2016朝阳初三数学一模试题及答案
朝阳区初三一模数学试题含答案.doc
![朝阳区初三一模数学试题含答案.doc](https://img.taocdn.com/s3/m/cbf52f0784868762cbaed519.png)
A
D
E
B
F
C
四、解答题(本题共 20 分,第 19、 20 题每小题 5 分,第 21 题 6 分,第 22 题 4 分) 19.已知关于 x 的方程 (m-1) x2 - 2x + 1=0 有两个不相等的实数根.
( 1)求 m 的取值范围; ( 2)若 m 为非负整数,求抛物线 y=(m-1) x2 - 2x + 1 的顶点坐标.
北京市朝阳区九年级综合练习(一)
谢谢聆听
数 学试卷
2011.5
一、选择题(本题共 32 分,每小题 4 分)
下面各题均有四个选项,其中只有一个 ..是符合题意的.
1. 3 的绝对值是
A.3
B .-3
1
C.
3
1
D.
3
2. 2011 年 3 月 11 日,里氏 9.0 级的日本大地震导致当天地球的自转时间减少了
m
16. 解:( 1)把 A( 2, 3)代入 y
,∴ m=6.
x
6 ∴y .
x
………………………………………………………………
分5 1分
谢谢聆听
把 A ( 2, 3)代入 y=kx+2 ,
1 ∴ 2k 2 3 . ∴ k .
2
∴y
1 x
2. …………………………………………………………
2分
2
( 2)令 1 x 2 0 ,解得 x=-4,即 B( -4, 0) . 2
( 1)求证: CD 为⊙ O 的切线; ( 2)若 BC= 5, AB= 8,求 OF 的长.
C
B
H O
D
A
FE
22.阅读并操作:
北京市朝阳初三中考一模数学答案
![北京市朝阳初三中考一模数学答案](https://img.taocdn.com/s3/m/8ff0edbaf705cc1755270963.png)
答:原来报名参加的学生有 20 人.…………………………………………… 5 分
18. 解:由题意,得 AE=AB=5,AD=BC=4,EF=BF. …………………………………… 1 分 在 Rt△ADE 中,由勾股定理,得 DE=3. …………………………………… 2 分 在矩形 ABCD 中,DC=AB=5. ∴CE=DC-DE=2. ………………………………………………………………… 3 分 设 FC=x,则 EF=4-x.
6.B
7.A
2011.5
8.D
12. 31 a , 32
2
n
2
n
1
a
,
2n 1 22n1 ah
(注:前两空每空 1 分,第三空 2 分)
三、解答题(本题共 30 分,每小题 5 分)
13.解:原式= 2 3 3 1 2 3 ………………………………………………… 4 分 3
= 3 3 . ………………………………………………………………… 5 分
(说明:以上答案仅供参考,若有不同解法,只要过程和解法都正确,可相应给分.)
2011 年数学一模参考答案 第 - 6 - 页 共 6 页
∵AC⊥x 轴,∴C(2,0).
∴ BC=6. ………………………………………………………………… 3 分
设 P(x,y),
∵S△PBC= 1 BC y =18, 2
∴y1=6 或 y2=-6.
分别代入 y 6 中, x
得 x1=1 或 x2=-1.
∴P1(1,6)或 P2(-1,-6). …………………………………………… 5 分
(2)由(1)且 m 为非负整数,
∴m=0. ………………………………………………………………………… 4 分
2016北京市朝阳区初三(一模)数 学
![2016北京市朝阳区初三(一模)数 学](https://img.taocdn.com/s3/m/822fa70b3b3567ec102d8ab9.png)
2016北京市朝阳区初三(一模)数学一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)清明节是中国传统节日,它不仅是人们远足踏青的日子,更是祭奠祖先、缅怀先人的节日.市民政局提供的数据显示,今年清明节当天全市213处祭扫点共接待群众264000人,将264000用科学记数法表示应为()A.264×103B.2.64×104 C.2.64×105 D.0.264×1062.(3分)实数a,b,c,d在数轴上对应的位置如图所示,绝对值相等的两个实数是()A.a与b B.b与c C.c与d D.a与d3.(3分)有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是()A.B.C.D.4.(3分)下列图形选自历届世博会会徽,其中是轴对称图形的是()A.B.C.D.5.(3分)如图,四边形ABCD内接于⊙O,E为DC延长线上一点,∠A=50°,则∠BCE的度数为()A.40°B.50°C.60°D.130°6.(3分)某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1100m,则隧道AB的长度为()A.3300m B.2200m C.1100m D.550m7.(3分)2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm)如下表所示:队员1 队员2 队员3 队员4甲组176 177 175 176乙组178 175 177 174设两队队员身高的平均数依次为,,方差依次为S 甲2,S乙2,下列关系中完全正确的是()A.,S 甲2<S乙2B.,S甲2>S乙2C.<,S 甲2<S乙2D.>,S甲2>S乙28.(3分)如图,△ABC内接于⊙O,若⊙O的半径为6,∠A=60°,则的长为()A.2πB.4πC.6πD.12π9.(3分)我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园﹣玲珑塔﹣国家体育场﹣水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(﹣1,0),森林公园的坐标为(﹣2,2),则终点水立方的坐标为()A.(﹣2,﹣4)B.(﹣1,﹣4)C.(﹣2,4)D.(﹣4,﹣1)10.(3分)如图1,在等边三角形ABC中,AB=2,G是BC边上一个动点且不与点B、C重合,H是AC边上一点,且∠AGH=30°.设BG=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A.线段CG B.线段AG C.线段AH D.线段CH二、填空题(本题共18分,每小题3分)11.(3分)若二次根式有意义,则x的取值范围是.12.(3分)分解因式:a2b﹣6ab2+9b3=.13.(3分)关于x的方程x2+2x+2k﹣4=0有两个不相等实数根,写出一个满足条件的k的值:k=.14.(3分)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x人,可列方程为.15.(3分)在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为粒.16.(3分)阅读下面材料:数学课上,老师提出如下问题:尺规作图:经过已知直线上一点作这条直线的垂线.已知:直线AB和AB上一点C.求作:AB的垂线,使它经过点C.小艾的作法如下:如图,(1)在直线AB上取一点D,使点D与点C不重合,以点C为圆心,CD长为半径作弧,交AB于D,E两点;(2)分别以点D和点E为圆心,大于DE长为半径作弧,两弧相交于点F;(3)作直线CF.所以直线CF就是所求作的垂线.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:(﹣2)﹣1﹣|﹣|+(﹣1)0+4cos45°.18.(5分)已知m﹣=1,求(2m+1)(2m﹣1)+m(m﹣5)的值.19.(5分)解不等式组并写出它的所有整数解.20.(5分)如图,E为AC上一点,EF∥AB交AF于点F,且AE=EF.求证:∠BAC=2∠1.21.(5分)台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.22.(5分)如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF=∠BAE.(1)求证:四边形AEFD是平行四边形;(2)若DF=3,DE=4,AD=5,求CD的长度.23.(5分)在平面直角坐标xOy中,直线y=x+b与双曲线y=的一个交点为A(2,4),与y轴交于点B.(1)求m的值和点B的坐标;(2)点P在双曲线y=上,△OBP的面积为8,直接写出点P的坐标.24.(5分)如图,点D在⊙O上,过点D的切线交直径AB延长线于点P,DC⊥AB于点C.(1)求证:DB平分∠PDC;(2)若DC=6,tan∠P=,求BC的长.25.(5分)阅读下列材料:人口老龄化已经成为当今世界主要问题之一.北京市在上世纪90年代初就进入了老龄化社会,全市60岁及以上户籍老年人口2013年底达到279.3万人,占户籍总人口的21.2%;2014年底比2013年底增加17.4万人,占户籍总人口的22.3%;2015年底比2014年底增加23.3万人,占户籍总人口的23%.“百善孝为先”,北京市政府越来越关注养老问题,提出养老服务新模式,计划90%的老年人在社会化服务协助下通过家庭照顾养老(即居家养老),6%的老年人在社区养老,4%的老年人入住养老服务机构.本市养老服务机构的床位总数2013年达到8.0516万张,2014年达到10.938万张,2015年达到12万张.根据以上材料回答下列问题:(1)到2014年底,本市60岁及以上户籍老年人口为万人;(2)选择统计表或统计图,将2013年﹣﹣2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例表示出来;(3)预测2016年本市养老服务机构的床位数约为万张,请你结合数据估计,能否满足4%的老年人入住养老服务机构,并说明理由.26.(5分)观察下列各等式:2﹣=,(﹣1.2)﹣6=(﹣1.2)×6,(﹣)﹣(﹣1)=(﹣)×(﹣1),…根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的等于它们的;(2)请你写一个实数,使它具有上述等式的特征:﹣3=×3;(3)请你再写两个实数,使它们具有上述等式的特征:﹣=×;(4)符合上述特征的所有等式中,是否存在两个实数都是整数的情况?若存在,求出所有满足条件的等式;若不存在,说明理由.27.(7分)在平面直角坐标系xOy中,抛物线y=x2+bx+c经过点(0,﹣3),(2,﹣3).(1)求抛物线的表达式;(2)求抛物线的顶点坐标及与x轴交点的坐标;(3)将y=x2+bx+c(y≤0)的函数图象记为图象A,图象A关于x轴对称的图象记为图象B.已知一次函数y=mx+n,设点H是x轴上一动点,其横坐标为a,过点H作x轴的垂线,交图象A于点P,交图象B于点Q,交一次函数图象于点N.若只有当1<a<3时,点Q在点N上方,点N在点P上方,直接写出n的值.28.(7分)在等腰三角形ABC中,AC=BC,点P为BC边上一点(不与B、C重合),连接PA,以P为旋转中心,将线段PA顺时针旋转,旋转角与∠C相等,得到线段PD,连接DB.(1)当∠C=90°时,请你在图1中补全图形,并直接写出∠DBA的度数;(2)如图2,若∠C=α,求∠DBA的度数(用含α的代数式表示);(3)连接AD,若∠C=30°,AC=2,∠APC=135°,请写出求AD长的思路.(可以不写出计算结果)29.(8分)在平面直角坐标系xOy中,A(t,0),B(t+,0),对于线段AB和x轴上方的点P给出如下定义:当∠APB=60°时,称点P为AB的“等角点”.(1)若t=﹣,在点C(0,),D(,1),E(﹣,)中,线段AB的“等角点”是;(2)直线MN分别交x轴、y轴于点M、N,点M的坐标是(6,0),∠OMN=30°.①线段AB的“等角点”P在直线MN上,且∠ABP=90°,求点P的坐标;②在①的条件下,过点B作BQ⊥PA,交MN于点Q,求∠AQB的度数;③若线段AB的所有“等角点”都在△MON内部,则t的取值范围是.数学试题答案一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.【解答】将264000用科学记数法表示应为2.64×105,故选:C.2.【解答】由数轴可知a,b,c,d表示的数为﹣3,﹣1,2,3,∵|﹣3|=|3|,∴a与d互为相反数,故选:D.3.【解答】小易抽到杀手牌的概率=.故选C4.【解答】A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.5.【解答】∵四边形ABCD内接于⊙O,∴∠BCE=∠A=50°.故选B.6.【解答】∵D,E为AC和BC的中点,∴AB=2DE=2200m,故选:B.7.【解答】=(177+176+175+176)÷4=176,=(178+175+177+174)÷4=176,s甲2=[(177﹣176)2+(176﹣176)2+(175﹣176)2+(176﹣176)2]=0.5,s乙2=[(178﹣176)2+(175﹣176)2+(177﹣176)2+(174﹣176)2]=2.5.s甲2<s乙2.故选:A.8.【解答】连接OB,OC,∵∠A=60°,∴∠BOC=2∠A=120°,∴==4π.故选B.9.【解答】如图:水立方的坐标为(﹣2,﹣4).故选:A.10.【解答】若线段CG=y,由题意可得,y随x的增大减小,故选项A错误;若线段AG=y,由题意可得,y随x的增大先增大再减小,并且左右对称,故选项B错误;若线段AH=y,由题意可得,y随x的增大先减小再增大,故选项C错误;若线段CH=y,由题意可得,y随x的增大先增大再减小,故选项D正确;故选D.二、填空题(本题共18分,每小题3分)11.【解答】根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.12.【解答】原式=b(a2﹣6ab+9b2)=b(a﹣3b)2.故答案为:b(a﹣3b)213.【解答】∵方程x2+2x+2k﹣4=0有两个不相等的实数根,∴△=b2﹣4ac=4﹣8k+16>0,解得:k,则k的取值范围为::k.∴k=1.故答案为:1(k的任意实数).14.【解答】设共有客人x人,根据题意得x+x+x=65.故答案为x+x+x=65.15.【解答】设瓶子中有豆子x粒豆子,根据题意得:=,解得:x=1250,答:估计瓶子中豆子的数量约为1250粒.故答案为:1250.16.【解答】分别以点D和点E为圆心,大于DE长为半径作弧,两弧相交于点F,小艾这样作图的依据是等腰三角形的“三线合一”,作直线CF,依据是:两点确定一条直线.故答案为:等腰三角形的“三线合一”,两点确定一条直线.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.【解答】(﹣2)﹣1﹣|﹣|+(﹣1)0+4cos45°=﹣﹣2+1+4×=﹣﹣2+1+2=.18.【解答】原式=4m2﹣1+m2﹣5m=5m2﹣5m﹣1=5(m2﹣m)﹣1,由m﹣=1,得到m2﹣m=1,则原式=5﹣1=4.19.【解答】解不等式3(x﹣1)<6x得:x>﹣1,解不等式x≤得:x≤1,∴不等式组解集是﹣1<x≤1,∴原不等式组的所有整数解为0、1.20.【解答】证明:∵EF∥AB,∴∠1=∠FAB,∵AE=EF,∴∠EAF=∠EFA,∵∠1=∠EFA,∴∠EAF=∠1,∴∠BAC=2∠1.21.【解答】设北京故宫博物院约有x万件藏品,台北故宫博物院约有y万件藏品,根据题意,列方程得,解得,答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品.22.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠B=∠DCF=90°,∵∠BAE=∠CDF,在△ABE和△DCF中,,∴△ABE≌△DCF(ASA),∴BE=CF,∴BC=EF,∵BC=AD,∴EF=AD,又∵EF∥AD,∴四边形AEFD是平行四边形;(2)解:由(1)知:EF=AD=5,在△EFD中,∵DF=3,DE=4,EF=5,∴DE2+DF2=EF2,∴∠EDF=90°,∴•ED•DF=EF•CD,∴CD=.23.【解答】(1)∵双曲线y=经过点A(2,4),∴m=8,∵直线y=x+b经过点A(2,4),∴4=2+b,∴b=2,∴此直线与y轴的交点B坐标为(0,2).∴m=8,点B(0,2).(2)设点P(m,),由题意×2×|m|=8,∴m=±8,∴点P坐标(8,1),(﹣8,﹣1).24.【解答】(1)证明:连结OD,如图,∵PD为切线,∴OD⊥PD,∴∠ODP=90°,即∠ODB+∠PDB=90°,∵CD⊥OB,∴∠DCB=90°,∴∠CDB+∠DBC=90°,∵OB=OD,∴∠ODB=∠OBD,∴∠CDB=∠PDB,∴DB平分∠PDC;(2)解:作BE⊥PD,如图,∵DB平分∠PDC,BC⊥CD,BE⊥PD,∴BC=BE,在Rt△PDC中,∵tanP===,∴PC=8,∴PD==10,设BC=x,则BE=x,PB=8﹣x,∵∠EPB=∠CPD,∴Rt△PBE∽Rt△PDC,∴BE:DC=PB:PD,即x:6=(8﹣x):10,解得x=3,即BC的长为3.25.【解答】(1)到2014年底,本市60岁及以上户籍老年人口为:279.3+17.4=296.7(万人);(2)2015年老年人的数量是:296.7+23.3=320(人),填表如下:年份老年人口数量(单位:万人)老年人口占户籍总人口的比例2013年279.3 21.2%2014年296.7 22.3%2015年320 23%(3)预测2016年本市养老服务机构的床位数约14万张,能满足老年人的入住需求;理由如下:根据2013﹣2015年老年人口数量增长情况,估计到2016年老年人口约有340万人,有4%的老年人入住养老服务机构,即约有13.6万人入住养老服务机构,到2016年北京市养老服务机构的床位数约14万张,所以能满足老年人的入住需求.故答案为:(1)296.7;(3)14.26.【解答】(1)上面等式反映的规律用文字语言可描述为:存在两个实数,使得这两个实数的差等于它们的积;(2)一个实数,使它具有上述等式的特征:﹣﹣3=﹣×3;(3)两个实数,使它们具有上述等式的特征:1﹣=1×;(4)存在.设这两个实数分别为x,y,可以得到x﹣y=xy,∴y=,y=1﹣,∵两个实数都是整数,∴x+1=±1,∴当x=0时,y=0;当x=﹣2时,y=2.∴满足两个实数都是整数的等式为0﹣0=0×0,(﹣2)﹣2=﹣2×2.故答案为:差,积;﹣,﹣;1,,1,.27.【解答】(1)根据题意得,解得,所以抛物线解析式为y=x2﹣2x﹣3;(2)y=x2﹣2x﹣3=(x﹣1)2﹣4,则抛物线的顶点坐标为(1,﹣4),当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,所以抛物线与x轴的交点坐标为(﹣1,0),(3,0);(3)∵图象A关于x轴对称的图象记为图象B,如图,∴图象B的顶点坐标为(1,4),∵只有当1<a<3时,点Q在点N上方,点N在点P上方,∴直线y=mx+n过点(1,4)、(3,0)或(1,﹣4)、(3,0),当直线y=mx+n过点(1,4)、(3,0)时,直线解析式为y=﹣2x+6,此时n=6;当直线y=mx+n过点(1,﹣4)、(3,0)时,直线解析式为y=2x﹣6,此时n=﹣6,∴n的值为6或﹣6.28.【解答】(1)依题意补全图形,如图1所示,过点P作PE∥AC,∴∠PEB=∠CAB,∵AB=BC,∴∠CBA=∠CAB,∴∠PEB=∠PBE,∴PB=PE,∵∠BPD+∠DPE=∠EPA+∠DPE=90°,∴∠BPD=∠EPA,∵PA=PD,∴△PDB≌△PAE,∵∠PBA=∠PEB=(180°﹣90°)=45°,∴∠PBD=∠PEA=180°﹣∠PEB=135°,∴∠DBA=∠PBD﹣∠PBA=90°;(2)如图2,过点P作PE∥AC,∴∠PEB=∠CAB,∵AC=BC,∴∠CBA=∠CAB,∴∠PEB=∠PBE,∴PB=PE,∵∠BPD+∠DPE=∠EPA+∠DPE=α,∴∠BPD=∠EPA,∵PA=PD,∴△PDB≌△PAE,∵∠PBA=∠PEB=(180°﹣α)=90°﹣α,∴∠PBD=∠PEA=180°﹣∠PEB=90°+α,∴∠DBA=∠PBD﹣∠PBA=α;(3)如图3,作AH⊥BC,∵∠ACB=30°,AC=2,∴AH=1,CH=,∴BH=2﹣,根据勾股定理得,AB==2,∵∠APC=135°,∴∠APH=45°,∴AP=AH=,∵∠APD=∠ACB=30°,AC=BC,AP=DP,∴△PAD∽△CAB,∴==,∴AD=AB=×2=.29.【解答】(1)当t=﹣时,点A(﹣,0),点B(,0),∵点C(0,),OC==AB,且点O为线段AB的中点,∴△ABC为等边三角形,∴∠ACB=60°,点C是线段AB的“等角点”;∵点D(,1),B、D横坐标相等,∴BD⊥x轴于点B.∵AB=﹣(﹣)=,BD=1﹣0=1,tan∠ADB==,∴∠ADB=60°,点D是线段AB的“等角点”;∵点E(﹣,),A、E横坐标相等,∴AE⊥x轴于点A.∵AB=﹣(﹣)=,AE=﹣0=,tan∠AEB==,∴∠AEB≠60°,点E不是线段AB的“等角点”.综上可知:点C、D是线段AB的“等角点”.故答案为:C、D.(2)①当点N在y轴正半轴时,如图1,∵∠APB=60°,∠ABP=90°,∴∠PAB=30°,又∵∠OMN=30°,∴PA=PM,AB=BM.∵AB=,∴BM=,∴PB=1.∴P(6﹣,1).当点N在y轴负半轴时,同理可得点P(6+,1).②当点N在y轴正半轴时,如图2,∵BQ⊥AP,且∠APB=60°,∴∠PBQ=30°,∴∠ABQ=60°,∴∠BMQ=∠MQB=30°,∴BQ=BM=AB,∴△ABQ是等边三角形.∴∠AQB=60°.当点N在y轴负半轴时,同理可得∠AQB=90°.③以AB=做底,AO′=BO′为腰,∠AO′B=120°作三角形,如图3所示.∵AO′=BO′,AB=,∠AO′B=120°,∴AO′=1,O′O″=.(i)在(2)的基础上,以直线y=上的点O′为圆心,1为半径作圆,当圆O′与y轴相切,且O′在y轴右侧时,如图4所示,此时O′的坐标为(1,),此时A点的横坐标为1﹣AB=1﹣,即t=1﹣;(ii)在(2)的基础上,以直线y=上的点O′为圆心,1为半径作圆,当圆O′与线段MN相切,且O′在MN下方时,如图5所示.∵M′F=,∠OMN=30°,∴MF==.∵O′D=1,∠O′M′D=∠OMN=30°,∴O′M′==2.此时点B的横坐标为OM﹣MF﹣O′M′+AB=4,∴t+=4,t=4﹣.综上可知:若线段AB的所有“等角点”都在△MON内部,则t的取值范围是1﹣<t<4﹣.故答案为:1﹣<t<4﹣.。
北京市各区2016年中考数学一模汇编一元方程20190221264
![北京市各区2016年中考数学一模汇编一元方程20190221264](https://img.taocdn.com/s3/m/673b94213c1ec5da50e270ac.png)
北京市2016年各区中考一模汇编一元方程一、一元二次方程求解1.【2016平谷一模,第08题】已知,关于x 的一元二次方程()22210m x x -++=有实数根,则m 的取值范围是 A .m <3 B .m ≤3 C .m <3且m ≠2 D .m ≤3且m ≠22.【2016西城一模,第05题】关于x 的一元二次方程21302x x k ++=有两个不相等的实数根,则k 的取值范围是() A .92k <B .94k =C .92k ≥D .94k >3.【2016丰台一模,第13题】关于x 的一元二次方程x 2+ 2 ( m + 1 ) x + m 2- 1 = 0有实数根,则实数m 的取值范围 是.4.【2016朝阳一模,第13题】关于x 的方程04222=-++k x x 有两个不相等实数根,写出一个满足条件的k 的值:k =____________.5. 【2016丰台一模,第16题】小明同学用配方法推导关于x 的一元二次方程ax 2+ bx + c = 0的求根公式时,对于b 2-4ac >0的情况,他是这样做的:小明的解法从第步开始出现错误;这一步的运算依据应是.二、一元二次方程简化6.【2016东城一模,第19题】已知230x x --=,求代数式(x +1)2﹣x (2x +1)的值.7.【2016丰台一模,第18题】已知2270x x --=,求2(2)(3)(3)x x x -++-的值.8.【2016朝阳一模,第18题】 已知11m m-=,求(21)(21)(5)m m m m +-+-的值.9.【2016海淀一模,第19题】已知250x x +-=,求代数式()()()()21322x x x x x ---++-的值10.【2016西城一模,第18题】已知:230a a --=,求代数式()()()232a a b a b a b ---+-的值.11.【2016通州一模,第19题】已知2210a a --=,求代数式()()()222a a b a b b -++-+的值.三、一元一/二次方程应用 12.【2016通州一模,第14题】我们知道,无限循环小数都可以化成分数.例如:将0.3g 化成分数时,可设0.3x =g,则有3.310x =g,1030.3x =+g,103x x =+,解得13x =,即0.3g 化成分数是13.仿此方法,将0.45g g化成分数是____________.13.【2016朝阳一模,第14题】《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x 人,可列方程为____________.14.【2016海淀一模,第13题】埃及《纸草书》中记载:“一个数,它的三分之一,它的一半,它的七分之一,它的全部,加起来总共是33”,设这个数为x ,可列方程为15.【2016海淀一模,第21题】目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量水泵,对比手机数据发现小琼步行12000步与小博步行9000步水泵的能量相同,若每消耗1千卡能量小琼行走的步数比小博多10步,求小博每消耗1千卡能量需要行走多少步?16.【2016东城一模,第21题】 列方程或方程组解应用题:在“春节”前夕,某花店用13 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6 000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的12,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?17.【2016丰台一模,第21题】根据《中国铁路中长期发展规划》,预计到2020年底,我国建设城际轨道交通的公里数是客运专线的2倍. 其中建设城际轨道交通约投入8000亿元,客运专线约投入3500亿元. 据了解,建设每公里城际轨道交通与客运专线共需1.5亿元. 预计到2020年底,我国将建设城际轨道交通和客运专线分别约多少公里?18.【2016平谷一模,第21题】 列方程或方程组解应用题:某校为了增强学生对中华优秀传统文化的理解,决定购买一批相关的书籍.据了解,经典著作的单价比传说故事的单价多8元,用12000元购买经典著作与用8000元购买传说故事的本数相同,求经典著作的单价是多少元?19.【2016通州一模,第21题】通州区运河两岸的“运河绿道”和步行道是健身的主要场地之一. 杨师傅分别体验了60公里的“运河绿道”骑行和16公里的健步走,已知骑行的平均速度是健步走平均速度的4倍,结果健步走比骑行多用了12分钟,求杨师傅健步走的平均速度是每小时多少公里?20.【2016西城一模,第23题】上海迪士尼乐园将于2016年6月正式开园,小芳打算在暑假和爸爸、妈妈一起去上海迪士尼乐园游玩,她综合考虑了交通、门票、住宿等方面的因素,得出如下结论:三、一元二次方程复杂应用(大题)21.【2016通州一模,第24题】已知关于x 的一元二次方程22(21)0x k x k k -+++=. (1)求证:方程有两个不相等的实数根; (2)当方程有一个根为5时,求k 的值.22.【2016东城一模,第27题】已知关于x 的一元二次方程mx 2+(3m +1)x +3=0. (1)当m 取何值时,此方程有两个不相等的实数根;(2)当抛物线y =mx 2+(3m +1)x +3与x 轴两个交点的横坐标均为整数,且m 为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象直接写出实数a 的取值范围.详细解答1. D2. A3. -1m ³4. 1=k (52k <的任意实数)5. 四;平方根的定义.6. 解:21)(21)x x x +-+( = 22212x x x x ++--=21x x -++. …………3分 ∵ 230x x --=,∴23x x -+=-. …………4分 ∴原式= -2. …………5分 7. 解:原式22449x x x =-++-2245x x =--.------------ 3分∵2270x x --=,∴227x x -=. ------------ 4分 ∴原式22(2)5x x =--=2´7-5=9. ------------ 5分8. 解:原式=22415m m m -+-…………………………………………… 2分 =2551m m --…………………………………………………… 3分 =25()1m m --.11m m-=, 21m m ∴-=. …………………………………………………… 4分 ∴原式=4. …………………………………………………………… 5分9. 解:原式2322134x x x x x =-+-++-3分23x x =+- 4分∵230x x +-=∴25x x += ∴原式=5-3=25分10.11. 解:原式=222244a a a b b -++-+, ………………… 2分;=2244a a -+, ………………… 3分; ∵2210a a --=,∴221a a -=, …… 4分; ∴2242a a -=∴原式=246+=. …… 5分.12.511或4599; 13. 65413121=++x x x 14. 21133327x x x x +++=15. 解:设小博每消耗1千卡能量需要行走x 步。
2016年辽宁省中考数学一模试卷【含解析】
![2016年辽宁省中考数学一模试卷【含解析】](https://img.taocdn.com/s3/m/d0573e07a21614791711287b.png)
2016年辽宁省中考数学模拟试卷一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.(3分)(2015•丹东)﹣2015的绝对值是()A.﹣2015 B.2015 C.D.﹣2.(3分)(2015•丹东)据统计,2015年在“情系桃源,好运丹东”的鸭绿江桃花观赏活动中,6天内参与人次达27.8万.用科学记数法将27.8万表示为()A.2.78×106B.27.8×106C.2.78×105D.27.8×1053.(3分)(2015•丹东)如图,是某几何体的俯视图,该几何体可能是()A.圆柱 B.圆锥 C.球D.正方体4.(3分)(2015•丹东)如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是()A.5.2 B.4.6 C.4 D.3.65.(3分)(2015•丹东)下列计算正确的是()A.2a+a=3a2B.4﹣2=﹣C.=±3 D.(a3)2=a66.(3分)(2015•丹东)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°7.(3分)(2015•丹东)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB=,∠DCF=30°,则EF的长为()A.2 B.3 C.D.9.(3分)(2015•丹东)一次函数y=﹣x+a﹣3(a为常数)与反比例函数y=﹣的图象交于A、B两点,当A、B两点关于原点对称时a的值是()A.0 B.﹣3 C.3 D.4二、填空题(每小题3分,共24分)10.(3分)(2015•丹东)如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.11.(3分)(2015•丹东)如图,∠1=∠2=40°,MN平分∠EMB,则∠3=°.12.(3分)(2015•丹东)分解因式:3x2﹣12x+12=.13.(3分)(2015•丹东)若a<<b,且a、b是两个连续的整数,则a b=.14.(3分)(2015•丹东)不等式组的解集为.15.(3分)(2015•丹东)在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是.16.(3分)(2015•丹东)若x=1是一元二次方程x2+2x+a=0的一个根,那么a=.17.(3分)(2015•丹东)如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三角形,点A1、A2、A3…A n+1在x轴的正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B n的坐标为.三、解答题(每小题8分,共16分)18.(8分)(2015•丹东)先化简,再求值:(1﹣)÷,其中a=3.19.(8分)(2015•丹东)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.四、(每小题10分,共20分)20.(10分)(2015•丹东)某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.21.(10分)(2015•丹东)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?五、(每小题10分,共20分)22.(10分)(2015•丹东)一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P(x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.23.(10分)(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.六、(每小题10分,共20分)24.(10分)(2015•丹东)如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)25.(10分)(2015•丹东)某商店购进一种商品,每件商品进价30元.试销中发现这种商x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?七、(本题12分)26.(12分)(2015•丹东)在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN 中,∠MPN=90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,猜想此时PE与PF的数量关系,并给出证明;当BD=m•BP时,请直接写出PE与PF 的数量关系.八、(本题14分)27.(14分)(2015•丹东)如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.(3分)(2015•丹东)﹣2015的绝对值是()A.﹣2015 B.2015 C.D.﹣【解答】解:∵﹣2015的绝对值等于其相反数,∴﹣2015的绝对值是2015;故答案为:2015.2.(3分)(2015•丹东)据统计,2015年在“情系桃源,好运丹东”的鸭绿江桃花观赏活动中,6天内参与人次达27.8万.用科学记数法将27.8万表示为()A.2.78×106B.27.8×106C.2.78×105D.27.8×105【解答】解:将27.8万用科学记数法表示为2.78×105.故选:C.3.(3分)(2015•丹东)如图,是某几何体的俯视图,该几何体可能是()A.圆柱 B.圆锥 C.球D.正方体【解答】解:圆柱的俯视图是圆,A错误;圆锥的俯视图是圆,且中心由一个实点,B正确;球的俯视图是圆,C错误;正方体的俯视图是正方形,D错误.故选:B.4.(3分)(2015•丹东)如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是()A.5.2 B.4.6 C.4 D.3.6【解答】解:∵这组数据的众数是4,∴x=4,=(2+4+4+3+5)=3.6.故选:D.5.(3分)(2015•丹东)下列计算正确的是()A.2a+a=3a2B.4﹣2=﹣C.=±3 D.(a3)2=a6【解答】解:A、2a+a=3a,故A错误;B、4﹣2==,故B错误;C、,故C错误;D、(a3)2=a3×2=a6,故D正确.故选:D.6.(3分)(2015•丹东)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.7.(3分)(2015•丹东)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB=,∠DCF=30°,则EF的长为()A.2 B.3 C.D.【解答】解:∵矩形对边AD∥BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OE=OF,又∵EF⊥AC,∴四边形AECF是菱形,∵∠DCF=30°,∴∠ECF=90°﹣30°=60°,∴△CEF是等边三角形,∴EF=CF,∵AB=,∴CD=AB=,∵∠DCF=30°,∴CF=÷=2,∴EF=2.故选A.9.(3分)(2015•丹东)一次函数y=﹣x+a﹣3(a为常数)与反比例函数y=﹣的图象交于A、B两点,当A、B两点关于原点对称时a的值是()A.0 B.﹣3 C.3 D.4【解答】解:设A(t,﹣),∵A、B两点关于原点对称,∴B(﹣t,),把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加得2a﹣6=0,∴a=3.故选C.二、填空题(每小题3分,共24分)10.(3分)(2015•丹东)如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.【解答】解:如图:转动转盘被均匀分成6部分,阴影部分占2份,飞镖落在阴影区域的概率是;故答案为:.11.(3分)(2015•丹东)如图,∠1=∠2=40°,MN平分∠EMB,则∠3=110°.【解答】解:∵∠2=∠MEN,∠1=∠2=40°,∴∠1=∠MEN,∴AB∥CD,∴∠3+∠BMN=180°,∵MN平分∠EMB,∴∠BMN=,∴∠3=180°﹣70°=110°.故答案为:110.12.(3分)(2015•丹东)分解因式:3x2﹣12x+12=3(x﹣2)2.【解答】解:原式=3(x2﹣4x+4)=3(x﹣2)2,故答案为:3(x﹣2)213.(3分)(2015•丹东)若a<<b,且a、b是两个连续的整数,则a b=8.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.14.(3分)(2015•丹东)不等式组的解集为﹣1<x<1.【解答】解:,由①得,x>﹣1,由②得,x<1.所以,不等式组的解集为﹣1<x<1.故答案为﹣1<x<1.15.(3分)(2015•丹东)在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是20.【解答】解:AC与BD相交于点O,如图,∵四边形ABCD为菱形,∴AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,在Rt△AOD中,∵OA=3,OB=4,∴AD==5,∴菱形ABCD的周长=4×5=20.故答案为20.16.(3分)(2015•丹东)若x=1是一元二次方程x2+2x+a=0的一个根,那么a=﹣3.【解答】解:将x=1代入得:1+2+a=0,解得:a=﹣3.故答案为:﹣3.17.(3分)(2015•丹东)如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三角形,点A1、A2、A3…A n+1在x轴的正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B n的坐标为(3×2n﹣2,×2n﹣2).【解答】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠B1OA2=30°,∴∠B1OA2=∠A1B1O=30°,可求得OA2=2OA1=2,同理可求得OA n=2n﹣1,∵∠B n OA n+1=30°,∠B n A n A n+1=60°,∴∠B n OA n+1=∠OB n A n=30°∴B n A n=OA n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,则可求得其高为×2n﹣1=×2n﹣2,∴点B n的横坐标为×2n﹣1+2n﹣1=×2n﹣1=3×2n﹣2,∴点B n的坐标为(3×2n﹣2,×2n﹣2).故答案为(3×2n﹣2,×2n﹣2).三、解答题(每小题8分,共16分)18.(8分)(2015•丹东)先化简,再求值:(1﹣)÷,其中a=3.【解答】解:原式=×=,当a=3时,原式==.19.(8分)(2015•丹东)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.点B旋转到点B2所经过的路径长为:=π.故点B旋转到点B2所经过的路径长是π.四、(每小题10分,共20分)20.(10分)(2015•丹东)某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.【解答】解:(1)69÷23%=300(人)∴本次共调查300人;(2)∵喜欢娱乐节目的人数占总人数的20%,∴20%×300=60(人),补全如图;∵360°×12%=43.2°,∴新闻节目在扇形统计图中所占圆心角的度数为43.2°;(3)2000×23%=460(人),∴估计该校有460人喜爱电视剧节目.21.(10分)(2015•丹东)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?【解答】解:设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意得,﹣=2,解得:x=90,经检验,x=90是所列方程的根,则3x=3×90=270.答:高速列车平均速度为每小时270千米.五、(每小题10分,共20分)22.(10分)(2015•丹东)一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P(x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.【解答】解:(1)小红摸出标有数字3的小球的概率是;故答案为;种,且每种结果出现的可能性相同,其中点(x,y)在第一象限或第三象限的结果有4种,第二象限或第四象限的结果有8种,所以小红获胜的概率==,小颖获胜的概率==.23.(10分)(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.【解答】(1)解:如图,连接OD,∵CD是⊙O切线,∴OD⊥CD,∵OA=CD=2,OA=OD,∴OD=CD=2,∴△OCD为等腰直角三角形,∴∠DOC=∠C=45°,∴S阴影=S△OCD﹣S扇OBD=﹣=4﹣π;(2)证明:如图,连接AD,∵AB是⊙O直径,∴∠ADB=∠ADM=90°,又∵=,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,,∴△AMD≌△ABD,∴DM=BD,∴DE=DM.六、(每小题10分,共20分)24.(10分)(2015•丹东)如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)【解答】解:过点C作CE⊥AB交AB于点E,则四边形EBDC为矩形,∴BE=CD CE=BD=60,如图,根据题意可得,∠ADB=48°,∠ACE=37°,∵,在Rt△ADB中,则AB=tan48°•BD≈(米),∵,在Rt△ACE中,则AE=tan37°•CE≈(米),∴CD=BE=AB﹣AE=66﹣45=21(米),∴乙楼的高度CD为21米.25.(10分)(2015•丹东)某商店购进一种商品,每件商品进价30元.试销中发现这种商(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?【解答】解:(1)设该函数的表达式为y=kx+b,根据题意,得,解得:.故该函数的表达式为y=﹣2x+100;(2)根据题意得,(﹣2x+100)(x﹣30)=150,解这个方程得,x1=35,x2=45,故每件商品的销售价定为35元或45元时日利润为150元;(3)根据题意,得w=(﹣2x+100)(x﹣30)=﹣2x2+160x﹣3000=﹣2(x﹣40)2+200,∵a=﹣2<0 则抛物线开口向下,函数有最大值,即当x=40时,w的值最大,∴当销售单价为40元时获得利润最大.七、(本题12分)26.(12分)(2015•丹东)在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN 中,∠MPN=90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,猜想此时PE与PF的数量关系,并给出证明;当BD=m•BP时,请直接写出PE与PF 的数量关系.【解答】解:(1)PE=PF,理由:∵四边形ABCD为正方形,∴∠BAC=∠DAC,又PM⊥AD、PN⊥AB,∴PE=PF;(2)①成立,理由:∵AC、BD是正方形ABCD的对角线,∴OA=OD,∠FAO=∠EDO=45°,∠AOD=90°,∴∠DOE+∠AOE=90°,∵∠MPN=90°,∴∠FOA+∠AOE=90°,∴∠FOA=∠DOE,在△FOA和△EOD中,,∴△FOA≌△EOD,∴OE=OF,即PE=PF;②作OG⊥AB于G,∵∠DOM=15°,∴∠AOF=15°,则∠FOG=30°,∵cos∠FOG=,∴OF==,又OE=OF,∴EF=;③PE=2PF,证明:如图3,过点P作HP⊥BD交AB于点H,则△HPB为等腰直角三角形,∠HPD=90°,∴HP=BP,∵BD=3BP,∴PD=2BP,∴PD=2 HP,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE,又∵∠BHP=∠EDP=45°,∴△PHF∽△PDE,∴==,即PE=2PF,由此规律可知,当BD=m•BP时,PE=(m﹣1)•PF.八、(本题14分)27.(14分)(2015•丹东)如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,∴当△AMN面积最大时,N点坐标为(3,0).参与本试卷答题和审题的老师有:sdwdmahongye;1987483819;1286697702;梁宝华;星期八;gsls;sks;守拙;张其铎;HLing;fangcao;caicl(排名不分先后)菁优网2016年5月19日。
2016年度朝阳一模初三数学
![2016年度朝阳一模初三数学](https://img.taocdn.com/s3/m/12f4564c89eb172dec63b76f.png)
北京市朝阳区九年级综合练习(一)一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的. 1.清明节是中国传统节日,它不仅是人们远足踏青的日子,更是祭奠祖先、缅怀先人的节日.市民政局提供的数据显示,今年清明节当天全市213处祭扫点共接待群众264000人,将264000用科学计数法表示应为A .B .C .D . 2.实数a ,b ,c ,d 在数轴上对应的位置如图所示,绝对值相等的两个实数是A .与B .与C .与D .与3.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是 A .B .C .D . 4.下列图形选自历届世博会会徽,其中是轴对称图形的是A B C D5.如图,四边形ABCD 内接于⊙O ,E 为DC 延长线上一点,∠A = 50º,则∠BCE 的度数为A .40ºB .50ºC .60ºD .130º 6.某地需要开辟一条隧道,隧道AB 的长度无法直接测量.如图所示,在地面上取一点C ,使C 到A 、B 两点均可直接到达,测量找到AC 和BC 的中点D 、E ,测得DE 的长为1100m ,则隧道AB 的长度为A .3300mB .2200mC .1100mD .550m7.2022年将在北京—张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm )如下表所示:队员1 队员2 队员3 队员4 甲组 176 177 175 176 乙组178175177174326410⨯42.6410⨯52.6410⨯60.26410⨯a b b c c d a d 21132919E O CBAOACB图1设两队队员身高的平均数依次为,,方差依次为,,下列关系中完全正确的是 A .=,< B .=,> C .<,<D .>,>8.如图,△内接于⊙,若⊙的半径为6,,则的长为 A .2π B .4π C .6π D .12π9.我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园—玲珑塔—国家体育场—水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(–1,0),森林公园的坐标为(–2,2),则终点水立方的坐标为 A .(–2,–4) B .(–1,–4) C .(–2,4) D .(–4,–1)10.如图1,在等边三角形ABC 中,AB =2,G 是BC 边上一个动点且不与点B 、C 重合,H 是AC 边上一点,且°.设BG=x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的A . 线段CGB . 线段AGC . 线段AHD . 线段CH三、填空题(本题共18分,每小题3分) 11x 的取值范围是____________.12.分解因式:____________.13.关于x 的方程有两个不相等实数根,写出一个满足条件的k 的值:k =____________.14.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x 人,可列方程为____________.15.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为____________粒.甲x 乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s ABC O O ︒=∠60A »BC30=∠AGH 2x -22369a b ab b -+=04222=-++k x x yx1–1–112O图216.阅读下面材料:数学课上,老师提出如下问题:小艾的作法如下:老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是____________.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:10(2)8(21)4cos45----+-+︒.18.已知11mm-=,求(21)(21)(5)m m m m+-+-的值.19.解不等式组3(1)6,1.2x xxx-<⎧⎪⎨+≤⎪⎩并写出它的所有整数解.20.如图,E为AC上一点,EF∥AB交AF于点F,且AE = EF.求证:= 2∠1.BAC∠尺规作图:经过已知直线上一点作这条直线的垂线.已知:直线AB和AB上一点C.求作:AB的垂线,使它经过点C.如图,(1)在直线AB上取一点D,使点D与点C不重合,以点C为圆心,CD长为半径作弧,交AB于D,E两点;(2)分别以点D和点E为圆心,大于12DE长为半径作弧,两弧相交于点F;(3)作直线CF.所以直线CF就是所求作的垂线.1FEC21.台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入, 2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.22.如图,四边形ABCD 是矩形,点E 在BC 边上,点F 在BC 延长线上,且∠CDF =∠BAE . (1)求证:四边形AEFD 是平行四边形 ; (2)若DF =3,DE =4,AD =5,求CD 的长度.23.在平面直角坐标xOy 中,直线与双曲线的一个交点为A (2,4),与y 轴交于点B . (1) 求m 的值和点B 的坐标; (2) 点P 在双曲线上,△OBP 的面积为8,直接写出点P 的坐标.24.如图,点D 在⊙O 上,过点D 的切线交直径AB 延长线于点P ,DC ⊥AB 于点C . (1) 求证:DB 平分∠PDC ;y x b =+my x=my x=FEDCB AP(2) 若DC =6,3tan 4P ∠= ,求BC 的长.25.阅读下列材料:人口老龄化已经成为当今世界主要问题之一.北京市在上世纪90年代初就进入了老龄化社会,全市60岁及以上户籍老年人口2013年底达到279.3万人,占户籍总人口的21.2%; 2014年底比2013年底增加17.4万人,占户籍总人口的22.3%;2015年底比2014年底增加23.3万人,占户籍总人口的23%.“百善孝为先”,北京市政府越来越关注养老问题,提出养老服务新模式,计划90%的老年人在社会化服务协助下通过家庭照顾养老(即居家养老),6%的老年人在社区养老,4%的老年人入住养老服务机构.本市养老服务机构的床位总数2013年达到8.0516万张,2014年达到10.938万张,2015年达到12万张. 根据以上材料回答下列问题:(1)到2014年底,本市60岁及以上户籍老年人口为__________万人;(2)选择统计表或.统计图,将2013年––2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例表示出来;(3)预测2016年本市养老服务机构的床位数约为_________万张,请你结合数据估计,能否满足4%的老年人入住养老服务机构,并说明理由.26.观察下列各等式:,222=233-⨯,, ……根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的 等于它们的 ;(2)请你写一个实数,使它具有上述等式的特征: -3= 3;(3)请你再写两个实数,使它们具有上述等式的特征: - = ;(4)符合上述特征的所有等式中,是否存在两个实数都是整数的情况?若存在,求出所有满足条件的等式;若不存在,说明理由. 27.在平面直角坐标系xOy 中,抛物线经过点(0,–3),(2,–3). (1)求抛物线的表达式;(2)求抛物线的顶点坐标及与x 轴交点的坐标;(3)将(y ≤0)的函数图象记为图象A ,图象A 关于x 轴对称的图象记为图象B .已知一次函数y=mx +n ,设点H 是x 轴上一动点,其横坐标为a ,过点H 作x 轴的垂线,交图象A 于点P ,交图象B 于点Q ,交一次函数图象于点 N .若只有当1<a<3时,点Q 在点N 上方,点N 在点P 上方,直接写出n 的值.28.在等腰三角形ABC 中, AC =BC ,点P 为BC 边上一点(不与B 、C 重合),连接P A ,以P 为旋转中心,将线段P A 顺时针旋转,旋转角与∠C 相等,得到线段PD ,连接DB . (1)当∠C =90º时,请你在图1中补全图形,并直接写出∠DBA 的度数; (2)如图2,若∠C =α,求∠DBA 的度数(用含α的代数式表示);( 1.2)6( 1.2)6--=-⨯11()(1)()(1)22---=-⨯-⨯⨯c bx x y ++=2c bx x y ++=2(3)连接AD ,若∠C =30º,AC =2,∠APC =135º,请写出求AD 长的思路.(可以不写出计算结果)29.在平面直角坐标系xOy 中,A (t ,0),B (,0),对于线段AB 和x 轴上方的点P 给出如下定义:当∠APB=60°时,称点P为AB 的“等角点”.(1)若,在点302C ⎛⎫ ⎪⎝⎭,,D ⎫⎪⎪⎝⎭,32E ⎛⎫ ⎪ ⎪⎝⎭中,线段AB 的“等角点”是 ; (2)直线MN 分别交x 轴、y 轴于点M 、N ,点M 的坐标是(6,0),∠OMN=30°.①线段AB 的“等角点”P 在直线MN 上,且∠ABP =90°,求点P 的坐标; ②在①的条件下,过点B 作BQ ⊥P A ,交MN 于点Q ,求∠AQB 的度数;③若线段AB 的所有“等角点”都在△MON 内部,则t 的取值范围是 .北京市朝阳区九年级综合测试(一)数学试卷评分标准及参考答案一、选择题(本题共30分,每小题3分) 二、填空题(本题共18分,每小题3分)t +t =-PC BA图2图1PCBA三、解答题(本题共72分,第17─26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=11422--+⨯……………………………………………… …4分=12.……………………………………………………………………… 5分18.解:原式=22415m m m-+-………………………………………………………… 2分=2551m m--………………………………………………………………… 3分=25()1m m--.11mm-=Q,21m m∴-=.…………………………………………………………… 4分∴原式=4.…………………………………………………………………… 5分19.解:3(1)6,1.2x xxx-<⎧⎪⎨+≤⎪⎩解不等式①,得x>-1.……………………………………………………………2分解不等式②,得x≤1.………………………………………………………… 3分∴不等式组的解集是<≤1.………………………………………………… 4分∴原不等式组的所有整数解为0,1.……………………………………………5分20.证明:∵EF∥AB,∴∠1=∠F AB.…………………… 2分∵AE=EF,∴∠EAF=∠EF A.……………… 3分∵∠1=∠EF A,∴∠EAF=∠1.…………………… 4分∴∠BAC=2∠1.…………………5分1-x①②1FECA21.解:设北京故宫博物院约有x 万件藏品,台北故宫博物院约有y 万件藏品.. …… 1分 依题意,列方程组得 245250.x y x y +=⎧⎨=+⎩,…………………………………………………………………………3分解得18065.x y =⎧⎨=⎩,………………………………………………………………………………5分答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 22.(1)证明:∵四边形ABCD 是矩形,∴,=90º. ∵BAE CDF ∠=∠,∴△≌△.………………1分 ∴. ∴. ∵,∴.………………………2分 又∵EF ∥AD ,∴四边形AEFD 是平行四边形.………………………3分 (2)解:由(1)知,EF =AD = 5. 在△EFD 中,DF =3,DE =4,EF =5, ∴222DE DF EF +=.∴∠EDF =90º.……………………………………………………………………4分∴1122ED DF EF CD ⋅=⋅. ∴125CD =. ……………………………………………………………………5分 23.解:(1)∵双曲线经过点,A (2,4), ∴.………………………………………………………………………1分 ∵直线y x b =+经过点A (2,4),∴2b =.…………………………………………………………………………2分 ∴此直线与y 轴交点B 的坐标为(0,2). …………………………………3分DC AB =DCF B ∠=∠ABE DCF CF BE =EF BC =AD BC =AD EF =xmy =8=m FEDCB A(2)(8,1),(-8,-1). .…………………………………………………… 5分 24.(1)证明:如图,连接OD . ∵DP 是⊙O 的切线, ∴OD ⊥DP .∴90ODP ∠=︒. ………………………………………………………1分 ∴90.ODB BDP ∠+∠=︒ 又∵DC ⊥OB , ∴90DCB ∠=︒.∴90BDC OBD ∠+∠=︒. ∵OD =OB , ∴.ODB OBD ∠=∠ ∴BDP BDC ∠=∠.∴DB 平分∠PDC .……………………………………………………………2分 (2)解:过点B 作BE ⊥DP 于点E . ∵,BDP BDC ∠=∠BC ⊥DC ,∴BC =BE . ……………………………………3分 ∵DC =6,, ∴DP =10,PC =8.……………………………… 4分 设CB=x , 则BE=x ,BP=8- x .∵△PEB ∽△PCD ,∴8610x x-= .∴.∴ ……………………………………………………………………… 5分 25.(1)296.7. ………………………………………………………………………………1分 (2)统计表如下:2013–2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例统计表3tan 4P ∠=3=x .3=BC AA2014年 296.7 22.3% 2015年32023%……………………………………………………………………………………3分 (3)14; ……………………………………………………………………………………4分能满足老年人的入住需求. 理由:根据2013–2015年老年人口数量增长情况,估计到2016年老年人口约有340万人,有4%的老年人入住养老服务机构,即约有13.6万人入住养老服务机构,到2016年北京市养老服务机构的床位数约14万张,所以能满足老年人的入住需求. ……………….…………….…………….…………………………………………5分 26.解:(1)差,积;…………………………………………………………………………1分 (2),;……………………………………………………………………2分 (3)1,12,1,12(答案不唯一); …………………………………………3分 (4)存在. 设这两个实数分别为x ,y .可以得到 ……………………………………………………4分 ∴.∴111y x =-+. ∵ 要满足这两个实数x ,y 都是整数, ∴ x +1的值只能是1±.∴当时,;当时,.∴满足两个实数都是整数的等式为,.…5分 27.解:(1)把(0,–3)代入, ∴把(2,–3)代入 ∴. ………………2分 (2)由(1)得2(1)4y x =--.∴顶点坐标为(1,–4).……………3分23-23-.xy y x =-1+=x xy 0=x 0=y 2-=x 2=y 0000⨯=-222)2(⨯-=--c bx x y ++=2.3-=c ,32-+=bx x y .2-=b 322--=x x y由2230x x --=解得123,1x x ==-.∴抛物线与x 轴交点的坐标为(–1,0),(3,0).…………………………5分 (3). .……………………………………………………………………7分28.解:(1)如图,补全图1. …………….………………………………………………1分∠DBA=. ……………….………………………………………………2分(2) 过点P 作PE ∥AC 交AB 于点E . ………………………………………………3分 ∴PEB CAB ∠=∠. ∵ AC =BC ,∴CAB CBA ∠=∠. ∴PEB PBE ∠=∠. ∴PE PB =.又∵BPD DPE EPA DPE α∠+∠=∠+∠=, ∴BPD EPA ∠=∠. ∵PD PA =,∴△PDB ≌△PAE .…………………………………………………………4分 ∵11(180)9022PBA PEB αα∠=∠=︒-=︒-, ∴180PBD PEA PEB ∠=∠=︒-∠=α2190+︒. ∴DBA PBD PBA α∠=∠-∠=. …………………………………………5分 (3)求解思路如下: a .作AH ⊥BC 于H ;b .由∠C =30º,AC =2,可得AH =1,CH =3,BH =23-, 勾股定理可求AB ; ………………………………………6分c .由∠APC =135 º,可得∠APH =45 º,AP =2 ;d .由∠APD =∠C =30º,AC =BC ,AP =DP ,6±︒90PEDC BAHABC DP可得△P AD ∽△CAB ,由相似比可求AD 的长. ……………7分29.解:(1)C ,D . ……….…………….………….…….………….………………2分 (2)①如图,∵∠APB=60°,∠ABP =90°, ∴∠P AB =30°, 又∵∠OMN=30°,∴,.PA PM AB BM == ……………3分 ∵∴BM =∴∴P(6-1). .………..……….….………….………….…………4分 ②∵BQ ⊥AP ,且∠APB =60º, ∴∠PBQ =30º. ∴∠ABQ =60º.∴∠BMQ =∠MQB =30º. ……5分 ∴BQ = BM =AB . ∴△ABQ 是等边三角形.∴∠AQB =60º. ………………………………………………………6分同理,当点N 在x 轴下方时,可得P(1),∠AQB =90º. ………7分③14t <<…………………………………………………8分说明:各解答题的其他正确解法请参照以上标准给分.,3=AB .1=PB NMNM。
北京市各区2016年中考数学一模汇编整式(含参考答案)
![北京市各区2016年中考数学一模汇编整式(含参考答案)](https://img.taocdn.com/s3/m/738b7c06e2bd960590c67797.png)
北京市2016年各区中考一模汇编整式一、整式之幂运算1.【2016东城一模,第02题】下列运算中,正确的是A .x ·x 3=x 3B .(x 2)3=x 5C .624x x x ÷=D .(x -y )2=x 2+y 22.【2016通州一模,第03题】下列各式运算的结果为6a 的是A .33a a +B .33()aC .33a a ⋅ D.122a a ÷二、整式之因式分解3.【2016东城一模,第08题】对式子2241a a --进行配方变形,正确的是A .22(1)3a +-B . 23(1)2a --C .22(1)1a --D .22(1)3a --4.【2016东城一模,第11题】分解因式:22ab ac -=.5.【2016丰台一模,第11题】分解因式:2x 3-8x =.6.【2016平谷一模,第11题】分解因式:228x y y -=.7.【2016朝阳一模,第12题】分解因式:22369a b ab b -+=____________.8.【2016海淀一模,第11题】分解因式:22a b ab b -+=9.【2016西城一模,第11题】分解因式:34ab ab -=_______________.二、整式之因式简化10.【2016平谷一模,第18题】已知a+b =﹣1,求代数式()()2122a b a b a -+++的值.11.【2016通州一模,第11题】已知3m n +=,2m n -=,那么22m n -的值是 .详细解答1. C2. C3. D4. ()()a b c b c +-5. 2x (x +2)(x -2)6. ()()222y x x +-7. 2)3(b a b -8. 2(1)b a -9. ab(b+2)(b-2)10. 解:()()2122a b a b a -+++=222122+a a ab b a -+++……………………………………………………2 =2221+a ab b ++ (3)∵a+b =﹣1,∴原式=()21a b ++............................................................4 =2 (5)11. 6。
北京市朝阳区初三数学一模试卷及答案
![北京市朝阳区初三数学一模试卷及答案](https://img.taocdn.com/s3/m/3d891bd7f524ccbff0218407.png)
北京市朝阳区九年级综合练习(一)语文试卷 2008.5第Ⅰ卷(共60分)一、选择题,完成第1—5题。
下面各题均有四个选项,其中只有一个符合题意,请将该答案的字母序号填在题干后的括号内。
(共10分)1.下面加点字读音有误的是( )(2分)A. 忌讳.(hu ì) 干涸.(h é) 谆.谆教诲(zh ūn )B. 游弋.(y ì) 自诩.(y ǔ) 言简意赅.(g āi )C. 蹒.跚(pán) 修葺.(q ì) 断壁残垣.(yu án )D. 侥.幸(ji ǎo ) 执拗.(ni ù) 载.歌载舞(z ài )2.根据成语解说,在横线处填写的汉字不正确的是( ) (2分)A .完 归赵蔺相如到秦国献美玉时,见秦王无意给赵国城池,便派人把美玉完好无损地送回赵国。
比喻将原物完好无损地归还原主。
横线处应填“璧”字。
B .守 待兔一农夫见一只兔子撞在树桩上死了,便捡回家。
以后他便每天守着树桩,希望再捡到兔子。
比喻心存侥幸,不劳而获。
横线处应填“株”字。
C .闻鸡起东晋时,祖逖和刘琨互相勉励,立志为国效力,半夜听到鸡鸣就起床练剑。
形容有志之士及时发奋,刻苦自励。
横线处应填“武”字。
D.破沉舟项羽跟秦兵打仗,过河后把锅都打破,船都沉弃,营房烧毁,表示不再回来。
现比喻下决心,不顾一切干到底。
横线处应填“釜”字。
3.下面文字是对“微笑北京”主题活动的介绍。
在横线处填入恰当的词语,正确的是()(2分)在开展“微笑北京”主题活动中,北京团市委推出了佩戴奥运志愿五色“微笑圈”的活动。
随着红、黑、绿、黄、蓝五色“微笑圈”越来越为人们所熟知并佩戴,整个活动的知晓率和参与率都在不断上升。
志愿服务奥运也是我们中学生的责任,我们将用微笑迎接八方来客。
A. 首当其冲B.不言而喻C. 义不容辞D.当之无愧4.填入下列文字横线处的语句,与上文衔接最恰当的是()(2分)精读之外,还需要略读。
朝阳区2016初三一模数学试题与答案
![朝阳区2016初三一模数学试题与答案](https://img.taocdn.com/s3/m/35550d6d31b765ce0508145d.png)
朝阳区2016.5一模数学一、选择题(本题共30分,每小题3分)1.清明节是中国传统节日,它不仅是人们远足踏青的日子,更是祭奠祖先、缅怀先人的节日.市民政局提供的数据显示,今年清明节当天全市213处祭扫点接待群众264000人,将264000用科学计数法表示应为A.B.C.D.2.实数a,b,c,d在数轴上对应的位置如图所示,绝对值相等的两个实数是A.与B.与C.与D.与3.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是A.B.C.D.4.下列图形选自历届世博会会徽,其中是轴对称图形的是A B C D5.如图,四边形ABCD内接于⊙O,E为DC延长线上一点,∠A = 50º,则∠BCE的度数为A.40ºB.50ºC.60ºD.130º5题6题6.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使C到A、B两点均可直接到达,测量找到AC和BC的中点D、E,测得DE的长为1100m,则隧道AB的长度为A.3300m B.2200m C.1100m D.550m7.2022年将在北京—张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm)如下表所示:326410⨯42.6410⨯52.6410⨯60.26410⨯a b b c c d a d21132919EO DCBA甲乙甲乙A .=,<B .=,>C .<,<D .>,>8.如图,△内接于⊙,若⊙的半径为6,,则的长为 A .2π B .4π C .6π D .12π8题 9题 109.我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园—玲珑塔—国家体育场—水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(–1,0),森林公园的坐标为(–2,2),则终点水立方的坐标为A .(–2,–4)B .(–1,–4)C .(–2,4)D .(–4,–1)10.如图1,在等边三角形ABC 中,AB=2,G 是BC 边上一个动点且不与点B 、C 重合,H 是AC 边上一点,且°.设BG=x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的A . 线段CGB . 线段AGC . 线段AHD . 线段CH三、填空题(本题共18分,每小题3分)11x 的取值范围是____________.12.分解因式:____________.13.关于x 的方程有两个不相等实数根,写出一个满足条件的k 的值:k =____________.14.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x 人,可列方程为______ ______.15.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为____________粒.甲x 乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s ABC O O ︒=∠60A BCOACB30=∠AGH 22369a b ab b -+=04222=-++k x x 1–112O图2图116.阅读下面材料:数学课上,老师提出如下问题:小艾的作法如下:老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是____________.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.计算:1(2)1)4cos 45---++︒.18.已知11m m-=,求(21)(21)(5)m m m m +-+-的值.19.解不等式组3(1)6,1.2x x x x -<⎧⎪⎨+≤⎪⎩并写出它的所有整数解. 如图,(1)在直线AB 上取一点D ,使点D 与点C 不重合,以点C 为圆心,CD 长为半径作弧,交AB 于D ,E 两点; (2)分别以点D 和点E 为圆心,大于12DE 长为半径作弧,两弧相交于点F ; (3)作直线CF .所以直线CF 就是所求作的垂线.尺规作图:经过已知直线上一点作这条直线的垂线.已知:直线AB 和AB 上一点C .求作:AB 的垂线,使它经过点C .20.如图,E 为AC 上一点,EF ∥AB 交AF 于点F ,且AE = EF .求证:= 2∠1.21.台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入, 2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.22.如图,四边形ABCD 是矩形,点E 在BC 边上,点F 在BC 延长线上,且∠CDF =∠BAE . (1)求证:四边形AEFD 是平行四边形 ; (2)若DF=3,DE=4,AD=5,求CD 的长度.23.在平面直角坐标xOy 中,直线与双曲线的一个交点为A (2,4),与y 轴交于点B . (1) 求m 的值和点B 的坐标; (2) 点P 在双曲线上,△OBP 的面积为8,直接写出点P 的坐标. BAC ∠1FEC BAFEDCB Ay x b =+my x=my x=24.如图,点D 在⊙O 上,过点D 的切线交直径AB 延长线于点P ,DC ⊥AB 于点C . (1) 求证:DB 平分∠PDC ; (2) 若DC=6,3tan 4P ∠=,求BC 的长.25.阅读下列材料:人口老龄化已经成为当今世界主要问题之一.北京市在上世纪90年代初就进入了老龄化社会,全市60岁及以上户籍老年人口2013年底达到279.3万人,占户籍总人口的21.2%; 2014年底比2013年底增加17.4万人,占户籍总人口的22.3%;2015年底比2014年底增加23.3万人,占户籍总人口的23%.“百善孝为先”,北京市政府越来越关注养老问题,提出养老服务新模式,计划90%的老年人在社会化服务协助下通过家庭照顾养老(即居家养老),6%的老年人在社区养老,4%的老年人入住养老服务机构.本市养老服务机构的床位总数2013年达到8.0516万张,2014年达到10.938万张,2015年达到12万张. 根据以上材料回答下列问题:(1)到2014年底,本市60岁及以上户籍老年人口为__________万人;(2)选择统计表或.统计图,将2013年––2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例表示出来;(3)预测2016年本市养老服务机构的床位数约为_________万张,请你结合数据估计,能否满足4%的老年人入住养老服务机构,并说明理由.P26.观察下列各等式:,,, ……根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的等于它们的 ; (2)请你写一个实数,使它具有上述等式的特征:-3= 3;(3)请你再写两个实数,使它们具有上述等式的特征:- = ;(4)符合上述特征的所有等式中,是否存在两个实数都是整数的情况?若存在,求出所有满足条件的等式;若不存在,说明理由.27.在平面直角坐标系xOy 中,抛物线经过点(0,–3),(2,–3). (1)求抛物线的表达式;(2)求抛物线的顶点坐标及与x 轴交点的坐标;(3)将(y ≤0)的函数图象记为图象A ,图象A 关于x 轴对称的图象记为图象B .已知一次函数y=mx+n ,设点H 是x 轴上一动点,其横坐标为a ,过点H 作x 轴的垂线,交图象A 于点P ,交图象B 于点Q ,交一次函数图象于点 N .若只有当1<a<3时,点Q 在点N 上方,点N 在点P 上方,直接写出n 的值.222=233-⨯( 1.2)6( 1.2)6--=-⨯11()(1)()(1)22---=-⨯-⨯⨯c bx x y ++=2c bx x y ++=228.在等腰三角形ABC中,AC=BC,点P为BC边上一点(不与B、C重合),连接PA,以P为旋转中心,将线段PA顺时针旋转,旋转角与∠C相等,得到线段PD,连接DB.(1)当∠C=90º时,请你在图1中补全图形,并直接写出∠DBA的度数;(2)如图2,若∠C=α,求∠DBA的度数(用含α的代数式表示);(3)连接AD,若∠C =30º,AC=2,∠APC=135º,请写出求AD长的思路.(可以不写出计算结果)29.在平面直角坐标系xOy中,A(t ,0),B(,0),对于线段AB和x轴上方的点P给出如下定义:当∠APB=60°时,称点P为AB的“等角点”.(1)若32C⎛⎫⎪⎝⎭,,2D⎛⎫⎪⎪⎝⎭,3,22E⎛⎫- ⎪⎪⎝⎭中,线段AB的“等角点”是;(2)直线MN分别交x轴、y轴于点M、N,点M的坐标是(6,0),∠OMN=30°.①线段AB的“等角点”P在直线MN上,且∠ABP=90°,求点P的坐标;②在①的条件下,过点B作BQ⊥PA,交MN于点Q,求∠AQB的度数;③若线段AB的所有“等角点”都在△MON内部,则t的取值范围是.t+t=-PCB A图2图1PCB A北京市朝阳区九年级综合测试(一)数学试卷评分标准及参考答案一、选择题(本题共30分,每小题3分)29题8分)17.解:原式=11422--+⨯……………………………………………… …4分=12.……………………………………………………………………… 5分18.解:原式=22415m m m-+-………………………………………………………… 2分=2551m m--………………………………………………………………… 3分=25()1m m--.11mm-=,21m m∴-=.…………………………………………………………… 4分∴原式=4.…………………………………………………………………… 5分19.解:3(1)6,1.2x xxx-<⎧⎪⎨+≤⎪⎩解不等式①,得x>-1.………………………………2分解不等式②,得x≤1.……………………………… 3分∴不等式组的解集是<≤1.………………………… 4分∴原不等式组的所有整数解为0,1.……………………5分20.证明:∵EF∥AB,∴∠1=∠FAB.…………………… 2分∵AE=EF ,∴∠EAF=∠EFA.……………… 3分∵∠1=∠EFA,∴∠EAF=∠1.…………………… 4分∴∠BAC=2∠1.…………………5分21.解:设北京故宫博物院约有x万件藏品,台北故宫博物院约有y万件藏品.. …… 1分依题意,列方程组得1-x①②1FECBA245250.x y x y +=⎧⎨=+⎩,…………………………………………………………………………3分解得18065.x y =⎧⎨=⎩,………………………………………………………………………………5分答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 22.(1)证明:∵四边形ABCD 是矩形, ∴,=90º.∵BAE CDF ∠=∠, ∴△≌△.………………1分 ∴. ∴.∵, ∴.………………………2分 又∵EF ∥AD ,∴四边形AEFD 是平行四边形.………………………3分 (2)解:由(1)知,EF=AD= 5.在△EFD 中,DF=3,DE=4,EF=5,∴222DE DF EF +=. ∴∠EDF=90º.………………………………4分∴1122ED DF EF CD ⋅=⋅. ∴125CD =. …………………………5分23.解:(1)∵双曲线经过点,A (2,4),∴.………………………………………………………………………1分 ∵直线y x b =+经过点A (2,4),∴2b =.…………………………………………………………………………2分∴此直线与y 轴交点B 的坐标为(0,2). …………………………………3分 (2)(8,1),(-8,-1). .…………………………………………………… 5分 24.(1)证明:如图,连接OD . ∵DP 是⊙O 的切线, ∴OD ⊥DP .∴90ODP ∠=︒. ………………………………………………………1分 ∴90.ODB BDP ∠+∠=︒ 又∵DC ⊥OB , ∴90DCB ∠=︒.∴90BDC OBD ∠+∠=︒. ∵OD=OB ,∴.ODB OBD ∠=∠ ∴BDP BDC ∠=∠.∴DB 平分∠PDC .……………………………………………………………2分 (2)解:过点B 作BE ⊥DP 于点E . ∵,BDP BDC ∠=∠BC ⊥DC , ∴BC=BE. ……………………………………3分DC AB =DCF B ∠=∠ABE DCF CF BE =EF BC =AD BC =AD EF =xmy =8=m FEDCB AA∵DC=6,, ∴DP=10,PC=8.……………………………… 4分 设CB=x , 则BE=x ,BP=8- x . ∵△PEB ∽△PCD ,∴8610x x -= . ∴.∴……………………………………………………………………… 5分25.(1)296.7. ………………………………………………………………………………1分 (2)统计表如下:2013–2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例统计表(3)14; ……………………………………………………………………………………4分能满足老年人的入住需求. 理由:根据2013–2015年老年人口数量增长情况,估计到2016年老年人口约有340万人,有4%的老年人入住养老服务机构,即约有13.6万人入住养老服务机构,到2016年北京市养老服务机构的床位数约14万张,所以能满足老年人的入住需求. ……………….…………….…………….…………………………………………5分 26.解:(1)差,积;…………………………………………………………………………1分 分 分 (4)存在. 设这两个实数分别为x ,y .可以得到 ……………………………………………………4分 ∴.∴111y x =-+. ∵ 要满足这两个实数x ,y 都是整数,∴ x+1的值只能是1±.∴当时,;当时,.∴满足两个实数都是整数的等式为,.…5分 27.解:(1)把(0,–3)代入,3tan 4P ∠=3=x .3=BC .xy y x =-1+=x xy 0=x 0=y 2-=x 2=y 0000⨯=-222)2(⨯-=--c bx x y ++=2A∴把(2,–3)代入 ∴. ………………2分 (2)由(1)得2(1)4y x =--. ∴顶点坐标为(1,–4).……………3分由2230x x --=解得123,1x x ==-.∴抛物线与x 轴交点的坐标为(–1,0),(3,0).…………………………5分 (3). .……………………………………………………………………7分28.解:(1)如图,补全图1. …………….………………………………………………1分∠DBA=. ……………….………………………………………………2分(2) 过点P 作PE ∥AC 交AB 于点E . ………………………………………………3分 ∴PEB CAB ∠=∠.∵ AC=BC ,∴CAB CBA ∠=∠. ∴PEB PBE ∠=∠. ∴PE PB =.又∵BPD DPE EPA DPE α∠+∠=∠+∠=, ∴BPD EPA ∠=∠. ∵PD PA =,∴△PDB ≌△PAE .…………………………………………………………4分 ∵11(180)9022PBA PEB αα∠=∠=︒-=︒-, ∴180PBD PEA PEB ∠=∠=︒-∠=α2190+︒. ∴DBA PBD PBA α∠=∠-∠=. …………………………………………5分 (3)求解思路如下: a .作AH ⊥BC 于H ;b .由∠C =30º,AC=2,可得AH=1,BH=2 勾股定理可求AB ; ………………………………………6分 c .由∠APC=135 º,可得∠APH=45 º,; d .由∠APD=∠C=30º,AC=BC ,AP=DP ,可得△PAD ∽△CAB ,由相似比可求AD 的长. ……………7分 29.解:(1)C ,D . ……….…………….………….…….………….………………2分 (2)①如图,.3-=c ,32-+=bx x y .2-=b 322--=x x y 6±︒90PEC BAHABC P∵∠APB=60°,∠ABP=90°, ∴∠PAB=30°,又∵∠OMN=30°,∴,.PA PM AB BM == ……………3分∵∴BM =∴∴P(61). .………..……….….………….………….…………4分 ②∵BQ ⊥AP ,且∠APB=60º,∴∠PBQ=30º. ∴∠ABQ=60º.∴∠BMQ =∠MQB=30º. ……5分 ∴BQ = BM =AB.∴△ABQ 是等边三角形. ∴∠AQB=60º. ………………………………………………………6分同理,当点N 在x 轴下方时,可得P(1),∠AQB=90º. ………7分③142t -<<…………………………………………………8分说明:各解答题的其他正确解法请参照以上标准给分.,3=AB .1=PB NMNM。
2016朝阳数学一模
![2016朝阳数学一模](https://img.taocdn.com/s3/m/08061e280740be1e650e9a34.png)
北京市朝阳区九年级综合练习(一)数学试卷 2016.5一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.清明节是中国传统节日,它不仅是人们远足踏青的日子,更是祭奠祖先、缅怀先人的节日.市民政局提供的数据显示,今年清明节当天全市213处祭扫点共接待群众264000人, 将264000用科学计数法表示应为A .326410⨯ B .42.6410⨯ C .52.6410⨯ D .60.26410⨯ 2.实数a ,b ,c ,d 在数轴上对应的位置如图所示,绝对值相等的两个实数是A .a 与bB .b 与cC .c 与dD .a 与d 3.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是 A .21B .13C .29D .194.下列图形选自历届世博会会徽,其中是轴对称图形的是A B C D5.如图,四边形ABCD 内接于⊙O ,E 为DC 延长线上一点,∠A = 50º,则∠BCE 的度数为A .40ºB .50ºC .60ºD .130º图16.某地需要开辟一条隧道,隧道AB 的长度无法直接测量.如图所示, 在地面上取一点C ,使C 到A 、B 两点均可直接到达,测量找到AC 和BC 的中点D 、E ,测得DE 的长为1100m ,则隧道AB 的长度为A .3300mB .2200mC .1100mD .550m7.2022年将在北京—张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm )如下表所示:设两队队员身高的平均数依次为甲x ,乙x ,方差依次为2甲s ,2乙s ,下列关系中完全正确的是 A .甲x =乙x ,2甲s <2乙sB .甲x =乙x ,2甲s >2乙s C .甲x <乙x ,2甲s <2乙sD .甲x >乙x ,2甲s >2乙s8.如图,△ABC 内接于⊙O ,若⊙O 的半径为6,︒=∠60A , 则BC 的长为A .2πB .4πC .6πD .12π9.我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园—玲珑塔—国家体育场—水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(–1,0),森林公园的坐标为(–2,2),则终点水立方的坐标为 A .(–2,–4) B .(–1,–4) C .(–2,4) D .(–4,–1)10.如图1,在等边三角形ABC 中,AB =2,G 是BC 边上一个动点且不与点B 、C 重合,H 是AC 边上一点,且30=∠AGH °.设BG=x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的A . 线段CGB . 线段AGC . 线段AHD . 线段CH1–112O图2三、填空题(本题共18分,每小题3分) 11x 的取值范围是____________.12.分解因式:22369a b ab b -+=____________.13.关于x 的方程04222=-++k x x 有两个不相等实数根,写出一个满足条件的k 的值:k =____________.14.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣. 《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?” 译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x 人,可列方程为____________.15.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为____________粒. 16.阅读下面材料:数学课上,老师提出如下问题:小艾的作法如下:老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是____________.尺规作图:经过已知直线上一点作这条直线的垂线. 已知:直线AB 和AB上一点C .求作:AB 的垂线,使它经过点C . 如图,(1)在直线AB 上取一点D ,使点D 与点C 不重合,以点C 为圆心,CD 长为半径作弧,交AB 于D ,E 两点; (2)分别以点D 和点E 为圆心,大于12DE 长为半径作弧,两弧相交于点F ; (3)作直线CF .所以直线CF 就是所求作的垂线.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:1(2)1)4cos 45---++︒. 18.已知11m m-=,求(21)(21)(5)m m m m +-+-的值. 19.解不等式组3(1)6,1.2x x x x -<⎧⎪⎨+≤⎪⎩并写出它的所有整数解. 20.如图,E 为AC 上一点,EF ∥AB 交AF 于点F ,且AE = EF . 求证:BAC ∠= 2∠1.21.台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入, 2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.22.如图,四边形ABCD 是矩形,点E 在BC 边上,点F 在BC 延长线上,且∠CDF =∠BAE . (1)求证:四边形AEFD 是平行四边形 ; (2)若DF =3,DE =4,AD =5,求CD 的长度.23.在平面直角坐标xOy 中,直线y x b =+与双曲线my x=的一个交点为A (2,4),与y 轴交于点B .(1) 求m 的值和点B 的坐标; (2) 点P 在双曲线my x=上,△OBP 的面积为8,直接写出点P 的坐标.FEDCB A1FECA24.如图,点D 在⊙O 上,过点D 的切线交直径AB 延长线于点P ,DC ⊥AB 于点C . (1) 求证:DB 平分∠PDC ; (2) 若DC =6,3tan 4P ∠= ,求BC 的长.25.阅读下列材料:人口老龄化已经成为当今世界主要问题之一.北京市在上世纪90年代初就进入了老龄化社会,全市60岁及以上户籍老年人口2013年底达到279.3万人,占户籍总人口的21.2%; 2014年底比2013年底增加17.4万人,占户籍总人口的22.3%;2015年底比2014年底增加23.3万人,占户籍总人口的23%.“百善孝为先”,北京市政府越来越关注养老问题,提出养老服务新模式,计划90%的老年人在社会化服务协助下通过家庭照顾养老(即居家养老),6%的老年人在社区养老,4%的老年人入住养老服务机构.本市养老服务机构的床位总数2013年达到8.0516万张,2014年达到10.938万张,2015年达到12万张. 根据以上材料回答下列问题:(1)到2014年底,本市60岁及以上户籍老年人口为__________万人;(2)选择统计表或.统计图,将2013年––2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例表示出来;(3)预测2016年本市养老服务机构的床位数约为_________万张,请你结合数据估计,能否满足4%的老年人入住养老服务机构,并说明理由. 26.观察下列各等式:222=233-⨯,( 1.2)6( 1.2)6--=-⨯,11()(1)()(1)22---=-⨯-, ……根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的P等于它们的 ; (2)请你写一个实数,使它具有上述等式的特征:-3= ⨯3;(3)请你再写两个实数,使它们具有上述等式的特征:- = ⨯ ;(4)符合上述特征的所有等式中,是否存在两个实数都是整数的情况?若存在,求出所有满足条件的等式;若不存在,说明理由.27.在平面直角坐标系xOy 中,抛物线c bx x y ++=2经过点(0,–3),(2,–3). (1)求抛物线的表达式;(2)求抛物线的顶点坐标及与x 轴交点的坐标;(3)将c bx x y ++=2(y ≤0)的函数图象记为图象A ,图象A 关于x 轴对称的图象记为图象B .已知一次函数y=mx +n ,设点H 是x 轴上一动点,其横坐标为a ,过点H 作x 轴的垂线,交图象A 于点P ,交图象B 于点Q ,交一次函数图象于点 N .若只有当1<a<3时,点Q 在点N 上方,点N 在点P 上方,直接写出n 的值.28.在等腰三角形ABC 中, AC =BC ,点P 为BC 边上一点(不与B 、C 重合),连接P A ,以P 为旋转中心,将线段P A 顺时针旋转,旋转角与∠C 相等,得到线段PD ,连接DB . (1)当∠C =90º时,请你在图1中补全图形,并直接写出∠DBA 的度数; (2)如图2,若∠C =α,求∠DBA 的度数(用含α的代数式表示);(3)连接AD ,若∠C =30º,AC =2,∠APC =135º,请写出求AD 长的思路.(可以不写出计算结果)29.在平面直角坐标系xOy中,A(t,0),B(t+,0),对于线段AB和x轴上方的点P给出如下定义:当∠APB=60°时,称点P为AB的“等角点”.(1)若t=-,在点32C⎛⎫⎪⎝⎭,,D⎫⎪⎪⎝⎭,32E⎛⎫⎪⎪⎝⎭中,线段AB的“等角点”是;(2)直线MN分别交x轴、y轴于点M、N,点M的坐标是(6,0),∠OMN=30°.①线段AB的“等角点”P在直线MN上,且∠ABP=90°,求点P的坐标;②在①的条件下,过点B作BQ⊥P A,交MN于点Q,求∠AQB的度数;③若线段AB的所有“等角点”都在△MON内部,则t的取值范围是.北京市朝阳区九年级综合测试(一)数学试卷评分标准及参考答案PCB A图2图1PCB A三、解答题(本题共72分,第17─26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=11422--+⨯……………………………………………… …4分=12.……………………………………………………………………… 5分18.解:原式=22415m m m-+-………………………………………………………… 2分=2551m m--………………………………………………………………… 3分=25()1m m--.11mm-=,21m m∴-=.…………………………………………………………… 4分∴原式=4.…………………………………………………………………… 5分19.解:3(1)6,1.2x xxx-<⎧⎪⎨+≤⎪⎩解不等式①,得x>-1.……………………………………………………………2分解不等式②,得x≤1.………………………………………………………… 3分∴不等式组的解集是1-<x≤1.………………………………………………… 4分∴原不等式组的所有整数解为0,1.……………………………………………5分20.证明:∵EF∥AB,∴∠1=∠F AB.…………………… 2分∵AE=EF,∴∠EAF=∠EF A.……………… 3分∵∠1=∠EF A,∴∠EAF=∠1.…………………… 4分∴∠BAC=2∠1.…………………5分①②1FECA21.解:设北京故宫博物院约有x 万件藏品,台北故宫博物院约有y 万件藏品.. …… 1分 依题意,列方程组得 245250.x y x y +=⎧⎨=+⎩,…………………………………………………………………………3分解得18065.x y =⎧⎨=⎩, ………………………………………………………………………………5分答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 22.(1)证明:∵四边形ABCD 是矩形,∴DC AB =,DCF B ∠=∠=90º. ∵BAE CDF ∠=∠,∴△ABE ≌△DCF .………………1分 ∴CF BE =. ∴EF BC =. ∵AD BC =,∴AD EF =.………………………2分 又∵EF ∥AD ,∴四边形AEFD 是平行四边形.………………………3分 (2)解:由(1)知,EF =AD = 5.在△EFD 中,DF =3,DE =4,EF =5,∴222DE DF EF +=.∴∠EDF =90º.……………………………………………………………………4分∴1122ED DF EF CD ⋅=⋅. ∴125CD =. ……………………………………………………………………5分23.解:(1)∵双曲线xmy =经过点,A (2,4),∴8=m .………………………………………………………………………1分 ∵直线y x b =+经过点A (2,4),∴2b =.…………………………………………………………………………2分 ∴此直线与y 轴交点B 的坐标为(0,2). …………………………………3分FEDCB A(2)(8,1),(-8,-1). .…………………………………………………… 5分 24.(1)证明:如图,连接OD . ∵DP 是⊙O 的切线, ∴OD ⊥DP .∴90ODP ∠=︒. ………………………………………………………1分 ∴90.ODB BDP ∠+∠=︒ 又∵DC ⊥OB , ∴90DCB ∠=︒.∴90BDC OBD ∠+∠=︒. ∵OD =OB , ∴.ODB OBD ∠=∠ ∴BDP BDC ∠=∠.∴DB 平分∠PDC .……………………………………………………………2分 (2)解:过点B 作BE ⊥DP 于点E . ∵,BDP BDC ∠=∠BC ⊥DC ,∴BC =BE . ……………………………………3分 ∵DC =6,3tan 4P ∠=, ∴DP =10,PC =8.……………………………… 4分 设CB=x , 则BE=x ,BP=8- x .∵△PEB ∽△PCD ,∴8610x x-= .∴3=x .∴.3=BC ……………………………………………………………………… 5分 25.(1)296.7. ………………………………………………………………………………1分 (2)统计表如下:2013–2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例统计表AA11……………………………………………………………………………………3分 (3)14; ……………………………………………………………………………………4分 能满足老年人的入住需求. 理由:根据2013–2015年老年人口数量增长情况,估计到2016年老年人口约有340万人,有4%的老年人入住养老服务机构,即约有13.6万人入住养老服务机构,到2016年北京市养老服务机构的床位数约14万张,所以能满足老年人的入住需求. ……………….…………….…………….…………………………………………5分 26.解:(1)差,积;…………………………………………………………………………1分分 分(4)存在. 设这两个实数分别为x ,y .可以得到 .xy y x =- ……………………………………………………4分 ∴1+=x xy .∴111y x =-+.∵ 要满足这两个实数x ,y 都是整数,∴ x +1的值只能是1±.∴当0=x 时,0=y ;当2-=x 时,2=y .∴满足两个实数都是整数的等式为0000⨯=-,222)2(⨯-=--.…5分 27.解:(1)把(0,–3)代入c bx x y ++=2,∴.3-=c把(2,–3)代入,32-+=bx x y ∴.2-=b322--=x x y . ………………2分 (2)由(1)得2(1)4y x =--.12∴顶点坐标为(1,–4).……………3分 由2230x x --=解得123,1x x ==-.∴抛物线与x 轴交点的坐标为(–1,0),(3,0).…………………………5分 (3)6±. .……………………………………………………………………7分28.解:(1)如图,补全图1. …………….………………………………………………1分∠DBA=︒90. ……………….………………………………………………2分(2) 过点P 作PE ∥AC 交AB 于点E . ………………………………………………3分 ∴PEB CAB ∠=∠.∵ AC =BC ,∴CAB CBA ∠=∠. ∴PEB PBE ∠=∠. ∴PE PB =.又∵BPD DPE EPA DPE α∠+∠=∠+∠=, ∴BPD EPA ∠=∠. ∵PD PA =,∴△PDB ≌△PAE .…………………………………………………………4分 ∵11(180)9022PBA PEB αα∠=∠=︒-=︒-, ∴180PBD PEA PEB ∠=∠=︒-∠=α2190+︒.∴DBA PBD PBA α∠=∠-∠=. …………………………………………5分 (3)求解思路如下:a .作AH ⊥BC 于H ;b .由∠C =30º,AC =2,可得AH =1,CHBH=2 勾股定理可求AB ; ………………………………………6分 c .由∠APC =135 º,可得∠APH =45 º,AP;PEDC BAHABCP13d .由∠APD =∠C =30º,AC =BC ,AP =DP ,可得△P AD ∽△CAB ,由相似比可求AD 的长. ……………7分29.解:(1)C ,D . ……….…………….………….…….………….………………2分 (2)①如图,∵∠APB=60°,∠ABP =90°, ∴∠P AB =30°,又∵∠OMN=30°,∴,.PA PM AB BM == ……………3分∵,3=AB∴BM = ∴.1=PB∴P(61). .………..……….….………….………….…………4分 ②∵BQ ⊥AP ,且∠APB =60º,∴∠PBQ =30º. ∴∠ABQ =60º.∴∠BMQ =∠MQB =30º. ……5分 ∴BQ = BM =AB . ∴△ABQ 是等边三角形.∴∠AQB =60º. ………………………………………………………6分同理,当点N 在x 轴下方时,可得P(1),∠AQB =90º. ………7分③14t <<…………………………………………………8分 说明:各解答题的其他正确解法请参照以上标准给分.NMNM。
2016年3月北京市朝阳区中考数学模拟试卷一附答案解析
![2016年3月北京市朝阳区中考数学模拟试卷一附答案解析](https://img.taocdn.com/s3/m/4b111e3752ea551810a6874c.png)
2016年北京市朝阳区普通中学中考数学模拟试卷(一)(3月份)一.选择题1.函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤12.对于任何有理数a,b,c,d,规定,若,那么x的取值范围()A.x<3 B.x>0 C.x>﹣3 D.﹣3<x<03.如图,它们是一个物体的三视图,该物体的形状是()A. B. C. D.4.用一个平行于底面的平面去截如图放置的一个圆锥,将其分成上下两个几何体,如果设上面的小圆锥体积为x,下面的圆台体积为y,当截面由顶点向下平移时,y与x满足的函数关系的图象是()A.B.C.D.5.超市推出如下优惠方案(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.李明两次购物分别付款80元,252元.如果李明一次性购买与上两次相同的物品应付款()A.288元B.332元C.288元或316元D.332元或363元6.AB是⊙O的直径,弦CD是与⊙O相切,且AB∥CD,弦CD=16cm,则阴影部分面积为()A.144πcm2B.64πcm2C.79πcm2D.81πcm27.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是()A.B.C.D.8.用一把带有刻度的角尺,(1)可以画出两条平行的直线a与b,如图(1);(2)可以画出∠AOB的平分线OP,如图(2);(3)可以检验工件的凹面是否为半圆,如图(3);(4)可以量出一个圆的半径,如图(4);上述四种说法中,正确的个数是()A.1个 B.2个 C.3 个D.4个二.填空题9.2003年6月1日,举世瞩目的三峡工程正式下闸蓄水,26台发电机组发电量达84700000000千瓦时,用科学记数法表示应为千瓦时.10.直线y=x+b过点A(1,O),并与反比例函数y=(k≠0)只有一个公共点B,则k的值等于.11.某数为S,观察图形的规律:请按上面规律判断S与n的关系是.12.图(1),图(2)是两种方法把6根圆形钢管用钢丝捆扎的截面图,设图(1),图(2)两种方法捆扎所需要钢丝绳的长度分别为a,b(不记接头部分),则a、b的大小关系:a b (填“<”,“=”或“>”).三.解答题13.先化简,再求值..14.已知:如图,在△ABC中,AB=AC,D是的BC边的中点,DE⊥AC,DF⊥AB,垂足分别是E、F.(1)求证:DE=DF;(2)只添加一个条件,使四边形EDFA是正方形,并给出证明.15.如图反映了被调查用户对甲,乙两种品牌空调售后服务的满意程度(以下称:用户满意度),分为很不满意,不满意,较满意,很满意,四个等级,并依次记为1分,2分,3分,4分.(1)分别求甲,乙两种品牌空调售后服务的满意程度分数的平均值(计算结果精确到0.01)(2)根据条形统计图及上述计算结果说明哪个品牌空调售后服务的满意程度较高?该品牌用户满意程度分数的众数是多少?16.如图,∠ABC=30°,O是BA上一点,以O为圆心作圆与BC相切于D点,交BO于点E,连结ED,F是OA上的一点,从F作FG⊥AB交BC于点G,BD=.设OF=x,四边形EDGF的面积为y.(1)求x与y函数关系式(不必求自变量的取值范围).(2)若四边形EDGF的面积是△BED面积的5倍,试确定FG所在直线与⊙O的位置关系,并说明理由.17.某商场购进甲、乙两种服装后,都加价40%标价出售,“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元.问这两种服装的进价和标价各是多少元?18.如图,ABCD是一块平形四边形田地,P为水井,现要把这块田地平均分给甲,乙两户,为了方便用水,要求两户分到的田地都与水井相邻,试在图中画出方案,并给予必要的解释,以说明方案是正确合理的.19.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA 的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.20.如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,DC=,点P在BC边上运动(与B、C不重合),设PC=x,四边形ABPD的面积为y.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)若以点D为圆心,为半径作⊙D;以点P为圆心,以PC长为半径作⊙P,当x为何值时,⊙D与⊙P相切?并求出这两圆相切时四边形ABPD的面积.2016年北京市朝阳区普通中学中考数学模拟试卷(一)(3月份)参考答案与试题解析一.选择题1.函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选B.2.对于任何有理数a,b,c,d,规定,若,那么x的取值范围()A.x<3 B.x>0 C.x>﹣3 D.﹣3<x<0【考点】解一元一次不等式.【分析】按新规定将化成不等式,再解不等式即可.【解答】解:根据题意得:2x•(﹣1)﹣2×(﹣1)<8,﹣2x+2<8,﹣2x<6,x>﹣3,故选C.3.如图,它们是一个物体的三视图,该物体的形状是()A. B. C. D.【考点】由三视图判断几何体.【分析】由立体图形的三视图可得立体图形有2列,且第一列是前后两个立方体,且后面一个上面有一个立方体,第二是一个立方体,进而画出图形.【解答】解:如图所示:故选C.4.用一个平行于底面的平面去截如图放置的一个圆锥,将其分成上下两个几何体,如果设上面的小圆锥体积为x,下面的圆台体积为y,当截面由顶点向下平移时,y与x满足的函数关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意可以列出相应的函数解析式,根据解析式可以明确相应的函数图象,从而可以解答本题.【解答】解:由题意可得,圆锥的体积一定,设为V,则y=V﹣x(x≥0),∵﹣1<0,∴y随x的增大而减小,图象是一条射线,故选B.5.超市推出如下优惠方案(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.李明两次购物分别付款80元,252元.如果李明一次性购买与上两次相同的物品应付款()A.288元B.332元C.288元或316元D.332元或363元【考点】一元一次方程的应用.【分析】要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过100,即是80元.第二次就有两种情况,一种是超过100元但不超过300元一律9折;一种是购物超过300元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.【解答】解:(1)第一次购物显然没有超过100,即在第二次消费80元的情况下,他的实质购物价值只能是80元.(2)第二次购物消费252元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):①第一种情况:他消费超过100元但不足300元,这时候他是按照9折付款的.设第二次实质购物价值为x,那么依题意有x×0.9=252,解得:x=280.①第二种情况:他消费超过300元,这时候他是按照8折付款的.设第二次实质购物价值为x,那么依题意有x×0.8=252,解得:x=315.即在第二次消费252元的情况下,他的实际购物价值可能是280元或315元.综上所述,他两次购物的实质价值为80+280=360或80+315=395,均超过了300元.因此均可以按照8折付款:360×0.8=288元395×0.8=316元故选C6.AB是⊙O的直径,弦CD是与⊙O相切,且AB∥CD,弦CD=16cm,则阴影部分面积为()A.144πcm2B.64πcm2C.79πcm2D.81πcm2【考点】扇形面积的计算;切线的性质.【分析】作出辅助线,先判断出CE,EF分别是大圆与小圆的半径,求出CE2﹣EF2=64,用S阴影=S大圆﹣S小圆.【解答】解:如图,记直径是AB的圆的圆心为E,连接CE,做EF⊥CD,∵AB∥CD,∴EF是⊙O的半径,在RT△CEF中,CF=CD=8,∴CE2﹣EF2=82=64,CE2﹣πEF2=π(CE2﹣EF2)=64πcm2;∴S阴影=π×故选B7.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看转盘停止后,指针都落在奇数上的情况数占总情况数的多少即可.【解答】解:列表得:所以两个转盘的组合有20种结果,其中有6种指针都落在奇数,所以指针都落在奇数上的概率是,故选B.8.用一把带有刻度的角尺,(1)可以画出两条平行的直线a与b,如图(1);(2)可以画出∠AOB的平分线OP,如图(2);(3)可以检验工件的凹面是否为半圆,如图(3);(4)可以量出一个圆的半径,如图(4);上述四种说法中,正确的个数是()A.1个 B.2个 C.3 个D.4个【考点】作图—应用与设计作图.【分析】直接利用平行线的判定方法以及角平线的判定方法和圆周角定理、切线的性质等知识,分别分析得出答案.【解答】解:(1)可以画出两条平行的直线a与b,如图(1),正确;(2)可以画出∠AOB的平分线OP,如图(2),正确;(3)可以检验工件的凹面是否为半圆,如图(3),正确;(4)可以量出一个圆的半径,如图(4),正确.故选:D.二.填空题9.2003年6月1日,举世瞩目的三峡工程正式下闸蓄水,26台发电机组发电量达84700000000千瓦时,用科学记数法表示应为8.47×1010千瓦时.【考点】科学记数法—表示较大的数.【分析】根据科学记数法的定义,写成a×10n的形式.a×10n中,a的整数部分只能取一位整数,1≤|a|<10.且n的数值比原数的位数少1,84 700 000 000的数位是11,则n的值为10.【解答】解:84 700 000 000=8.47×1010千瓦时,故答案为:8.47×1010.10.直线y=x+b过点A(1,O),并与反比例函数y=(k≠0)只有一个公共点B,则k的值等于﹣.【考点】反比例函数与一次函数的交点问题.【分析】先把点A(1,O)代入一次函数y=x+b的解析式,求出b的值,进而得出一次函数的解析式,联立一次函数与反比例函数的解析式即可得出k的值.【解答】解:∵直线y=x+b过点A(1,O),∴1+b=0,解得b=﹣1,∴一次函数的解析式为:y=x﹣1,∵一次函数与反比例函数y=(k≠0)只有一个公共点B,∴,把①代入②得,x﹣1=,即x2﹣x﹣k=0与x轴只有一个交点,∴△=(﹣1)2+4k=0,解得k=﹣.故答案为:﹣.11.某数为S,观察图形的规律:请按上面规律判断S与n的关系是6n﹣6.【考点】规律型:图形的变化类.【分析】观察可得,n=2时,S=6;n=3时,S=6+(3﹣2)×6=12;n=4时,S=6+(4﹣2)×6=18,从而找出规律,得出答案.【解答】解:观察可得,n=2时,S=6;n=3时,S=6+(3﹣2)×6=12;n=4时,S=6+(4﹣2)×6=18;…所以,S与n的关系是:S=6+(n﹣2)×6=6n﹣6.故答案为:6n﹣6.12.图(1),图(2)是两种方法把6根圆形钢管用钢丝捆扎的截面图,设图(1),图(2)两种方法捆扎所需要钢丝绳的长度分别为a,b(不记接头部分),则a、b的大小关系:a= b (填“<”,“=”或“>”).【考点】相切两圆的性质;弧长的计算.【分析】分别将两个图形分成两部分来求解,线段和弧长;线段与圆的半径有关,利用相切两圆的圆心距离等于两圆的半径得出AB、EF、GH、DC等线段的长,弧长利用弧长公式,因为半径相等,只考虑圆心角即可.【解答】解:设每根圆柱形钢管的半径为r,如图1,四个角的扇形的圆心角都是90°,且AB=EF=4r,GH=CD=2r,四段扇形的弧长的和为一个圆的周长2πr,所以a的长为:a=4r+4r+2r+2r+2πr=12r+2πr,如图2,ON=QR=PM=4r,三个角的扇形的圆心角为:360°﹣90°﹣90°﹣60°=120°,三段扇形的弧长的和为一个圆的周长,所以b的长为:b=4r+4r+4r+2πr=12r+2πr,∴a=b,故答案为:=.三.解答题13.先化简,再求值..【考点】分式的化简求值.【分析】先通分,再把分子相加减,最后把x的值代入进行计算即可.【解答】解:原式=====,当x=﹣1时,原式===1﹣.14.已知:如图,在△ABC中,AB=AC,D是的BC边的中点,DE⊥AC,DF⊥AB,垂足分别是E、F.(1)求证:DE=DF;(2)只添加一个条件,使四边形EDFA是正方形,并给出证明.【考点】正方形的判定.【分析】(1)连接AD,根据等腰三角形的性质可得AD是∠BAC的角平分线,再根据角平分线的性质可得DE=DF;(2)添加∠BAC=90°,根据三角形是直角的四边形是矩形可得四边形AFDE是矩形,再由条件DF=DE可得四边形EDFA是正方形.【解答】解:(1)连接AD,∵AB=AC,D是的BC边的中点,∴AD是∠BAC的角平分线,∵DE⊥AC,DF⊥AB,∴DF=DE;(2)添加∠BAC=90°,∵DE⊥AC,DF⊥AB,∴∠AFD=∠AED=90°,∴四边形AFDE是矩形,∵DF=DE,∴四边形EDFA是正方形.15.如图反映了被调查用户对甲,乙两种品牌空调售后服务的满意程度(以下称:用户满意度),分为很不满意,不满意,较满意,很满意,四个等级,并依次记为1分,2分,3分,4分.(1)分别求甲,乙两种品牌空调售后服务的满意程度分数的平均值(计算结果精确到0.01)(2)根据条形统计图及上述计算结果说明哪个品牌空调售后服务的满意程度较高?该品牌用户满意程度分数的众数是多少?【考点】条形统计图;众数.【分析】(1)利用加权平均数公式即可求解;(2)根据(1)的结果即可作出判断.【解答】解:(1)≈2.78,≈3.04.答:甲满意程度的平均值约为2.78.乙满意程度的平均值约为3.04.(2)乙品牌用户满意程度高,乙品牌满意程度分数的众数为3分.16.如图,∠ABC=30°,O是BA上一点,以O为圆心作圆与BC相切于D点,交BO于点E,连结ED,F是OA上的一点,从F作FG⊥AB交BC于点G,BD=.设OF=x,四边形EDGF的面积为y.(1)求x与y函数关系式(不必求自变量的取值范围).(2)若四边形EDGF的面积是△BED面积的5倍,试确定FG所在直线与⊙O的位置关系,并说明理由.【考点】切线的性质.【分析】(1)连结OD.则OD⊥BC,由△BOD∽△BGF,推出,即可解决问题.(2)根据题意列出方程,求出OF的长即可解决问题.【解答】解(1)连结OD.则OD⊥BC.∵∠B=30°,BD=,∴OD=1,BO=2,∴BE=BO﹣OE=1,BF=2+x,S△BED=,∵∠B=∠B,∠ODB=∠BFG=90°∴△BOD∽△BGF,∴,∴,∴,即:.(2)由题意:得:x=1或x=﹣5(舍)∴OF=1∵FG⊥OF∴FG与⊙O相切.17.某商场购进甲、乙两种服装后,都加价40%标价出售,“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元.问这两种服装的进价和标价各是多少元?【考点】二元一次方程组的应用.【分析】通过理解题意,可知本题存在两个等量关系,即甲种服装的标价+乙种服装的标=210元,甲种服装的标价×0.8+乙种服装的标×0.9=182元,根据这两个等量关系可列出方程组求解即可.【解答】解:设甲种服装的标价为x元,则依题意进价为元;乙种服装的标价为y元,则依题意进价为元,则根据题意列方程组得解得.所以甲种服装的进价===50(元),乙种服装的进价===100(元).答:甲种服装的进价是50元、标价是70元,乙种服装的进价是100元、标价是140元.18.如图,ABCD是一块平形四边形田地,P为水井,现要把这块田地平均分给甲,乙两户,为了方便用水,要求两户分到的田地都与水井相邻,试在图中画出方案,并给予必要的解释,以说明方案是正确合理的.【考点】作图—应用与设计作图.=S△ACB,S△AOE=S△COF,进而得出答案.【分析】直接利用平行四边形的性质即可得出S△ACD【解答】解:如图所示:EF即为所求.理由过□ABCD两对角线的交点O和点P画直线EF,分别交AD,BC于E,F,=S△ACB,S△AOE=S△COF,∵S△ACD∴S□EABF=S□DEFC.19.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA 的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【考点】矩形的判定.【分析】(1)根据平行线性质和角平分线性质,以及由平行线所夹的内错角相等易证.(2)根据矩形的判定方法,即一个角是直角的平行四边形是矩形可证.【解答】(1)证明:∵CE平分∠ACB,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO.(2)解:当点O运动到AC的中点时,四边形AECF是矩形.理由:∵EO=FO,点O是AC的中点.∴四边形AECF是平行四边形,∵CF平分∠BCA的外角,∴∠4=∠5,又∵∠1=∠2,∴∠2+∠4=×180°=90°.即∠ECF=90°,∴四边形AECF是矩形.20.如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,DC=,点P在BC边上运动(与B、C不重合),设PC=x,四边形ABPD的面积为y.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)若以点D为圆心,为半径作⊙D;以点P为圆心,以PC长为半径作⊙P,当x为何值时,⊙D与⊙P相切?并求出这两圆相切时四边形ABPD的面积.【考点】相切两圆的性质;直角梯形.【分析】(1)如图作DE⊥BC于E,由矩形的性质可以得出DE=AB,由勾股定理可以得出EC的值,进而表示出EP.从而求出BP,再根据梯形的面积公式可以表示出梯形的面积就可以表示出y与x之间的函数的关系式.由点P不与B、C重合,从而可以得出x的范围.(2)设PC=x时,⊙D与⊙P外切或内切时,分别分析求出x的值,代入(1)的解析式就可以求出四边形ABPD的面积.【解答】解:作DE⊥BC于E,∴∠BED=90°,∵AB⊥BC,∴∠B=90°∵AD∥BC,∴∠A=90°,∴四边形ABED是矩形.∴AD=BE,AB=DE,∵AD=1,AB=2,∴BE=1,DE=2,在Rt△DEC中,由勾股定理,得EC===2,∴BC=3,∵PC=x,∴BP=3﹣x,y=×2×(1+3﹣x)=﹣x+4.∵P点与B、C不重合,∴0<x<3.(2)解:当圆P与圆D外切时,如图所示:过D作DE⊥BC,交BC于点E,可得∠DEP=90°,∵直角梯形ABCD中,AD∥BC,AB⊥BC,∴∠A=∠B=90°,∴四边形ABED为矩形,又AD=1,AB=2,∴AB=DE=2,AD=BE=1,在Rt△CED中,DC=2,DE=2,根据勾股定理得:EC==2,∴EP=EC﹣PC=2﹣x,∵圆D与圆P外切,圆D半径为,圆P半径为x,∴DP=+x,在Rt△DEP中,根据勾股定理得:DP2=DE2+EP2,即(+x)2=22+(2﹣x)2,解得:x=;即x=时⊙D与⊙P外切.=﹣+4=.此时S四边形ABPD当圆P与圆D内切时,如图所示:过D作DE⊥BC,交BC于点E,可得∠DEP=90°,∵直角梯形ABCD中,AD∥BC,AB⊥BC,∴∠A=∠B=90°,∴四边形ABED为矩形,又AD=1,AB=2,∴AB=DE=2,AD=BE=1,在Rt△CED中,DC=2,DE=2,根据勾股定理得:EC==2,∴EP=EC﹣PC=2﹣x,∵圆D与圆P内切,圆D半径为,圆P半径为x,∴DP=x﹣,在Rt△DEP中,根据勾股定理得:DP2=DE2+EP2,即(x﹣)2=22+(2﹣x)2,解得:x=,综上,当x=或时,圆D与圆P相切.即x=时⊙D与⊙P内切.=﹣+4=.此时S四边形ABPD2017年2月26日。
北京市朝阳区2016年初中毕业考试(一模)数学试卷(含答案)
![北京市朝阳区2016年初中毕业考试(一模)数学试卷(含答案)](https://img.taocdn.com/s3/m/5265fdfc0029bd64793e2c10.png)
北京市朝阳区2016年初中毕业考试数学试卷2016.4考生须知1.考试时间为90分钟,满分100分;2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(填空题、解答题)两部分,共8页,第8页为草稿纸;3.认真填写密封线内学校、班级、姓名.第Ⅰ卷(共30分)一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.请用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.在下列各数中,绝对值最大的数是A .1B .-2C .21D .132.2015年10月16日,新一期全球超级计算机500强榜单在美国公布,中国“天河二号”超级计算机以每秒338600000亿次浮点运算速度连续第六度称雄.将338600000用科学记数法表示为A .3.386×107B .0.3386×109C .3.386×108D .0.3386×1083. 右图是某个几何体的三视图,则这个几何体是A .圆柱B .圆锥C .三棱柱D .三棱锥4.阿仁是一名非常爱读书的学生.他制作了五张材质和外观完全一样的书签,每张书签上写有一本书的名称和作者,分别是:《海底两万里》(作者:凡尔纳,法国)、《三国演义》(作者:罗贯中)、《西游记》(作者:吴承恩)、《骆驼祥子》(作者:老舍)、《钢铁是怎样炼成的》(作者:尼·奥斯特洛夫斯基,前苏联),从这五张书签中随机抽取一张,则抽到的书签上的作者是中国人的概率是A .15B .25C .35D .455. 下列运算正确的是A .236xx x B .632x x x C .32422x x xD .236xx6.一次函数ykx b 的图象如右图所示,则k,b 应满足的条件是A .0,0k bB .0,0k bC .0,0kbD .0,0kb。
2016年初三数学一模-阅读理解与现场学习题
![2016年初三数学一模-阅读理解与现场学习题](https://img.taocdn.com/s3/m/6a730fb4b0717fd5360cdca7.png)
2016年初三数学一模——阅读理解与现场学习题1.(朝阳一模26) 在课外活动中,我们要研究一种四边形——筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究. 下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是 ;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明; (3)如图2,在筝形ABCD 中,AB =4,BC =2,∠ABC =120°,求筝形ABCD 的面积.图1 图22.(丰台一模26)研究一个几何图形,我们通常从这个图形的定义、性质、判定三个方面进行研究.下面我们来研究筝形.如图,在四边形ABCD 中,AB=AD ,BC=DC ,则四边形ABCD 是筝形.(1)请你用文字语言为筝形定义;(2)请你进一步探究,写出筝形的性质(二条即可);(3)除了定义,请你再探究出一种筝形的判定方法并证明.3.(燕山一模26)如图1,四边形ABCD 中,AB =AD ,BC =CD ,我们把这种两组邻边分别相等的四边形叫做筝形.请探究―筝形‖的性质和判定方法.小聪根据学习四边形的经验,对―筝形‖的判定和性质进行了探究. 下面是小聪的探究过程,请补充完整:(1) 如图2,连接筝形ABCD 的对角线AC ,BD 交于点O ,通过测量边、角或沿一条对角线所在直线折叠等方法探究发现筝形有一组对角相等,请写出筝形的其他..性质(一条即可): ,这条性质可用符号表示为: ;(2) 从边、角、对角线或性质的逆命题等角度进行探究,写出筝形的一个判定方法(定义除外),并证明你的结论.A B CD图1 A BCDO图24.(西城一模26)有这样一个问题:如图,在四边形ABCD 中,AB AD =,CB CD =,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法. 小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究. 下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等. 关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等. 请将下面证明此猜想的过程补充完整;已知:如图,在筝形ABCD 中,AB AD =,CB CD = 求证:___________________________. 证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):____________________________________________.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题―一组对角相等,一条对角线平分另一条对角线的四边形是筝形‖是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.5.(大兴一模26)研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定方法. 我们给出如下定义:如图,四边形ABCD 中,AB AD =,CB CD =像这样两组邻边分别相等的四边形叫做 ―筝形‖; (1)小文认为菱形是特殊的―筝形‖,你认为他的判断正确吗?(2)小文根据学习几何图形的经验,通过观察、实验、归纳、类比、猜想、证明等方法,对AB≠BC 的―筝形‖的性质和判定方法进行了探究.下面是小文探究的过程,请补充完成:① 他首先发现了这类―筝形‖有一组对角相等,并进行了证明,请你完成小文的证明过程. 已知:如图,在‖筝形‖ABCD 中,AB AD =,CB CD = 求证:∠ABC=∠ADC. 证明:② 小文由①得到了这类―筝形‖角的性质,他进一步探究发现这类―筝形‖还具有其它性质,请再写出这类―筝形‖的一条性质 (除―筝形‖的定义外);③ 继性质探究后,小文探究了这类―筝形‖的判定方法,写出这类―筝形‖的一条判定方法(除―筝形‖的定义外):;CAEDBacbMNPQGFHDA6.(顺义一模26)我们把过三角形的一个顶点且能将这个三角形分割成两个等腰三角形的线段称为该三角形的―等腰线段‖.例如:Rt △ABC ,取边AB 的中点D ,线段CD 就是△ABC 的等腰线段.(1)请分别画出下列三角形的等腰线段;50°25°72°45°36°(2)如图,在△EFG 中,若∠G =2∠F ,且△EFG 有等腰线段,请直接写出∠F 的度数的取值范围.EGF7.(门头沟一模26)阅读材料,回答问题:(1)中国古代数学著作《周髀算经》有着这样的记载: ―勾广三,股修四,经隅五.‖.这句话的意思是:―如果直角三角形两直角边为3和4时,那么斜边的长为5.‖. 上述记载表明了:在Rt △ABC 中,如果∠C =90°,BC =a ,AC =b ,AB =c ,那么a ,b ,c 三者之间的数量关系是: . (2)对于这个数量关系,我国汉代数学家赵爽根据―赵爽弦图‖(如下图,它是由八个全等直角三角形围成的一个正方形),利用面积法进行了证明.参考赵爽的思路,将下面的证明过程补充完整:证明:∵S △ABC 12ab =,2ABDE S c =正方形,MNPQ S =正方形 .又∵ = ,∴()221=42a b ab c +⨯+,整理得2222=2a ab b ab c +++, ∴ .(3)如图,把矩形ABCD 折叠,使点C 与点A 重合,折痕为EF ,如果AB =4,BC =8,求BE 的长.8.(朝阳一模26)观察下列各等式:,32232-2⨯= ,6)2.1(6)2.1(⨯-=-- ),1()21()1()21(-⨯-=--- ......根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的_____等于它们的______; (2)请你写出一个实数,使他们具有上述等式的特征:________-3=________×3;(3)请你再写出两个实数,使它们具有上述等式的特征:_______ - _______=________×________;(4)符合上述特征的所有等式中,是否存在两个实数都是整数的情况?若存在,求出所有满足条件的等式;若不存在,说明理由.9.(海淀一模26)有这样一个问题:探究函数(1)(2)(3)y x x x =---的图象与性质.小东对函数(1)(2)(3)y x x x =---的图象与性质进行了探究. 下面是小东的探究过程,请补充完成:(1)函数(1)(2)(3)y x x x =---的自变量x 的取值范围是全体实数; (2)下表是y 与x 的几组对应值.x … 2- 1-0 1 2 3 4 5 6 … y…m24-6-62460…①m = ;②若M (7-,720-),N (n ,720)为该函数图象上的 两点,则n = ;(3)在平面直角坐标系xOy 中, A (,A A x y ),B (,B A x y -)为该函数图象上的两点,且A 为23x ≤≤范围内的最低点, A 点的位置如图所示. ①标出点B 的位置;②画出函数(1)(2)(3)y x x x =---(04x ≤≤)的图象.10.(平谷一模26)我们知道对于x 轴上的任意两点1(,0)A x ,2(,0)B x ,有AB =12x x -,而对于平面直角坐标系中的任意两点),(111y x P ,),(222y x P ,我们把2121y y x x -+-称为P l ,P 2两点间的直角距离,记作),(21P P d ,即),(21P P d =2121y y x x -+-.(1)已知O 为坐标原点,若点P 坐标为(1,3),则d (O ,P )=_____________; (2)已知O 为坐标原点,动点()y x P ,满足(),2d O P =,请写出x 与y 之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P 所组成的图形; (3)试求点M (2,3)到直线y =x +2的最小直角距离.11.(石景山一模26)阅读下面材料:上课时李老师提出这样一个问题:对于任意实数x ,关于x 的不等式2210x x a --->恒成立,求a 的取值范围.小捷的思路是:原不等式等价于221x x a -->,设函数2121y x x =--,2y a =,画出两个函数的图象的示意图,于是原问题转化为函数1y 的图象在2y 的图象上方时a 的取值范围. 请结合小捷的思路回答:对于任意实数x ,关于x 的不等式2210x x a --->恒成立,则a 的取值范围是__________.参考小捷思考问题的方法,解决问题:关于x 的方程34a x x--=在04x <<范围内有两个解,求a 的取值范围.-3-2-1-1-2-3123321y xO11xyO 11xyO12.(房山一模26)如图,在平面直角坐标系xOy 中,双曲线12y x=(1)当x时,1y >0;(2)直线2y x b =-+,当22b =时,直线与双曲线有唯一公共点,问:b 时,直线与双曲线有两个公共点;(3)如果直线2y x b =-+与双曲线12y x=交于A 、B 两点,且点A的坐标为(1,2),点B 的纵坐标为1.设E 为线段AB 的中点,过点E 作x 轴的垂线EF ,交双曲线于点F .求线段EF 的长. 13.(怀柔一模26)阅读下列材料:布鞋在我国有3000多年的历史.据考证,最早的手工布鞋是在山西侯马出土的西周武士跪像所穿的布鞋.2008年6月14日,―千层底手工布鞋制作技艺‖被文化部列入《国家级非物质文化遗产名录》,从而将这项古老的手工技艺保护起来.一句歌唱到―最爱穿的鞋是妈妈纳的千层底,站得稳走得正踏踏实实闯天下‖,唱出了祖辈对儿时生活的美好回忆.为了提高工作效率,智慧勤劳的先辈们发明了鞋样,就是用纸或纸板按尺寸和形状做成鞋面、鞋帮、鞋底的模型.例如:按照图1的鞋样就可做出图2模样的鞋子.根据以上材料完成下列问题:(1)如图3、4、5是一组布鞋图片,6、7、8是一组鞋样的图片,请你在答题纸上将布鞋和对应的鞋样用线段连接起来;26题图3 26题图4 26题图526题图226题图1xyy 1=2x12345–1–2–3–4–512345–1–2–3–4–5o(2)图10是图9所示童鞋的鞋样.看到这个鞋样,明明认为鞋样丢了一部分,芳芳认为鞋样没有丢.请你判断明明和芳芳谁说的对,并用所学的数学知识说明理由.Ps:通州、延庆未考阅读理解与现场学习题型26题图9 26题图10解:(1)菱形(正方形)(2)它是一个轴对称图形;两组邻边分别相等;一组对角相等;一条对角线所在的直线垂直平分另一条对角线.(写出其中的两条就行)已知:筝形ABCD.求证:∠B =∠D.证明:连接AC .∵AB=AD,CB=CD,AC=AC ,∴△ABC ≌△ADC.∴∠B =∠D. (3)连接AC .过点C 作CE ⊥AB 交AB 的延长线于E .∵∠ABC=120°,∴∠EBC=60°.又∵B C=2,∴BE =1,CE =3. ∴S四边形ABCD=21122434322ABC S AB CE ∆=⨯⨯⨯=⨯⨯⨯=. 2.(丰台一模26)解:(1)两组邻边分别相等的四边形叫做筝形. --------- 1分 (2)①筝形有一组对角相等; --------- 2分 ②筝形是轴对称图形. --------- 3分(3)一条对角线垂直平分另一条对角线的四边形是筝形. --------- 4分 已知:如图,四边形ABCD ,AC 是BD 的垂直平分线. 求证:四边形ABCD 是筝形.证明:∵AC 是BD 的垂直平分线, ∴AB=AD ,CB=CD. ∴四边形ABCD 是筝形.3.(燕山一模)(1) 筝形的其他性质:两组邻边分别相等;对角线互相垂直;有一条对角线被另一条平分;有一条对角线平分对角;是轴对称图形……(写出一条即可) ………………………1分 符号表示(略) ………………………2分(2) 筝形的判定方法:有一条对角线平分一组对角的四边形是筝形; ………………………3分 已知:四边形ABCD 中,AC 为一条对角线,∠BAC =∠DAC ,∠BCA =∠DCA . 求证:四边形ABCD 是筝形.证明:在△BAC 和△DAC 中,⎪⎩⎪⎨⎧∠=∠∠=∠,,=,DCA BCA AC AC DAC BAC∴△BAC ≌△DAC (ASA ), ∴AB =AD ,BC =CD ,即四边形ABCD 是筝形. ………………………5分 其他正确的判定方法有:有一条对角线垂直平分另一条对角线的四边形是筝形; 有一组邻边相等且对角线互相垂直的四边形是筝形; ……ABCD解:(1)已知:如图,筝形ABCD 中,AB=AD ,CB=CD. 求证:∠B=∠D 证明:连接AC.在△ABC 和△ADC 中,⎪⎩⎪⎨⎧===.,,AC AC CD CB AD AB∴△ABC ≌△ADC. ∴∠B=∠D. (2)筝形的其他性质:筝形的两条对角线互相垂直;筝形的一条对角线平分一组对角;筝形是轴对称图形…… (3)不成立.反例如图所示.在平行四边形ABCD 中,AB≠AD ,对角线AC ,BD 相交于点O.由平行四边形性质可知此图形满足∠ABC=∠ADC ,AC 平分BD ,但是该四边形不是筝形. (答案不唯一,反例为矩形也可)5.(大兴一模)证明:(1)正确 ………………………………………………………………………… 1分(2) ①连结BD ,在△ABD 和△BCD 中, ∵AB=AD, BC=CD ∴∠ABD=∠ADB ∠DBC=∠BDC∴∠ABC=∠ADC ……………………………………………………………………… 3分 ② ―筝形‖有一条对角线平分一组对角(答案不唯一) …………………………… 4分 ③有一条对角线垂直平分另一条对角线的四边形是筝形(答案不唯一)………5分6.(顺义一模) (1)………….3分(2)045F ︒︒<∠≤……………………………………………………………………..….5分36°45°72°25°50°(1)222a b c +=;…………………………………………………………………1分(2)∵S △ABC 12ab =,2ABDE S c =正方形,MNPQ S =正方形 2)(b a + .又∵ M NPQ 正方形S = 2214c ab +⨯, ∴()221=42a b ab c +⨯+,整理得2222=2a ab b ab c +++, ∴ 222a b c += .……3分(3)∵矩形ABCD 折叠点C 与点A 重合,∴AE =CE . 设AE =x ,则BE =8-x , 在Rt △ABE 中,由勾股定理得AB 2+BE 2=AE 2, 即42+(8-x )2=x 2, 解得x =5.∴B E =8-5=3.………………………………………………………………5分8.(朝阳一模26)(5)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的_差_等于它们的__积_;1分 (6)请你写出一个实数,使他们具有上述等式的特征:23- -3= 23- ×3; ……2分 (7)请你再写出两个实数,使它们具有上述等式的特征:_______ - _______=_______×_______;(答案不唯一)3分 (8)符合上述特征的所有等式中,是否存在两个实数都是整数的情况?若存在,求出所有满足条件的等式;若不存在,说明理由.解:存在.设这两个实数分别为.,y x 可以得到.xy y x =- ……4分∴.1+=x xy ∴.111+-=x y ∵要满足这两个实数y x ,都是整数, ∴1+x 的值只能是.1±∴当0=x 时,;0=y 当2-=x 时,.2=y∴满足这两个实数都是整数的等式为.222)2(000-0⨯-=--⨯=,……5分GE F HD C AB第 11 页 共 11 页9.(海淀一模26)(2) ①;………………………1分 ②;………………………2分 (3)正确标出点B 的位置,画出函数图象. …………………5分10.(平谷一模26)解:(1)4;…………………………………………………………………………………1 (2)2x y +=,………………………………………2 所有符合条件的点P组成的图形如图所示. (3)(3) ∵d =23x y -+-=223x x -++- =21x x -+- (4)∴x 可取一切实数,21x x -+-表示数轴上实数x 所对应的点到1和2所对应的点的距离之和,其最小值为1.∴点M (2,3)到直线y =x +2的直角距离为1.……………………………5 11.(石景山一模26)解:2a <-; ……………………………………………………………………2分解决问题:将原方程转化为a x x =+-342·设函数3421+-=x x y ,a y =1,………………………………………3分 记函数1y 在40<<x 内的图象为G , 于是原问题转化为2y a =与G 有一个或两个 交点时a 的取值范围,结合图象可知a 的取值范围是:13a -≤<.……………………………………………5分 -3-2-1-1-2-3123321y xOG-1311xy O第 12 页 共 12 页12.(房山一模26)解:(1)x >0 -----------1分 (2)当b <22-或b >22,-----3分 (3)∵点B 的纵坐标为1,∴点B 的横坐标为2,∵点E 为AB 中点,∴点E 坐标为()23,23 ---------4分∴点F 的坐标为(23,34)∴EF=613423=- -------------5分13.(怀柔一模26)(1)……………………………………………………2分(2)答案不唯一(理由支持观点即可). ……………………………………………………5分xyF E B A 12345–1–2–3–4–512345–1–2–3–4–5o。
2016-2017学年朝阳市九年级上第一次月考数学试卷含答案解析
![2016-2017学年朝阳市九年级上第一次月考数学试卷含答案解析](https://img.taocdn.com/s3/m/d455f724a8114431b90dd89d.png)
C.a 越大图象开口越小,a 越小图象开口越大
D.不论 a 是正数还是负数,抛物线 y=a2x (a≠0)的顶点一定是坐标原点
9.若 A(﹣2,y1 ),B(﹣1,y2 ),C(﹣3,y )为二次函数 y=a2x(a<0)的图象上的三点,则 3
y1,y ,2 y 的大小关系是( ) 3
A.y1<y <y 3 2
2015年盈利 2160万元,且从 2013年到 2015年,每年盈利的年增长率相同.
(1)求该公司 2014年盈利多少万元?
(2)若该公司盈利的年增长率继续保持不变,预计 2016年盈利多少万元?
24.阅读下面的例题,
范例:解方程 x2﹣|x|﹣2=0,
解:(1)当 x≥0 时,原方程化为 x2﹣x﹣2=0,解得:x =2,x =﹣1(不合题意,舍去).
2016-2017 学年辽宁市朝阳市九年级(上)第一次月考数学试卷
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在各小题给出的四个选项中,只有一项是
符合题目要求的,请在答题卡上指定的位置填符合要求的选项字母代号.)
1.下列方程中,关于 x 的一元二次方程是( )
A.3(x+1)2=2(x+1) B.
B.y2<y <y 3 1
C.y <y1<y 2 3
D.y <y <y 132
10.如图,把抛物线 y=x2 沿直线 y=x平移 个单位后,其顶点在直线上的 A 处,则平移后的抛物
线解析式是( )
第 1 页(共 18 页)
三、解答题(共 60 分) 21.用适当的方法解下列一元二次方程 (1)(3x+2)2=25 (2)4x2﹣12x+9=0 (3)(2x+1)2 =3(2x+1) (4)2x2﹣3x+2=0. 22.阅读题:通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二
2016中考数学朝阳区一模二模(10,16,24-29)
![2016中考数学朝阳区一模二模(10,16,24-29)](https://img.taocdn.com/s3/m/8397d41703d8ce2f00662336.png)
图12016朝阳一模10.如图1,在等边三角形ABC 中,AB =2,G 是BC 边上一个动点且不与点B 、C 重合,H 是AC 边上一点,且30=∠AGH °.设BG=x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的A . 线段CGB . 线段AGC . 线段AHD . 线段CH16.阅读下面材料:数学课上,老师提出如下问题:小艾的作法如下:老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是____________.24.如图,点D 在⊙O 上,过点D 的切线交直径AB 延长线于点P ,DC ⊥AB 于点C . (1) 求证:DB 平分∠PDC ;1–112O图2尺规作图:经过已知直线上一点作这条直线的垂线. 已知:直线AB 和AB 上一点C .求作:AB 的垂线,使它经过点C . 如图,(1)在直线AB 上取一点D ,使点D 与点C 不重合,以点C 为圆心,CD 长为半径作弧,交AB 于D ,E 两点; (2)分别以点D 和点E 为圆心,大于12DE 长为半径作弧,两弧相交于点F ; (3)作直线CF .所以直线CF 就是所求作的垂线.(2) 若DC=6,3tan4P∠=,求BC的长.25.阅读下列材料:人口老龄化已经成为当今世界主要问题之一.北京市在上世纪90年代初就进入了老龄化社会,全市60岁及以上户籍老年人口2013年底达到279.3万人,占户籍总人口的21.2%;2014年底比2013年底增加17.4万人,占户籍总人口的22.3%;2015年底比2014年底增加23.3万人,占户籍总人口的23%.“百善孝为先”,北京市政府越来越关注养老问题,提出养老服务新模式,计划90%的老年人在社会化服务协助下通过家庭照顾养老(即居家养老),6%的老年人在社区养老,4%的老年人入住养老服务机构.本市养老服务机构的床位总数2013年达到8.0516万张,2014年达到10.938万张,2015年达到12万张.根据以上材料回答下列问题:(1)到2014年底,本市60岁及以上户籍老年人口为__________万人;(2)选择统计表或.统计图,将2013年––2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例表示出来;(3)预测2016年本市养老服务机构的床位数约为_________万张,请你结合数据估计,能否满足4%的老年人入住养老服务机构,并说明理由.26.观察下列各等式:222=233-⨯,( 1.2)6( 1.2)6--=-⨯,11()(1)()(1)22---=-⨯-,……根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的等于它们的;(2)请你写一个实数,使它具有上述等式的特征:-3= ⨯3;(3)请你再写两个实数,使它们具有上述等式的特征:- = ⨯ ;(4)符合上述特征的所有等式中,是否存在两个实数都是整数的情况?若存在,求出所有满足条件的等式;若不存在,说明理由.27.在平面直角坐标系xOy 中,抛物线c bx x y ++=2经过点(0,–3),(2,–3). (1)求抛物线的表达式;(2)求抛物线的顶点坐标及与x 轴交点的坐标;(3)将c bx x y ++=2(y ≤0)的函数图象记为图象A ,图象A 关于x 轴对称的图象记为图象B .已知一次函数y=mx +n ,设点H 是x 轴上一动点,其横坐标为a ,过点H 作x 轴的垂线,交图象A 于点P ,交图象B 于点Q ,交一次函数图象于点 N .若只有当1<a<3时,点Q 在点N 上方,点N 在点P 上方,直接写出n 的值.28.在等腰三角形ABC 中, AC =BC ,点P 为BC 边上一点(不与B 、C 重合),连接P A ,以P 为旋转中心,将线段P A 顺时针旋转,旋转角与∠C 相等,得到线段PD ,连接DB . (1)当∠C =90º时,请你在图1中补全图形,并直接写出∠DBA 的度数; (2)如图2,若∠C =α,求∠DBA 的度数(用含α的代数式表示);(3)连接AD ,若∠C =30º,AC =2,∠APC =135º,请写出求AD 长的思路.(可以不写出计算结果)PCP C29.在平面直角坐标系xOy 中,A (t ,0),B(t +0),对于线段AB 和x 轴上方的点P 给出如下定义:当∠APB=60°时,称点P 为AB 的“等角点”. (1)若t =-,在点302C ⎛⎫ ⎪⎝⎭,,D ⎫⎪⎪⎝⎭,32E ⎛⎫ ⎪ ⎪⎝⎭中,线段AB 的“等角点”是 ;(2)直线MN 分别交x 轴、y 轴于点M 、N ,点M 的坐标是(6,0),∠OMN=30°.①线段AB 的“等角点”P 在直线MN 上,且∠ABP =90°,求点P 的坐标; ②在①的条件下,过点B 作BQ ⊥P A ,交MN 于点Q ,求∠AQB 的度数;③若线段AB 的所有“等角点”都在△MON 内部,则t 的取值范围是 .2016朝阳二模10.如图,ABC ∆为等边三角形,点O 在过点A 且平行于BC 的直线上运动,以ABC ∆的高为半径的⊙O 分别交线段AB 、AC 于点E 、F ,则所对的圆周角的度数A .从︒0到︒30变化B .从︒30到︒60变化C .总等于︒30D .总等于︒6016.在数学活动课上,老师说有人根据如下的证明过程,得到“1=2”的结论.前四天每天接待的观众人数统计图5月3日观看各种戏剧人数分布统计图大家经过认真讨论,发现上述证明过程中从某一步开始出现错误,这一步是________ (填入编号),造成错误的原因是________.24.如图,O 是∠MAN 的边AN 上一点,以OA 为半径作⊙O ,交∠MAN 的平分线于点D ,DE ⊥AM 于E .(1)求证:DE 是⊙O 的切线; (2)连接OE ,若∠EDA =30º,AE =1,求OE 的长.25.为弘扬中国传统文化,2016年4月30日“北京戏曲文化周”在北京园博园开始举行,活动期间开展了丰富多样的戏曲文化互动体验活动,同时也推出了好戏连台园博看大戏的活动,主办方统计了前几天观看戏剧情况的部分相关数据,绘制统计图表如下:图1(1)m =_______;(2)若5月3日当天看豫剧的人数为93人,请你补全图1;(3)请你根据前四天接待观众人数,估计“北京戏曲文化周”活动在5月4日接待观众约为________人.5月4日的戏曲活动,分别演出 “京剧”、“北京曲剧”、“沪剧”、“秦腔”、“粤剧”. 通过对100名观众的调查发现, 有12人喜欢“沪剧”,5人喜欢“秦腔”,8人喜欢“粤剧”.主办方希望把“沪剧”、“秦腔”、“粤剧”三种戏剧安排到以下五个园(如下表)中的三个园进行演出.请你结合下表为这三种戏剧选择合适的演出地点,并说明理由.26.(1)如图,在平面直角坐标系xOy 中,直线32y x =+与抛物线y = x 2相交于点A 、B , 与x 轴交于点C ,A 点横坐标为x 1,B 点横坐标为x 2(x 1 < x 2),C 点横坐标为x 3. 请你计算1211x x +与31x 的值,并判断它们的数量关系.(2)在数学的世界里,有很多结论的形式是统一的,这也体现了数学的美.请你在下列两组 条件中选择一组....,证明1211x x +与31x 仍具有(1)中的数量关系. ①如图,∠APC =120º,PB 平分∠APC ,直线l 与P A 、PB 、PC 分别交于点A 、B 、C ,P A =x 1,PC =x 2,PB =x 3.BA②如图,在平面直角坐标系xOy 中,过点A (x 1,0)、B (0,x 2)作直线l ,与直线y =x 交于点C ,点C 横坐标为x 3.27.在平面直角坐标系xOy 中,抛物线22(9)6y x m x =-++-的对称轴是2x =.(1)求抛物线表达式和顶点坐标;(2)将该抛物线向右平移1个单位,平移后的抛物线与原抛物线相交于点A ,求点A 的坐标; (3)抛物线22(9)6y x m x =-++-与y 轴交于点C ,点A 关于平移后抛物线的对称轴的对称点为点B ,两条抛物线在点A 、C 和点A 、B 之间的部分(包含点A 、B 、C ) 记 为图象M .将直线22y x =-向下平移b (b >0)个单位,在平移过程中直线与图象M 始终有两个公共点,请你写出b 的取值范围_________.28.在ABC ∆中,点D 、E 分别在AB 、AC 上,BE 、CD 相交于点O ,且A E B C D C B ∠=∠=∠21. (1)如图1,若AB =AC ,则BD 与CE 的数量关系是______________;(2)如图2,若AC AB ≠,请你补全图2,思考BD 与CE 是否仍然具有(1)中的数量关系, 并说明理由;llxyx 3x 1x 2CAB O(3)如图3,︒=∠105BDC ,BD = 3,且BE 平分∠ABC ,请写出求BE 长的思路. (不用写出计算结果)29.P 是⊙O 内一点,过点P 作⊙O 的任意一条弦AB ,我们把PA PB ⋅的值称为点P 关于⊙O 的“幂值”.(1)⊙O 的半径为5,OP = 3.①如图1,若点P 恰为弦AB 的中点,则点P 关于⊙O 的“幂值”为________; ②判断当弦AB 的位置改变时,点P 关于⊙O 的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P 关于⊙O 的“幂值”的取值范围.(2)若⊙O 的半径为r ,OP = d ,请参考(1)的思路,用含r 、d 的式子表示点P 关于⊙O 的“幂值”或“幂值”的取值范围________;(3)在平面直角坐标系xOy 中,⊙O 的半径为4,若在直线3y x b =+上存在点P ,使得点P 关于⊙O 的“幂值”为13,请写出b 的取值范围________.图1图3图2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市朝阳区九年级综合练习(一)数学试卷 2016.5一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.清明节是中国传统节日,它不仅是人们远足踏青的日子,更是祭奠祖先、缅怀先人的节日.市民政局提供的数据显示,今年清明节当天全市213处祭扫点共接待群众264000人, 将264000用科学计数法表示应为A .326410⨯B .42.6410⨯C .52.6410⨯D .60.26410⨯ 2.实数a ,b ,c ,d 在数轴上对应的位置如图所示,绝对值相等的两个实数是A .a 与bB .b 与cC .c 与dD .a 与d 3.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是A .21 B .13 C .29 D .194.下列图形选自历届世博会会徽,其中是轴对称图形的是A B C D5.如图,四边形ABCD 内接于⊙O ,E 为DC 延长线上一点,∠A = 50º,则∠BCE 的度数为A .40ºB .50ºC .60ºD .130º图16.某地需要开辟一条隧道,隧道AB 的长度无法直接测量.如图所示, 在地面上取一点C ,使C 到A 、B 两点均可直接到达,测量找到AC 和BC 的中点D 、E ,测得DE 的长为1100m ,则隧道AB 的长度为A .3300mB .2200mC .1100mD .550m7.2022年将在北京—张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm )如下表所示:设两队队员身高的平均数依次为甲x ,乙x ,方差依次为2甲s ,2乙s ,下列关系中完全正确的是 A .甲x =乙x ,2甲s <2乙s B .甲x =乙x ,2甲s >2乙s C .甲x <乙x ,2甲s <2乙sD .甲x >乙x ,2甲s >2乙s8.如图,△ABC 内接于⊙O ,若⊙O 的半径为6,︒=∠60A , 则BC 的长为A .2πB .4πC .6πD .12π9.我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园—玲珑塔—国家体育场—水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(–1,0),森林公园的坐标为(–2,2),则终点水立方的坐标为 A .(–2,–4) B .(–1,–4) C .(–2,4) D .(–4,–1)10.如图1,在等边三角形ABC 中,AB =2,G 是BC 边上一个动点且不与点B 、C 重合,H 是AC 边上一点,且30=∠AGH°.设BG=x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的A . 线段CGB . 线段AGC . 线段AHD . 线段CH1–112O图2三、填空题(本题共18分,每小题3分)11x 的取值范围是____________. 12.分解因式:22369a b ab b -+=____________.13.关于x 的方程04222=-++k x x 有两个不相等实数根,写出一个满足条件的k 的值:k =____________.14.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣. 《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?” 译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x 人,可列方程为____________.15.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为____________粒. 16.阅读下面材料:数学课上,老师提出如下问题:小艾的作法如下:老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是____________.尺规作图:经过已知直线上一点作这条直线的垂线. 已知:直线AB 和AB 上一点C .求作:AB 的垂线,使它经过点C . 如图,(1)在直线AB 上取一点D ,使点D 与点C 不重合,以点C 为圆心,CD 长为半径作弧,交AB 于D ,E 两点; (2)分别以点D 和点E 为圆心,大于12DE 长为半径作弧,两弧相交于点F ; (3)作直线CF .所以直线CF 就是所求作的垂线.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:1(2)1)4cos 45---++︒. 18.已知11m m-=,求(21)(21)(5)m m m m +-+-的值. 19.解不等式组3(1)6,1.2x x x x -<⎧⎪⎨+≤⎪⎩并写出它的所有整数解. 20.如图,E 为AC 上一点,EF ∥AB 交AF 于点F ,且AE = EF . 求证:BAC ∠= 2∠1.21.台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入, 2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.22.如图,四边形ABCD 是矩形,点E 在BC 边上,点F 在BC 延长线上,且∠CDF =∠BAE . (1)求证:四边形AEFD 是平行四边形 ; (2)若DF =3,DE =4,AD =5,求CD 的长度.FEDCB A1FECBA23.在平面直角坐标xOy 中,直线y x b =+与双曲线my x=的一个交点为A (2,4),与y 轴交于点B .(1) 求m 的值和点B 的坐标; (2) 点P 在双曲线my x=上,△OBP 的面积为8,直接写出点P 的坐标.24.如图,点D 在⊙O 上,过点D 的切线交直径AB 延长线于点P ,DC ⊥AB 于点C . (1) 求证:DB 平分∠PDC ; (2) 若DC =6,3tan 4P ∠= ,求BC 的长.25.阅读下列材料:人口老龄化已经成为当今世界主要问题之一.北京市在上世纪90年代初就进入了老龄化社会,全市60岁及以上户籍老年人口2013年底达到279.3万人,占户籍总人口的21.2%; 2014年底比2013年底增加17.4万人,占户籍总人口的22.3%;2015年底比2014年底增加23.3万人,占户籍总人口的23%.“百善孝为先”,北京市政府越来越关注养老问题,提出养老服务新模式,计划90%的老年人在社会化服务协助下通过家庭照顾养老(即居家养老),6%的老年人在社区养老,4%的老年人入住养老服务机构.本市养老服务机构的床位总数2013年达到8.0516万张,2014年达到10.938万张,2015年达到12万张. 根据以上材料回答下列问题:(1)到2014年底,本市60岁及以上户籍老年人口为__________万人;(2)选择统计表或.统计图,将2013年––2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例表示出来;(3)预测2016年本市养老服务机构的床位数约为_________万张,请你结合数据估计,能否满足4%的老年人入住养老服务机构,并说明理由.P26.观察下列各等式:222=233-⨯, ( 1.2)6( 1.2)6--=-⨯,11()(1)()(1)22---=-⨯-, ……根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的等于它们的 ; (2)请你写一个实数,使它具有上述等式的特征:-3= ⨯3;(3)请你再写两个实数,使它们具有上述等式的特征:- = ⨯ ;(4)符合上述特征的所有等式中,是否存在两个实数都是整数的情况?若存在,求出所有满足条件的等式;若不存在,说明理由.27.在平面直角坐标系xOy 中,抛物线c bx x y ++=2经过点(0,–3),(2,–3). (1)求抛物线的表达式;(2)求抛物线的顶点坐标及与x 轴交点的坐标;(3)将c bx x y ++=2(y ≤0)的函数图象记为图象A ,图象A 关于x 轴对称的图象记为图象B .已知一次函数y=mx +n ,设点H 是x 轴上一动点,其横坐标为a ,过点H 作x 轴的垂线,交图象A 于点P ,交图象B 于点Q ,交一次函数图象于点 N .若只有当1<a<3时,点Q 在点N 上方,点N 在点P 上方,直接写出n 的值.28.在等腰三角形ABC中,AC=BC,点P为BC边上一点(不与B、C重合),连接P A,以P为旋转中心,将线段P A顺时针旋转,旋转角与∠C相等,得到线段PD,连接DB.(1)当∠C=90º时,请你在图1中补全图形,并直接写出∠DBA的度数;(2)如图2,若∠C=α,求∠DBA的度数(用含α的代数式表示);(3)连接AD,若∠C =30º,AC=2,∠APC=135º,请写出求AD长的思路.(可以不写出计算结果)29.在平面直角坐标系xOy中,A(t,0),B(t+0),对于线段AB和x轴上方的点P 给出如下定义:当∠APB=60°时,称点P为AB的“等角点”.(1)若t=-,在点32C⎛⎫⎪⎝⎭,,D⎫⎪⎪⎝⎭,32E⎛⎫⎪⎪⎝⎭中,线段AB的“等角点”是;(2)直线MN分别交x轴、y轴于点M、N,点M的坐标是(6,0),∠OMN=30°.①线段AB的“等角点”P在直线MN上,且∠ABP=90°,求点P的坐标;②在①的条件下,过点B作BQ⊥P A,交MN于点Q,求∠AQB的度数;③若线段AB的所有“等角点”都在△MON内部,则t的取值范围是.图1PCB APCB A图2北京市朝阳区九年级综合测试(一)数学试卷评分标准及参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17─26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=1142--+……………………………………………… …4分=12.……………………………………………………………………… 5分18.解:原式=22415m m m-+-………………………………………………………… 2分=2551m m--………………………………………………………………… 3分=25()1m m--.11mm-=,21m m∴-=.…………………………………………………………… 4分∴原式=4.…………………………………………………………………… 5分19.解:3(1)6,1.2x xxx-<⎧⎪⎨+≤⎪⎩解不等式①,得x>-1.……………………………………………………………2分解不等式②,得x≤1.………………………………………………………… 3分∴不等式组的解集是1-<x≤1.………………………………………………… 4分∴原不等式组的所有整数解为0,1.……………………………………………5分①②20.证明:∵EF ∥AB ,∴∠1=∠FAB .…………………… 2分 ∵AE =EF ,∴∠EAF =∠EFA . ……………… 3分∵∠1=∠EFA ,∴∠EAF =∠1.…………………… 4分∴∠BAC =2∠1. …………………5分21.解:设北京故宫博物院约有x 万件藏品,台北故宫博物院约有y 万件藏品.. …… 1分 依题意,列方程组得 245250.x y x y +=⎧⎨=+⎩,…………………………………………………………………………3分解得18065.x y =⎧⎨=⎩, ………………………………………………………………………………5分答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 22.(1)证明:∵四边形ABCD 是矩形,∴DC AB =,DCF B ∠=∠=90º. ∵BAE CDF ∠=∠,∴△ABE ≌△DCF .………………1分 ∴CF BE =. ∴EF BC =. ∵AD BC =,∴AD EF =.………………………2分 又∵EF ∥AD ,∴四边形AEFD 是平行四边形.………………………3分 (2)解:由(1)知,EF =AD = 5.在△EFD 中,DF =3,DE =4,EF =5,∴222DE DF EF +=.∴∠EDF =90º.……………………………………………………………………4分∴1122ED DF EF CD ⋅=⋅. ∴125CD =. ……………………………………………………………………5分FEDCB A1FEC BA23.解:(1)∵双曲线xmy =经过点,A (2,4), ∴8=m .………………………………………………………………………1分 ∵直线y x b =+经过点A (2,4),∴2b =.…………………………………………………………………………2分∴此直线与y 轴交点B 的坐标为(0,2). …………………………………3分(2)(8,1),(-8,-1). .…………………………………………………… 5分 24.(1)证明:如图,连接OD . ∵DP 是⊙O 的切线, ∴OD ⊥DP .∴90ODP ∠=︒. ………………………………………………………1分 ∴90.ODB BDP ∠+∠=︒ 又∵DC ⊥OB , ∴90DCB ∠=︒.∴90BDC OBD ∠+∠=︒. ∵OD =OB ,∴.ODB OBD ∠=∠ ∴BDP BDC ∠=∠.∴DB 平分∠PDC .……………………………………………………………2分 (2)解:过点B 作BE ⊥DP 于点E . ∵,BDP BDC ∠=∠BC ⊥DC , ∴BC =BE . ……………………………………3分 ∵DC =6,3tan 4P ∠=, ∴DP =10,PC =8.……………………………… 4分 设CB=x , 则BE=x ,BP=8- x .∵△PEB ∽△PCD ,∴8610x x-= .∴3=x .∴.3=BC ……………………………………………………………………… 5分AA25.(1)296.7. ………………………………………………………………………………1分 (2)统计表如下:2013–2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例统计表……………………………………………………………………………………3分 (3)14; ……………………………………………………………………………………4分能满足老年人的入住需求. 理由:根据2013–2015年老年人口数量增长情况,估计到2016年老年人口约有340万人,有4%的老年人入住养老服务机构,即约有13.6万人入住养老服务机构,到2016年北京市养老服务机构的床位数约14万张,所以能满足老年人的入住需求. ……………….…………….…………….…………………………………………5分 26.解:(1)差,积;…………………………………………………………………………1分分 分(4)存在. 设这两个实数分别为x ,y .可以得到 .xy y x =- ……………………………………………………4分 ∴1+=x xy .∴111y x =-+.∵ 要满足这两个实数x ,y 都是整数,∴ x +1的值只能是1±.∴当0=x 时,0=y ;当2-=x 时,2=y .∴满足两个实数都是整数的等式为0000⨯=-,222)2(⨯-=--.…5分27.解:(1)把(0,–3)代入c bx x y ++=2,∴.3-=c把(2,–3)代入,32-+=bx x y ∴.2-=b322--=x x y . ………………2分 (2)由(1)得2(1)4y x =--. ∴顶点坐标为(1,–4).……………3分 由2230x x --=解得123,1x x ==-.∴抛物线与x 轴交点的坐标为(–1,0),(3,0).…………………………5分 (3)6±. .……………………………………………………………………7分28.解:(1)如图,补全图1. …………….………………………………………………1分∠DBA=︒90. ……………….………………………………………………2分(2) 过点P 作PE ∥AC 交AB 于点E . ………………………………………………3分 ∴PEB CAB ∠=∠.∵ AC =BC ,∴CAB CBA ∠=∠. ∴PEB PBE ∠=∠. ∴PE PB =.又∵BPD DPE EPA DPE α∠+∠=∠+∠=, ∴BPD EPA ∠=∠. ∵PD PA =,∴△PDB ≌△PAE .…………………………………………………………4分 ∵11(180)9022PBA PEB αα∠=∠=︒-=︒-, PEC BA∴180PBD PEA PEB ∠=∠=︒-∠=α2190+︒. ∴DBA PBD PBA α∠=∠-∠=. …………………………………………5分 (3)求解思路如下:a .作AH ⊥BC 于H ;b .由∠C =30º,AC =2,可得AH =1,CHBH=2 勾股定理可求AB ; ………………………………………6分 c .由∠APC =135 º,可得∠APH =45 º,AP; d .由∠APD =∠C =30º,AC =BC ,AP =DP ,可得△PAD ∽△CAB ,由相似比可求AD 的长. ……………7分 29.解:(1)C ,D . ……….…………….………….…….………….………………2分 (2)①如图,∵∠APB=60°,∠ABP =90°, ∴∠PAB =30°,又∵∠OMN=30°,∴,.PA PM AB BM == ……………3分∵,3=AB∴BM = ∴.1=PB∴P(61). .………..……….….………….………….…………4分 ②∵BQ ⊥AP ,且∠APB =60º,∴∠PBQ =30º. ∴∠ABQ =60º.∴∠BMQ =∠MQB =30º. ……5分 ∴BQ = BM =AB .∴△ABQ 是等边三角形.∴∠AQB =60º. ………………………………………………………6分同理,当点N 在x 轴下方时,可得P(1),∠AQB =90º. ………7分③14t <<…………………………………………………8分HABC PNMNM。