj)⋅Bvkaj)⋅ɛvka)=(−∑k= 1n(Aui)⋅Bk)(ɛik⋅ɛivk)=(−∑k=1n(Aui⋅Bk))⋅ɛik=(−Aui⋅B)⋅eivi=(−Aui⋅B)⋅βi= tika⋅Mk耿 ltiZMn耿 wnow瓣towZMn耿 +yla"owe看来及。

高中数学《极化恒等式》PPT教学课件

高中数学《极化恒等式》PPT教学课件
【小结】涉及数量积的范围或最值时,可以利用极化恒等式将多变量转变为单变量,再用数形结合等方法求出单 变量的范围、最值即可。
已知RTABC的斜边AB的长为4,设P是以C为圆心, 1为半径的圆上任意一点,求PA PB的取值范围。
解:PA
PB=(
PA

P B ) 2 -(
P A-P B ) 2=P M
在正三角形 ABC中, D 是 BC上点, AB 3, BD 1,
则 AB AD

解:取
BD的中点
E

AB
AD

2
AE

1
2
BD

(3
3 )2 1 1 15
4
2
42
如图,在半径为1的扇形AOB 中,AOB =60 ,C为弧上的动点, AB与OC相交于点P,则OP BP的最小值是 1
巧用极化恒等式,妙解高考向量题
想一想
在处理向量的问题中,一个强有力的工具,特别 在求向量数量积最值的时候,甚至是“秒杀”某些高 考向量题,那就是向量的极化恒等式。
M
极化恒等式的几何意义:
4a b (a b)2 (a b)2 a b (a b)2 (a b)2 4
| BC |
| BC |
| BC |
从而原式 |
PD |2

3 4
|
BC |2
|
4 BC |2

3 4
|
BC |2
2
3
当且仅当PD BC,| BC |=4 4时等号成立。 3
A. ABC 90o B. BAC 90o
C. AB AC
D. AC BC

第5讲 平面向量极化恒等式和矩形大法(解析版) 高一数学同步题型讲义(新人教2019)必修二

第5讲 平面向量极化恒等式和矩形大法(解析版) 高一数学同步题型讲义(新人教2019)必修二

第5讲平面向量极化恒等式和矩形大法【考点分析】考点一:极化恒等式极化恒等式:()()⎥⎦⎤⎢⎣⎡--+=⋅2241b a b a b a 证明:()2222b b a a b a +⋅+=+①;()2222b b a a b a +⋅-=-②两式相减得:()()⎥⎦⎤⎢⎣⎡--+=⋅2241b a b a b a特别地,如图在ABC ∆中,若M 为BC 的中点,AC AB =⋅.AB CM 考点二:平面向量的矩形大法如图:若四边形ABCD 为矩形,O 为矩形所在平面内任一点,则2222OD OB OC OA +=+。

证明:()()()()OD OC OD OC OB OA OB OA OD OC OB OA OD OB OC OA -++-+=-+-=--+22222222()()OD OC DC OB OA BA +++⋅=()()()OD OC OB OA BA OD OC BA OB OA BA --+=+-+⋅=()=+=CB DA BA 所以2222OD OB OC OA +=+。

【题型目录】题型一:极化恒等式的应用题型二:极化恒等式之矩形大法【典型例题】题型一:平面向量的坐标运算【例1】已知向量a ,b 满足+a b -a b ,则 a b =()A .1B .2C .3D .5【答案】A【详解】由平行四边形模拟得()16104141=-=⎪⎭⎫=⋅b a 【例2】如图,在ABC △中,︒=∠90C ,4=AC ,3=BC ,D 是AB 的中点,E 、F 分别是边BC 、AC 上的动点,且EF =1,则DF DE ⋅的最小值等.【答案】415【详解】414222-=-=⋅DH EF DH DF DE (H 为EF 的中点),因CD DH CH ≥+,所以22125=-=-≥CH CD DH ,所以415414412=-≥-=⋅DH DF DE 【例3】边长为1的正方形内有一内切圆,MN 是内切圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM PN ⋅ 的取值范围是_________.【答案】10,4⎡⎤⎢⎥⎣⎦【解析】【分析】设正方形ABCD 的内切圆为圆O ,当弦MN 的长度最大时,MN 为圆O 的一条直径,计算可得出214PM PN PO ⋅=- ,计算出PO 的取值范围,即可得解.【详解】如下图所示:设正方形ABCD 的内切圆为圆O ,当弦MN 的长度最大时,MN 为圆O 的一条直径,()()22214PM PN PO OM PO OM PO OM PO ⋅=+⋅-=-=- ,当P 为正方形ABCD 的某边的中点时,min 12OP = ,当P 与正方形ABCD 的顶点重合时,max 22OP = 1222OP ≤ 因此,2110,44PM PN PO ⎡⎤⋅=-∈⎢⎥⎣⎦.故答案为:10,4⎡⎤⎢⎥⎣⎦.【例4】四边形ABCD 为菱形,30BAC ∠=︒,6AB =,P 是菱形ABCD 所在平面的任意一点,则PA PC ⋅ 的最小值为________.【答案】27-【解析】【分析】取AC 的中点O ,连接OA ,OC ,OP ,应用向量加减法的几何意义及数量积的运算律可得22PA PC PO OA ⋅=- ,即可求最小值.【详解】由题设,63=AC AC 的中点O ,连接OA ,OC ,OP ,则PA PO OA =+ ,PC PO OC PO OA =+=- ,所以()()2222727PA PC PO OA PO OA PO OA PO ⋅=+⋅-=-=-≥- .故答案为:27-【例5】已知下图中正六边形ABCDEF 的边长为4,圆O 的圆心为正六边形的中心,直径为2,若点P 在正六边形的边上运动,MN 为圆O 的直径,则PM PN ⋅ 的取值范围是()A .[]11,16B .[]11,15C .[]12,15D .[]11,14【答案】B【解析】【分析】根正六边形的性质,求得内切圆和外接圆的半径,再化简得到22P PM P O OM N ⋅=- ,结合r PO R ≤≤ ,即可求解.【详解】由正六边形ABCDEF 的边长为4,圆O 的圆心为正六边形的中心,半径为1,所以正六边形ABCDEF 的内切圆的半径为sin 604sin 60r OA === 外接圆的半径为4R =,又由()()()()PM PN PO OM PO ON PO OM PO OM ⋅=+⋅+=+⋅- 2221PO OM PO =-=- ,因为r PO R ≤≤ ,即4]PO ∈ ,可得21[11,15]PO -∈ ,所以PM PN ⋅ 的取值范围是[]11,15.故选:B.【题型专练】1.如图直角梯形ABCD 中,EF 是CD 边上长为6的可移动的线段,4=AD ,AB =12BC =,则BE BF⋅ 的取值范围为________________.【答案】[]99,148【解析】【分析】首先在BC 上取一点G ,使得4BG =,取EF 的中点P ,连接DG ,BP ,根据题意得到()()222194BE BF BE BF BE BF BP ⎡⎤⋅=+--=-⎢⎥⎣⎦ ,再根据BP 的最值求解即可.【详解】在BC 上取一点G ,使得4BG =,取EF 的中点P ,连接DG ,BP ,如图所示:则83DG =,8GC =,()2288316CD =+=,83tan 38BCD ∠=60BCD ∠= .()()()22222112944BE BF BE BF BE BF BP FE BP ⎡⎤⎡⎤⋅=+--=-=-⎢⎥⎢⎥⎣⎦⎣⎦ ,当BP CD ⊥时,BP 取得最小值,此时12sin 6063BP =⨯= 所以()(2min 63999BE BF ⋅=-= .当F 与D 重合时,13CP =,12BC =,则22211213212131572BP =+-⨯⨯⨯= ,当E 与C 重合时,3CP =,12BC =,则222112*********BP =+-⨯⨯⨯= ,所以()max 1579148BE BF ⋅=-= ,即BE BF ⋅ 的取值范围为[]99,148.故答案为:[]99,1482.如图,在ABC 中,90,2,ABC AB BC ∠===M 点是线段AC 上一动点.若以M 为圆心、半径为1的圆与线段AC 交于,P Q 两点,则BP BQ ⋅ 的最小值为()A .1B .2C .3D .4【答案】B【解析】【分析】根据M 为PQ 的中点,将,BP BQ 用,BM MQ 表示出来,然后利用向量运算法则,即可将问题转化为2BM 的最小值,即B 到线段AC 的距离的平方.【详解】解:由题意,MQ MP =- ,且1MP = ,4AC ==,所以BP BM MP =+ ,BQ BM MQ BM MP =+=- ,所以2()()1BP BQ BM MP BM MP BM ⋅=+⋅-=- ,易知,当BM AC ⊥时,BM 最小,所以min BA BC AC BM ⋅=⋅,即24min BM ⨯=⨯,解得min BM =,故BP BQ ⋅ 的最小值为212-=.故选:B .3.已知P 是边长为4的正三角形ABC 所在平面内一点,且(22)()=+-∈R AP AB AC λλλ,则PA PC ⋅ 的最小值为()。

极化恒等式(学生版)

极化恒等式(学生版)

课题:极化恒等式在向量问题中的应用学习目标目标1:通过自主学习掌握极化恒等式两种模式,理解其几何意义; 目标2-1:通过对例1的自主学习掌握用极化恒等式求数量积的值; 目标2-2:通过对例2的自主学习掌握用极化恒等式求数量积的最值、范围; 目标2-3:通过小组合作学习掌握极化恒等式解决与数量积有关的综合问题。

重点掌握极化恒等式,利用它解决一类与数量积有关的向量问题 难点 根据具体的问题情境,灵活运用极化恒等式目标达成途径学习自我评价阅读以下材料: .两倍等于两条邻边平方和的平方和平行四边形的对角线的你能用向量方法证明:何模型。

示向量加法和减法的几引例:平行四边形是表,,b AD a AB ==证明:不妨设,,则b a DB b a A -=+=C ()222222C C b b a a b a A A +⋅+=+== (1)()222222b b a a b a DB DB +⋅-=-== (2)(1)(2)两式相加得:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+22222222C AD AB b a DB A 结论:平行四边形对角线的平方和等于两条邻边平方和的两倍.思考1:如果将上面(1)(2)两式相减,能得到什么结论呢?b a ⋅=()()⎥⎦⎤⎢⎣⎡--+2241b a b a ————极化恒等式 对于上述恒等式,用向量运算显然容易证明。

那么基于上面的引例,你觉得极化恒等式的几何意义是什么?几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的41. 即:[]2241DB AC b a -=⋅(平行四边形模式) 目标1:阅读材料,了解极化恒等式的由来过程,掌握极化恒等式 的两种模式,并理解其几何意义 M图1思考:在图1的三角形ABD 中(M 为BD 的中点),此恒等式如何表示呢?因为AM AC 2=,所以2241DB AMb a -=⋅(三角形模式) 例1.(2012年浙江文15)在ABC ∆中,M 是BC 的中点,3,10AM BC ==,则AB AC ⋅=____ .解:因为M 是BC 的中点,由极化恒等式得: 2241BC AM AC AB -=⋅=9-10041⨯= -16 【小结】在运用极化恒等式的三角形模式时,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式。

极化恒等式讲义-高一下学期数学人教A版

极化恒等式讲义-高一下学期数学人教A版

极化恒等式1.极化恒等式:a ·b =14[(a +b )2-(a -b )2].几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.2.平行四边形ABCD ,M 是对角线交点.则: (1)AD AB ⋅=14[AC 2-BD 2](平行四边形模式);(2)AD AB ⋅=AM 2-14BD 2(三角形模式). 例1.在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB→·AC →=________.例2.在△ABC 中,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB →·PC →≥P 0B →·P 0C →,则( ) A.∠ABC =90° B.∠BAC =90° C.AB =ACD.AC =BC例3.已知正三角形ABC 内接于半径为2的圆O ,点P 是圆O 上的一个动点,则P A →·PB→的取值范围是________. 1.若点G ABC ∆的重心,且2,=⊥AB GB GA ,则________=⋅CB CA 2.已知ABC ∆的外接圆O 的半径是1,6π=∠B ,则BC BA ⋅的取值范围3.在锐角ABC ∆,已知3π=B ,2||=-AC AB ,则AC AB ⋅的取值范围4.在ABC ∆,60,4,3=∠==BAC AC AB 若点P 是ABC ∆所在平面内的一点,且2=AP ,则PC PB ⋅的最大值为5.在ABC ∆,9,8,7===BC AC AB ,点P 是ABC ∆内的一点,且7-=⋅PC PA ,则||PB 的取值范围课后练习1.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·DA →的值为_______.2. 如图所示放置的边长为1的正方形ABCD 的顶点分别在x 轴,y 轴正半轴上(含bMABD原点)滑动,则OB → ·OC →的最大值为________.3.在平面直角坐标系xOy 中,点A ,B 分别在x 轴,y 轴正半轴上移动,AB =2,若点P 满足P A → ·PB→ =2,则OP 的取值范围为________.4.已知AB 是圆O 的直径,AB 长为2,C 是圆O 上异于A ,B 的一点,P 是圆O 所在平面上任意一点,则(P A →+PB →)·PC →的最小值为( ) A.-14 B.-13 C.-12 D.-15.如图,BC ,DE 是半径为1的圆O 的两条直径,BF →=2FO →,则FD →·FE →=( )A.-34B.-89C.-14D.-496.正ABC ∆的边长等于3,点P 在其外接圆上运动,则PB AP ⋅的 取值范围是( )7. 在△ABC 中,E ,F 分别是线段AB ,AC 的中点,点P 在直线EF 上,若△ABC 的面积为2,则PB→ ·PC → +BC → 2的最小值是__________. 8. 已知A (0,1),曲线M :y =log a x 恒过点B ,若P 是曲线M 上的动点,且AB → ·AP →的最小值为2,则a =________. 9. 已知正方形ABCD 的边长为1,中心为O ,直线l 经过中心O ,交AB 于点M ,交CD 于点N ,P 为平面上一点,若2OP → =λOB → +(1-λ)OC → ,则PM → ·PN → 的最小值为__________.10. 已知A ,B 是圆O :x 2+y 2=1上的两个点,P 是线段AB 上的动点,那么当△AOB 的面积最大时,AO→ ·AP → -AP → 2的最大值是________.。

极化恒等式(学生版)

极化恒等式(学生版)

课题:极化恒等式正在背量问题中的应用之阳早格格创做教习目标目标1:通过自决教习掌握极化恒等式二种模式,明白其几许意思; 目标2-1:通过对付例1的自决教习掌握用极化恒等式供数量积的值; 目标2-2:通过对付例2的自决教习掌握用极化恒等式供数量积的最值、范畴; 目标2-3:通过小拉拢做教习掌握极化恒等式办理与数量积有闭的概括问题. 沉面掌握极化恒等式,利用它办理一类与数量积有闭的背量问题 易面 根据简直的问题情境,机动使用极化恒等式目标完毕道路教习自尔评介阅读以下资料: .两倍等于两条邻边平方和的平方和平行四边形的对角线的你能用向量方法证明:何模型。

示向量加法和减法的几引例:平行四边形是表,,b AD a AB ==证明:不妨设,,则b a DB b a A -=+=C ()222222C C b b a a b a A A +⋅+=+== (1)()222222b b a a b a DB DB +⋅-=-== (2)(1)(2)二式相加得:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+22222222C AD AB b a DB A 论断:仄止四边形对付角线的仄圆战等于二条邻边仄圆战的二倍.思索1:如果将上头(1)(2)二式相减,能得到什么论断呢?b a ⋅=()()⎥⎦⎤⎢⎣⎡--+2241b a b a ————极化恒等式 对付于上述恒等式,用背量运算隐然简单说明.那么鉴于上头的引例,您感触极化恒等式的几许意思是什么?几许意思:背量的数量积不妨表示为以那组背量为邻边的仄止四边形的“战对付角线”与“好对付角线”仄圆好的41. 即:[]2241DB AC b a -=⋅(仄止四边形模式)思索:正在图1的三角形ABD 中(M 为BD 的中面),此恒等式怎么样表示呢? 果为AM AC 2=,所以2241DB AM b a -=⋅(三角形模式) 目标1:阅读资料,相识极化恒等式的由去历程,掌握极化恒等式 的二种模式,并明白其几许意思 M图1例1.(2012年浙江文15)正在ABC ∆中,M 是BC 的中面,3,10AM BC ==,则AB AC ⋅=____.解:果为M 是BC 的中面,由极化恒等式得: 2241BC AM AC AB -=⋅=9-10041⨯= -16 【小结】正在使用极化恒等式的三角形模式时,闭键正在于与第三边的中面,找到三角形的中线,再写出极化恒等式.目标检测.______1)132012(的值为边上的动点,则是点,的边长为已知正方形改编北京文DA DE AB E ABCD ⋅.________O O 2.2的取值范围是则上的一个动点,是圆,点的圆内接于半径为(自编)已知正三角形例PB PA P ABC ⋅解:与AB 的中面D ,连结CD,果为三角形ABC 为正三角形,所以O 为三角形ABC 的沉心,O 正在CD 上,且22==OD OC ,所以3=CD ,32=AB(也可用正弦定理供AB )又由极化恒等式得:341222-=-=⋅PD AB PD PB PA 果为P 正在圆O 上,所以当P 正在面C 处时,3||max =PD当P 正在CO 的延少线与圆O 的接面处时,1||min =PD所以]6,2[-∈⋅PB PA【小结】波及数量积的范畴或者最值时,不妨利用极化恒等式将多变量转化成单变量,再用数形分离等要领供出单变量的范畴、最值即可.目标检测8.6.3.2.)(134)112010(22D C B A FP OP P y x F O 的最大值为则为椭圆上的任意一点,的中心和左焦点,点分别为椭圆和点若点福建文⋅=+问题、疑惑、错解搜集本领提高目标2-1:掌握用极化恒等式供数量积的值AB CM 目标2-2:掌握用极化恒等式供数量积的最值、范畴例3.(2013浙江理7)正在ABC ∆中,0P 是边AB 上一定面,谦脚014P B AB =,且对付于边AB 上任一面P ,恒有00PB PC P B PC ⋅≥⋅.则( )A. 90ABC ∠=B. 90BAC ∠=C. AB AC =D.AC BC =目标检测22.2.2.1.)(,0)()(2,)92008(D C B A c c b c a c b a 的最大值是则满足,若向量个互相垂直的单位向量是平面内已知浙江理=-⋅- 问题、疑惑搜集知识、要领归纳原课的主要教习实质是什么?极化恒等式:仄止四边形模型:三角形模型:极化恒等式正在处理与_________________有闭问题时,隐得较有劣良性.课后检测ABC ∆中,60BAC ∠=若2AB =,3BC =,D 正在线段AC 上疏通,DA DB ⋅的最小值 为AB 是圆O 的直径,AB 少为2,C 是圆O 上同于,A B 的一面,P 是圆O 地圆仄里上任性一面,则()PA PB PC +⋅的最小值为( )A. 14-B. 13-C. 12- D.1- 3.正在ABC ∆中,3AB =,4AC =,60BAC ∠=,假如P ABC ∆地圆仄里内一面,且2AP =,目标2-3:会用极化恒等式办理与数量积有闭的概括问题AC。

极化恒等式PDF

极化恒等式PDF

极化恒等式补充1极化恒等式:()()2214a b a b a b ⎡⎤⋅=+--⎢⎥⎣⎦极化恒等式的几何意义是:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14,即222214a b AD BC AM BM ⎡⎤⋅=-=-⎣⎦ 2极化恒等式的应用例1ABC M BC AM=3BC=10AB AC=∆⋅ 在中,是的中点,,,则解析:221925162AB AC AM BC ⋅=-=-=- 00001ABC P AB P B=AB AB P 4PB PC P B P C ∆⋅≥⋅ 例2:设,是边上一定点,满足,且对于边上任意一点,恒有,则0.90A ABC ∠=0.90B BAC ∠=.C AB AC =.D AC BC=22022000000BC D PD P D PBC PB PC=PD BD P BC P B P C=P D ,PD P D P D AB AC=BCBD ∆⋅-∆⋅-≥⊥ 解析:取中点,连接,,在内使用极化恒等式得在内使用极化恒等式得由条件知,即,故3ABCD P AB APB PC PD f⋅ 例:设正方形的边长为4,动点在以为直径的圆弧上,则第三题图第四题图解析:[]24,225016.PC PD PE PE PC PD ⎡⎤⋅=-∈⋅∈⎣⎦由图知,,,故,2min ABC 4ABC E F AB AC P EF S =2PC PB+BC =∆⋅ 例:在中,点,分别是线段,的中点,点在直线上,若,则2222222421322,,,44434+BC 23PD BC BC=.43BCPBC PC PB PD BC PC PB BC PD BC h PD BC BC PC PB BC ⋅=-⋅+=+=≥⋅+≥≥⊥ 解析:因此,当且仅当,时等号成立051AOB AOB=60C AB OC P OP BP ∠⋅ 例:如图,在半径为的扇形中,,为弧上的动点,与交于点,则的最小值为解析:如上图所示,213311,PD ,442162OP BP PD OP BP ⎡⎤⎡⎤⋅=-∈⋅∈-⎢⎥⎢⎥⎣⎦⎣⎦ 易知,,则()6ABCD OB OC ⋅ 例:如图放置的边长为1的正方形顶点分别在x轴,y轴正半轴含原点滑动,则的最大值为22111OB OC=OE 12424⎛⎫⋅-≤+-= ⎪⎝⎭ 解析:。

极化恒等式与等和(高)线定理【四大题型】(学生版)-高中数学

极化恒等式与等和(高)线定理【四大题型】(学生版)-高中数学

极化恒等式与等和(高)线定理【四大题型】【题型1利用极化恒等式求值】【题型2利用极化恒等式求最值(范围)】【题型3利用等和线求基底系数和的值】【题型4利用等和线求基底系数和的最值(范围)】1.极化恒等式与等和(高)线定理极化恒等式是平面向量中的重要等式,是解决平面向量的数量积问题的重要工具,有平行四边形模型和三角形模型两大重要模型,可以建立起向量与几何长度之间的等量关系;等和(高)线定理是平面向量中的重要定理,由三点共线结论推导得出,在求基底系数和的值、最值(范围)中有着重要作用.【知识点1极化恒等式】1.极化恒等式的证明过程与几何意义(1)平行四边形对角线的平方和等于四边的平方和:|a +b |2+|a -b |2=2(|a |2+|b |2).证明:不妨设AB =a ,AD =b ,则AC =a +b ,DB =a -b,AC 2=AC 2=a +b 2=a 2+2a ⋅b +b 2①,DB 2=DB 2=a -b 2=a 2-2a ⋅b +b 2②,①②两式相加得:AC 2+DB 2=2a 2+b 2=2AB 2+AD 2.(2)极化恒等式:上面两式相减,得:14a +b2-a -b 2 ----极化恒等式平行四边形模式:a ⋅b =14AC 2-DB 2 .2.几何解释:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.(1)平行四边形模型:向量的数量积等于以这组向量为邻边的平行四边形的“和对角线长”与“差对角线长”平方差的14,即14a +b2-a -b 2 (如图).(2)三角形模型:向量的数量积等于第三边的中线长与第三边长的一半的平方差,即(M 为BC 的中点)(如图).极化恒等式表明,向量的数量积可以由向量的模来表示,可以建立起向量与几何长度之间的等量关系.【知识点2等和(高)线定理】1.等和(高)线定理(1)由三点共线结论推导等和(高)线定理:如图,由三点共线结论可知,若(λ,μ∈R ),则λ+μ=1,由△OAB 与△OA 'B '相似,必存在一个常数k ,k ∈R ,使得,则,又(x ,y ∈R ),∴x +y =kλ+kμ=k ;反之也成立.(2)平面内一个基底及任一向量,(λ,μ∈R ),若点P '在直线AB 上或在平行于AB 的直线上,则λ+μ=k (定值);反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和(高)线.①当等和线恰为直线AB 时,k =1;②当等和线在O 点和直线AB 之间时,k ∈(0,1);③当直线AB 在O 点和等和线之间时,k ∈(1,+∞);④当等和线过O 点时,k =0;⑤若两等和线关于O 点对称,则定值k 1,k 2互为相反数;⑥定值k 的变化与等和线到O 点的距离成正比.【题型1利用极化恒等式求值】1.(2024·贵州毕节·三模)如图,在△ABC 中,D 是BC 边的中点,E ,F 是线段AD 的两个三等分点,若BA⋅CA =7,BE ⋅CE =2,则BF ⋅CF =()A.-2B.-1C.1D.22.(23-24高三上·福建厦门·期末)如图,BC 、DE 是半径为1的圆O 的两条直径,BF =2FO ,则FD ⋅FE =()A.-34B.-89C.-14D.-493.(2024高三·江苏·专题练习)如图,在平面四边形ABCD 中,O 为BD 的中点,且OA =3,OC =5.若AB⋅AD =-7,则BC ⋅DC 的值是.4.(23-24高二下·湖南长沙·开学考试)如图,在平行四边形ABCD 中,AB =1,AD =2,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 边上的中点,则EF ⋅FG +GH ⋅HE等于.【题型2利用极化恒等式求最值(范围)】5.(2024高三·全国·专题练习)半径为2的圆O 上有三点A 、B 、C 满足OA +AB +AC =0,点P 是圆内一点,则P A ⋅PO +PB ⋅PC 的取值范围为()A.[-4,14)B.[0,4)C.[4,14]D.[4,16]6.(23-24高一下·江苏南通·期中)正三角形ABC 的边长为3,点D 在边AB 上,且BD =2DA ,三角形ABC 的外接圆的一条弦MN 过点D ,点P 为边BC 上的动点,当弦MN 的长度最短时,PM ⋅PN的取值范围是()A.[-1,5]B.[-1,7]C.[0,2]D.[1,5]7.(2024·重庆·模拟预测)已知△OAB 的面积为1,AB =2,动点P ,Q 在线段AB 上滑动,且PQ =1,则OP⋅OQ的最小值为.8.(23-24高三上·上海浦东新·阶段练习)在面积为2的平行四边形中ABCD 中,∠DAB =π6,点P 是AD 所在直线上的一个动点,则PB 2+PC 2-PB ⋅PC 的最小值为.【题型3利用等和线求基底系数和的值】9.(2024·四川成都·模拟预测)如图,在平行四边形ABCD 中,BE =23BC ,DF =34DE ,若AF =λAB +μAD,则λ+μ=()A.32B.-112C.112D.010.(2023·河北沧州·模拟预测)在△ABC 中,BE =12EC ,BF =12BA +BC,点P 为AE 与BF 的交点,AP =λAB +μAC ,则λ+μ=()A.0B.14C.12D.3411.(23-24高一上·江苏常州·期末)在平行四边形ABCD 中,E 为BC 的中点,F 在线段DC 上,且CF =2DF .若AC =λAE +μAF,λ,μ均为实数,则λ+μ的值为.12.(23-24高一上·江苏苏州·期末)如图,在矩形ABCD 中,M ,N 分别为线段BC ,CD 的中点,若MN =λ1AM +λ2BN ,λ1,λ2∈R ,则λ1+λ2的值为.【题型4利用等和线求基底系数和的最值(范围)】13.(2024·山东烟台·三模)如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP =xAB+yAC ,则2x +2y 的最大值为()A.83B.2C.43D.114.(23-24高三上·河北沧州·期中)如图,△BCD 与△ABC 的面积之比为2,点P 是区域ABCD 内任意一点(含边界),且AP =λAB +μACλ,μ∈R ,则λ+μ的取值范围是()A.0,1B.0,2C.0,3D.0,415.(23-24高一下·福建泉州·阶段练习)在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN =λAB +μAC (λ,μ∈R ),则λ+μ的取值范围是.16.(23-24高一下·广西桂林·期末)已知O 为△ABC 内一点,且4OA +8OB +5OC =0 ,点M 在△OBC 内(不含边界),若AM =λAB +μAC,则λ+μ的取值范围是.一、单选题1.(2024·四川绵阳·三模)如图,在△ABC 中,AF =BF =6,EF =5,则EA ⋅EB =()A.-11B.-13C.-15D.152.(2024·陕西西安·一模)在△ABC 中,点D 是线段AC 上一点,点P 是线段BD 上一点,且CD =DA ,AP=23AB+λAC ,则λ=()A.16B.13C.23D.563.(2024高三·全国·专题练习)在△ABC 中,D 是BC 边上的中点,且AE =13AD ,AF =2AE ,AB ⋅AC=6,FB ⋅FC =-2,则EB ⋅EC =()A.-1B.2C.-12D.14.(2024·陕西榆林·三模)在△ABC 中,E 在边BC 上,且EC =3BE ,D 是边AB 上任意一点,AE 与CD 交于点P ,若CP =xCA +yCB,则3x +4y =()A.34B.-34C.3D.-35.(23-24高三下·湖南长沙·阶段练习)向量的数量积可以表示为:以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的四分之一,即如图所示,a ⋅b =14AD 2-BC 2,我们称为极化恒等式.已知在△ABC 中,M 是BC 中点,AM =3,BC =10,则AB ⋅AC=()A.-16B.16C.-8D.86.(2024·全国·模拟预测)如图,在△ABC 中,AN =tNC (t >0),BP =λPN (λ>0),若AP =34AC -14BC ,则λ+t 的值为()A.7B.6C.5D.47.(23-24高三上·山东潍坊·期末)已知正方形ABCD 的边长为2,MN 是它的内切圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM ⋅PN的取值范围是()A.[0,1]B.0,2C.[1,2]D.-1,18.(2024·河北沧州·三模)对称美是数学美的重要组成部分,他普遍存在于初等数学和高等数学的各个分支中,在数学史上,数学美是数学发展的动力.如图,在等边△ABC 中,AB =2,以三条边为直径向外作三个半圆,M 是三个半圆弧上的一动点,若BM =λAB +μAC,则λ+μ的最大值为()A.12B.33C.1D.32二、多选题9.(23-24高一下·江苏南京·期中)在△ABC 中,点D 是线段BC 上任意一点,点M 是线段AD 的中点,若存在λ,μ∈R 使BM =λAB +μAC,则λ,μ的取值可能是()A.λ=-35,μ=110B.λ=1,μ=-32C.λ=-910,μ=25D.λ=-710,μ=3510.(23-24高一下·四川成都·阶段练习)如图,正方形ABCD 中,E 为AB 中点,M 为线段AD 上的动点,若BM =λBE +μBD ,则λ+μ的值可以是()A.32B.12C.1D.211.(23-24高一下·陕西西安·阶段练习)(多选)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD =λBC λ∈R ,AD ⋅AB =-32,则()A.AB ·BC =9B.实数λ的值为16C.四边形ABCD 是梯形D.若M ,N 是线段BC 上的动点,且MN =1,则DM ⋅DN 的最小值为132三、填空题12.(2024·新疆·二模)在等腰梯形ABCD 中,AB =2DC ,点E 是线段BC 的中点,若AE =λAB +μAD ,则λ+μ=.13.(23-24高一下·黑龙江大庆·期末)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点BA ⋅CA =5,BF ⋅CF =-2,则BE ⋅CE 的值是.14.(23-24高三·广东阳江·阶段练习)在面积为2的平行四边形ABCD 中,点P 为直线AD 上的动点,则PB ⋅PC +BC 2的最小值是.四、解答题15.(23-24高一下·甘肃白银·阶段练习)如图,在平行四边形ABCD 中,AC 与BD 相交于点O .E 是线段OD 的中点,AE 的延长线与CD 交于点F .(1)用AB ,AD 方表示AE ;(2)若AF =λAB +μAD ,求λ+μ的值.16.(23-24高一下·江苏苏州·期中)阅读一下一段文字:a +b 2=a 2+2a ⋅b +b 2,a -b 2=a 2-2a ⋅b +b 2,两式相减得(a +b )2-(a -b )2=4a ·b ⇒a ·b =14[(a +b )2-(a -b)2]我们把这个等式称作“极化恒等式”,它实现了在没有夹角的参与下将两个向量的数量积运算化为“模”的运算.试根据上面的内容解决以下问题:如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.(1)若AD =6,BC =4,求AB ⋅AC 的值;(2)若AB ⋅AC =4,FB ⋅FC =-1,求EB ⋅EC 的值.17.(23-24高一上·辽宁大连·期末)在三角形ABC 中,AB =a ,AC =b ,BE =2EC,D 为线段AC 上任意一点,BD 交AE 于O .(1)若CD =2DA .①用a ,b表示AE ;②若AO =λAE ,求λ的值;(2)若BO =xBA +yBC ,求12x +13y +1的最小值.18.(23-24高一下·湖南邵阳·期末)如图,已知四边形ABDE 为平行四边形,点C 在AB 延长线上,点M 在线段AD 上,且AB =12BC ,AM =13AD ,设AB =a ,AE =b .(1)用向量a ,b表示CD ;(2)若线段CM 上存在一动点P ,且AP =ma +nb m ,n ∈R ,求n 2+mn 的最大值.1119.(23-24高一下·广东潮州·阶段练习)阅读以下材料,解决本题:我们知道①(a +b )2=a 2+2a ⋅b +b 2;②(a -b)2=a 2-2a ⋅b +b 2.由①-②得(a +b )2-(a -b )2=4a ⋅b ⇔a ⋅b =(a +b )2-(a -b )24,我们把最后推出的式子称为“极化恒等式”,它实现了没有夹角参与的情况下将两个向量的数量积化为“模”的运算.如图所示的四边形ABCD 中,BD =8,AB ⋅AD =48,E 为BD 中点.(1)若cos ∠BAD =1213,求△ABD 的面积;(2)若2AE =EC ,求CB ⋅CD 的值;(3)若P 为平面ABCD 内一点,求P A ⋅PB +PD 的最小值.。

第12讲 等和线极化恒等式(学生版)

第12讲  等和线极化恒等式(学生版)

第12讲 等和线、极化恒等式、三角形四心题型一 等和线定理应用 例1 (2017新课标Ⅲ)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB ADλμ=+,则λμ+的最大值为( )A .3B .22 C .5 D .2例2 给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.例3 (2020·杭州五校联盟一诊)在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则5λ+3μ的最大值为______. [玩转跟踪]1.(2020·菏泽一诊)如图,在扇形OAB 中,60AOB ︒∠=,C 为弧AB 上的一个动点.若OC -→xOA y OB -→-→=+,则y x 4+的取值范围是 .2.(2020·合肥一诊)如图,四边形是边长为1的正方形,,点为内(含边界)的动点,设,则的最大值等于题型二 极化恒等式的应用例4 如图,在同一平面内,点A 位于两平行直线m ,n 的同侧,且A 到m ,n 的距离分别为1,3,点B ,C 分别在m ,n 上,|AB →+AC →|=5,则AB →·AC →的最大值是___.OABC 3=OD P BCD ∆(,)OP OC OD R αβαβ=+∈αβ+例5 (2017新课标Ⅱ)已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )A .2-B .32-C .43- D .1- [玩转跟踪]1.在△ABC 中,点E ,F 分别是线段AB ,AC 的中点,点P 在直线EF 上,若△ABC 的面积为2,则PB →·PC →+BC →2的最小值是____.2.(2019·苏州模拟)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,60BCD ∠=︒,CB CD ==若点M 为边BC 上的动点,则AM DM ⋅的最小值为 ▲ .3.在ABC ∆中,点,E F 分别是线段,AB AC 的中点,点P 在直线EF 上,若ABC ∆的面积为2,则2PB PC BC +的最小值是_____________. 题型三 三角形五心设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A .(2)O 为△ABC 的重心⇔OA →+OB →+OC →=0. (3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →. (4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0. 类型1 平面向量与三角形的“重心”【例6】 已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过( ) A.△ABC 的内心B.△ABC 的垂心C.△ABC 的重心D.AB 边的中点类型2 平面向量与三角形的“内心”问题【例7】 在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP →=xOB →+yOC →,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063B.1463C.4 3D.6 2类型3 平面向量与三角形的“垂心”问题【例8】 已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ⎝⎛⎭⎪⎫AB →|AB →|cos B + AC →|AC →|cos C ,λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A.重心B.垂心C.外心D.内心类型4 平面向量与三角形的“外心”问题【例9】 已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO →=xAB →+yAC →,则有序实数对(x ,y )为( )A.()45,35 B.()35,45C.()-45,35D.()-35,45【玩转跟踪】1.O 为三角形内部一点,a 、b 、c 均为大于1的正实数,且满足aOA bOB cOC CB ++=,若OAB S ∆、OAC S ∆、OBCS ∆分别表示OAB ∆、OAC ∆、OBC ∆的面积,则::OAB OAC OBC S S S ∆∆∆为( )A .(1):(1):c b a +-B .::c b aC .111::11a b c -+ D .222::c b a2.设点A ,B 的坐标分别为()0,1,()1,0,P ,Q 分别是曲线2xy =和2log y x =上的动点,记1I AQ AB =⋅,2I BP BA =⋅.( )A .若12I I =,则()PQ AB R λλ=∈B .若12I I =,则AP BQ=C .若()PQ ABR λλ=∈,则12II =D .若AP BQ=,则12I I =3.已知P 是ABC ∆所在平面内一点,且满足0AB PC BC PA CA PB ⋅+⋅+⋅=,则点P 是ABC ∆的( ) A .外心B .内心C .垂心D .重心4.已知O 是ABC ∆所在平面上的一点,若aPA bPB cPC PO a b c++=++(其中P 是ABC ∆所在平面内任意一点),则O点是ABC ∆的( ) A .外心B .内心C .重心D .垂心【玩转练习】1.若O 是ABC 垂心,6A π∠=且sin cos sin cos B C AB C BAC+2sin sin m B C AO =,则m =( )A .12B.2C.3 D2.在ABC ,若0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=,则ABC 的形状为( ) A .直角三角形B .等腰三角形C .等边三角形D .无法判断3.已知P 是ABC ∆内一点,且满足230PA PB PC ++=,记ABP ∆、BCP ∆、ACP ∆的面积依次为1S ,2S ,3S ,则123::S S S 等于( )A .1:2:3B .1:4:9C .2:1:3D .3:1:24.如图,在平行四边形ABCD 中,M 是BC 的中点,且AD =DM ,N 是线段BD 上的动点,过点N 作AM 的垂线,垂足为H ,当AM MN ⋅最小时,HC =A .1344AB AD + B .1142AB AD +C .1324AB AD + D .3142AB AD + 5.O 为ABC ∆所在平面上动点,点P 满足AB AC OP OA AB AC λ⎛⎫⎪=++ ⎪⎝⎭,,[)0λ∈+∞ ,则射线AP 过ABC ∆的( )A .外心B .内心C .重心D .垂心6.在ABC ∆中,6AB =,8BC =,AB BC ⊥,M 是ABC ∆外接圆上一动点,若AM AB AC λμ=+,则λμ+的最大值是( )A .1B .54C .43D .27.如图所示,设P 为ABC ∆所在平面内的一点,并且1142AP AB AC =+,则BPC ∆与ABC ∆的面积之比等于( )A .25B .35C .34D .148.在锐角△ABC 中,AC =BC =2,CO =x CA +y CB (其中x +y =1),若函数f (λ)=|CA -λCB ||OC |的最小值为( )A .1B C .2D .9.设非零向量a ,b 夹角为θ,若2a b =,且不等式2a b a bλ+≥+对任意θ恒成立,则实数λ的取值范围为( ) A .[]1,3-B .[]1,5-C .[]7,3- D .[]5,710.已知双曲线C :22221x y a b-= ()0,0a b >>的左右焦点分别为1F ,2F , P 为双曲线C 上一点, Q 为双曲线C 渐近线上一点, P , Q 均位于第一象限,且23QP PF =,120QF QF ⋅=,则双曲线C 的离心率为( )A .8B .2C .2D 211.在等边三角形ABC 中,D 是AC 上一点,2CD DA =,M 是BD 上一点,90AMC ∠=,则tan AMD ∠=( )A .4B .3C .12D .1312.已知矩形ABCD ,AB 2=,AD=P 为矩形内一点,且AP 1=,则()PC PD AP +⋅的最大值为()A .0B .2C .4D .613.若平面向量,,a b c 满足2a =,4b =,4a b ⋅=,3c a b -+=,则c b-的最大值为( )A B C .D .14.设单位向量1e ,2e 对任意实数λ都有121232e e e e λ+≤+,则向量1e ,2e 的夹角为()A .3π B .23πC .6π D .56π15.在直角梯形ABCD 中, AB AD ⊥, //AD BC , 22AB BC AD ===, ,E F 分别为BC , CD 的中点,以A 为圆心, AD 为半径的圆交AB 于G ,点P 在弧DG 上运动(如图).若AP AE BF λμ=+,其中λ, R μ∈,则6λμ+的取值范围是( )A .B .[1,C .D .16.已知点O 是锐角△ABC 的外心,a ,b ,c 分别为内角A 、B 、C 的对边,A=4π ,且cosB cosC AB AC OA sinC sinBλ+=,则λ的值为( )A B C .D .﹣。

第四章 第6节 极化恒等式-解析版

第四章  第6节  极化恒等式-解析版

第6节 极化恒等式知识与方法1.平行四边形性质:如下图所示,在平行四边形ABCD 中,()22222AC BD AB AD+=+.2.极化恒等式的平行四边形模式:在平行四边形ABCD 中,()2214AB AD AC BD ⋅=-. 3.极化恒等式的三角形模式:22AB AD AE EB ⋅=-,其中E 为BD 中点.提醒:极化恒等式主要用于解决数量积计算问题,利用极化恒等式,关键是取中点,巧妙之处是可将本身需要夹角才能计算的数量积转化为只需长度即可计算的量.典型例题【例1】(2012·浙江)在ABC 中,M 是BC 中点,3AM =,10BC =,则AB AC ⋅=_______. 【解析】解法1:AB AM MB =+,()()AC AM MC AB AC AM MB AM MC =+⇒⋅=+⋅+ ()2223516AM MB MC AM MB MC =+⋅+⋅+=-=-.解法2:由极化恒等式,22223516AB AC AM BM ⋅=-=-=-.【答案】16- 【例2】(2017·新课标Ⅱ卷)已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC⋅+的最小值是( ) A.2-B.32-C.4-D.1-【解析】解法1:如图,设AC 中点为D ,则3OD =()()22232224PA PB PC PA PO PD ODPD ⎛⎫⋅+=⋅=-=-⎪⎝⎭,所以当0PD =,即点P 与点D 重合时,()PA PB PC ⋅+取得最小值32-.解法2:建立如图所示的坐标系,设(),P x y ,则()1,0B -,()1,0C ,(0,3A , 所以()3PA x y =-,()1,PB x y =---,()1,PC x y =--,()2,2PB PC x y +=--, 故())()22233232222PA PBPCx y y x y ⎛⋅+=+-=+- ⎝⎭, 所以当03x y =⎧⎪⎨=⎪⎩时,()PA PB PC ⋅+取得最小值32-.【答案】B【例3】正三角形ABC 内接于半径为2的圆O ,E 为线段BC 上一动点,延长AE 交圆O 于点F ,则FA FB ⋅的取值范围为_______.【解析】解法1:建立如图1所示的平面直角坐标系,则可设()2cos ,2sin F θθ62ππθ⎛⎫-≤≤ ⎪⎝⎭,圆的半径为2423sin60ABAB ⇒=⇒=︒,故()3,1A --,)3,1B -,所以()32cos ,12sin FA θθ=----,()32cos ,12sin FB θθ=--,从而[]224cos 34sin 4sin 124sin 0,6FA FB θθθθ⋅=-+++=+∈. 解法2:如图2,设AB 中点为D ,圆的半径为24233sin 60ABAB AD ⇒=⇒=︒由极化恒等式,2223FA FB FD AD FD ⋅=-=-,由图可知当F 与点B 重合时,FD 3F 与点C 重合时,FD 取得最大值3,所以[]230,6FA FB FD ⋅=-∈.【答案】[]0,6【例4】正方形ABCD 的边长为2,以A 为圆心,1为半径作圆与AB 、AD 分别交于E 、F 于两点,若P为劣弧EF 上的动点,则PC PD ⋅的最小值为_______.【解析】解法1:建立如图所示的平面直角坐标系,则()2,2C ,()0,2D ,设()cos ,sin P θθ02πθ⎛⎫≤≤ ⎪⎝⎭,则()2cos ,2sin PC θθ=--,()cos ,2sin PD θθ=--,所以()()()()22cos cos 2sin 54sin 2cos 55PC PD θθθθθθϕ⋅=--+-=--=-+, 其中ϕ为某确定的锐角,022ππθϕθϕϕ≤≤⇒≤+≤+,故当2πθϕ+=时,PC PD ⋅取得最小值为55-.解法2:设CD 中点为G ,由极化恒等式,2221PC PD PG DG PG ⋅=-=-, 由图可知min 151PG AG =-, 所以())2min51155PC PD⋅=-=-【答案】55-强化训练1.(★★★)在平行四边形ABCD 中,2AC =,4BD =,则AB AD ⋅=_______.【解析】由极化恒等式,()()22221124344AB AD AC BD ⋅=-=-=-.【答案】3-2.(★★★)设M 、N 是20x y +-=上的两个动点,且2MN =OM ON ⋅的最小值为( )A.1B.2C.52 D.32【解析】解法1:如图,设(),2M x x -,则由2MN =()1,3N x x -- 所以()()()2123266OM ON x x x x x x ⋅=-+--=-+,显然当32x =时,OM ON ⋅取最小值32.解法2:如图,设G 为MN 中点,由极化恒等式,222221142OM ON OG MG OG MN OG ⋅=-=-=-, 显然OG 222-=OM ON ⋅的最小值32. 【答案】D3.(2016·江苏·★★★★)在ABC 中,D 是BC 中点,E 、F 是AD 上两个三等分点,4BA CA ⋅=,1BF CF ⋅=-,则BE CE ⋅的值是_______.【解析】设AE EF FD x ===,BD CD y ==,由极化恒等式,222222222259481318x BA CA AD BD x y BF CF FD BD x y y ⎧=⎧⎪⋅=-=-=⎪⎪⇒⎨⎨⋅=-=-=-⎪⎪⎩=⎪⎩, 故2222748BE CE ED BD x y ⋅=-=-=.【答案】784.(★★★)在ABC 中,60A =︒,2AB =,3AC =,D 在边AC 上运动,则DA DB ⋅的最小值为________.【解析】由余弦定理,2222cos 7BC AB AC AB AC A =+-⋅⋅=,所以7BC 取AB 中点G ,由极化恒等式,2221DA DB DG AG DG ⋅=-=-, 故DG 的长最小时,DA DB ⋅也最小,由图可知当点D 位于图中0D 处时,DG 的长最小, 且012DG BH =,03sin 3BH AB A DG =⋅==,所以DA DB ⋅的最小值为14-.【答案】14-5.(★★★)已知AB 是圆O 的直径,4AB =,C 是圆O 上异于A 、B 的一点,P 是圆O 所在平面内的任意一点,则()PA PB PC +⋅的最小值是________.【解析】如图,设OC 中点为D , 则()()()22222212PA PBPC PO PC PD OD PD +⋅=⋅=-=-≥-,当且仅当P 、D 重合时取等号, 所以()PA PB PC +⋅的最小值是2-【答案】2-6.(★★★)在半径为1的扇形AOB 中,60AOB ∠=︒,C 为弧AB 上的动点,AB 与OC 交于点P ,则OP BP ⋅的最小值为_______.【解析】如图,设OB 中点为D ,则22214OP BP PD OD PD ⋅=-=-,故当PD 最小时,OP BP ⋅最小,由图可知当P 与0P 重合时,PD 最小,且易求得03DP =,所以OP BP ⋅的最小值为116-.【答案】116-7.(★★★)若O 和F 分别是椭圆22143x y +=的中心和左焦点,P 为椭圆上一点,则OP FP ⋅的最大值是( )A.2B.3C.6D.8【解析】如图,由题意,()1,0F -,设OF 中点为D ,则12OD =,由极化恒等式,22214OP FP PD OD PD ⋅=-=-,显然max 52PD =,所以OP FP ⋅的最大值是6.【答案】C8.(★★★)如下图所示,正方形ABCD 的边长为4,AB 为半圆O 的直径,P 为半圆圆弧上的动点,则PC PD ⋅的取值范围为________.【解析】如图,设E 为CD 中点,由极化恒等式,2224PC PD PE DE PE ⋅=-=-,由图可得225PE ≤≤所以PC PD ⋅的取值范围为[]0,16.【答案】[]0,169.(★★★★)四边形ABCD 中,M 是AB 上的点,1MA MB MC MD ====,90CMD ∠=︒,若N 是线段CD 上的动点,NA NB ⋅的取值范围是_______.【解析】M 是AB 上的点且1MA MB MC MD ====⇒C 、D 两点在以AB 为直径的圆上,且圆心为M ,90CMD CMD ∠=︒⇒是等腰直角三角形,由极化恒等式,2221NA NB NM AM NM ⋅=-=-,显然上点N 在CD 21NM ≤≤,所以102NA NB -≤⋅≤.【答案】1,02⎡⎤-⎢⎥⎣⎦10.(★★★★)在ABC 中,3AB =,4AC =,60A =︒,若P 是ABC 所在平面内一点,且2AP =,则PB PC ⋅的最大值是_________.【解析】如图,2AP =⇒点P 在以A 为圆心,2为半径的圆上运动,设BC 中点为D ,由余弦定理,222132cos 1313BC AB AC AB AC A BC CD =+-⋅⋅∠=⇒= 由极化恒等式,222134PB PC PD CD PD ⋅=-=-,由斯特瓦尔特公式,222AB CD AC BD AD BC BD CD BC ⋅+⋅-⋅=⋅⋅,即22213131313341313AD +-解得:37AD =AD 的长),当点P 在圆上运动时,max 3722PD AD =+=+,所以()2max37132102374PB PC⎫⋅=+-=+⎪⎪⎝⎭【答案】10237。

微专题06——极化恒等式及其应用(学生版)

微专题06——极化恒等式及其应用(学生版)

讲义:微专题06——极化恒等式及其应用班级:__________________姓名:___________________随着高考对平面向量问题的研究的不断深入,极化恒等式在解决平面向量问题上取得一些进展,随着应用的推进,一些诸如“动点”、“多动动”、“曲线”、“运动动态”、“极限状态”等平面向量复杂问题接踵而至.极化恒等式在2016年江苏高考以后的模拟练习中,经常出现,往往通过极化恒等式能快速地解决一些求数量积问题,在此要注意观察什么样的数量积适用于极化恒等式解决,首先:共起点(或共终点或可化成共起点或终点),其次:有中线(没有自己造).极化恒等式1.平行四边形中的极化恒等式.设b a ,是平面内的一组基底,如图所示,由恒等式])()[(4122b a b a b a --+=∙可得:2222])()[(41DM AM BD AC -=-=∙b a .即22||||DM AM AD AB -=∙.此等式称为极化恒等式.其几何意义是向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的41.2.三角形中的极化恒等式.在ABC ∆中,设D 为BC 的中点,2=+,=-,则224)(AD AC AB =+,22)(CB AC AB =-,两式相减可得:2244CB AD AC AB -=∙,化简得极化恒等式2241CB AD AC AB -=∙.说明:1.极化恒等式源于教材又高于教材,在ABC ∆中,)(21AC AB AD +=,)(21AB AC BD -=是教材上出现的两个重要向量三角形关系,而极化恒等式无非就是这两个公式的逆用;2.具有三角几何背景的数学问题利用极化恒等式考虑尤为简单;3.向量与代数的互换运算深入人心,而与几何的运算略显单薄,而极化恒等式恰恰弥补了这个缺憾,可以说极化恒等式把向量的数量积问题用形象的几何图形展示得淋漓尽致.引例:在ABC ∆中,M 是线段BC 的中点,3=AM ,10=BC ,则∙的值为_______.A B C D M B CM A目标一:掌握用极化恒等式求数量积的值例1:如图,在ABC ∆中,D 是BC 的中点,F E ,是AD 上的两个三等分点,4=∙,1-=∙CE BE ,则CF BF ∙的值是__________.训练1:如图,在ABC ∆中,E D ,是BC 上的两个三等分点,2=∙AC AB ,4=∙AE AD ,则BC 的模长的值是__________.B CAE FAB D E C目标二:掌握用极化恒等式求数量积的范围、最值例2:如图,ABC ∆是边长为32的等边三角形,点P 是平面内的任意一点,1||=,则∙的最小值是______________________.训练2:已知正三角形ABC 内接于半径为2的圆O ,点P 是圆O 上的一个动点,则∙的取值范围是______________________.A BCPO BA PC例3:在边长为1的菱形ABCD 中,π32=∠A ,若点P 为对角线AC 上一点,则∙的最大值为______________________.训练3:在菱形ABCD 中,对角线3=AC ,1=BD ,点P 是AD 边上的动点,则PC PB ∙的最小值为______________________.午练:微专题06——极化恒等式及其应用班级:__________________姓名:___________________1.在ABC ∆中,10=BC ,16-=∙AC AB ,D 为边BC 的中点,则AD 的模为__________.2.设P 是ABC ∆的中线AD 的中点,D 为边BC 的中点,且2=AD ,若3-=∙PC PB 则AC AB ∙的值为________________.3.如图,在ABC ∆中,已知4=∙AC AB ,3||=BC ,点N M ,分别为边BC 上的三等分点,则AN AM ∙的值为_________________.4.如图,在ABC ∆中,点F E D ,,依次为边BC 上的四等分点,2=∙AC AB ,5=∙AF AD ,则AE 的长为_____________.5.已知AB 为圆1)1(:22=+-y x C 的直径,点P 为直线01=+-y x 上任意一点,则PB PA ∙的最小值为_________________.AB M NC A BDE CF6.已知圆O 的直径2=AB ,C 为该圆上异于B A 、的一点,P 是圆O 所在平面上任一点,则PC PB PA ∙+)(的最小值为_________________.7.已知点)02( ,A ,)04( ,B ,动点P 在抛物线x y 42-=上运动,则使BP AP ∙取得最小值的点P 的坐标为_________________.8.【选做】已知点B A ,分别在直线31==x x ,上,4||=-OB OA ,则当||+取得最小值时,∙的值为________________.作业:微专题06——极化恒等式及其应用班级:__________________姓名:___________________1.在ABC ∆中,点D 是BC 的中点,若208==BC AD ,,则=∙AC AB _____________.2.在平面直角坐标系中,菱形OABC 的两个顶点为)00( ,O ,)11( ,A ,且1=∙OC OA ,则=∙AC AB ________________.3.已知点M 是边长为2的正方形ABCD 的内切圆内(含边界)一动点,则MB MA ∙的取值范围为_________________.4.在周长为16的PMN ∆中,6=MN ,则PN PM ∙的取值范围为_____________.5.已知D C B A ,,,四点的坐标分别为)01( -,A ,)01( ,B ,)10( ,C ,)02( ,D ,P 是线段CD 上的任意一点,则BP AP ∙的最小值为_________________.6.若等腰ABC ∆底边BC 上的中线长为1,底角︒>60B ,则∙的取值范围为_________________.7.点P 为椭圆1151622=+y x 上的任意一点,EF 为圆4)1(22=+-y x 的一条直径,则PF PE ∙的取值范围为_________________.8.如图,在ABC ∆中,已知︒=∠==12023BAC AC AB ,,,点D 为边BC 的中点,若AD CE ⊥,垂足为E ,则EC EB ∙的值为_________________.AB D EC9.如图,若AB 是圆O 的直径,点M 是弦CD 上的一个动点,68==CD AB ,,则∙的取值范围是______.10.设锐角ABC ∆的面积为1,边AC AB ,的中点分别为F E ,,P 为线段EF 上的动点,则2BC PC PB +∙的最小值是__________________.11.如图,ABC ∆为等腰三角形,4==AC AB ,︒=∠120BAC ,以A 为圆心,1为半径的圆分别交AC AB ,于点F E ,,点P 是劣弧EF 上的一点,则PC PB ∙的取值范围是______.C B AEF PC A BD M O12.【选做】如图,圆O 是ABC Rt ∆的内切圆,已知3=AC ,4=BC ,︒=90C ,过圆心O 的直线l 交圆O 于Q P ,两点,则CQ BP ∙的取值范围为____________.A C BQOPl。

平面向量极化恒等式课件

平面向量极化恒等式课件

利用向量减法的三角形法则证明
• 总结词:通过利用向量减法的三角形法则证明平面向量极化恒等式。 • 详细描述:首先,我们利用向量减法的三角形法则得到
$\overset{\longrightarrow}{a} - \overset{\longrightarrow}{b}$可以 表示为从起点到终点的有向线段。然后,将有向线段延长至原来的两倍 ,得到新的有向线段$(\overset{\longrightarrow}{a} \overset{\longrightarrow}{b}) + (\overset{\longrightarrow}{a} + \overset{\longrightarrow}{b})$。根据向量的数乘分配律和向量的加 法法则,我们可以得到$\lbrack(\overset{\longrightarrow}{a} \overset{\longrightarrow}{b}) + (\overset{\longrightarrow}{a} + \overset{\longrightarrow}{b})\rbrack\mathbf{\cdot}(\overset{\lon grightarrow}{a} + \overset{\longrightarrow}{b}) = (\overset{\longrightarrow}{a})^{2} (\overset{\longrightarrow}{b})^{2}$。最后,利用平面向量极化恒等 式的等价形式,我们可以证明平面向量极化恒等式成立。
05
平面向量极化恒等式的练习与 巩固
基础练习题
向量概念
掌握向量的基本概念、 向量的表示方法以及向
量在几何中的应用。
向量的加法
理解向量加法的定义和 性质,掌握向量加法的

(完整版)向量—极化恒等式

(完整版)向量—极化恒等式
向量的几何意义-极化恒等式
定义解读,引入主题
向量数量积(代数)定义
定义解读,引入主题
向量数量积(几何)意义
rr r r
a b | a || b | cos
rr
| a | (| b | cos )
r
r
(| a | cos ) | b |
运用定义,解决问题
例1:如图,在RT △ABC中,已知AB=3,AC=4,
1
uuur 2 ( AB
uuur AC
2
)
2
定义解读,引入主题
四.向量数量积运算中的垂直问题
定义解读,引入主题
四.向量数量积运算中的垂直问题
rr r r
r
r
(2)几何意义:a b | a | (| b | cos ) (| a | cos ) | b |
rr r r r r (3)极化恒等式:4a b (a b)2 (a b)2
uuur uuur uuuur 2 uuur 2 AB AC AM MB
uuuur AM
uuur CB
uuur uuur
9
则AO AB ______2______.
变式1:(09 陕西预赛)在△ABC,O是△ABC的
外心
,AB=3,AC=5,则
uuur AO
uuur BC
____8____.
运用定义,解决问题
D
运用定义,解决问题
16
5 2
巩固深化,提升能力
变式1
如图,在边长为1的正方
形中,p为AB上的一动点,
uuur BC=5,则AC
uuur CB
ቤተ መጻሕፍቲ ባይዱ
______1_6_____.

2025年新人教版高考数学一轮复习讲义 第五章 培优点7 极化恒等式

2025年新人教版高考数学一轮复习讲义  第五章 培优点7 极化恒等式

跟踪训练 2 (1)已知正方形 ABCD 的边长为 2,MN 是它的内切圆的一条
弦,点 P 为正方形四条边上的动点,当弦 MN 的长度最大时,P→M·P→N的取
值范围是
√A.[0,1]
C.[1,2]
B.[0, 2] D.[-1,1]
如图所示,设P是线段AB上的任意一点, P→M=P→O+O→M,P→N=P→O+O→N=P→O-O→M,圆 O
方法一(极化恒等式法)
设BD=DC=m,AE=EF=FD=n,则AD=3n.
由向量的极化恒等式,知 A→B·A→C=|A→D|2-|D→B|2=9n2-m2=4, F→B·F→C=|F→D|2-|D→B|2=n2-m2=-1,
联立解得 n2=58,m2=183,
因此E→B·E→C=|E→D|2-|D→B|2=4n2-m2=78, 即B→E·C→E=78. 方法二(坐标法)以直线BC为x轴,过点D且垂 直于BC的直线为y轴,建立如图所示的平面直 角 坐 标 系 . 设 A(3a,3b) , B( - c,0) , C(c,0) , 则 E(2a,2b),F(a,b),
连接 HF,EG,交于点 O,则 O 为 HF,GE 的中 点,则E→F·F→G=E→F·E→H=E→O2-O→F2=1-122=34, G→H·H→E=G→H·G→F=G→O2-O→H2=1-122=34,因此 E→F·F→G+G→H·H→E=32.
题型二 利用极化恒等式求最值(范围)
例 2 (1)已知△OAB 的面积为 1,AB=2,动点 P,Q 在线段 AB 上滑动, 且 PQ=1,则O→P·O→Q的最小值为____34____.
1 2 3 4 5 6 7 8 9 10
所以P→A·P→O+P→B·P→C=2|P→E|2-4. 因为 P 是圆 O 内一点,所以 0≤|P→E|<3, 所以-4≤2|P→E|2-4<14, 即-4≤P→A·P→O+P→B·P→C<14.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极化恒等式学生版修订

IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】
课题:极化恒等式在向量问题中的应用



标 目标1:通过自主学习掌握极化恒等式两种模式,理解其几何意义;
目标2-1:通过对例1的自主学习掌握用极化恒等式求数量积的值; 目标2-2:通过对例2的自主学习掌握用极化恒等式求数量积的最值、范围;
目标2-3:通过小组合作学习掌握极化恒等式解决与数量积有关的综合问题。

重点 掌握极化恒等式,利用它解决一类与数量积有关的向量问题
难点 根据具体的问题情境,灵活运用极化恒等式
目标达成途径 学习自我评价
阅读以下材料: .
两倍等于两条邻边平方和的平方和
平行四边形的对角线的你能用向量方法证明:何模型。

示向量加法和减法的几引例:平行四边形是表,,b AD a AB ==证明:不妨设
,,则b a DB b a A -=+=C
()2
22222C C b b a a b a A A +⋅+=+==(1)
目标1:阅读材料,了解极化恒等式的由来过程,掌握极化恒
3,10AM BC ==,则AB AC ⋅=____.
解:因为M 是BC 的中点,由极化恒等式得:
2241BC AM AC AB -=⋅=9-1004
1⨯=-16 【小结】在运用极化恒等式的三角形模式时,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式。

目标检测
.
________O O 2.2的取值范围是则上的一个动点,是圆,点的圆内接于半径为(自编)已知正三角形例PB PA P ABC ⋅解:取AB 的中点D ,连结CD ,因为三角形ABC 为
正三角形,所以O 为三角形ABC 的重心,O 在CD 上,
且22==OD OC ,所以3=CD ,32=AB
(也可用正弦定理求AB )
又由极化恒等式得:
因为P 在圆O 上,所以当P 在点C 处时,3||max =PD
当P 在CO 的延长线与圆O 的交点处时,1||min =PD
所以]6,2[-∈⋅PB PA
【小结】涉及数量积的范围或最值时,可以利用极化恒等式将多变量转变为单变量,再用数形结合等方法求出单变量的范围、最值即可。

目标检测
问题、疑惑、错解汇集
能力提升
例3.(2013浙江理7)在ABC ∆中,0P 是边AB 上一定点,满足
014
P B AB =,且对于边AB 上任一点P ,恒有00PB PC P B PC ⋅≥⋅。

则()
A.90ABC ∠=
B.90BAC ∠=
C.AB AC =
D.AC BC =
目标检测
问题、疑惑汇集
和点(2,0)
F-分别是双曲线
AC。

相关文档
最新文档