2021届高考数学(理)二轮总复习学案:层级二 专题五 第三讲 随机变量及其分布列

合集下载

2021新高考数学二轮总复习学案:6.4.3 统计与概率问题综合应用含解析

2021新高考数学二轮总复习学案:6.4.3 统计与概率问题综合应用含解析

2021新高考数学二轮总复习学案:6.4.3 统计与概率问题综合应用含解析晨鸟教育PAGEEarlybird6.4.3 统计与概率问题综合应用必备知识精要梳理离散型随机变量的期望与方差(1)E(X)=x1p1+x2p2+…+xipi+…+xnpn为X的均值或数学期望.(2)D(X)=(x1-E(X))2·p1+(x2-E(X))2·p2+…+(xi-E(X))2·pi+…+(xn-E(X))2·pn叫做随机变量X的方差.(3)均值与方差的性质:E(aX+b)=aE(X)+b;E(ξ+η)=E(ξ)+E(η);D(aX+b)=a2D(X).关键能力学案突破热点一离散型随机变量的期望与方差【例1】(20xx山西临汾高三适应性训练,19)今年情况特殊,小王在居家自我隔离时对周边的水产养殖产业进行了研究.A、B两个投资项目的利润率分别为投资变量X和Y.根据市场分析,X和Y的分布列分别为:X5%10%P0.80.2Y2%8%P0.20.50.3(1)若在A,B两个项目上各投资100万元,ξ和η分别表示投资项目A和B 所获得的利润,求方差D(ξ),D(η);(2)若在A,B两个项目上共投资200万元,那么如何分配,能使投资A项目所得利润的方差与投资B项目所得利润的方差的和最小,最小值是多少?[注:D(aX+b)=a2D(X)]解题心得期望与方差的一般计算步骤(1)理解离散型随机变量的意义,写出变量X的所有可能取的值;(2)求X取各个值时的概率,写出分布列;(3)根据分布列,正确运用期望与方差的定义或公式进行计算.若变量X服从二项分布等特殊分布时,期望与方差可直接利用公式求解.【对点训练1】(20xx四川宜宾高三诊断,19)某烘焙店加工一个成本为60元的蛋糕,然后以每个120元的价格出售,如果当天卖不完,剩下的这种蛋糕作餐厨垃圾处理.(1)若烘焙店一天加工16个这种蛋糕,求当天的利润y(单位:元)关于当天需求量n(单位:个,n∈N)的函数解析式;(2)烘焙店记录了100天这种蛋糕的日需求量(单位:个),整理得下表:日需求量n1415161718192010201616151310①若烘焙店一天加工16个这种蛋糕,X表示当天的利润(单位:元),求X的分布列与数学期望及方差;②若烘焙店一天加工16个或17个这种蛋糕,仅从获得利润大的角度考虑,你认为应加工16个还是17个?请说明理由.热点二统计数据及概率在现实决策问题中的应用【例2】(20xx山西太原5月模拟,20)为实现20xx年全面建设小康社会,某地进行产业的升级改造.经市场调研和科学研判,准备大规模生产某高科技产品的一个核心部件,目前只有甲、乙两种设备可以独立生产该部件.如图是从甲设备生产的该核心部件中随机抽取400个,对其尺寸x进行统计后整理的频率分布直方图.根据行业质量标准规定,该核心部件尺寸x满足:|x-12|≤1为一级品,12为三级品.(1)现根据频率分布直方图中的分组,用分层抽样的方法先从这400个部件中抽取40个,再从所抽取的40个部件中,抽取出所有尺寸x∈[12,15]的部件,再从所有尺寸x∈[12,15]的部件中抽取2件,记ξ为这2个部件中尺寸x∈[14,15]的个数,求ξ的分布列和数学期望;(2)将甲设备生产的部件成箱包装出售时,需要进行检验.已知每箱有100个部件,每个部件的检验费用为50元.检验规定:若检验出三级品需更换为一级或二级品;若不检验,让三级品进入买家,厂家需向买家每个支付200元补偿.现从一箱部件中随机抽检了10个,结果发现有1个三级品.若将甲设备的样本频率作为总体的概率,以厂家支付费用作为决策依据,问是否对该箱中剩余部件进行一一检验?请说明理由;(3)为加大生产力度,厂家需增购设备.已知这种部件的利润如下:一级品的利润为500元/个;二级品的利润为400元/个;三级品的利润为200元/个.乙种设备生产的该部件中一、二、三级品的概率分别是25,1解题心得利用均值和方差进行决策的方法利用随机变量的均值与方差可以帮助我们作出科学的决策.其中随机变量ξ的均值的意义在于描述随机变量的平均程度,而方差则描述了随机变量稳定与波动或集中与分散的状况.品种的优劣、仪器的好坏、预报的准确与否、机器的性能好坏等很多指标都与这两个特征量有关.(1)若我们希望实际的平均水平较理想时,则先求随机变量ξ1,ξ2的均值.当E(ξ1)=E(ξ2)时,不应误认为它们一样好.需要用D(ξ1),D(ξ2)来比较这两个随机变量的偏离程度.(2)若我们希望比较稳定时,应先考虑方差,再考虑均值是否相等或者接近.【对点训练2】(20xxxx惠州一模,20)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年入流量X40120发电机最多可运行台数123若某台发电机运行,则该台年利润为5 000万元;若某台发电机未运行,则该台年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?热点三统计与概率和函数、导数的综合【例3】(20xx山东威海一模,22)新药在进入临床实验之前,需要先通过动物进行有效性和安全性的实验.现对某种新药进行5 000次动物实验,一次实验方案如下:选取3只白鼠对药效进行检验,当3只白鼠中有2只或2只以上使用“效果明显”,即确定“实验成功”;若有且只有1只“效果明显”,则再取2只白鼠进行二次检验,当2只白鼠均使用“效果明显”,即确定“实验成功”,其余情况则确定“实验失败”.设对每只白鼠的实验相互独立,且使用“效果明显”的概率均为p(0<p<1).(1)若p=12,设该新药在一次实验方案中“实验成功”的概率为p0,求p0(2)若动物实验预算经费700万元,对每只白鼠进行实验需要300元,其他费用总计为100万元,问该动物实验总费用是否会超出预算,并说明理由.解题心得解决统计与概率和函数、导数的综合问题,关键是读懂题意,将与概率有关的问题(尤其是最值问题)转化为函数问题,再利用函数或导数知识解决.在转化过程中,对已知条件进行适当的变形、整理,使之与求解的结论建立联系,从而解决问题.【对点训练3】(20xx东北师大附中模拟,20)随着现代电子技术的迅猛发展,关于元件和系统可靠性的研究已发展成为一门新的学科——可靠性理论.在可靠性理论中,一个元件正常工作的概率称为该元件的可靠性.元件组成系统,系统正常工作的概率称为该系统的可靠性.现有n(n∈N*,n≥2)种电子元件,每种2个,每个元件的可靠性均为p(0<p<1).当某元件不能正常工作时,该元件在电路中将形成断路.现要用这2n个元件组成一个电路系统,有如下两种连接方案可供选择,当且仅当从A到B的电路为通路状态时,系统正常工作.(1)(ⅰ)分别写出按方案①和方案②建立的电路系统的可靠性P1,P2(用n 和p表示);(ⅱ)比较P1与P2的大小,说明哪种连接方案更稳定可靠;(2)设n=4,p=45,已知按方案②建立的电路系统可以正常工作,记此时系统中损坏的元件个数为X,求随机变量X的分布列和数学期望热点四统计与概率和数列的综合【例4】(20xx山东青岛二模,22)中国女排,曾经十度成为世界冠军,铸就了响彻中华的女排精神.女排精神的具体表现为:扎扎实实,勤学苦练,无所畏惧,顽强拼搏,同甘共苦,团结战斗,刻苦钻研,勇攀高峰.女排精神对各行各业的劳动者起到了激励、感召和促进作用,给予全国人民巨大的鼓舞.(1)看过中国女排的纪录片后,某大学掀起“学习女排精神,塑造健康体魄”的年度主题活动,一段时间后,学生的身体素质明显提高,将该大学近5个月体重超重的人数进行统计,得到如下表格:月份x12345体重超重的人数y640540420300200若该大学体重超重人数y与月份变量x(月份变量x依次为1,2,3,4,5…)具有线性相关关系,请预测从第几月份开始该大学体重超重的人数降至10人以下?(2)在某次排球训练课上,球恰由A队员控制,此后排球仅在A队员、B队员和C队员三人中传递,已知每当球由A队员控制时,传给B队员的概率为12,传给C队员的概率为12;每当球由B队员控制时,传给A队员的概率为23,传给C队员的概率为13;每当球由C队员控制时,传给A队员的概率为23,传给B队员的概率为13.记an,bn,cn为经过n次传球后球分别恰由A(ⅰ)若n=3,记B队员控制球的次数为X,求E(X);(ⅱ)若an=23bn-1+23cn-1,bn=12an-1+13cn-1,cn=12an-1+13bn-1,n≥证明:数列an-25为等比数列,并判断经过200次传球后A附1:回归方程y–bb。

高三数学二轮复习-第2讲概率、随机变量及其分布列专题攻略课件-理-新人教版

高三数学二轮复习-第2讲概率、随机变量及其分布列专题攻略课件-理-新人教版
ξ=50 表示所取 4 球为 3 白 1 红(3×10+1×20=50), ∴P(ξ=50)=CC33·C47 14=345, ξ=60 表示所取 4 球为 2 白 2 红(2×10+2×20=60), ∴P(ξ=60)=CC23·C47 24=1385, ξ=70 表示所取 4 球为 3 红 1 白(3×20+1×10=70), ∴P(ξ=70)=CC34·C47 13=1325, ξ=80 表示所取 4 球全为红球(4×20=80), ∴P(ξ=80)=CC4447=315.
热点突破探究
典例精析
题型一 几何概型
例1 如图,正方形 OABC 的边长为 2. (1)在其四边或内部取点 P(x,y),且 x,y∈Z,则事 件“|OP|>1”的概率是__________; (2)在其内部取点 P(x,y),且 x,y∈R,则事件“△ POA, △ PAB,△ PBC,△ PCO 的面积均大于23”的概率是 __________.
1≤x≤-23.
设事件
A

π cos2x
的值介于
0
到12之间,则事件
A
发生
2
的区域长度为23. ∴P(A)=32=13.
题型二 古典概型
例2 一个袋中装有大小相同的10个球,其 中红球8个,黑球2个,现从袋中有放回地取球, 每次随机取1个. (1)求连续取两次都是红球的概率; (2)如果取出黑球,则取球终止,否则继续取球, 直到取出黑球,求取球次数不超过3次的概率.
法二:(间接法):从 6 个点中任取三个点有 C36种方 法.其中在一条直线上的三点有(C34+1)个. 构成三角形个数为 C36-C43-1, 故所求概率为 P=C36-CC3634-1=34.
答案:34

高考理科数学二轮专题提分教程全国课件概率随机变量及其分布列

高考理科数学二轮专题提分教程全国课件概率随机变量及其分布列

方差
描述随机变量取值的离散程度,即各数值与其 均值之差的平方的平均值。
标准差
方差的算术平方根,用于衡量数据的波动大小。
协方差与相关系数
协方差
衡量两个随机变量的总体误差,反映两 个变量变化趋势是否一致。
VS
相关系数
将协方差标准化后的结果,消除了量纲影 响,更客观地反映两个变量间的线性相关 程度。
矩、峰度和偏度
自助法
02
03
贝叶斯区间估计
通过对样本进行重复抽样来模拟 总体分布,进而得到参数的区间 估计。
在贝叶斯统计框架下,利用先验 信息和样本信息计算后验分布, 进而得到参数的区间估计。
假设检验基本原理和步骤
01
基本原理:在总体分布未知的情况下,通过构造检验统计 量并根据其分布进行决策,判断原假设是否成立。
概率的定义
概率是描述随机事件发生的可能性的 数值,其值介于0和1之间。
概率的性质
概率具有非负性、规范性(所有可能 事件的概率之和为1)、可加性(互 斥事件的概率之和等于它们各自概率 的和)。
条件概率与独立性
条件概率
在已知某个事件发生的条件下,另一个事件发生的概率。条件概率的计算公式为P(A|B) = P(AB) / P(B),其中 P(AB)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
性质
边缘分布律/密度函数也具有非负 性和归一性,且可以由联合分布 律/密度函数求得。
条件分布律/密度函数
条件分布律
对于离散型二维随机变量,其条 件分布律是指在已知其中一个随 机变量取某个值的条件下,另一 个随机变量取某个值的概率。
条件密度函数
对于连续型二维随机变量,其条 件密度函数是指在已知其中一个 随机变量在某个区间内取值的条 件下,另一个随机变量在某个点 取值的概率。

高考数学(理)二轮复习专题突破课件:1-7-2概率、随机变量及其分布列

高考数学(理)二轮复习专题突破课件:1-7-2概率、随机变量及其分布列

主干知识研讨
命题角度聚焦
阅卷现场体验
[探究提升] 1.一个复杂事件若正面情况较多,反面情况较少,则 一般利用对立事件进行求解.尤其是涉及到“至多”、“至 少”等问题常常用这种方法求解(如第(1)问). 2.求复杂事件的概率,要正确分析复杂事件的构成,看复杂事 件能转化为几个彼此互斥的事件的和还是事件能转化为几个相 互独立事件同时发生的积事件,然后用概率公式求解(如第(2) 问).
主干知识研讨
命题角度聚焦
阅卷现场体验
(2)设 C 表示事件“观众丙选中 3 号歌手”, 则 P(C)=CC2435=35, 依题意,A、B、C 相互独立,A ,B ,C 相互独立,且 AB C ,A B
ห้องสมุดไป่ตู้
C, A BC,ABC 彼此互斥.
又 P(X=2)=P(AB C )+P(A B C)+P( A BC)
主干知识研讨
命题角度聚焦
阅卷现场体验
解 (1)记“甲队以 3∶0 胜利”为事件 A1,“甲队以 3∶1 胜利” 为事件 A2,“甲队以 3∶2 胜利”为事件 A3, 由题意知,各局比赛结果相互独立,
故 P(A1)=233=287, P(A2)=C322321-23×23=287, P(A3)=C422321-232×12=247. 所以,甲队以 3∶0 胜利、以 3∶1 胜利的概率都为287,以 3∶2 胜 利的概率为247.
主干知识研讨
命题角度聚焦
阅卷现场体验
【变式训练2】 (2013·陕西高考改编)在一场娱乐晚会上,有5位 民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最 受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手, 其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3 至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏 爱,因此在1至5号中选3名歌手. (1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率; (2)X表示3号歌手得到观众甲、乙、丙的票数之和,求 “X≥2”的事件概率.

2021届高考数学(理)二轮复习讲义:专题6概率与统计第2讲概率、随机变量及其分布列

2021届高考数学(理)二轮复习讲义:专题6概率与统计第2讲概率、随机变量及其分布列

2021届高考数学(理)二轮复习讲义:专题6 概率与统计第2讲概率、随机变量及其分布列第2讲概率、随机变量及其分布列高考定位 1.计数原理、古典概型、几何概型的考查多以选择或填空的形式命题,中低档难度;2.概率模型多考查独立重复试验、相互独立事件、互斥事件及对立事件等;对离散型随机变量的分布列及期望的考查是重点中的“热点”,多在解答题的前三题的位置呈现,常考查独立事件的概率,超几何分布和二项分布的期望等.1.(20·山东卷)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A.eq \f(5,18)B.eq \f(4,9)C.eq \f(5,9)D.eq \f(7,9)2.(20·全国Ⅰ卷)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.eq \f(1,3)B.eq \f(1,2)C.eq \f(2,3)D.eq \f(3,4)3.(20·全国Ⅱ卷)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,表示抽到的二等品件数,则D=.4.(20·全国Ⅲ卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为20瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?考点整合1.概率模型公式及相关结论(1)古典概型的概率公式.P(A)=eq \f(m,n)=eq \f(事件A中所含的基本事件数,试验的基本事件总数).(2)几何概型的概率公式.P(A)=eq \f(构成事件A的区域长度(面积或体积),试验的全部结果所构成的区域长度(面积或体积)).(3)条件概率.在A发生的条件下B发生的概率:P(B|A)=eq \f(P(AB),P(A)).(4)相互独立事件同时发生的概率:若A,B相互独立,则P(AB)=P(A)·P(B).(5)若事件A,B互斥,则P(A∪B)=P(A)+P(B),P=1-P(A).2.独立重复试验与二项分布如果事件A在一次试验中发生的概率是p,那么它在n次独立重复试验中恰好发生k次的概率为Pn(k)=Ceq \o\al(k,n)pk(1-p)n-k,k=0,1,2,…,n.用表示事件A在n次独立重复试验中发生的次数,则服从二项分布,即~B(n,p)且P(=k)=Ceq \o\al(k,n)pk(1-p)n-k.3.超几何分布在含有M件次品的N件产品中,任取n件,其中恰有件次品,则P(=k)=,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N,此时称随机变量服从超几何分布.超几何分布的模型是不放回抽样,超几何分布中的参数是M,N,n.4.离散型随机变量的均值、方差(1)离散型随机变量ξ的分布列为ξ123…i…nPp1p2p3…pi…pn离散型随机变量ξ的分布列具有两个性质:①pi≥0;②p1+p2+…+pi+…+pn=1(i=1,2,3,…,n).(2)E(ξ)=1p1+2p2+…+ipi+…+npn为随机变量ξ的数学期望或均值.D(ξ)=(1-E(ξ))2·p1+(2-E(ξ))2·p2+…+(i-E(ξ))2·pi+…+(n-E(ξ))2·pn叫做随机变量ξ的方差.(3)数学期望、方差的性质.①E(aξ+b)=aE(ξ)+b,D(aξ+b)=a2D(ξ).②~B(n,p),则E=np,D=np(1-p).③服从两点分布,则E=p,D=p(1-p).热点一古典概型与几何概型【例1】(1)(20·北京卷)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A.eq \f(1,5)B.eq \f(2,5)C.eq \f(8,25)D.eq \f(9,25)(2)(20·山东卷)在[-1,1]上随机地取一个数k,则事件“直线y=k与圆(-5)2+y2=9相交”发生的概率为.探究提高 1.求古典概型的概率,关键是正确求出基本事件总数和所求事件包含的基本事件总数.常常用到排列、组合的有关知识,计数时要正确分类,做到不重不漏.2.计算几何概型的概率,构成试验的全部结果的区域和事件发生的区域的寻找是关键,有时需要设出变量,在坐标系中表示所需要的区域.【训练1】(1)(20·全国Ⅰ卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.eq \f(1,3)B.eq \f(1,2)C.eq \f(2,3)D.eq \f(5,6)(2)(20·江苏卷)记函数f=eq \r(6+-2)的定义域为D.在区间[-4,5]上随机取一个数,则∈D的概率是.热点二互斥事件、相互独立事件的概率命题角度1 互斥条件、条件概率【例2-1】(20·全国Ⅱ卷选编)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数1234≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数1234≥5概率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60的概率.命题角度2 相互独立事件与独立重复试验的概率【例2-2】某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和系统B在任意时刻发生故障的概率分别为eq \f(1,10)和p.(1)若在任意时刻至少有一个系统不发生故障的概率为eq \f(49,50),求p的值;(2)求系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.探究提高1.求复杂事件的概率,要正确分析^p 复杂事件的构成,看复杂事件是能转化为几个彼此互斥的事件的和事件还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解.2.(1)注意辨别独立重复试验的基本特征:①在每次试验中,试验结果只有发生与不发生两种情况;②在每次试验中,事件发生的概率相同.(2)牢记公式Pn(k)=Ceq\o\al(k,n)pk(1-p)n-k,k=0,1,2,…,n,并深刻理解其含义.【训练2】(20·邯郸质检)20年4月1日,国家在河北省白洋淀以北的雄县、容城、安新3县设立雄安新区,这是继深圳经济特区和上海浦东新区之后又一具有全国意义的新区,是千年大计、国家大事。

高中数学高考二轮复习随机变量及其分布列教案(全国专用)

高中数学高考二轮复习随机变量及其分布列教案(全国专用)

1.(2014·课标Ⅱ,5,易)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6.已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.451.A设“一天的空气质量为优良”为事件A,“连续两天为优良”为事件AB,则已知某天的空气质量为优良,随后一天的空气质量为优良的概率为P(B|A).由条件概率可知,P(B|A)=P(AB)P(A)=0.60.75=45=0.8,故选A.2.(2015·湖南,18,12分,中)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X .求X 的分布列和数学期望.2.解:(1)记事件A 1={从甲箱中摸出的1个球是红球}, A 2={从乙箱中摸出的1个球是红球}, B 1={顾客抽奖1次获一等奖}, B 2={顾客抽奖1次获二等奖}, C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A -2与A -1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A -2+A -1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2) =25×12=15,P (B 2)=P (A 1A -2+A -1A 2)=P (A 1A -2)+P (A -1A 2)=P (A 1)P (A -2)+P (A -1)P (A 2)=P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2) =25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15. 于是P (X =0)=C 03⎝ ⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125, P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125,P (X =3)=C 33⎝ ⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125. 故X 的分布列为X 的数学期望为E (X )=3×15=35.3.(2014·山东,18,12分,中)乒乓球台面被球网分隔成甲、乙两部分.如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率; (2)两次回球结束后,小明得分之和ξ的分布列与数学期望.3.解:记A i 为事件“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3), 则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16;记B i 为事件“小明对落点在B 上的来球回球的得分为i 分”(i =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.(1)记D 为事件“小明两次回球的落点中恰有1次的落点在乙上”. 由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3, 由事件的独立性和互斥性,得 P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3) =P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3)=P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)·P (B 1)+P (A 0)P (B 3)=12×15+13×15+16×35+16×15=310,所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.(2)由题意,随机变量ξ可能的取值为0,1,2,3,4,6, 由事件的独立性和互斥性,得 P (ξ=0)=P (A 0B 0)=16×15=130,P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13×15+16×35=16, P (ξ=2)=P (A 1B 1)=13×35=15,P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12×15+15×16=215, P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130, P (ξ=6)=P (A 3B 3)=12×15=110. 可得随机变量ξ的分布列为所以数学期望Eξ=0×130+1×16+2×15+3×215+4×1130+6×110=9130.4.(2013·课标Ⅰ,19,12分,中)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望. 4.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=416×116+116×12=364.(2)X可能的取值为400,500,800,并且P(X=400)=1-416-116=1116,P(X=500)=116,P(X=800)=14.所以X的分布列为E(X)=400×1116+500×116+800×14=506.25.相互独立事件的概率是高考的常考考点,是解决复杂问题的基础,一般情况下,一些较为复杂的事件可以拆分为一些相对简单事件的和或积,这样就可以利用概率公式转化为互斥事件和独立事件的组合,通常以解答题出现,与数学期望等知识结合,难度中等.1(2015·北京,16,13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16;B组:12,13,15,16,17,14,a.假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)如果a=25,求甲的康复时间比乙的康复时间长的概率;(3)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)(1)甲的康复时间不少于14天→甲是A组的第5人或第6人或第7人→每人康复时间互斥→互斥事件概率加法公式 (2)甲康复时间比乙长→相互独立事件同时发生→列举每种情况→互斥事件加法求解【解析】 设事件A i 为“甲是A 组的第i 个人”,事件B j 为“乙是B 组的第j 个人”,i ,j =1,2, (7)由题意可知P (A i )=P (B j )=17,i ,j =1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P (A 5∪A 6∪A 7)=P (A 5)+P (A 6)+P (A 7)=37.(2)设事件C 为“甲的康复时间比乙的康复时间长”.由题意知,C =A 4B 1∪A 5B 1∪A 6B 1∪A 7B 1∪A 5B 2∪A 6B 2∪A 7B 2∪A 7B 3∪A 6B 6∪A 7B 6. 因为P (C )=P (A 4B 1)+P (A 5B 1)+P (A 6B 1)+P (A 7B 1)+P (A 5B 2)+P (A 6B 2)+P (A 7B 2)+P (A 7B 3)+P (A 6B 6)+P (A 7B 6)=10P (A 4B 1)=10P (A 4)P (B 1)=1049. (3)a =11或a =18.(2014·大纲全国,20,12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立. (1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.解:设A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2, B 表示事件:甲需使用设备, C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备.(1)D =A 1BC +A 2B +A 2B -C , P (B )=0.6,P (C )=0.4, P (A i )=C i 2×0.52,i =0,1,2,所以P (D )=P (A 1BC +A 2B +A 2B -C )=P (A 1BC )+P (A 2B )+P (A 2B -C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B -)P (C ) =0.31.(2)X 的可能取值为0,1,2,3,4,则有P (X =0)=P (B -A 0C -)=P (B -)P (A 0)P (C -)=(1-0.6)×0.52×(1-0.4) =0.06,P (X =1)=P (BA 0C -+B -A 0C +B -A 1C -)=P (B )P (A 0)P (C -)+P (B -)P (A 0)P (C )+P (B -)P (A 1)P (C -)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4) =0.25,P (X =4)=P (A 2BC )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06, P (X =3)=P (D )-P (X =4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4) =1-0.06-0.25-0.25-0.06 =0.38, X 的分布列为数学期望E (X )=0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0.25+2×0.38+3×0.25+4×0.06=2.相互独立事件概率的求法(1)首先要搞清事件间的关系(是否彼此互斥、是否相互独立、是否对立),正确区分“互斥事件”与“对立事件”.当且仅当事件A 和事件B 相互独立时,才有P (AB )=P (A )·P (B ).(2)A ,B 中至少有一个发生:A ∪B .①若A ,B 互斥:P (A ∪B )=P (A )+P (B ),否则不成立.②若A ,B 相互独立(不互斥),则概率的求法:方法一:P (A ∪B )=P (AB )+P (AB -)+P (A -B );方法二:P (A ∪B )=P (A )+P (B )-P (AB )=1-P (A -)P (B -).(3)某些事件若含有较多的互斥事件,可考虑其对立事件的概率,这样可减少运算量,提高准确率.要注意“至多”“至少”等题型的转化.条件概率在高考中经常作为解答题的一小问,或以选择题、填空题出现,难度较小,一般以直接考查公式的应用为主,分值约为5分.2(2015·湖北荆门模拟,20,12分)某工厂生产了一批产品共有20件,其中5件是次品,其余都是合格品,现不放回地从中依次抽取2件.求: (1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率.【解析】 设“第一次抽到次品”为事件A ,“第二次抽到次品”为事件B ,事件A 和事件B 相互独立.依题意得:(1)第一次抽到次品的概率为P (A )=520=14. (2)第一次和第二次都抽到次品的概率为P (AB )=520×419=119.(3)方法一:在第一次抽到次品的条件下,第二次抽到次品的概率为P (B |A )=P (AB )P (A )=119÷14=419.方法二:第一次抽到次品后,还剩余产品19件,其中次品4件,故第二次抽到次品的概率为P (B )=419.(2015·湖北荆州质检,13)把一枚硬币任意抛掷三次,事件A =“至少一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=________. 【解析】 由题意知,P (AB )=323=38,P (A )=1-123=78,所以P (B |A )=P (AB )P (A )=3878=37. 【答案】 37,条件概率的求法(1)利用定义,分别求P (A )和P (AB ),得P (B |A )=P (AB )P (A ).注意:事件A 与事件B 有时是相互独立事件,有时不是相互独立事件,要弄清P (AB )的求法.(2)当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n (AB )n (A ).1.(2016·湖北荆门一模,6)把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A.12 B.14 C.16 D.181.A 由古典概型知P (A )=12,P (AB )=14,则由条件概率知P (B |A )=P (AB )P (A )=1412=12.2.(2016·河北石家庄质检,9)小明准备参加电工资格考试,先后进行理论考试和操作考试两个环节,每个环节各有两次考试机会,在理论考试环节,若第一次考试通过,则直接进入操作考试;若第一次未通过,则进行第二次考试,若第二次考试通过则进入操作考试环节,第二次未通过则直接被淘汰.在操作考试环节,若第一次考试通过,则直接获得证书;若第一次未通过,则进行第二次考试,若第二次考试通过则获得证书,第二次未通过则被淘汰.若小明每次理论考试通过的概率为34,每次操作考试通过的概率为23,并且每次考试相互独立,则小明本次电工考试中共参加3次考试的概率是( ) A.13 B.38 C.23 D.342.B 设小明本次电工考试中共参加3次考试为事件A ,小明本次电工考试中第一次理论考试没通过,第二次理论考试通过,第一次操作考试通过为事件B ,小明本次电工考试中第一次理论考试通过,第一次操作考试没通过为事件C ,则P (A )=P (B ∪C )=P (B )+P (C ),又P (B )=⎝ ⎛⎭⎪⎫1-34×34×23=18,P (C )=34×⎝ ⎛⎭⎪⎫1-23=14,所以P (A )=18+14=38.3.(2015·河南郑州一模,10)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是( ) A.1127 B.1124 C.1627 D.9243.A 方法一:记事件A :从2号箱中取出的是红球;事件B :从1号箱中取出的是红球,则根据古典概型和对立事件的概率和为1,可知:P (B )=42+4=23,P (B -)=1-23=13;由条件概率公式知P (A |B )=3+18+1=49,P (A |B -)=38+1=39.从而P (A )=P (AB )+P (AB -)=P (A |B )·P (B )+P (A |B -)·P (B -)=1127,选A.方法二:根据题意,分两种情况讨论:①从1号箱中取出白球,其概率为26=13,此时2号箱中有6个白球和3个红球,从2号箱中取出红球的概率为13,则这种情况下的概率为13×13=19.②从1号箱中取出红球,其概率为23.此时2号箱中有5个白球和4个红球,从2号箱中取出红球的概率为49,则这种情况下的概率为23×49=827.则从2号箱中取出红球的概率是19+827=1127.4.(2016·江苏扬州一模,4)在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为________.4.【解析】 方法一:不妨设甲先抽奖,设甲中奖记为事件A ,乙中奖记为事件B ,两人都中奖的概率为P ,则P =P (AB )=23×12=13.方法二:甲乙从三张奖券中抽两张的方法有A 23=6种,两人都中奖的可能有2种,设两人都中奖的概率为P ,则P =26=13. 【答案】 135.(2016·江苏盐城二模,10)如图所示的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.5.【解析】 灯泡甲亮满足的条件是a ,c 两个开关都开,b 开关必须断开,否则短路.设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则甲灯亮应为事件AB -C ,且A ,B ,C 之间彼此独立,且P (A )=P (B )=P (C )=12,由独立事件概率公式知P (AB -C )=P (A )P (B -)P (C )=12×12×12=18.【答案】 186.(2016·湖南常德一模,18,12分)某旅游景点,为方便游客游玩,设置自行车骑游出租点,收费标准如下:租车时间不超过2小时收费10元,超过2小时的部分按每小时10元收取(不足一小时按一小时计算).现甲、乙两人独立来该租车点租车骑游,各租车一次.设甲、乙不超过两小时还车的概率分别为13,12;2小时以上且不超过3小时还车的概率分别为12,13,且两人租车的时间都不超过4小时.(1)求甲、乙两人所付租车费用相等的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望. 6.解:(1)甲、乙所付费用可以为10元、20元、30元, 甲、乙两人所付费用都是10元的概率为P 1=13×12=16. 甲、乙两人所付费用都是20元的概率为P 2=12×13=16.甲、乙两人所付费用都是30元的概率为P 3=⎝ ⎛⎭⎪⎫1-13-12×⎝ ⎛⎭⎪⎫1-12-13=136.故甲、乙两人所付费用相等的概率为P =P 1+P 2+P 3=1336. (2)随机变量ξ的取值可以为20,30,40,50,60. P (ξ=20)=12×13=16. P (ξ=30)=13×13+12×12=1336.P (ξ=40)=12×13+⎝ ⎛⎭⎪⎫1-12-13×13+⎝ ⎛⎭⎪⎫1-13-12×12=1136.P (ξ=50)=12×⎝ ⎛⎭⎪⎫1-12-13+⎝ ⎛⎭⎪⎫1-13-12×13=536. P (ξ=60)=⎝ ⎛⎭⎪⎫1-13-12×⎝ ⎛⎭⎪⎫1-12-13=136.故ξ的分布列为∴ξ的数学期望是Eξ=20×16+30×1336+40×1136+50×536+60×136=35. 7.(2016·山东德州一模,18,12分)某科技公司组织技术人员进行新项目研发,技术人员将独立地进行项目中不同类型的实验A ,B ,C ,若A ,B ,C 实验成功的概率分别为45,34,23.(1)对A ,B ,C 实验各进行一次,求至少有一次实验成功的概率;(2)该项目要求实验A ,B 各做两次,实验C 做三次,如果A 实验两次都成功则进行实验B 并获奖励10 000元,两次B 实验都成功则进行实验C 并获奖励30 000元,三次实验C 只要有两次成功,则项目研发成功并获奖励60 000元(不重复得奖).且每次实验相互独立,用X 表示技术人员所获奖励的数值,写出X 的分布列及数学期望.7.解:(1)设A ,B ,C 实验成功分别记为事件A ,B ,C 且相互独立,A ,B ,C 至少有一次实验成功为事件D .则P (D )=1-P (A -B -C -)=1-P (A -)P (B -)P (C -)=1-15×14×13=5960.(2)X 的取值为0,10 000,30 000,60 000.则P (X =0)=15+45×15=925.P (X =10 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫14+34×14=725.P (X =30 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫233-C 23⎝ ⎛⎭⎪⎫232×13=775.或P (X =30 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫133+23×⎝ ⎛⎭⎪⎫132+13×23×13=775. P (X =60 000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫233+C 23⎝ ⎛⎭⎪⎫232×13=415.∴X 的分布列为∴X 的数学期望是 E (X )=0×925+10 000×725+30 000×775+60 000×415=21 600(元).1.(2015·湖北,4,易)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≤t )≥P (Y ≤t )D.对任意正数t,P(X≥t)≥P(Y≥t)1.C由正态分布密度曲线可得,μ1<μ2,σ1<σ2.结合正态曲线的概率的几何意义,对于A,∵μ1<μ2,∴P(Y≥μ2)<P(Y≥μ1);对于B,∵σ1<σ2,∴P(X≤σ2)>P(X≤σ1);对于C,D,结合图象可知,C正确.2.(2015·课标Ⅰ,4,中)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3122.A记A i={投中i次},其中i=1,2,3,B表示该同学通过测试,故P(B)=P(A2∪A3)=P(A2)+P(A3)=C23×0.62×0.4+C33×0.63=0.648.3.(2015·湖南,7,中)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4.A.2 386 B.2 718C.3 413 D.4 7723.C由于曲线C为正态分布N(0,1)的密度曲线,则阴影部分面积为S=0.682 62=0.341 3,∴落入阴影部分的点的个数为10 000×0.341 31=3 413.故选C.4.(2016·四川,12,易)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是________.4.【解析】 由题可知:在一次试验中成功的概率P =1-14=34,而该试验是一个2次的独立重复试验,成功次数X 服从二项分布X ~B ⎝ ⎛⎭⎪⎫2,34,∴E (X )=2×34=32.【答案】 325.(2015·广东,13,中)已知随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,则p =________.5.【解析】 由E (X )=np ,D (X )=np (1-p ),得⎩⎨⎧np =30,np (1-p )=20,解得p =13.【答案】 136.(2012·课标全国,15,中)某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.6.【解析】 由题意知每个电子元件使用寿命超过1 000小时的概率均为12,元件1或元件2正常工作的概率为1-12×12=34,所以该部件的使用寿命超过1 000小时的概率为12×34=38.【答案】 387.(2013·山东,19,12分,中)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率是23.假设每局比赛结果相互独立. (1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分,求乙队得分X 的分布列及数学期望.7.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故 P (A 1)=⎝ ⎛⎭⎪⎫233=827,P (A 2)=C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-23×23=827, P (A 3)=C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-232×12=427.所以,甲队以3∶0胜利、以3∶1胜利的概率为827,以3∶2胜利的概率为427. (2)设“乙队以3∶2胜利”为事件A 4, 由题意,各局比赛结果相互独立, 所以P (A 4)=C 24⎝⎛⎭⎪⎫1-232⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-12=427. 由题意,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627, P (X =1)=P (A 3)=427, P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=19, 故乙队得分X 的分布列为数学期望E (X )=0×1627+1×427+2×427+3×19=79.二项分布是一种重要的概率模型,在高考中经常出现,选择题、填空题、解答题都可能出现,解答题出现频率更高,一般会综合相互独立、互斥或对立事件等知识进行考查,难度中等.1(2014·辽宁,18,12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).【解析】(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里,有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能的取值为0,1,2,3,相应的概率为P(X=0)=C03·(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P(X=3)=C33·0.63=0.216,所以X的分布列为因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.(1)读图→计算小矩形面积,得相应概率→利用独立事件的概率公式求解(2)确定X的所有可能值→运用n次独立重复试验计算公式,得相应概率→列出分布列→利用二项分布求出期望和方差(2012·天津,16,13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E (ξ).解:依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4), 则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i. (1)这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4,由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫231+C 44⎝ ⎛⎭⎪⎫134=19.所以这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19. (3)ξ的所有可能的取值为0,2,4,由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781. 所以ξ的分布列为故E (ξ)=0×827+2×4081+4×1781=14881.n 次独立重复试验中事件A 恰好发生k 次的概率n 次独立重复试验中事件A 恰好发生k 次可看作是C k n 个互斥事件的和,其中每一个事件都可看作是k 个A 事件与n -k 个A -事件同时发生,只是发生的次序不同,其发生的概率都是p k (1-p )n -k .因此n 次独立重复试验中事件A 恰好发生k 次的概率为C k n p k (1-p )n -k.判断某随机变量是否服从二项分布的方法(1)在每一次试验中,事件发生的概率相同. (2)各次试验中的事件是相互独立的.(3)在每一次试验中,试验的结果只有两个,即发生与不发生.正态分布及其应用在近几年新课标高考中时常出现,主要考查正态曲线的性质(特别是对称性),常以选择题、填空题的形式出现,难度较小;有时也会与概率与统计结合,在解答题中考查.2(1)(2015·辽宁十校联考,7)设两个正态分布N (μ1,σ21)(σ1>0)和N (μ2,σ22)(σ2>0)的密度函数图象如图所示,则( )A .μ1<μ2,σ1<σ2B .μ1<μ2,σ1>σ2C .μ1>μ2,σ1<σ2D .μ1>μ2,σ1>σ2(2)(2015·山东,8)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ <μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74% 【解析】 (1)由正态分布N (μ,σ2)的性质知,x =μ为正态分布密度函数图象的对称轴,故μ1<μ2;又σ越小,图象越高瘦,故σ1<σ2.(2)由正态分布的概率公式知P (-3<ξ<3)=68.26%,P (-6<ξ<6)=95.44%,故P(3<ξ<6)=12[] P(-6<ξ<6)-P(-3<ξ<3)=12(95.44%-68.26%)=13.59%.【答案】(1)A(2)B1.(2015·广东佛山一模,7)已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.682 6,则P(X>4)=()A.0.158 8 B.0.158 7 C.0.158 6 D.0.158 51.B由正态曲线性质知,其图象关于直线x=3对称,∴P(X>4)=1-P(2≤X≤4)2=0.5-12×0.682 6=0.158 7,故选B.2.(2016·江西八校联考,6)在某次数学测试中,学生成绩ξ服从正态分布N(100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为() A.0.05 B.0.1 C.0.15 D.0.22.B由题意得,P(80<ξ<100)=P(100<ξ<120)=0.4,P(0<ξ<100)=0.5,∴P(0<ξ<80)=0.1.,利用正态曲线的对称性求概率的方法(1)解题的关键是利用对称轴x=μ确定所求概率对应的随机变量的区间与已知概率对应的随机变量的区间的关系,必要时,可借助图形判断.(2)对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知:①对任意的a,有P(X<μ-a)=P(X>μ+a);②P(X<x0)=1-P(X≥x0);③P(a<X<b)=P(X<b)-P(X≤a).(3)对于特殊区间求概率一定要掌握服从N(μ,σ2)的随机变量X在三个特殊区间的取值概率,将所求问题向P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)转化,然后利用特定值求出相应概率.同时,要充分利用正态曲线的对称性和曲线与x轴之间的面积为1这些特殊性质.1.(2016·贵州八校联考,3)设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a-3),则实数a的值为()A .1 B.53 C .5 D .91.B 因为P (ξ>a +2)=P (ξ<2a -3),所以由正态分布的对称性知,(a +2)+(2a -3)2=2,解得a =53.2.(2015·河南郑州二模,9)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ) A.49 B.29 C.429 D.2272.A 由独立重复试验的概率公式,知所求概率P =C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-133-1=49. 3.(2015·福建福州模拟,5)已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( ) A .0.477 B .0.628 C .0.954 D .0.9773.C ∵μ=0,正态曲线关于μ=0对称, ∴P (ξ>2)=P (ξ<-2)=0.023,∴P (-2≤ξ≤2)=1-2×0.023=0.954,故选C.4.(2015·豫北六校联考,10)设ξ是服从二项分布B (n ,p )的随机变量,又E (ξ)=15,D (ξ)=454,则n 与p 的值分别为( ) A .60,34 B .60,14 C .50,34 D .50,144.B 由ξ~B (n ,p ),得E (ξ)=np =15,D (ξ)=np (1-p )=454,则p =14,n =60. 5.(2016·山西四校联考,14)设随机变量X ~N (3,σ2),若P (X >m )=0.3,则P (X >6-m )=________.5.【解析】 因为P (X >m )=0.3,X ~N (3,σ2),所以m >3,P (X <6-m )=P (X <3-(m -3))=P (X >m )=0.3,所以P (X >6-m )=1-P (X <6-m )=0.7.【答案】 0.76.(2016·河北唐山一模,18,12分)小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.(1)若小王发放5元的红包2个,求甲恰得1个的概率;(2)若小王发放3个红包,其中5元的2个,10元的1个,记乙所得红包的总钱数为X (单位:元),求X 的分布列和期望.6.解:(1)设“甲恰得1个红包”为事件A ,则P (A )=C 12×13×23=49. (2)X 的所有可能取值为0,5,10,15,20. P (X =0)=⎝ ⎛⎭⎪⎫233=827,P (X =5)=C 12×13×⎝ ⎛⎭⎪⎫232=827,P (X =10)=⎝ ⎛⎭⎪⎫132×23+⎝ ⎛⎭⎪⎫232×13=627=29.P (X =15)=C 12×⎝ ⎛⎭⎪⎫132×23=427, P (X =20)=⎝ ⎛⎭⎪⎫133=127.所以X 的分布列为E (X )=0×827+5×827+10×29+15×427+20×127=203(元).7.(2016·江西南昌一模,18,12分)某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X 服从正态分布N (80,σ2)(满分为100分),已知P (X <75)=0.3,P (X ≥95)=0.1,现从该市高三学生中随机抽取三位同学.(1)求抽到的三位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]各有一位同学的概率;(2)记抽到的三位同学该次体能测试成绩在区间[75,85]的人数为ξ,求随机变量ξ的分布列和数学期望Eξ.7.解:(1)P(80≤X<85)=P(75<X≤80)=0.5-P(X≤75)=0.2,P(85≤X<95)=0.5-0.2-0.1=0.2,所以所求概率P=A33×0.2×0.2×0.1=0.024.(2)P(75≤X≤85)=1-2P(X<75)=0.4,所以ξ服从二项分布B(3,0.4),P(ξ=0)=0.63=0.216,P(ξ=1)=C13×0.4×0.62=0.432,P(ξ=2)=C23×0.42×0.6=0.288,P(ξ=3)=0.43=0.064,所以随机变量ξ的分布列是E(ξ)=3×0.4=1.2(人).1.(2013·广东,4,易)已知离散型随机变量X的分布列为则X的数学期望E(X)=()A.32B.2 C.52D.31.A由数学期望公式得E(X)=1×35+2×310+3×110=32.2.(2014·浙江,9,难)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n 个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(1)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(2)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则( )A .p 1>p 2,E (ξ1)<E (ξ2)B .p 1<p 2,E (ξ1)>E (ξ2)C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2) 2.A 随机变量ξ1,ξ2的分布列如下:所以E (ξ1)=n m +n +2m m +n =2m +nm +n, E (ξ2)=C 2n C 2m +n +2C 1m C 1n C 2m +n +3C 2mC 2m +n =3m +n m +n,所以E (ξ1)<E (ξ2).因为p 1=m m +n +n m +n ·12=2m +n 2(m +n ),p 2=C 2m C 2m +n +C 1m C 1n C 2m +n ·23+C 2nC 2m +n ·13=3m +n 3(m +n ),p 1-p 2=n 6(m +n )>0,所以p 1>p 2.思路点拨:列出随机变量ξ1,ξ2的分布列,计算期望值并比较大小;利用分步计数原理计算p 1,p 2并比较大小.3.(2014·浙江,12,易)随机变量ξ的取值为0,1,2,若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.3.【解析】 设ξ=1时的概率为p ,则E (ξ)=0×15+1×p +2×⎝ ⎛⎭⎪⎫1-p -15=1,解得p =35,故D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.【答案】 254.(2016·课标Ⅰ,19,12分,中)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需要更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?4.解:由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,EY=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,EY=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.5.(2016·天津,16,13分,中)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.5.解:(1)由已知,得P(A)=C13C14+C23C210=13.所以,事件A发生的概率为1 3.(2)随机变量X的所有可能取值为0,1,2.P(X=0)=C23+C23+C24C210=415,P(X=1)=C13C13+C13C14C210=715,P(X=2)=C13C14C210=415.所以,随机变量X的分布列为随机变量X的数学期望EX=0×415+1×715+2×415=1.6.(2016·山东,19,12分,中)甲、乙两人组成“星队”参加猜成语活动,每轮。

四微专题3随机变量及其概率分布-2021届高三数学二轮专题复习课件

四微专题3随机变量及其概率分布-2021届高三数学二轮专题复习课件

对点训练
大题考法 2 概率与统计的综合性问题 “难度系数”反映试题的难易程度,难度系数 越大,题目得分率越高,难度也就越小.“难度系数”的 计算公式为 L=1-WY ,其中,L 为难度系数,Y 为样本平 均失分,W 为试卷总分(一般为 100 分或 150 分).某校高 三年级的李老师命制了某专题共 5 套测试卷(每套总分 150 分),用于对该校高三年级 480 名学生进行每周测 试.测试前根据自己对学生的了解,预估了每套试卷的难 度系数,如下表所示:
(1)设 A 为事件“选出的 2 人参加义工活动次数之和 为 4”,求事件 A 发生的概率;
(2)设 X 为选出的 2 人参加义工活动次数之差的绝对 值,求随机变量 X 的分布列和数学期望.
解:(1)由已知有 P(A)=C13·CC1421+0 C23=13,所以事件 A 的发生的概率为13.
四微专题3随机变量及其概率分布-202 1届高 三数学 二轮专 题复习 课件(完 美课件 )
(1)从该地区的蜻蜓中随机捕捉一只,求这只蜻蜓的 翼长在区间[45,55]的概率;
四微专题3随机变量及其概率分布-202 1届高 三数学 二轮专 题复习 课件(完 美课件 )
四微专题3随机变量及其概率分布-202 1届高 三数学 二轮专 题复习 课件(完 美课件 )
微专题3 随机变量及其概率分布
对点训练
(2)甲班每天学习时间不足 4 小时的学生人数为 40× 0.050=2,乙班每天学习时间不足 4 小时的学生人数为 40× 0.100=4,从甲班抽到的学生人数 X 可取的值为 0,1,2,
微专题3 随机变量及其概率分布
对点训练
则 P(X=0)=CC02C63 34=15,P(X=1)=CC12C63 24=35,P(X=2)= CC22C63 14=15,

2024届高考数学二轮专题复习与测试第一部分专题四概率与统计微专题3随机变量及其概率分布列课件

2024届高考数学二轮专题复习与测试第一部分专题四概率与统计微专题3随机变量及其概率分布列课件

800 80×9
=2 000
3 2≈0.94,
故可用线性回归模型拟合 y 与 x 的关系.
微专题3 随机变量及其概率分布列
(2)设 A 家庭中套中小白兔的人数为 X1,则 X1~B(3,130), 所以 E(X1)=3×130=190. 设 A 家庭的盈利为 X2 元,则 X2=40X1-60, 所以 E(X2)=40E(X1)-60=-24. 设 B 家庭中套中小白兔的人数为 Y1, 则 Y1 的所有可能取值为 0,1,2,3, P(Y1=0)=23×34×56=152,
微专题3 随机变量及其概率分布列
解:(1)由题意可得 0.002×10+0.012×10+0.020×10+0.022×10+0.020×10 +0.014×10+a×10=1, 解得 a=0.010, 估计该地区的观众收看《回望 2022—国内国际十大考古新闻》的平均时间为: x=0.002×10×25+0.012×10×35+0.020×10×45+0.022×10×55+ 0.020×10×65+0.014×10×75+0.010×10×85=57.8. (2)“考古热爱者”对应的频率为 0.01×10=110, 用频率估计概率,可知从该地区大量电视观众中,随机抽取 1 名观众,该观众 是“考古热爱者”的概率为110,则 X~B(10,110),所以 X 的数学期望 E(X)= 10×110=1.
微专题3 随机变量及其概率分布列
记函数 f1(x)=ln (1+x)-23x2,(0<x<1),f′1(x)=1+1 x-43x=-34(x21-+4xx)+3, 当 0<x<12时,f′1(x)>0,f1(x)单增, 当12<x<1 时,f′1(x)<0,f1(x)单减, 当 x=12时,f(x)取得最大值 ln 32-16<14,(ln 32≈0.406 5),则 θ 不可以估计, 在团体 B 提出的函数模型 p=12(1-e-θ)中, 记函数 f2(x)=12(1-e-x),f2(x)单调递增, 令 f2(x)=14,解得 x=ln 2,则 θ=ln 2 是 θ 的最大似然估计.

高考数学二轮总复习层级二专题五概率与统计第三讲随机变量及其分布列学案理含解

高考数学二轮总复习层级二专题五概率与统计第三讲随机变量及其分布列学案理含解

学习资料第三讲随机变量及其分布列1.(2017·全国卷Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则D(X)=________.解析:依题意,X~B(100,0.02),所以D(X)=100×0.02×(1-0.02)=1.96.答案:1。

962.(2018·全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0〈p〈1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?解:(1)20件产品中恰有2件不合格品的概率为f(p)=C错误!p2·(1-p)18.因此f′(p)=C错误![2p(1-p)18-18p2(1-p)17]=2C错误!p·(1-p)17(1-10p).令f′(p)=0,得p=0.1。

当p∈(0,0。

1)时,f′(p)>0;当p∈(0。

1,1)时,f′(p)〈0。

所以f(p)的极大值点为0。

1,且为f(p)唯一的极大值点,所以f(p)的最大值点为p0=0。

1.(2)由(1)知,p=0.1。

①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),则E(Y)=180×0。

(2021年整理)高三理科数学培养讲义:第2部分_专题3_第5讲_概率、离散型随机变量及其分布

(2021年整理)高三理科数学培养讲义:第2部分_专题3_第5讲_概率、离散型随机变量及其分布

(完整)高三理科数学培养讲义:第2部分_专题3_第5讲_概率、离散型随机变量及其分布编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高三理科数学培养讲义:第2部分_专题3_第5讲_概率、离散型随机变量及其分布)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高三理科数学培养讲义:第2部分_专题3_第5讲_概率、离散型随机变量及其分布的全部内容。

第5讲概率、离散型随机变量及其分布高考统计·定方向题型1 条件概率、相互独立事件的概率■核心知识储备·1.条件概率在A发生的条件下B发生的概率为P(B|A)=错误!=错误!.2.相互独立事件同时发生的概率P(AB)=P(A)P(B).■高考考法示例·【例1】 (1)甲、乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜"制,甲在每局比赛中获胜的概率均为错误!,且各局比赛结果相互独立,则在甲获得冠军的情况下,比赛进行了三局的概率为( )A .错误!B .错误!C .23D .错误!(2)共享单车的普及给我们的生活带来了便利.已知某共享单车的收费标准是:每车使用不超过1小时(包含1小时)是免费的,超过1小时的部分每小时收费1元(不足1小时的部分按1小时计算,例如:骑行2。

5小时收费2元).现有甲、乙两人各自使用该种共享单车一次.设甲、乙不超过1小时还车的概率分别为错误!,错误!;1小时以上且不超过2小时还车的概率分别为错误!,错误!;两人用车时间都不会超过3小时.①求甲、乙两人所付的车费相同的概率;②设甲、乙两人所付的车费之和为随机变量ξ,求ξ的分布列及数学期望E (ξ).(1)B [由题意,甲获得冠军的概率为23×错误!+错误!×错误!×错误!+错误!×错误!×错误!=错误!,其中比赛进行了3局的概率为错误!×错误!×错误!+错误!×错误!×错误!=错误!,∴所求概率为错误!÷错误!=错误!,故选B .] (2)[解] ①所付费用相同即为0,1,2元. 设付0元为P 1=14×错误!=错误!,付1元为P 2=错误!×错误!=错误!, 付2元为P 3=错误!×错误!=错误!。

2021新高考数学二轮总复习学案:6.4.2 随机变量及其分布含解析

2021新高考数学二轮总复习学案:6.4.2 随机变量及其分布含解析

6.4.2随机变量及其分布必备知识精要梳理1.超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.2.二项分布一般地,在n次独立重复试验中,事件A发生的次数为X,设每次试验中事件A发生的概率为p,则P(X=k)=p k q n-k,其中0<p<1,p+q=1,k=0,1,2,…,n,称X服从参数为n,p的二项分布,记作X~B(n,p),且E(X)=np,D(X)=np(1-p).3.正态分布一般地,如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=φμ,σ(x)d x,则称X的分布为正态分布.正态分布完全由参数μ和σ确定,因此正态分布常记作N(μ,σ2).如果随机变量X服从正态分布,则记为X~N(μ,σ2).满足正态分布的三个基本概率的值是:①P(μ-σ<X≤μ+σ)=0.682 6;②P(μ-2σ<X≤μ+2σ)=0.954 4;③P(μ-3σ<X≤μ+3σ)=0.997 4.4.离散型随机变量的分布列设离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,.X x1x2x3…x i…x nP p1p2p3…p i…p n关键能力学案突破热点一依据频率求概率的综合问题【例1】某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2):满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解题心得频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率,在实际问题中,常用事件发生的频率作为概率的估计值.频率本身是随机的,而概率是一个确定的数,是客观存在的,因此概率与每次试验无关.(1)利用基本概念:①互斥事件不可能同时发生;②对立事件是互斥事件,且必须有一个要发生.(2)利用集合的观点来判断:设事件A与B所含的结果组成的集合分别是A,B,全集为I.①事件A与B互斥,即集合A∩B=⌀;②事件A与B对立,即集合A∩B=⌀,且A∪B=I,也即A=∁I B 或B=∁I A.(3)对立事件是针对两个事件来说的,而互斥事件则可以是多个事件间的关系.(4)如果A1,A2,…,A n中任何两个都是互斥事件,那么我们就说A1,A2,…,A n彼此互斥.(5)若事件A1,A2,A3,…,A n彼此互斥,则P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n).应用互斥事件的概率加法公式解题时,一定要注意首先确定各个事件是否彼此互斥,然后求出各事件分别发生的概率,再求和.对于较复杂事件的概率,可以转化为求其对立事件的概率.(6)求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式P(A)=1-P(。

专题五 微专题32 随机变量及其分布课件——2024届高三数学二轮微专题复习

专题五 微专题32 随机变量及其分布课件——2024届高三数学二轮微专题复习

跟踪训练1 (2023·桂林模拟)设0<a<1.若随机变量X的分布列是
则当a在(0,1)内增大时,
A.E(X)不变 B.E(X)减小 C.D(X)先增大后减小
√D.D(X)先减小后增大
X0a1
P
1 3
1 3
1 3
E(X)=0×13+a×13+1×13=a+3 1, ∴E(X)增大; D(X)=a+3 12×13+a-a+3 12×13+1-a+3 12×13= 217a+12+2a-12+a-22 =29(a2-a+1)=29a-122+16, ∵0<a<1,∴D(X)先减小后增大.
P
1 2
1 2
所以员工所获得的奖励额的均值 E(X)=400×12+1 000×12=700(元).
(2)公司对奖励额的预算是人均1 000元,并规定袋中的4个阄只能由标有 面值200元和800元的两种阄或标有面值400元和600元的两种阄组成.为了 使员工得到的奖励总额尽可能符合公司的预算且每位员工所获得的奖励 额相对均衡,请对袋中的4个阄的面值给出一个合适的设计,并说明理由.
同理排除(600,600,600,400)和(400,400,400,600)的方案,
所以可能的方案是(400,400,600,600),记为方案2.
对于方案1,设员工所获得的奖励额为X1,X1可取400,1 000,1 600, P(X1=400)=CC2422=16, P(X1=1 000)=CC12C24 12=23, P(X1=1 600)=CC2422=16, 所以 X1 的均值为 E(X1)=400×16+1 000×23+1 600×16=1 000,
专题五 概率与统计
微专题32
随机变量及其分布
考情分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲随机变量及其分布列1.(2017·全国卷Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则D(X)=________.解析:依题意,X~B(100,0.02),所以D(X)=100×0.02×(1-0.02)=1.96.答案:1.962.(2018·全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?解:(1)20件产品中恰有2件不合格品的概率为f(p)=C220p2·(1-p)18.因此f′(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p·(1-p)17(1-10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的极大值点为0.1,且为f(p)唯一的极大值点,所以f(p)的最大值点为p0=0.1.(2)由(1)知,p=0.1.①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),则E(Y)=180×0.1=18,X=20×2+25Y,即X=40+25Y.所以E(X)=E(40+25Y)=40+25E(Y)=490.②若对余下的产品作检验,则这一箱产品所需要的检验费用为400元.由于E(X)>400,故应该对余下的产品作检验.3.(2019·全国卷Ⅰ)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i +bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假-1设α=0.5,β=0.8.-p i}(i=0,1,2,…,7)为等比数列;①证明:{p i+1②求p4,并根据p4的值解释这种试验方案的合理性.解:(1)X的所有可能取值为-1,0,1.P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β),P(X=1)=α(1-β).所以X的分布列为(2)因此p i=0.4p i-1+0.5p i+0.1p i+1,-p i)=0.4(p i-p i-1),故0.1(p i+1-p i=4(p i-p i-1).即p i+1又因为p1-p0=p1≠0,所以{p i+1-p i}(i=0,1,2,…,7)是公比为4,首项为p1的等比数列.②由①可得p 8=p 8-p 7+p 7-p 6+…+p 1-p 0+p 0 =(p 8-p 7)+(p 7-p 6)+…+(p 1-p 0)=48-13p 1. 由于p 8=1,故p 1=348-1,所以p 4=(p 4-p 3)+(p 3-p 2)+(p 2-p 1)+(p 1-p 0)=44-13p 1=1257.p 4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257≈0.003 9,此时得出错误结论的概率非常小,说明这种试验方案合理.明 考 情1.对概率的考查既有大题也有小题,选择题或填空题出现在第3~8题或第13题的位置,主要考查几何概率,难度一般.2.概率统计的解答题多在第18题或19题的位置,多以交汇性的形式考查,交汇点有两种:一是两图(频率分布直方图与茎叶图)择一与随机变量的分布列、数学期望、方差相交汇考查;二是两图(频率分布直方图与茎叶图)择一与回归分析或独立性检验相交汇考查.考点一 离散型随机变量的均值与方差|析典例|【例】 (2019·辽宁五校联考)某商场销售某种品牌的空调,每周周初购进一定数量的空调,商场每销售一台空调可获利500元,若供大于求,则多余的每台空调需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调仅获利200元.(1)若该商场周初购进20台空调,求当周的利润(单位:元)关于当周需求量n (单位:台,n ∈N )的函数解析式f (n );(2)该商场记录了去年夏天(共10周)空调需求量n (单位:台),整理得下表:周需求量n 18 19 20 21 22 频数12331以1020台空调,X 表示当周的利润(单位:元),求X 的分布列及数学期望.[思路分析] 第(1)问:当n ≤19时,f (n )=500×n -100×(20-n )=600n -2 000, ∴f (n )=⎩⎨⎧200n +6 000(n ≥20),600n -2 000(n ≤19)(n ∈N ).(2)由(1)得f (18)=8 800,f (19)=9 400, f (20)=10 000,f (21)=10 200,f (22)=10 400,∴P (X =8 800)=0.1,P (X =9 400)=0.2,P (X =10 000)=0.3,P (X =10 200)=0.3,P (X =10 400)=0.1,X 的分布列为∴E (X )×0.1=9 860.| 规 律 方 法 |1.求离散型随机变量X 的分布列的步骤 (1)理解X 的意义,写出X 可能取的全部值; (2)求X 取每个值的概率; (3)写出X 的分布列;(4)根据分布列的性质对结果进行检验. 2.期望与方差的一般计算步骤(1)理解X 的意义,写出X 的所有可能取的值;(2)求X取各个值的概率,写出分布列;(3)根据分布列,正确运用期望与方差的定义或公式进行计算.|练题点|1.(2019·唐山市高三摸底)甲、乙两位工人分别用两种不同工艺生产同一种零件,已知尺寸在[223,228](单位:mm)内的零件为一等品,其余为二等品.甲、乙两位工人当天生产零件尺寸的茎叶图如图所示:(1)从甲、乙两位工人当天所生产的零件中各随机抽取1个零件,求抽取的2个零件等级互不相同的概率;(2)从工人甲当天生产的零件中随机抽取3个零件,记这3个零件中一等品数量为X,求X的分布列和数学期望.解:(1)由茎叶图可知,甲当天生产了10个零件,其中4个一等品,6个二等品;乙当天生产了10个零件,其中5个一等品,5个二等品.所以抽取的2个零件等级互不相同的概率P=4×5+6×510×10=12.(2)X可取0,1,2,3.P(X=0)=C04C36C310=16,P(X=1)=C14C26C310=12,P(X=2)=C24C16C310=310,P(X=3)=C34C06C310=130.X的分布列为X 012 3P 1612310130所以随机变量X的数学期望E(X)=0×16+1×12+2×310+3×130=65.2.(2019·洛阳市第二次联考)现有两种投资方案,一年后投资盈亏的情况如下表:投资股市:投资结果获利40%不赔不赚亏损20%(1)当p =14时,求q 的值;(2)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围;(3)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知p =12,q =16,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?请说明理由.解:(1)∵“购买基金”后,投资结果只有“获利”“不赔不赚”“亏损”三种,且三种投资结果相互独立,∴p +13+q =1.又p =14,∴q =512.(2)记事件A 为“甲投资股市且获利”,事件B 为“乙购买基金且获利”,事件C 为“一年后甲、乙两人中至少有一人投资获利”,则C =A B -∪A -B ∪AB ,且A ,B 独立. 由题意可知,P (A )=12,P (B )=p , ∴P (C )=P (A B -)+P (A -B )+P (AB ) =12(1-p )+12p +12p =12+12p . ∵P (C )=12+12p >45,∴p >35. 又p +13+q =1,q ≥0,∴p ≤23, ∴p 的取值范围为⎝ ⎛⎦⎥⎤35,23.(3)假设丙选择“投资股市”的方案进行投资,记X 为丙投资股市的获利金额(单位:万元),∴随机变量X 的分布列为X 4 0 -2 P121838则E (X )=4×12+0×18+(-2)×38=54.假设丙选择“购买基金”的方案进行投资,记Y 为丙购买基金的获利金额(单位:万元),∴随机变量Y 的分布列为Y 2 0 -1 P121316则E (Y )=2×12+0×13+(-1)×16=56. ∵E (X )>E (Y ),∴丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.考点二 二项分布|析典例|【例】 (2019·河北承德市第一中学模拟)某市为了调查学校“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数据进行整理后,分成5组画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.(1)求这次铅球测试成绩合格的人数;(2)(一题多解)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数,利用样本估计总体,求ξ的分布列、均值与方差.[解] (1)由频率分布直方图,知成绩在[9.9,11.4)的频率为1-(0.05+0.22+0.30+0.03)×1.5=0.1.因为成绩在[9.9,11.4)的频数是4,故抽取的总人数为40.1=40.又成绩在 6.9米以上的为合格,所以这次铅球测试成绩合格的人数为40-0.05×1.5×40=37.(2)解法一:ξ的所有可能取值为0,1,2,利用样本估计总体,从今年该市高中毕业男生中随机抽取一名成绩合格的概率为3740,成绩不合格的概率为1-3740=340,可判断ξ~B ⎝ ⎛⎭⎪⎫2,340.P (ξ=0)=C 02×⎝⎛⎭⎪⎫37402=1 3691 600, P (ξ=1)=C 12×340×3740=111800, P (ξ=2)=C 22×⎝ ⎛⎭⎪⎫3402=91 600,故所求分布列为ξ的均值为E (ξ)=0×1 3691 600+1×111800+2×91 600=320,ξ的方差为D (ξ)=⎝ ⎛⎭⎪⎫0-3202×1 3691 600+⎝ ⎛⎭⎪⎫1-3202×111800+⎝ ⎛⎭⎪⎫2-3202×91 600=111800.解法二:求ξ的分布列同解法一. ξ的均值为E (ξ)=2×340=320,ξ的方差为D (ξ)=2×340×⎝ ⎛⎭⎪⎫1-340=111800.| 规 律 方 法 |1.求解二项分布问题的“四关”一是“判断关”,即判断离散型随机变量X 是否服从二项分布B (n ,p ).二是“公式关”,即利用P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),求出X 取各个值时的概率.三是“分布列关”,列出表格,得离散型随机变量的分布列.四是“结论关”,利用公式E (X )=np 求期望,D (X )=np ·(1-p )求方差. 熟记二项分布的概率、期望与方差公式,可以避免繁琐的运算过程. 2.有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以应用均值与方差的性质E (ax +b )=aE (x )+b ,D (ax +b )=a 2D (x )求解.|练题点|(2019·河南洛阳三模)某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能答对其中的4个,而乙能答对每个题目的概率均为23,且甲、乙两位同学对每个题目的作答都是相互独立的.(1)求甲、乙两位同学总共答对3题的概率;(2)若甲、乙两位同学答对题目的个数分别是m ,n ,由于甲所在班级少一名学生参赛,故甲答对一题得15分,乙答对一题得10分,求甲、乙两人得分之和X 的期望.解:(1)由题意可知,甲、乙两位同学总共答对3题可以分为3种情况:甲答对1题乙答对2题;甲答对2题乙答对1题;甲答对3题乙答对0题.故所求的概率P =C 14C 22C 36×C 23⎝ ⎛⎭⎪⎫232×13+C 24C 12C 36×C 13×23×⎝ ⎛⎭⎪⎫132+C 34C 36×C 03⎝ ⎛⎭⎪⎫133=31135.(2)m 的所有可能取值有1,2,3.P (m =1)=C 14C 22C 36=15,P (m =2)=C 24C 12C 36=35,P (m =3)=C 34C 36=15,故E (m )=1×15+2×35+3×15=2.由题意可知n ~B ⎝ ⎛⎭⎪⎫3,23,故E (n )=3×23=2. 而X =15m +10n ,所以E (X )=15E (m )+10E (n )=50.考点三 正态分布|析典例|【例】 (2018·广西三市联考)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1 000 人的得分(满分:100分)数据,统计结果如下表所示.得分的平均值(同一组中的数据用该组区间的中点值为代表),请利用正态分布的知识求P(36<Z≤79.5);(2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案.①得分不低于μ的可以获赠2次随机话费,得分低于μ的可以获赠1次随机话费;②每次赠送的随机话费和相应的概率如下表.X的分布列及数学期望.附:210≈14.5,若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 7,P(μ-2σ<X≤μ+2σ)=0.954 5,P(μ-3σ<X≤μ+3σ)=0.997 3.[解](1)由题易得E(Z)=35×0.025+45×0.15+55×0.2+65×0.25+75×0.225+85×0.1+95×0.05=65,所以μ=65,所以得分Z服从正态分布N(65,210),又σ=210≈14.5,所以P(50.5<Z≤79.5)=0.682 7,P(36<Z≤94)=0.9545,所以P(36<Z≤50.5)=(0.954 5-0.682 7)×12=0.135 9,所以P(36<Z≤79.5)=P(36<Z≤50.5)+P(50.5<Z≤79.5)=0.135 9+0.682 7=0.818 6.(2)易知P(Z<μ)=P(Z≥μ)=12,X的所有可能取值为20,40,60,80.则P(X=20)=12×34=38,P(X=40)=12×14+12×34×34=1332,P(X=60)=12×34×14+12×14×34=316,P(X=80)=12×14×14=132.所以X的分布列为所以X的数学期望E(X)=20×38+40×1332+60×316+80×132=752. | 规律方法|服从N(μ,σ2)的随机变量X在某个区间内取值的概率的求法(1)利用P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值直接求.(2)充分利用正态曲线的对称性和曲线与x轴之间的面积为1这些特殊性质求解.|练题点|(一题多解)(2018·四川德阳二诊)为弘扬我国优秀的传统文化,市教育局对全市所有中小学生进行了成语听写测试,经过大数据分析,发现本次听写测试成绩服从正态分布N(78,16).试根据正态分布的相关知识估计测试成绩大于90分的学生所占的百分比为()A.0.135% B.1.35%C.3% D.3.3%附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 7,P(μ-2σ<X≤μ+2σ)=0.954 5,P(μ-3σ<X≤μ+3σ)=0.997 3.解析:选A解法一:由题意可知,测试成绩X~N(78,16),所以σ=16=4.而90=78+12=μ+3σ,故所求的百分比的实质就是求P(X>μ+3σ).由正态曲线的对称性可得P(X≥μ)=P(X≤μ)=0.5,又P(μ-3σ<X≤μ+3σ)=0.997 3,所以P(μ<X≤μ+3σ)=12×0.997 3=0.498 65,故P(X>μ+3σ)=P(X≥μ)-P(μ<X≤μ+3σ)-P(X=μ)=0.5-0.498 65=0.00135=0.135%.故选A.解法二:由题意可知,测试成绩X~N(78,16),所以σ=16=4.而90=78+12=μ+3σ,故所求百分比实质就是求P(X>μ+3σ).由已知P(μ-3σ<X≤μ+3σ)=0.997 3,所以P(X≤μ-3σ)+P(X>μ+3σ)=1-P(μ-3σ<X≤μ+3σ)=1-0.997 3=0.002 7,由正态曲线的对称性可得,P(X>μ+3σ)=12[P(X≤μ-3σ)+P(X>μ+3σ)]=12×0.002 7=0.001 35=0.135%.故选A.。

相关文档
最新文档