高中数学必修一111第1课时

合集下载

高中数学课本全套pdf

高中数学课本全套pdf

高中数学课本全套pdf篇一:人教版必修1高一数学全套打包,150页)人教版高中数学必修1精品教案(整套)课题:集合的含义与表示(1)课型:新授课教学目标:(1) 了解集合、元素的概念,体会集合中元素的三个特征;(2) 理解元素与集合的“属于”和“不属于”关系;(3) 掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生,在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而1不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3. 思考1:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4) 方程x2?1?0的解;(5) 某校2007级新生;(6) 血压很高的人;(7) 著名的数学家;(8) 平面直角坐标系内所有第三象限的点(9) 全班成绩好的学生。

2对学生的解答予以讨论、点评,进而讲解下面的问题。

4. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:给定一个集合与集合里面元素的顺序无关。

人教A版高中数学必修一 《指数函数》指数函数与对数函数PPT(第1课时指数函数的概念、图象及性质)

人教A版高中数学必修一 《指数函数》指数函数与对数函数PPT(第1课时指数函数的概念、图象及性质)
解析:选 C.函数 y=ax-a(a>0,且 a≠1)的图象恒过点(1,0), 故可排除选项 A,B,D.
5.求下列函数的定义域和值域: (1)y=2x-1 4;(2)y=23 -|x|.
解:(1)要使函数有意义,则 x-4≠0,解得 x≠4.
1
所以函数 y=2x-4的定义域为{x|x≠4}. 因为x-1 4≠0,所以 2x-1 4≠1,即函数 y=2x-1 4的值域为{y|y>0,且 y≠1}.
(2)要使函数有意义,则-|x|≥0,解得 x=0. 所以函数 y=23 -|x|的定义域为{x|x=0}. 因为 x=0,所以23 -|x|=230=1,即函数 y=23 -|x|的值域为{y|y= 1}.
本部分内容讲解结束
问题导学 预习教材 P111-P118,并思考以下问题: 1.指数函数的概念是什么? 2.结合指数函数的图象,分别指出指数函数 y=ax(a>1)和 y= ax(0<a<1)的定义域、值域和单调性各是什么?
1.指数函数的概念 一般地,函数 y=__a_x__ (a>0,且 a≠1)叫做指数函数,其中 x 是____自_变__量___.
指数函数的图象
根据函数 f(x)=12x的图象,画出函数 g(x)=12|x|的图象, 并借助图象,写出这个函数的一些重要性质.
【解】
g(x)=12|x
|=12x(x≥0),其图象如图. 2x(x<0),
由图象可知,函数 g(x)的定义域为 R,值域是(0,1], 图象关于 y 轴对称,单调递增区间是(-∞,0], 单调递减区间是(0,+∞).
■名师点拨 指数函数解析式的 3 个特征
(1)底数 a 为大于 0 且不等于 1 的常数. (2)自变量 x 的位置在指数上,且 x 的系数是 1. (3)ax 的系数是 1.

人教版高中数学必修一:1.1.1教学设计

人教版高中数学必修一:1.1.1教学设计

数学学科课时教学设计检查结果及修改意见:合格[ ] 不合格[ ]组长(签字):检查日期:年月日精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

山中的石!当你背靠群峰时,意志就坚了。

水中的萍!当你随波逐流后,根基就没了。

空中的鸟!当你展翅蓝天中,宇宙就大了。

空中的雁!当你离开队伍时,危险就大了。

地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。

朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。

高中数学 111集合的含义和表示(二)课件 湘教版必修1

高中数学 111集合的含义和表示(二)课件 湘教版必修1

( ).
• A.5
B.6
C.7
D.8
• 解析 {x|1≤x≤6,x∈N}={1,2,3,4,5,6}.
• 答案 B
2.
3. • 将集合{x|2≤x≤8}表示成区间为____________.
• 答案 [2,8]
• 能被3整除的正整数的集合,用描述法可表示为 4. ________.
• 答案 {x|x=3n,n∈N+}
名师点睛
1. • 在用列举法表示集合时应注意以下四点: • (1)元素间用“,”分隔; • (2)元素不重复; • (3)不考虑元素顺序; • (4)对于含有较多元素的集合,如果构成该集合的元素 有明显规律,可用列举法,但是必须把元素间的规律显 示清楚后方能用省略号.
2. • 使用描述法时应注意以下四点: • (1)写清楚该集合中元素的一般属性或形式(字母或用字 母表示的元素符号); • (2)说明该集合中元素的特征; • (3)不能出现未被说明的字母; • (4)用于描述的语句力求简明、确切.
(2)使 y=x2+1x-6有意义的实数 x 的集合; (3)在坐标平面中第一、三象限上点的集合.
解 (1){x∈R|x2-2=0}.
(2)要使 y=x2+1x-6有意义,须 x2+x-6≠0,即 x≠2 且 x ≠-3,故可表示成{x|x≠2 且 x≠-3,x∈R}. • (3)第一、三象限上的点的特征是纵横坐标符号相同,
• 提示 集合①{x|y=x2+1}的代表元素是x, • 满足条件y=x2+1中的x∈R, • ∴实质上{x|y=x2+1}=R. • 集合②{y|y=x2+1}的代表元素是y, • 满足条件y=x2+1中的y的取值范围是y≥1, • ∴实质上{y|y=x2+1}={y|y≥1}. • 集合③{(x,y)|y=x2+1}的代表元素是(x,y), • 满足条件y=x2+1的(x,y)的集合是抛物线, • ∴实质上{(x,y)|y=x2+1}={P|P是抛物线y=x2+1上的点}. • 由以上可知它们不是相同的集合.

高中数学第一章集合与函数概念1.3.2奇偶性第一课时函数奇偶性的定义与判定课件新人教A版必修1

高中数学第一章集合与函数概念1.3.2奇偶性第一课时函数奇偶性的定义与判定课件新人教A版必修1
1.3.2 奇偶性 第一课时 函数奇偶性的定义与判定
目标导航
课标要求
1.理解奇函数、偶函数的定义. 2.了解奇函数、偶函数图象的特征. 3.掌握判断函数奇偶性的方法.
通过本节内容的学习,使学生学会利用图象理解和研究 素养达成
函数性质,提高学生直观想象、逻辑推理的能力.
新知探求 课堂探究
新知探求·素养养成
x 1
规 得x范2=解1答,即:(x2=)由±1.1x2
x2 1
0, 0
因此函数的定义域为{-1,1},关于原点对称. ……………………4分
又f(1)=f(-1)=-f(-1)=0,所以f(x)既是奇函数又是偶函数. …6分
(3)函数f(x)的定义域是(-∞,-1)∪(-1,+∞), …………………7分 不关于原点对称,所以f(x)既不是奇函数也不是偶函数. ………9分
所以 f(x)为奇函数. ………………………………………………12 分
变式探究:本例中函数 f(x)= 1 x2 + x2 1 可化简为 f(x)=0,则该函数既是奇 函数又是偶函数,若将函数变形为 f(x)= x 1 + 1 x ,则函数的奇偶性如何?
解:由于
x 1 1 x
0, 0,

x=1,故
【情境导学】 导入 函数①f(x)=x2-1,②f(x)=- 1 ,③f(x)=2x的图象分别如图所示.
x
想一想 1:(1)导入中三个函数的定义域分别是什么?它们有什么共同特点?
(R;(-∞,0)∪(0,+∞);R.关于原点对称) (2)对于导入中的三个函数计算f(-x),视察对定义域内每个x,f(-x)与f(x) 有怎样的关系? (①f(-x)=x2-1,f(-x)=f(x).

高中数学人教B版必修第一册课件:1.1.1集合及其表示方法

高中数学人教B版必修第一册课件:1.1.1集合及其表示方法

①π∈R;② 3∉Q;③0∈N*;④|-4|∉N*.
A.1
B.2
C.3
D.4
四、集合的表示
(1)自然语言表示法
1~20以内的质数组成的集合
(2)列举法 把集合中的元素一一列举出来,以逗号隔开,并用
花括号“{}”括起来的表示集合的方法叫做列举法.
{2,3,5,7,11,13,17,19}
例:地球上四大洋组成的集合: {太平洋,大西洋,印度洋,北冰洋}
四、集合的表示
例1、用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程 x2=x 的所有实数根组成的集合; (3)由1~20以内既能被2整除,又能被3整除的所有自 然数组成的集合.
解:(1)设小于10的所有自然数组成的集合为A, 则 A={0,1,2,3,4,5,6,7,8,9}
二、集合中元素的特性
先思考以下两个问题:
① 高一级身高较高的同学,能否构成集合?

② 高一级身高160cm以上的同学,能否构成集合? 能 ③ 2, 4, 2 这三个数能否组成一个集合? 否
②互异性:集合中的元素是互异的。即集合元素是没 有重复现象的。 (互不相同)
二、集合中元素的特性
先思考以下两个问题:
有限集
②到直线 l 的距离等于定长 d 的所有的点;
③全体自然数;
无限集
④方程 x2+3x+2=0 的所有实数根;
分别归纳概括出它们具有什么共同特征?
一般地,我们把研究的对象统称为元素,把一些元 素组成的总体叫做集合(简称为集).
一、集合的含义
一般地,我们把研究的对象统称为元素,把一些 元素组成的总体叫做集合(简称为集).
当 a=-32时,经检验,符合题意.故 a=-32.

对数函数及其性质(第一课时)课件-高一上学期数学人教A版(2019)必修第一册

对数函数及其性质(第一课时)课件-高一上学期数学人教A版(2019)必修第一册


(1)A已.知cab0.3a0.4 ,A.b cB.lobga34ab,cc lBo.g0.a3 4C,b.则b(c a c )C. b Da.bc c a D.b c a
A. c b a B. a b c
C.b a c
D.b c a
例题讲练
(2)设 a log3 , b log2 3 , c log3 2 ,则(
x lxogaloyg(a ya ( 0a且 a0 且 1a),1x),也是x 也以是y以为自y 为变自量变的量函的数函(数其(中其y 中 0y, 0x , Rx ),R ), 根据根我据们我的们认的知认习知惯习,惯我,们我把们x 把 lxogaloyg中a 字y 中母字x 母, xy,对调y 对,调, 写成写y成 lyogaloxg(a 其x (中其x 中 0x, 0y, Ry ).R ).
例题讲练
【练习习 55】】
((11))已已知知ff((xx))的的定定义义域域为为[0[,10],1,] ,则函则数函数f [lof g[l1o(g31(3x)] 的x)定] 的义定域义为域___为____________._____.
22
例题讲练
(2)已知函数 y f [lg(x 1)] 的定义域为 (0,99] ,则函数 y f [log2 (x 2)] 的定义域为__________.
§4.4 对数函数及其性质 (第一课时)
人教版高中数学必修一
课堂引入:
通过前面的学习我们知道,某细胞经过 x 次分裂后,变成的细胞个数 y 2x ,
得由到一由y 个y2指x 数2x函x数x.lo由gglo22gyyy2y2对x 于对任于x意任的意lo细的g2胞细y个胞,数个对数y于,任y 我,意们我的都们细可都胞以可个通以数过通y对过,数对我运数们算运都算可 得到以得唯通到一唯过的一对的数x 与运x 之与算对之得应对到,应唯所,一以所的细以x胞细与分胞之裂分对次裂应数次,所数x以也x细可也胞以可分看以裂出看次以出数细以x胞细也个胞可数个以数y看为y成自为以变自细变胞个 量的数量函的y数函为.数自.变量的函数. 同样同地样,地根,据根指据数指与数对与数对的数关的系关,系由,y由 ayx(aax ( 0a且 a0 且 1a)可1)以可得以到得:到:

01-第一节 函数的概念及其表示-课时1 函数的概念高中数学必修一人教A版

01-第一节 函数的概念及其表示-课时1 函数的概念高中数学必修一人教A版
的函数:________________________________.
【解析】 令 = 4 − , ∈ [1,3],满足定义域和值域均为[1,3].(注:其他
满足题意的函数均可.)
18.已知 =
1
(
1+
∈ ,且 ≠ −1), = 2 + 2 ∈ .
(1)求 2 , 2 的值;
A.①③
B.①②
C.③④
D.②④
【解析】 对应关系若能构成从到的函数,须满足:对中的任意一个
数,通过对应关系在中都有唯一的数与之对应.对于①, =
1
2
1
,当

=2
时, = ∉ ,故①不满足题意;对于②, = + 1,当 = −1时,
= −1 + 1 = 0 ∉ ,故②不满足题意;对于③, = ,当 = ±1时,
【解析】 2 =11来自2=1,
3
2 = 22 + 2 = 6.
(2)求 2 的值;
【解析】 2
= 6 =
1
1+6
=
1
.
7
(3)求 , 的值域.
【解析】 因为 =
1
的定义域为{|
+1
≠ −1},
所以 的值域是 −∞, 0 ∪ 0, +∞ .
因为 = 2 + 2的定义域为,且 2 + 2 ≥ 2,所以 的值域是
3
B √ = 3 + 2 = + 2,与 = + 2的定义域相同,对应关系相同.
C × =
2

+ 2的定义域为{| ≠ 0},与 = + 2的定义域不同.

(人教A版)高中数学必修一(全套)课时练习+单元测试卷全集

(人教A版)高中数学必修一(全套)课时练习+单元测试卷全集

(人教A版)高中数学必修一(全册)课时练习+单元测试卷汇总第1课时集合的含义第2课时集合的表示(2)当M中只含两个元素时, 其元素只能是x和8-x,所以元素个数为2的所有的集合M为{0,8}, {1,7}, {2,6}, {3,5}.(3)满足条件的集合M是由集合{4}, {0,8}, {1,7}, {2,6}, {3,5}中的元素组成, 它包括以下情况:①{4}, {0,8}, {1,7}, {2,6}, {3,5}, 共5个;②{4,0,8}, {4,1,7}, {4,2,6}, {4,3,5}, {0,8,1,7}, {0,8,2,6}, {0,8,3,5}, {1,7,2,6}, {1,7,3,5}, {2,6,3,5}, 共10个;③{4,0,8,1,7}, {4,0,8,2,6}, {4,0,8,3,5}, {4,1,7,2,6}, {4,1,7,3,5}, {4,2,6,3,5}, {0,8,1,7,2,6}, {0,8,1,7,3,5}, {1,7,2,6,3,5}, {0,8,2,6,3,5}, 共10个;④{4,0,8,1,7,2,6}, {4,0,8,1,7,3,5}, {4,0,8,2,6,3,5}, {4,1,7,2,6,3,5}, {0,8,1,7,2,6,3,5}, 共5个;⑤{4,0,8,1,7,2,6,3,5}, 共1个.于是满足题设条件的集合M共有5+10+10+5+1=31(个).A BB A且空集的子集只有一个A{3,4,9},A⊆B A=BA B A BZ), 当A B答案:D解析:因为N ={x |x ≤k }, 又M ={x |-1≤x <2}, 所以当M ⊆N 时, k ≥2.6.已知集合P ={x |x 2=1}, 集合Q ={x |ax =1}, 若Q ⊆P , 则a 的值为( ) A .1 B .-1C .1或-1D .0,1或-1 答案:D解析:P ={-1,1}, 当a =0时, Q =∅, 当a ≠0时, Q ={x |x =1a }, ∵Q ⊆P , ∴a =0或a =±1.二、填空题(本大题共3个小题, 每小题5分, 共15分)7.用适当的符号填空. (1)0________{x |x 2=0};(2)∅________{x ∈R |x 2+1=0}; (3){0,1}________N ;(4){0}________{x |x 2=x };(5){2,1}________{x |x 2-3x +2=0}. 答案:(1)∈ (2)= (3) (4) (5)=8.已知集合P ={x |0<x -a ≤2}, Q ={x |-3<x ≤4}, 若P ⊆Q , 则a 的取值范围是________.答案:{a |-3≤a ≤2}解析:依题意, 知P ={x |a <x ≤a +2}, 又Q ={x |-3<x ≤4}, 若P ⊆Q , 则⎩⎪⎨⎪⎧a ≥-3a +2≤4, 解得-3≤a ≤2.9.已知集合M ={-1,3,2m -1}, 集合N ={3, m 2}, 若N ⊆M , 则实数m =________. 答案:1解析:依题意, 知当N ⊆M 时, 只能有m 2=2m -1, 解得m =1, 经检验知满足题意. 三、解答题(本大题共6小题, 共45分)10.(5分)以下各组中两个对象是什么关系, 用适当的符号表示出来: (1)0与{0}; (2)0与∅; (3)∅与{0};(4){0,1}与{(0,1)}; (5){(a , b )}与{(b , a )}. 解:(1)0∈{0}; (2)0∉∅(3)∅与{0}都是集合, 两者的关系是“包含与不包含”的关系, 所以∅{0}; (4){0,1}是含两个无素0,1的集合;而{(0,1)}是以有序数对为元素的集合, 它只含一个元素.所以{0,1}⊆{(0,1)};且{0,1}⊉{(0,1)};(5)当a =b 时, {(a , b )}={(b , a )};当a ≠b 时, {(a , b )} ⊆{(b , a )}, 且{(a , b )}⊉{(b , a )}. 11.(13分)设集合A ={x , x 2, xy }, 集合B ={1, x , y }, 且集合A 与集合B 相等, 求实数x 、y 的值.解:由题意得⎩⎪⎨⎪⎧ x 2=1,xy =y ,①或⎩⎪⎨⎪⎧x 2=y ,xy =1.②解①, 得⎩⎪⎨⎪⎧ x =1,y ∈R ,或⎩⎪⎨⎪⎧ x =-1,y =0.经检验⎩⎪⎨⎪⎧ x =1,y ∈R ,不合题意, 舍去, 则⎩⎪⎨⎪⎧x =-1,y =0.解②, 得⎩⎪⎨⎪⎧x =1,y =1.经检验⎩⎪⎨⎪⎧x =1,y =1,不合题意, 舍去.∅∅12.(9分)已知M ={(x , y )|y =x 2+2x +5}, N ={(x , y )|y =ax +1}. (1)若M ∩N 有两个元素, 求实数a 的取值范围;(2)若M ∩N 至多有一个元素, 求实数a 的取值范围.解:(1)因为M ∩N 有两个元素, 所以方程组⎩⎪⎨⎪⎧ y =x 2+2x +5y =ax +1有两组解,即一元二次方程x 2+(2-a )x +4=0有两个不等的实数根, 所以Δ=(2-a )2-16=a 2-4a -12>0,结合二次函数y =a 2-4a -12的图象, 可得a >6或a <-2. 所以实数a 的取值范围为{a |a >6或a <-2}.(2)因为M ∩N 至多有一个元素, 所以方程组⎩⎪⎨⎪⎧y =x 2+2x +5y =ax +1无解或只有一组解,即一元二次方程x 2+(2-a )x +4=0无实数根或有两个相等的实数根, 所以Δ=(2-a )2-16=a 2-4a -12≤0,结合二次函数y =a 2-4a -12的图象, 可得-2≤a ≤6. 所以实数a 的取值范围为{a |-2≤a ≤6}.能力提升13.(5分)对于集合A , B , 我们把集合{x |x ∈A , 且x ∉B }叫做集合A 与B 的差集, 记作A -B .若A ={1,2,3,4}, B ={3,4,5,6}, 则A -B =________.答案:{1,2}解:A -B ={x |x ∈A 且x ∉B } ={1,2,3,4}-{3,4,5,6} = {1,2 }.14.(13分)已知集合A ={x |x 2-ax +a 2-19=0}, 集合B ={x |x 2-5x +6=0}, 是否存在实数a , 使得集合A , B 同时满足下列三个条件?①A ≠B ;②A ∪B =B ;③∅ (A ∩B ).若存在, 求出这样的实数a 的值;若不存在, 说明理由.解:由已知条件可得B ={2,3}, 因为A ∪B =B , 且A ≠B , 所以A ⊆B , 又A ≠∅, 所以A ={2}或A ={3}.当A ={2}时, 将2代入A 中方程, 得a 2-2a -15=0, 所以a =-3或a =5, 但此时集合A 分别为{2, -5}和{2,3}, 与A ={2}矛盾.所以a ≠-3, 且a ≠5.当A ={3}时, 同上也能导出矛盾.综上所述, 满足题设要求的实数a 不存在.第5课时 补集1.已知全集U={0,1,3,5,6,8}, 集合A={1,5,8}, B={2}, 则集合(∁U A)∪B=()A.{0,2,3,6} B.{0,3,6}C.{1,2,5,8} D.∅答案:A解析:依题意, 知∁U A={0,3,6}, 又B={2}, 所以(∁U A)∪B={0,2,3,6}.故选A.2.设集合U={1,2,3,4,5}, A={1,3,5}, B={2,3,5}, 则∁U(A∩B)等于()A.{1,2,4} B.{4}C.{3,5} D.{∅}答案:A解析:易知:A∩B={3,5}, 则∁U(A∩B)={1,2,4}, 故选A.3.设全集U={1,2,3,4,5,6,7}, 集合A={1,3,5,7}, B={3,5}, 则下列各式正确的是() A.U=A∪B B.U=(∁U A)∪BC.U=A∪(∁U B) D.U=(∁U A)∪(∁U B)答案:C解析:∵∁U B={1,2,4,6,7},∴A∪(∁U B)={1,2,3,4,5,6,7}=U.故选C.4.已知M, N为集合I的非空真子集, 且M, N不相等, 若N∩(∁I M)=∅, 则M∪N=() A.M B.NC.I D.∅答案:A解析:由N∩(∁I M)=∅, 可知N与∁I M没有公共元素, 则N⊆M, 又M≠N, 所以N M, 所以M∪N=M.故选A.5.已知集合A={x|x<a}, B={x|1<x<2}, 且A∪(∁R B)=R, 则实数a的取值范围是() A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}答案:C解析:由于A∪(∁R B)=R, 则B⊆A, 可知a≥2.故选C.6.如图所示, I是全集, M, P, S是I的3个子集, 则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩∁I S D.(M∩P)∪∁I S答案:C解析:阴影部分是M与P的公共部分, 且在S的外部, 故选C.7.设集合M ={3,4,7,9}, N ={4,5,7,8,9}, 全集U =M ∪N , 则集合∁U (M ∩N )中的元素共有________个.答案:3解析:因为U =M ∪N ={3,4,5,7,8,9}, M ∩N ={4,7,9}, 则∁U (M ∩N )={3,5,8}, 可知其中的元素有3个.8.已知集合A ={x |-2≤x <3}, B ={x |x <-1}, 则A ∩(∁R B )=________. 答案:{x |-1≤x <3} 解析:因为B ={x |x <-1}, 则∁R B ={x |x ≥-1}, 所以A ∩(∁R B )={x |-2≤x <3}∩{x |x ≥-1}={x |-1≤x <3}.9.高一(1)班共有学生50人, 其中参加诗歌鉴赏兴趣小组的有30人, 参加书法练习兴趣小组的有26人, 同时参加两个兴趣小组的有15人, 则两个兴趣小组都没有参加的学生有________人.答案:9解析:设参加诗歌鉴赏兴趣小组的学生组成集合A , 参加书法练习兴趣小组的学生组成集合B , 如图所示, 依题意card(A )=30, card(B )=26, card(A ∩B )=15, 则card(A ∪B )=30+26-15=41.所以两个兴趣小组都没有参加的学生有50-41=9(人).三、解答题(本大题共4小题, 共45分)10.(12分)已知全集U ={3, a 2-3a -2,2}, A ={3, |a -1|}, ∁U A ={-2}, 求实数a 的值. 解:因为A ∪(∁U A )=U ,所以{3, -2, |a -1|}={3, a 2-3a -2,2},从而⎩⎪⎨⎪⎧a 2-3a -2=-2|a -1|=2, 解得a =3.11.(13分)已知全集U ={x |x ≤4}, 集合A ={x |-2<x <3}, B ={x |-3≤x ≤2}. (1)求(∁U A )∪B ; (2)求A ∩(∁U B ).解:易知∁U A ={x |x ≤-2或3≤x ≤4}, ∁U B ={x |x <-3或2<x ≤4}. 则(1)(∁U A )∪B ={x |x ≤2或3≤x ≤4}. (2)A ∩(∁U B )={x |2<x <3}.能力提升12.(5分)已知全集U ={1,2,3,4,5}, A ={1,5}, B ∁U A , 则集合B 的个数是( ) A .5 B .6 C .7 D .8B∁A.M=N B.M⊆NC.M⊇N D.M, N无公共元素答案:D解析:因为M={(x, y)|(x+3)2+(y-1)2=0}={(-3,1)}是点集, 而N={-3,1}是数集, 所以两个集合没有公共元素, 故选D.6.已知全集U=R, 集合A={x|1<x≤3}, B={x|x>2}, 则A∩(∁U B)等于()A.{x|1<x≤2} B.{x|1≤x<2}C.{x|1≤x≤2} D.{x|1≤x≤3}答案:A解析:U=R, ∴∁U B={x|x≤2}, A∩∁U B={x|1<x≤3}∩{x|x≤2}={x|1<x≤2}.选A.二、填空题(本大题共3个小题, 每小题5分, 共15分)7.已知集合U=R, A={x|-2<x≤5}, B={x|4≤x<6}, 则∁U(A∪B)=________.答案:{x|x≤-2或x≥6}解析:(A∪B)={x|-2<x<6}又U=R, 所以可得∁U(A∪B)={x|x≤-2或x≥6}.8.如图所示, 阴影部分表示的集合为________.答案:∁U(A∪B)∪(A∩B)解析:阴影部分有两类:(1)∁U(A∪B);(2)A∩B.9.设集合M={x|x>1, x∈R}, N={y|y=2x2, x∈R}, P={(x, y)|y=x-1, x∈R, y∈R}, 则(∁R M)∩N=________, M∩P=________.答案:{x|0≤x≤1}∅解析:因为M={x|x>1, x∈R}, 所以∁R M={x|x≤1, x∈R}, 又N={y|y=2x2, x∈R}={y|y≥0}, 所以(∁R M)∩N={x|0≤x≤1}.因为M={x|x>1, x∈R}表达数集, 而P={(x, y)|y=x -1, x∈R, y∈R}表示点集, 所以M∩P=∅.三、解答题(本大题共4小题, 共45分)10.(12分)某班有50名学生, 有36名同学参加学校组织的数学竞赛, 有23名同学参加物理竞赛, 有3名学生两科竞赛均未参加, 问该班有多少同学同时参加了数学、物理两科竞赛?解:全集为U, 其中含有50名学生, 设集合A表示参加数学竞赛的学生, B表示参加物理竞赛的学生, 则U中元素个数为50, A中元素个数为36, B中元素个数为23, 全集中A、B 之外的学生有3名, 设数学、物理均参加的学生为x名, 则有(36-x)+(23-x)+x+3=50, 解得x=12.所以, 本班有12名学生同时参加了数学、物理两科竞赛.11.(13分)已知集合A={x|2<x<7}, B={x|2<x<10}, C={x|5-a<x<a}.(1)求A∪B, (∁R A)∩B;(2)若C⊆B, 求实数a的取值范围.={x|∅满足题设条件, 易知A BA B∅第7课时函数的有关概念第9课时映射与分段函数答案:B解析:因为|x 2-2x |=⎩⎪⎨⎪⎧x 2-2x (x ≤0或x ≥2),-x 2+2x (0<x <2),所以所求的图象为B 选项.5.设集合A ={a , b }, B ={0,1}, 从A 到B 的映射共有______个( )A .2B .3C .4D .5 答案:C解析:如图:(2)y =x 2-2|x |-1=⎩⎪⎨⎪⎧x 2-2x -1 (x ≥0),x 2+2x -1 (x <0).图象如图所示.11.(13分)已知函数f (x )=⎩⎪⎨⎪⎧-2x +1,x <1x 2-2x ,x ≥1.(1)试比较f (f (-3))与f (f (3))的大小;(2)画出函数f (x )的图象; (3)若f (x )=1, 求x 的值.解:(1)因为-3<1, 所以f (-3)=-2×(-3)+1=7, 又因为7>1, 所以f (f (-3))=f (7)=72-2×7=35. 因为3>1, 所以f (3)=32-2×3=3, 所以f (f (3))=3. 所以f (f (-3))>f (f (3)).(2)函数图象如图实线部分所示.而f(x1)<0, f(x2)<0, ∴f(x1)f(x2)>0. ∴F(x2)-F(x1)<0, 即F(x2)<F(x1).∴F(x)在(0, +∞)上为减函数.。

高中数学必修一课件:正弦函数、余弦函数的性质(第1课时)

高中数学必修一课件:正弦函数、余弦函数的性质(第1课时)

∴函数f(x)=sin34x+3π 2 为偶函数.
③f(x)=
(1-cos2x)+sin 1+sin x
x

sin2x+sin 1+sin x
x
=sin
x,但函数应满足1+sin
x≠
0,∴函数的定义域为{x|x∈R,且x≠2kπ+32π,k∈Z}.
∵函数的定义域不关于原点对称,
∴该函数既不是奇函数也不是偶函数.
思考题3 (1)判断下列函数的奇偶性.
①f(x)=sin
x-tan x
x;
②f(x)=lg(1-sin x)-lg(1+sin x);
③f(x)=1-cossi2nx
; x
④f(x)= 1-cos x+ cos x-1.
【答案】 ①偶函数 ②奇函数 ③非奇非偶函数 ④既是奇函数又是偶 函数
(2)函数f(x)=7sin(23x+152π)是( A )
(2)若本例(1)中的“偶函数”改为“奇函数”,“π”改为“
11π 12
”,其他
条件不变,结果如何?
【解析】 f5π 3 =f5π 3 -111π2 ×2=f-π6 =-fπ6 =-sin π6 =-12.
(3)若本例(1)中的条件不变,求当x∈[-π,0]时函数的解析式.
【解析】 因为f(x)是偶函数,所以f(-x)=f(x), 因为x∈0,π2 时,f(x)=sin x, 所以当x∈-π2 ,0时,-x∈0,π2 ,所以 f(-x)=sin(-x)=-sin x=f(x), 即当x∈-π2 ,0时,f(x)=-sin x,
π (2)已知函数f(x)= 2sin(x+ 4 +φ)是奇函数,则φ的值可以是( B )
A.0
B.-π4

高中数学新教材必修第一册知识点总结

高中数学新教材必修第一册知识点总结

高中数学新教材必修第一册知识点总结第一章集合与常用逻辑用语1.1集合的概念1.集合的描述:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,简称为集.2.集合的三个特性:(1)描述性:“集合”是一个原始的不加定义的概念,它同平面几何中的“点”、“线”、“面”等概念一样,都只是描述性地说明.(2)整体性:集合是一个整体,暗含“所有”、“全部”、“全体”的含义,因此一些对象一旦组成了集合,这个集合就是这些对象的总体.(3)广泛性:组成集合的对象可以是数、点、图形、多项式、方程,也可以是人或物等.3.集合中元素的三个特性:(1)确定性:对于给定的集合,它的元素必须是确定的.即按照明确的判断标准(不能是模棱两可的)判断给定的元素,或者在这个集合里,或者不在这个集合里,二者必居其一.(2)互异性:一个给定的集合中的元素是互不相同的.也就是说集合中的元素是不能重复出现的. (3)无序性:集合中的元素排列无先后顺序,任意调换集合中的元素位置,集合不变.4.集合的符号表示通常用大写的字母A,B,C,…表示集合,用小写的字母a,b,c表示集合中的元素.5.集合的相等当两个集合的元素是一样时,就说这两个集合相等.集合A与集合B相等记作A B=.6.元素与集合之间的关系(1)属于:如果a是集合A中的元素,就说a属于集合A,记作a A∈,读作a属于A.(2)不属于:如果a不是集合A中的元素,就说a不属于集合A,记作a A∉,读作a不属于A.7.集合的分类(1)有限集:含有有限个元素的集合叫做有限集.如方程21x=的实数根组成的集合.(2)无限集:含有无限个元素的集合叫做无限集.如不等式10x->的解组成的集合.8.常用数集及其记法数学数学数学 2(1)正整数集:全体正整数组成的集合叫做正整数集,记作*N或N.+(2)自然数集:全体非负整数组成的集合叫做自然数集,记作N.(3)整数集:全体整数组成的集合叫做整数集,记作Z.(4)有理数集:全体有理数组成的集合叫做有理数集,记作Q.(5)实数集:全体实数组成的集合叫做实数集,记作R.9.集合表示的方法(1)自然语言:用文字叙述的形式描述集合的方法.如所有正方形组成的集合,所有实数组成的集合.例如,三角形的集合.(2)列举法:把集合的元素一一列举出来表示集合的方法叫做列举法.其格式是把集合的元素一一列举出来并用逗号隔开,然后用花括号括起来.例如,我们可以吧“地球上的四大洋”组成的集合表示为{太平洋,大西洋,印度洋,北冰洋},把“方程(1)(2)0-+=的所有实数根”组成的集合表示为x x-.{1,2}(3)描述法:通过描述集合所含元素的共同特征表示集合的方法叫做描述法.一般格式为{()}x p x,其数学数学数学 3中x是集合中的元素代表,()p x则表示集合中的元素所具有的共同特征.例如,不等式73x-<的解集可以表示为∈-<=∈<.x R x x R x{73}{10}1.2集合间的基本关系1. 子集一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记为A B或(B A)读作集合A包含于集合B(或集合B包含集合A).集合A是集合B的子集可用Venn图表示如下:数学数学数学 4数学 数学 数学 5或关于子集有下面的两个性质: (1)反身性:A A ⊆;(2)传递性:如果A B ⊆,且B C ⊆,那么A C ⊆. 2.真子集如果集合A B ⊆,但存在元素x B ∈,且x A ∉,我们称集合A是集合B 的真子集,记为A B ⊂≠(或B A ⊃≠), 读作集合A 真包含于集合B (或集合B 真包含集合A ). 集合A 是集合B 的真子集可用Venn 图表示如右.数学 数学 数学 63.集合的相等如果集合A B ⊆,且B A ⊆,此时集合A 与集合B 的元素是一样的,我们就称集合A 与集合B 相等,记为 A B =.集合A 与集合B 相等可用Venn 图表示如右. 4.空集我们把不含任何元素的集合叫做空集,记为∅.我们规定空集是任何一个集合的子集,空集是任何一个非空集合的真子集,即 (1)A ∅⊆(A 是任意一个集合); (2)A ⊂∅≠(A ≠∅). 1.3集合的运算 1.并集自然语言:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B的并集,记作数学 数学 数学 7A B ⋃(读作“A 并B ”). 符号语言: {,}A B x x A x B ⋃=∈∈或. 图形语言:理解:x A ∈或x B ∈包括三种情况:x A ∈且x B ∉;x B ∈且x A ∉;x A ∈且x B ∈. 并集的性质: (1)A B B A ⋃=⋃;(5) A =BA (4)B B(3)A (2)A 与B 没有有公共元素(1)A 与B 有公共元素,相互不包含(2)A A A⋃=;(3)A A⋃∅=;(4)()()⋃⋃=⋃⋃;A B C A B C(5)A A B⊆⋃;⊆⋃,B A B(6)A B B A B⋃=⇔⊆.2.交集自然语言:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A B⋂(读作“A交B”).符号语言:{,}⋂=∈∈A B x x A x B且.图形语言:数学数学数学8数学 数学 数学 9理解:当A 与B 没有公共元素时,不能说A 与B 没有交集,只能说A 与B 的交集是∅. 交集的性质: (1)A B B A ⋂=⋂; (2)A A A ⋂=;BA(5)A=B,A B=A=B(4)B A,A B=B(3)A B,A B=AA B(2)A 与B 没有公共元素,A B=(1)A 与B 有公共元素,且互不包含数学 数学10(3)A ⋂∅=∅;(4)()()A B C A B C ⋂⋂=⋂⋂; (5)A B A ⋂⊆,A B B ⋂⊆; (6)A B A A B ⋂=⇔⊆. 3.补集(1)全集的概念:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U . (2)补集的概念自然语言:对于一个集合A ,由属于全集U 且不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记为UA .符号语言: {,}UA x x U x A =∈∉且图形语言:数学 数学 数学 11补集的性质 (1)()U A A ⋂=∅; (2)()U A A U ⋃=; (3)()()()U U UA B A B ⋃=⋂; (4)()()()U U UA B A B ⋂=⋃.1.4充分条件与必要条件 1.充分条件与必要条件一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作p q⇒,并且说p是q的充分条件,q是p的必要条件.在生活中,q是p成立的必要条件也可以说成是: q⌝⇒p⌝(q⌝表示q不成立),其实,这与p q⇒是等价的.但是,在数学中,我们宁愿采用第一种说法.如果“若p,则q”为假命题,那么由p推不出q,记作/p q⇒.此时,我们就说p不是q的充分条件,q不是p的必要条件.2.充要条件如果“若p,则q”和它的逆命题“若q则p”均是真命题,即既有p q⇒,又有q p⇒就记作⇔.p q此时,我们就说p是q的充分必要条件,简称为充要条件.显然,如果p是q的充要条件,那么q也是p 的充要条件.概括地说,如果p q⇔,那么p与q互为充要条件.“p是q的充要条件”,也说成“p等价于q”或“q当且仅当p”等.1.5全称量词与存在量词数学数学数学121.全称量词与存在量词(1)全称量词短语“所有的”,“任意一个”在逻辑中通常叫做全称量词,并用符号“”表示.常见的全称量词还有“一切”,“每一个”,“任给”,“所有的”等.含有全称量词的命题,叫做全称量词命题.全称量词命题“对M中的任意一个x,有()p x成立”可用符号简记为p x,x M,()读作“对任意x属于M,有()p x成立”.(2)存在量词短语“存在一个”,“至少有一个”在逻辑中通常叫做存在量词,并用符号“”表示.常见的存在量词还有“有些”,“有一个”,“对某个”,“有的”等.含有存在量词的命题,叫做存在量词命题.存在量词命题“存在M中的元素x,使()p x成立”可用符号简记为p x,∃∈,()x M数学数学数学13数学 数学 数学 14读作“存在M 中的元素x ,使()p x 成立”. 2.全称量词命题和存在量词命题的否定 (1)全称量词命题的否定 全称量词命题:x M ,()p x ,它的否定:x M ∃∈,()p x ⌝.全称量词命题的否定是存在量词命题. (2)存在量词命题的否定 存在量词命题:x M ∃∈,()p x ,它的否定:x M ,()p x ⌝.存在量词命题的否定是全称量词命题.第二章一元二次函数、方程和不等式2.1等式性质与不等式性质1.比较原理>⇔->;a b a b=⇔-=;a b a ba b a b<⇔-<.2.等式的基本性质性质1 如果a b=,那么b a=;性质2 如果a b=,b c=,那么a c=;性质3 如果a b=,那么a c b c±=±;性质4如果a b=,那么ac bc=;性质5 如果a b=,0=.c≠,那么a bc c数学数学数学15数学 数学 数学 163.不等式的基本性质性质1 如果a b >,那么b a <;如果b a <,那么a b >.即a b b a >⇔<性质2 如果a b >,b c >,那么a c >.即a b >,b c >a c ⇒>.性质3 如果a b >,那么a c b c +=+. 由性质3可得,()()a b c a b b c b a c b +>⇒++->+-⇒>-.这表明,不等式中任何一项可以改变符号后移到不等号的另一边. 性质4 如果a b >,0c >,那么ac bc >;如果a b >,0c <,那么ac bc <. 性质5 如果a b >,c d >,那么a c b d +>+. 性质6 如果0a b >>,0c d >>,那么ac bd >. 性质7 如果0a b >>,那么n n a b >(n N ∈,2n ≥).数学 数学 数学 172.2 基本不等式 1.重要不等式,a b R ∀∈,有222a b ab +≥,当且仅当a b =时,等号成立. 2.基本不等式 如果0a >,0b >,则2a b+≤, 当且仅当a b =时,等号成立.2a b+叫做正数a ,b 的算术平均数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数. 3.与基本不等式相关的不等式 (1)当,a b R ∈时,有数学 数学 数学 1822a b ab +⎛⎫≤ ⎪⎝⎭,当且仅当a b =时,等号成立. (2)当0a >,0b >时,有211a b≤+当且仅当a b =时,等号成立. (3)当,a b R ∈时,有22222a b a b ++⎛⎫≤ ⎪⎝⎭,当且仅当a b =时,等号成立. 4.利用基本不等式求最值 已知0x >,0y >,那么(1)如果积xy 等于定值P ,那么当x y =时,和x y +有最小值;数学 数学 数学 19(2)如果和x y +等于定值S ,那么当x y =时,积xy 有最大值214S .2.3 二次函数与一元二次方程、不等式 1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式. 2.二次函数与一元二次方程、不等式的解的对应关系第三章函数的概念与性质3.1 函数的概念及其表示1.函数的概念设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的的数y和它对应,那么就称:f A B→为从集合A到集合B的一个函数,记作数学数学数学20数学 数学 数学 21()y f x =,x A ∈.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{|(})f x x A ∈叫做函数的值域,显然,值域是集合B 的子集. 2.区间:设a ,b 是两个实数,而且a b <,我们规定:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[,]a b ; (2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为(,)a b ;(3)满足不等式a x b ≤<或a x b <≤的实数x 的集合叫做半开半闭区间,分别表示为:[,)a b , (,]a b . 这里的实数a ,b 都叫做相应区间的端点.数学 数学 数学 22(4)实数集R 可以表示为(,)-∞+∞,“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞” 读作“正无穷大”.满足x a ≥,x a >,x b ≤,x b <的实数x 的集合,用区间分别表示为[,)a +∞ ,(,)a +∞ (,]b -∞,(,)b -∞.这些区间的几何表示如下表所示.注意:(1)“∞”是一个趋向符号,表示无限接近,却永远达不到,不是一个数.(2)以“-∞”或“+∞”为区间的一端时,这一端点必须用小括号.3.函数的三要素(1)定义域;(2)对应关系;(3)值域.值域随定义域和对应关系的确定而确定.4.函数的相等如果两个函数的定义域和对应关系分别相同,那么就说这两个函数是同一个函数.5.函数的表示方法(1)解析法用数学表达式表示两个变量之间的对应关系的方法叫做解析法.数学数学数学23数学 数学 数学 24解析法是表示函数的一种重要的方法,这种表示法从“数”的方面简明、全面地概括了变量之间的数量关系. (2)图象法用图象表示两个变量之间的对应关系的方法叫做图象法.图象法直观地表示了函数值随自变量值改变的变化趋势,从“形”的方面刻画了变量之间的数量关系. 说明:将自变量的一个值0x 作为横坐标,相应的函数值0()f x 作为纵坐标,就得到坐标平面上的一个点00(,())x f x .当自变量取遍函数的定义域A 中的每一个值时,就得到一系列这样的点,所有这些点组成的图形就是函数()y f x =的图象.函数()y f x =的图象在x 轴上的射影构成的集合就是函数的定义域,在y 轴上的射影构成的集合就是函数的值域.函数的图象既可以是连续的曲线,也可以是直线、折线、离散的点,等等. (3)列表法通过列表来表示两个变量之间的对应关系的方法叫做列表法.例如,初中学习过的平方表、立方表都是表示函数关系的.数学 数学 数学 256.分段函数(1)分段函数的概念有些函数在其定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数称为分段函数.如 (1),0,(),0x x f x x x x -<⎧==⎨≥⎩ , (2)22,0,(),0x x f x x x ⎧≤⎪=⎨->⎪⎩. 说明:①分段函数是一个函数,而不是几个函数.处理分段函数问题时,要先确定自变量的取值在哪个区间,从而选取相应的对应关系.②分段函数在书写时用大括号把各段函数合并写成一个函数的形式.并且必须指明各段函数自变量的取值范围.③分段函数的定义域是自变量所有取值区间的并集,分段函数的定义域只能写成一个集合的形式,不能分开写成几个集合的形式.④分段函数的值域是各段函数在对应自变量的取值范围内值域的并集.数学26(2)分段函数的图象分段函数有几段,它的图象就由几条曲线组成.在同一坐标系中,根据每段的定义区间和表达式依次画出图象,要注意每段图象的端点是空心点还是实心点,组合到一起就得到整个分 段函数的图象. 3.2 函数的基本性质函数的性质是指在函数变化过程中的不变性和规律性. 1.单调性与最大(小)值 (1)增函数设函数()f x 的定义域为I ,区间D ⊆I .如果∀1x ,2x D ∈,当12x x <时,都有12()()f x f x <,那么就称函数()f x 在区间D 上单调递增.特别地,当函数()f x 在它的定义域上单调递增时,我们就称它是增函数.数学 数学 数学 27(2)减函数设函数()f x 的定义域为I ,区间D ⊆I.如果∀1x ,2x D ∈,当12x x <时,都有12()()f x f x >,那么就称函数()f x 在区间D 上单调递增.特别地,当函数()f x 在它的定义域上单调递减时,我们就称它是减函数. (3)单调性、单调区间、单调函数数学 数学 数学 28如果函数()y f x =在区间D 上单调递增或单调递减,那么就说函数()y f x =在区间D 上具有(严格的)单调性,区间D 叫做()y f x =的单调区间.如果函数在某个区间上具有单调性,那么就称此函数在这个区间上是单调函数. (4)证明函数()f x 在区间D 上单调递增或单调递减,基本步骤如下: ①设值:设12,x x D ∈,且 12x x <; ②作差:12()()f x f x - ;③变形:对12()()f x f x -变形,一般是通分,分解因式,配方等.这一步是核心 ,要注意变形到底; ④判断符号,得出函数的单调性. (5)函数的最大值与最小值 ①最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么我们称M 是函数()y f x =的最大值.数学 数学 数学 29②最小值:设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥; (2)存在0x I ∈,使得0()f x m =. 那么我们称m 是函数()y f x =的最小值.2.奇偶性 (1)偶函数设函数()f x 的定义域为I ,如果x I ∀∈,都有x I -∈,且()()f x f x -=,那么函数()f x 就叫做偶函数.关于偶函数有下面的结论:①偶函数的定义域一定关于原点对称.也就是说定义域关于原点对称是函数为偶函数的一个必要条件; ②偶函数的图象关于y 轴对称.反之也成立;③偶函数在关于原点对称的两个区间上的增减性相反. (2)奇函数设函数()f x 的定义域为I ,如果x I ∀∈,都有x I -∈,且()()f x f x -=-,那么函数()f x 就叫做奇函数.数学30关于奇函数有下面的结论:①奇函数的定义域一定关于原点对称.也就是说定义域关于原点对称是函数为奇函数的一个必要条件; ②奇函数的图象关于坐标原点对称.反之也成立;③如果奇函数当0x =时有意义,那么(0)0f =.即当0x =有意义时,奇函数的图象过坐标原点; ④奇函数在关于原点对称的两个区间上的增减性相同. 3.3幂函数 1.幂函数的概念一般地,形如y x α=(R α∈,α为常数)的函数称为幂函数.对于幂函数,我们只研究1α=,2,3,12,1-时的图象与性质.2.五个幂函数的图象和性质x 12xx -1数学数学数学31数学 数学 数学 323.4函数的应用(一) 略.第四章 指数函数与对数函数4.1 指数1.n 次方根与分数指数幂 (1)方根如果n x a =,那么x 叫做a 的n 次方根,其中1n >,且*n N ∈.①当n 是奇数时,正数的n 次方根是正数,负数的n 方根是负数.这时,a 的n表示. ②当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.这时,正数a 的正的n表示,负的n次方根用符号. 正的n 次方根与负的n 次方根可以合并写成0a >). 负数没有偶次方根.0的任何次方根都是00=.根式,这里n 叫做根指数,a 叫做被开方数. 关于根式有下面两个等式:n a =;数学 数学 数学33,,a n a n ⎧⎪=⎨⎪⎩为奇数为偶数..2.分数指数幂(1)正分数指数幂m na =0a >,m ,*n N ∈,1n >).0的正分数指数幂等于0. (2)负分数指数幂1=m nmnaa-=0a >,m ,*n N ∈,1n >).0的负分数指数幂没有意义. (3)有理数指数幂的运算性质①r s r s a a a +=(0a >,r ,s Q ∈); ②()r s rs a a =(0a >,r ,s Q ∈);③()r r r ab a b =(0a >,0b >,r Q ∈).3. 无理数指数幂及其运算性质 (1)无理数指数幂的概念当x 是无理数时,x a 是无理数指数幂.我们可以通过有理数指数幂来认识无理数指数幂.当x 的不足近似值m 和过剩近似值n 逐渐逼近x 时,m a 和n a 都趋向于同一个数,这个数就是x a .所以无理数指数幂x a (0a >,x 是无理数)是一个确定的数.(2)实数指数幂的运算性质整数指数幂的运算性质也适用于实数指数幂,即对于任意实数r,s,均有下面的运算性质.①r s r s=(0a a a+∈);a>,r,s R②()r s rs=(0a a∈);a>,r,s R③()r r r=(0ab a b∈).a>,0b>,r R4.2 指数函数1.指数函数的概念函数x=(0y aa≠)叫做指数函数,其中指数x是自变量,定义域是R.a>,且12.指数函数的图象和性质一般地,指数函数x=(0y aa>,且1a≠)的图象和性质如下表所示:数学数学数学344.3 对数1.对数的概念数学数学数学35数学 数学 数学 36一般地,如果x a N =(0,1)a a >≠,那么数x 叫做以a 为底N 的对数,记作Nx a log =.其中a 叫做对数的底数,N 叫做真数. 当0a >,且1a ≠时,log N x a a N x =⇔=. 2. 两个重要的对数(1)常用对数:以10为底的对数叫做常用对数,并把10log N 记为lg N .(2)自然对数:以e (e 是无理数, 2.71828e =…)为底的对数叫做自然对数,并把log e N 记作ln N . 3. 关于对数的几个结论 (1)负数和0没有对数; (2)log 10a =; (3)log 1a a =. 4. 对数的运算如果0a >,且1a ≠,0M >,0N >,那么数学 数学 数学 37(1)log ()log log a a a MN M N =+; (2)log log log a a a MM N N=-;(3)log log n a a M n M =(n R ∈).5. 换底公式log log log c a cbb a=(0a >,且1a ≠,0b >,0c >,1c ≠).4.4 对数函数 1. 对数函数的概念一般地,函数log a y x =(0a >,且1a ≠)叫做对数函数,其中x 是自变量,定义域是(0,)+∞. 2.对数函数的图象和性质数学数学数学38数学 数学 数学 393. 反函数指数函数x y a =(0a >,且1a ≠)与对数函数log a y x =(0a >,且1a ≠)互为反函数,它们的定义域与值域正好互换.互为反函数的两个函数的图象关于直线y x =对称. 4. 不同函数增长的差异对于对数函数log a y x =(1a >)、一次函数y kx =(0k >)、指数函数x y b =(1b >)来说,尽管它们在(0,)+∞上都是增函数,但是随着x 的增大,它们增长的速度是不相同的.其中对数函数log a y x =(1a >)的增长数学 数学 数学 40速度越来越慢;一次函数y kx =(0k >)增长的速度始终不变;指数函数x y b =(1b >)增长的速度越来越快.总之来说,不管a (1a >),k (0k >),b (1b >)的大小关系如何,x y b =(1b >)的增长速度最终都会大大超过y kx =(0k >)的增长速度;y kx =(0k >)的增长速度最终都会大大超过log a y x =(1a >)的增长速度.因此,总会存在一个0x ,当0x x >时,恒有log x a b kx x >>.4.5 函数的应用(二) 1. 函数的零点与方程的解 (1)函数零点的概念 对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点.函数()y f x =的零点就是方程()0f x =的实数解,也是函数()y f x =的图象与x 轴的公共点的横坐标.所以方程()0f x =有实数解⇔函数()y f x =有零点⇔函数()y f x =的图象与x 轴有公共点.数学 数学 数学 41(2)函数零点存在定理 如果函数()y f x =在区间[,]a b 上的图象是一条连续不断的曲线,且有()()0f a f b <,那么,函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的解. 2. 用二分法求方程的近似解对于在区间[,]a b 上图象连续不断且()()0f a f b <的函数()y f x =,通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 给定精确度ε,用二分法求函数()y f x =零点0x 的近似值的一般步骤如下:(1)确定零点0x 的初始区间[,]a b ,验证()()0f a f b <. (2)求区间(,)a b 的中点c .(3)计算()f c ,并进一步确定零点所在的区间: ①若()0f c =(此时0x c =),则c 就是函数的零点; ②若()()0f a f c <(此时0(,)x a c ∈),则令b c =; ③若()()0f c f b <(此时0(,)x c b ∈),则令a c =.(4)判断是否达到精确度ε:若a bε-<,则得到零点的近似值a(或b);否则重复步骤(2)~(4). 由函数零点与相应方程解的关系,我们可以用二分法来求方程的近似解.3. 函数模型的应用用函数建立数学模型解决实际问题的基本过程如下:Array这一过程包括分析和理解实际问题的增长情况(是“对数增长”“直线上升”还是“指数爆炸”);根据增长情况选择函数类型构建数学模型,将实际问题化归为数学问题;通过运算、推理、求解函数模型;用得到的函数模型描述实际问题的变化规律,解决有关问题.在这一过程中,往往需要利用信息技术帮助画图、运算等.数学数学数学42第五章三角函数5.1 任意角和弧度制1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.射线的端点叫做角的顶点,射线在起始位置和终止位置分别叫做角的始边和终边. (2)正角、负角、零角按逆时针方向旋转所成的角叫正角;按顺时针方向旋转所成的角叫负角;一条射线没有作任何旋转而形成的角叫零角. 这样,我们就把角的概念推广到了任意角. ABO数学数学数学43数学 数学 数学 44(3)象限角当角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边落在坐标轴上,这时这个角不属于任何象限. (4)终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合{}|360,S k k Z ββα==+⋅︒∈即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 终边相同的角不一定相等,但相等的角,终边一定相同; 终边相同的角有无数多个,它们相差360︒的整数倍; 象限角的表示: 第一象限角的集合{}|36090360,k k k Z αα⋅︒<<︒+⋅︒∈第二象限角的集合数学 数学 数学 45{}|90360180360,k k k Z αα︒+⋅︒<<︒+⋅︒∈第三象限角的集合{}|180360270360,k k k Z αα︒+⋅︒<<︒+⋅︒∈第四象限角的集合{}|270360360360,k k k Z αα︒+⋅︒<<︒+⋅︒∈终边落在坐标轴上的角在以后的学习中很重要,它们的表示如下表.2. 弧度制(1)弧度的概念长度等于半径长的圆弧所对的圆心角叫做1弧度的角.在半径为r的圆中,弧长为l的弧所对的圆心角为αrad,那么lα=.r正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)弧度与角度的换算数学数学数学46数学 数学 数学47(3)关于扇形的几个公式设扇形的圆心角为α(rad ),半径为R ,弧长为l ,则有①l R α=; ②212S R α=; ③12S lR =.5.2 三角函数的概念 1. 三角函数的概念 (1)三角函数的定义一般地,任意给定一个角R α∈,它的终边OP数学 数学 数学48与单位圆相交于点(,)P x y .把点P 的纵坐标y 叫做α的正弦函数,记作sin α,即sin y α=;把点P 的横坐标x 叫做α的余弦函数,记作cos α,即cos x α=;把点P 的纵坐标与横坐标的比值yx 叫做α的正切函数,记作tan α,即tan yxα=(0x ≠). 正弦函数、余弦函数和正切函数统称为三角函数,通常将它们记为: 正弦函数 sin y α=,x R ∈; 余弦函数 cos y α=,x R ∈;正切函数 tan y α=,2x k ππ≠+(k Z ∈).数学 数学 数学 49设α是一个任意角,它的终边上任意一点P (不与原点 重合)的坐标为(,)x y ,点P与原点的距离为r =可以证明:sin yr α=; cos xr α=; tan y xα=. (2)几个特殊角的三角函数值0,2π,π,32π的三角函数值如下表所示:数学 数学 数学 50(3)三角函数值的符号(4)诱导公式(一)终边相同的角的同一三角函数值相等.sin(2)sin k απα+⋅=, cos(2)cos k απα+⋅=, tan(2)tan k απα+⋅=,其中k Z ∈.2. 同角三角函数间的基本关系tan αcos αsin α。

2017年秋高中数学必修一 课件_1-1集合1-1-1-1 课件 精

2017年秋高中数学必修一 课件_1-1集合1-1-1-1 课件 精

元素 (2)集合相等:
A,B,C…
只要构成两个集合的_____是一样的,就称这两个集合相等. (3)集合元素的三个特性 : 元素 _______、_______、无序性. 确定性 互异性
2.元素与集合的关系
关系
概念
记法
读法
如果a是集合A的
属于 元素 与集 合的 关系 元素 就说a属于 _____, 集合A 如果a不是集合A a∈A _____ a属于集 合A
【探究总结】
对元素与集合关系的两点说明
(1)根据集合中元素的确定性可知对任何元素a与集合A,在a∈A
与a∉A这两种情况中必有一种且只有一种成立. (2)符号“∈”与“∉”只是表示元素与集合之间的关系,并且 “∈”与“∉”的开口方向是向着集合的.
类型 一
集合的含义
1.(2014·遵义高一检测)以下元素的全体不能组成集合的是 ( A.中国古代四大发明 B.地球上的小河流 C.方程x2-1=0的实数解 D.周长为10cm的三角形 )
提示:是.由集合中元素的确定性知道给定一个对象,要么它是 给定集合的元素,要么不是这个集合的元素,两者必居其一且仅 居其一,不存在两者同时存在或两者都不存在的其他任何关系 . (2)如何判断一个元素a与集合A之间的关系? 提示:判断一个元素a是否属于集合A,只需看这个元素a是否具 备这个集合中元素的特征.
3
3.某书架上有5种不同品种的书各3本,那么由这个书架上的书 组成的集合中含有 个元素.
【解析】由集合中元素的互异性知:集合中元素必须是互不相
同的,相同的元素在集合中只能算一个,因此书架上的书组成的 集合中含有5个元素. 答案:5
4.已知集合M有两个元素3和a+1,且4∈M,则实数a= 【解析】因为4∈M,所以4=a+1,解得a=3. 答案:3

人教版数学高中必修1,1.1.1 第1课时

人教版数学高中必修1,1.1.1 第1课时
工具
必修1
第一章 集合与函数概念
栏目导引
这位同学在解题过程中,犯了两个错误,一个是 没有考虑到元素的互异性,解出来的结果没有代 入去检验,得出了错误的结果;再一个是解x3=x 时,漏掉了x=-1这个答案,也导致了错误的结 果.
工具
必修1
第一章 集合与函数概念
栏目导引
课堂小结
1.集合的定义; 2.集合元素的性质:确定性,互异 性,无序性; 3.数集及有关符号; 4. 集合的表示方法 5. 集合的分类.
工具
必修1
第一章 集合与函数概念
栏目导引
1.下列每组对象能否组成一个集合? (1)参展上海世博会的所有展馆; (2)数学必修1课本上的所有难题; (3)北京大学2013级的新生; (4)平面直角坐标系中,第一象限内的一些点. 解析: (1)、(3)的对象都是确定的,而且是不同 的,因而能构成集合;(2)中难题标准不明确,不 满足确定性,不能构成集合;(4)中“平面直角坐 标系中,第一象限内的一些点”,元素不明确, 故不能组成一个集合.
N ______
N*或N+ ________ Z _____
全体整数的集合
全体有理数的集合
整数集
有理数集
Q ______ R
栏目导引
全体实数的集合
工具
实数集
必修1
第一章 集合与函数概念
1.给出以下四个对象,其中能构成集合的有 ( ) ①某中学的年轻教师; ②你所在班中身高超过1.80米的同学; ③2011年深圳世界大运会的比赛项目; ④1,3,5. A.1个 B.2个 C.3个 D.4个
工具
必修1
第一章 集合与函数概念
栏目导引
栏目导引
∵x3∈A, ∴x3是集合A中的元素, 又∵集合A中含有3个元素,∴需分情况讨论: ①若x3=0,则x=0,此时集合A中有两个元素0, 不符合互异性,舍去; ②若x3=1,则x=1,此时集合A中有两个元素1, 不符合互异性,舍去; ③若x3=x,则x=0、x=-1或x=1,当x=0、x= 1时不符合互异性,都舍去.当x=-1时,此时集 合A中有三个元素1,0,-1,符合互异性; 综上可知,x=-1

人教版高中必修一 111 《集合的含义与表示》 课件

人教版高中必修一 111 《集合的含义与表示》 课件

新知探索
例题讲解
例1、用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程x²=x的所有实数根组成的集合; (3 ) 小于100的所有奇数.
注意:由于元素具有无序性, 集合A还有其它列举方法哦,
动手试一试吧!
【解析】(1)设小于10的所有自然数组成的集合为A,那么 A={0,1,2,3,4,5,6,7,8,9}.
为__-_1_. (3)若A= {x²+x-6=0},则3___∉_____A.
巩固练习
3、判断下列说法是否正确:
(1) {x2,3x+2,5x3-x}即{5x3-x,x2,3x+2} .
(2) 若4x=3,则 x N. (3) 若x Q,则 x R .
(4)若X∈N,则x∈N+.
( √) (√ ) (×) (× )
巩固练习
4、已知集合A={x | ax2+4x+4=0,x∈R,a∈R}只有一个元素, 求a的值和这个元素.
解析:当a=0时,x=-1; 当a≠ 0 时,由于集合只有一个元素,所以 =0,则x=-2.
拓展应用
5、设A是由满足不等式x<6的自然数组成的集合,a∈A且3a∈A,求a的值.
解析:因为a∈A且3a∈A, a<6,
合是不么定义呢的?那概你么念能,,举集数一合学些的家有很含难关义回集是答合什。 一的天例,子他吗看到?牧民正在向羊圈里赶羊,
等到牧民把羊全赶进羊圈并关好门,数学家 突然灵机一动,兴奋地告诉牧民:“这就是 集合”。
新知探索
探究1 集合的含义
观察下面例子,它们有什么共同特征? (1)1~20以内的所有偶数; (2)我国古代四大发明 (3)所有的长方形; (4)到直线的距离等于定长d的所有的点; (5)方程x²+3x-2=0的所有实数根; (6)我国从2001~2018年的15年内所发射的所有卫星。

人教版2017高中数学(必修一)第一章 1.1 1.1.1 第一课时 集合的含义PPT课件

人教版2017高中数学(必修一)第一章 1.1 1.1.1 第一课时 集合的含义PPT课件

2.常用的数集及其记法
常用的数集 自然数集 正整数集 整数集 有理数集 实数集 N Z Q R 记法 N*或N+
[化解疑难] 1.对“∈”和“∉”的理解 (1)符号“∈”“∉”刻画的是元素与集合之间的关系.对 于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两 种结果. (2)“∈”和“∉”具有方向性,左边是元素,右边是集 合,形如R∈0是错误的. 2.常用数集关系网
集合的基本概念
[例1] (1)下列各组对象:①接近于0的数的全体;②比较小的正
整数的全体;③平面上到点A的距离等于1的点的全体;④正三角形的 全体;⑤ 2的近似值的全体.其中能构成集合的组数是 A.2 C.4 B.3 D.5 ( )
(2)判断下列说法是否正确,并说明理由. ①某个公司里所有的年轻人组成一个集合; 3 6 1 1 ②由1, , ,-2, 组成的集合有五个元素; 2 4 2 ③由a,b,c组成的集合与由b,a,c组成的集合是同一个集合.
元素与集合的关系及常用数集的记法
[提出问题] 某中学2015年高一年级20个班构成一个集合. 问题1:高一(6)班、高一(16)班是这个集合中的元素吗?
提示:是这个集合的元素.
问题2:高二(3)班是这个集合中的元素吗?为什么?
提示:不是.高一年级这个集合中没有高二(3)班这个元素.
[导入新知] 1.元素与集合的关系 (1)如果a是集合A的元素,就说a 属于 集合A,记作 a∈A . (2)如果a不是集合A中的元素,就说a 不属于 集合A,记作 a∉A .
小写拉丁字母a, 一般地,我们把 研究对象 统 通常用_______________ 称为元素
b,c,„ 表示 _________
集合
大写拉丁字母A, 把一些元素组成的 总体 叫做 通常用_______________

人教版A版高中数学必修1课后习题及答案

人教版A版高中数学必修1课后习题及答案

高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页) 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素; (2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+, 即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=, 得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-. 3.解:{|}A B x x =是等腰直角三角形,{|}A B x x =是等腰三角形或直角三角形.4.解:显然{2,4,6}UB =,{1,3,6,7}UA =,则(){2,4}U AB =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R 是实数;(5Z3=是个整数; (6)2N ∈ 25=是个自然数.2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-; 3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥; (2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ;2{|10}{1,1}A x x =-==-; (3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}AB x x =≥,{|34}A B x x =≤<.7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}B C =,{3}B C =, 则(){1,2,3,4,5,6}AB C =, (){1,2,3,4,5,6,7,8}A B C =.8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅. (1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}AB x x =是邻边不相等的平行四边形,{|}SA x x =是梯形.10.解:{|210}A B x x =<<,{|37}A B x x =≤<,{|3,7}RA x x x =<≥或,{|2,10}RB x x x =≤≥或,得(){|2,10}RA B x x x =≤≥或,(){|3,7}RA B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或,(){|2,3710}R AB x x x x =≤≤<≥或或.B 组1.4 集合B 满足AB A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得UB A ⊆,即()U UA B B =,而(){1,3,5,7}U A B =,得{1,3,5,7}UB =,而()UU B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+, 同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠. 1.2.2函数的表示法练习(第23页)1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<, 即22500(050)y x x x =-<<.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示. 3.解:4.解:因为3sin 602=,所以与A 中元素60相对应的B 中的元素是32; 因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45. 1.2函数及其表示 习题1.2(第23页)1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠; (2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠, 得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞; (4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++, 即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--,即当4x =时,求()f x 的值为3-; (3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根, 即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=, 即(1)f -的值为8.7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d,即d =(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x=+>, 另外2()l x y =+,而22210,xy d x y ==+,得0)l d ===>,即(0)l d =>.9.解:依题意,有2()2d x vt π=,即24vx t dπ=, 显然0x h ≤≤,即240vt h d π≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应. 2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤,即125xt -=,(012)x ≤≤.(2)当4x =时,12483()355t h -=+=≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数. 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数. 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m . 3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的 垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1.5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y AC x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞; (2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.解:(1)因为1()1xf x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x +-+-===---, 即()()f x f x -=;(2)因为221()1x f x x+=-, 所以222211()11()()111()x x f f x x x x++===---,即1()()f f x x=-.9.解:该二次函数的对称轴为8kx =,函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.解:由(){1,3}UA B =,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=; (1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++, 121212()()()222f x f x ax b ax b ax x b ++++==++,所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32,(4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x 31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-.练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∣N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623ba ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行. 3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462rt s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ; (6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∣R ,即x ∣R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∣R ,即x ∣R ,所以函数y =32x +1的定义域为R . (3)要使函数有意义,需5x ∣R,即x ∣R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∣N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5. (4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n .(2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n . 点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的. B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35.点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ),2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-.当0<a <1时,3x +1<-2x .所以x <51-. 2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=-2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =; (2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x ==,所以3x =; (4)设lg 0.001x =,则3100.00110x -==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++; (3)33311lg()lg lg lg lg 3lg lg 22xy z x y z x y z z=-=+-=+-; (4)2211lg()lg (lg lg )lg 2lg lg 22x x y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====; (3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-. 4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0)不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x=(5) 100.3x = (6) xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg 6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=-5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)x c =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4. 8. (1)m n <; (2) m n <; (3) m n >; (4)m n >.9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s. 10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称.11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x 是幂函数. 2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4;(3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a . 3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ).(2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbba a +-++-11lg 11=lg )1)(1()1)(1(b a b a ++--,f (ab b a ++1)=lg (abb a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--.所以f (a )+f (b )=f (abba ++1). 9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x在x ∈(-∞,+∞)上是增函数. 证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x . 因为x 1,x 2∈(-∞,+∞),所以.012.01212>+>+x x 又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x e e -+)2+(2x x e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃. 6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h .(3)其图象大致如下:图2-3新课程标准数学必修1第三章课后习题解答第三章函数的应用3.1函数与方程练习(P88)1.(1)令f(x)=-x2+3x+5,作出函数f(x)的图象(图3-1-2-7(1)),它与x轴有两个交点,所以方程-x2+3x+5=0有两个不相等的实数根.(2)2x(x-2)=-3可化为2x2-4x+3=0,令f(x)=2x2-4x+3,作出函数f(x)的图象(图3-1-2-7(2)),它与x轴没有交点,所以方程2x(x-2)=-3无实数根.(3)x2=4x-4可化为x2-4x+4=0,令f(x)=x2-4x+4,作出函数f(x)的图象(图3-1-2-7(3)),它与x轴只有一个交点(相切),所以方程x2=4x-4有两个相等的实数根.(4)5x2+2x=3x2+5可化为2x2+2x-5=0,令f(x)=2x2+2x-5,作出函数f(x)的图象(图3-1-2-7(4)),它与x轴有两个交点,所以方程5x2+2x=3x2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点.(3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,。

22人教版高中数学新教材选择性必修第一册--第1课时 空间中点、直线和平面的向量表示

22人教版高中数学新教材选择性必修第一册--第1课时 空间中点、直线和平面的向量表示

1.4.1 用空间向量研究直线、平面的向量表示第1课时 空间中点、直线和平面的向量表示课标解读 课标要求 素养要求1.能用向量语言描述点、直线和平面,理解直线的方向向量与平面的法向量. 1.数学抽象——能够抽象出直线的方向向量与平面的法向量. 2.数学运算——会用空间向量的坐标运算求平面向量的法向量2.掌握直线的方向向量和平面的法向量自主学习·必备知识教材研习教材原句要点一 空间中点、直线的向量表示1.点的位置向量:如图,在空间中,我们取一定点O 作为 基点 ,那么空间中任意一点P 就可以用向量OP⃗⃗⃗⃗⃗ 来表示我们把向量OP ⃗⃗⃗⃗⃗ 称为点P 的① 位置向量 .2.空间直线的向量表示式:如图1,a 是直线l 的方向向量,在直线l 上取AB⃗⃗⃗⃗⃗ =a ,设P 是直线l 上的任意一点,则点P 在直线l 上的充要条件是存在实数t ,使得AP⃗⃗⃗⃗⃗ =ta ,即② AP ⃗⃗⃗⃗⃗ =tAB ⃗⃗⃗⃗⃗ . 如图2,取定空间中的任意一点O ,可以得到点P 在直线l 上的充要条件是存在实数t ,使OP ⃗⃗⃗⃗⃗ =OA⃗⃗⃗⃗⃗ +ta 或OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +tAB ⃗⃗⃗⃗⃗ . 上述两个式子都称为空间直线的③ 向量表示式 由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.要点二 空间平面的向量表示1.空间平面的向量表示式:如图,取定空间任意一点O ,空间一点P 位于平面ABC 内的充要条件是存在实数x,y , OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ 我们把这个式子称为空间平面ABC 的向量表示式由此可知,空间中任意平面由空间一点及两个不共线向量④ 唯一确定 .2.平面的法向量:如图,直线l ⊥a ,取直线l 的方向向量a ,我们称向量a 为平面α 的⑤法向量给定一个点A 和一个向量a ,那么过点A ,且以向量a 为法向量的平面完全确定,可以表示为集合 {p|a ⋅AP⃗⃗⃗⃗⃗ =0} .自主思考1.基点是确定的吗? 提示 是.2.已知A(2,2,0) ,B(0,0,2) ,C(0,0,0) ,p(1,1,12) ,如何判断这四点共面?提示 因为不在同一直线上的三点确定一个平面,所以由A,B,C 三点确定一个平面, 若P 在平面ABC 内,则存在实数x ,y 使AP ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +y =AC ⃗⃗⃗⃗⃗ ,即(−1,−1,12)=x(−2,−2,2)+y(−2,−2,0) ,即,{−2x −2y =−1,2x =12,解得x =y = 14 ,所以P 在平面ABC 内,即A ,B ,C ,P 四点共面. 3.“a ⋅AP⃗⃗⃗⃗⃗ =0 ”的含义是什么? 提示 “a ⋅AP ⃗⃗⃗⃗⃗ =0 ”是指平面的法向量与该平面内的任一直线的方向向量的数量积为零,即平面的法向量与该平面内的任一直线的方向向量垂直.名师点睛求平面法向量n 的三个注意点(1)选向量:在选取平面内的向量时,要选取不共线的两个向量.(2)取特殊值:在求n 的坐标时,可令x ,y ,z 中的任一个为特殊值,得另外两个值,从而得到平面的一个法向量.(3)注意0:假设法向量n =(x,y,z) 的某个坐标为某特殊值时,一定要注意这个坐标不为0.互动探究·关键能力 探究点一 直线的方向向量精讲精练例(1)已知点M(3,1,2),N(1,−5,−4),A(4,1,3) ,C 为线段AB 上一点,且AC MN=13,MN⃗⃗⃗⃗⃗⃗⃗ 是直线AB 的方向向量,则点C 的坐标为( ) A.(72,−12,52) B.(38,−3,2)C.(103,−1,1)D.(52,−72,32)(2)若M(2,0,−1),N(−1,√3,1) 在直线l 上,则直线l 的方向向量的单位向量为 . 答案:(1)C(2)(−34,√34,12)解析:(1)∵C 在线段AB 上,∴AC ⃗⃗⃗⃗⃗ ∥AB ⃗⃗⃗⃗⃗ ,又MN ⃗⃗⃗⃗⃗⃗⃗ 是直线AB 的方向向量,∴MN ⃗⃗⃗⃗⃗⃗⃗ ∥AB ⃗⃗⃗⃗⃗ ,∴MN ⃗⃗⃗⃗⃗⃗⃗ ∥AC⃗⃗⃗⃗⃗ . 设C(x,y,z) ,易知MN ⃗⃗⃗⃗⃗⃗⃗ =(−2,−6,−6),AC ⃗⃗⃗⃗⃗ =(x −4,y −1,z −3) ,且AC MN =13 , ∴(x −4,y −1,z −3)=13(−2,−6,−6) ,即{3(x −4)=−2,3(y −1)=−6,3(z −3)=−6, 解得x =103,y =−1,z =1,∴ 点C 的坐标是(103,−1,1) ,故选C.(2)因为M(2,0,−1),N(−1,√3,1) ,所以MN ⃗⃗⃗⃗⃗⃗⃗ =(−3,√3,2) ,所以|MN ⃗⃗⃗⃗⃗⃗⃗ |=4 , 所以直线l 的方向向量的单位向量是MN⃗⃗⃗⃗⃗⃗⃗ |MN ⃗⃗⃗⃗⃗⃗⃗ |=14(−3,√3,2)=(−34,√34,12) .解题感悟求直线的方向向量就是求与该直线共线的向量,注意直线的方向向量有无数个. 迁移应用若A(−1,0,1),B(1,4,7) 在直线l 上. (1)则直线l 的一个方向向量是( ) A.(1,2,3)B.(1,3,2) C.(2,1,3)D.(3,2,1)(2)若直线l 的一个方向向量为(2x −1,x +1,3) ,则x 的值为 . 答案:(1)A (2)1解析:(1)易知AB ⃗⃗⃗⃗⃗ =(2,4,6)=2(1,2,3) ,取a =(1,2,3) ,则a ∥AB ⃗⃗⃗⃗⃗ ,即a 是直线l 的一个方向向量, 故选A.(2)由(1)知AB ⃗⃗⃗⃗⃗ =(2,4,6) ,又直线l 的一个方向向量为(2x −1,x +1,3) ,所以2x−12=x+14=36,解得x =1 .探究点二 平面的法向量精讲精练例如图,已知四边形ABCD 是直角梯形,∠ABC =90∘,SA ⊥ 平面ABCD,SA =AB =BC =1,AD =12 .(1)求平面ABCD 的一个法向量; (2)求平面SAB 的一个法向量.解析:以点A 为原点,AD 、AB 、AS 所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A(0,0,0),B(0,1,0),C(1,1,0),D(12,0,0),S(0,0,1) .答案:(1)∵SA ⊥ 平面ABCD ,∴AS⃗⃗⃗⃗⃗ =(0,0,1) 是平面ABCD 的一个法向量. (2)易知AD ⊥AB ,AD ⊥SA ,且AB ∩SA =A ,AB ,SA ⊂ 平面SAB ,∴AD ⊥ 平面SAB , ∴AD ⃗⃗⃗⃗⃗ =(12,0,0) 是平面SAB 的一个法向量. 解题感悟求平面法向量的步骤:(1)设出法向量;(2)选向量,在平面内选取两个不共线向量;(3)由垂直关系列出方程组;(4)解方程组;(5)赋非零值:取法向量中一个坐标为非零值(常取±1); (6)得结论. 迁移应用在正方体ABCD −A 1B 1C 1D 1 中,E 、F 分别为棱A 1D 1、A 1B 1 的中点,在如图所示的空间直角坐标系中,求:(1)平面BDD 1B 1 的一个法向量; (2)平面BDEF 的一个法向量.答案:(1)设正方体ABCD −A 1B 1C 1D 1 的棱长为2,则D(0,0,0) ,B(2,2,0) ,A(2,0,0) ,C(0,2,0) ,E(1,0,2) . 连接AC (图略),易知AC ⊥ 平面BDD 1B 1, 所以AC⃗⃗⃗⃗⃗ =(−2,2,0) 为平面BDD 1B 1 的一个法向量. (2)易知DB⃗⃗⃗⃗⃗⃗ =(2,2,0) ,DE ⃗⃗⃗⃗⃗ =(1,0,2) .设平面BDEF 的法向量为n =(x,y,z) , ∴{n ⋅DB⃗⃗⃗⃗⃗⃗ =0,n ⋅DE⃗⃗⃗⃗⃗ =0, ∴{2x +2y =0,x +2z =0,令x =2 ,得y =−2 ,z =−1 ,即n =(2,−2,−1) 为平面BDEF 的一个法向量.探究点三 平面法向量的应用精讲精练例 如图,在棱长为2的正方体ABCD −A 1B 1C 1D 1 中,点E,F 分别是棱BC ,CC 1 的中点.求平面AEF 的一个法向量.答案:以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1 所在直线为z 轴建立空间直角坐标系,则A(2,0,0),E(1,2,0),F(0,2,1) , 所以AE ⃗⃗⃗⃗⃗ =(−1,2,0) ,AF ⃗⃗⃗⃗⃗ =(−2,2,1), 设平面AEF 的法向量为n =(x,y,z) , 则{n ⋅AE ⃗⃗⃗⃗⃗ =−x +2y =0,n ⋅AF ⃗⃗⃗⃗⃗ =−2x +2y +z =0,取y =1 ,得n =(2,1,2) ,所以平面AEF 的一个法向量为n =(2,1,2) . 解题感悟涉及平面法向量的问题,合理建立空间直角坐标系和利用垂直关系联立方程是解题的关键. 迁移应用1.在平面ABCD 中,A(0,1,1) ,B (1,2,1),C(−1,0,3) ,若a =(−1,y,z) ,且a 为平面ABCD 的法向量,则y 2 等于( ) A.2B.0C.1D.无意义答案:C解析:由题意得AB ⃗⃗⃗⃗⃗ =(1,1,0),AC ⃗⃗⃗⃗⃗ =(−1,−1,2) ,又a 为平面ABCD 的法向量, 所以{a ⋅AB⃗⃗⃗⃗⃗ =0,a ⋅AC⃗⃗⃗⃗⃗ =0, 即{−1+y =0,1−y +2z =0, 解得y =1, 所以y 2=1 .2.在直三棱柱ABC −A 1B 1C 1 中,CA =CB =1 ,∠ACB =90∘ ,平面A 1B 1C 的一个法向量为n =(−2,−2,1) ,则棱AA 1 的长为 . 答案:2解析:以C 为原点,CA,CB,CC 1 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AA 1=ℎ ,由题意可知C(0,0,0) ,A 1(1,0,ℎ) , 所以CA 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,ℎ) ,因为n =(−2,−2,1), 根据法向量的定义可得,n ⋅CA 1⃗⃗⃗⃗⃗⃗⃗ =(−2,−2,1)⋅(1,0,ℎ)=−2+ℎ=0 ,解得ℎ=2 ,所以AA 1=2 .评价检测·素养提升课堂检测1.(2021辽宁六校协作体高二期中联考)已知平面α 上的三点A(3,2,1) ,B (−1,2,0),C(4,−2,−1) ,则平面α 的一个法向量为( ) A.(4,-9,-16)B.(4,9,-16) C.(-16,9,4)D.(16,9,-4) 答案:B解析:由已知得AB ⃗⃗⃗⃗⃗ =(−4,0,−1) ,AC ⃗⃗⃗⃗⃗ =(1,−4,−2) , 设平面α 的法向量为n =(x,y,z) , 则{n ⋅AB⃗⃗⃗⃗⃗ =0,n ⋅AC ⃗⃗⃗⃗⃗ =0,即{−4x −z =0x −4y −2z =0,取x =4 ,可得z =−16,y =9 ,所以平面α 的一个法向量为n =(4,9,−16) .2.给出下列说法:①一个平面的法向量是唯一的;②一个平面的所有法向量都是同向的;③平面的法向量与该平面内的任一向量都是垂直的;④与一个平面的法向量共线的所有非零向量都是该平面的法向量.其中正确的说法是 . 答案:③④解析:一个平面的法向量有无数个,故①中说法错误; 一个平面的所有法向量不一定相同,故②中说法错误; 易知③、④中说法正确.3.平面α 经过三点A(−1,0,1) ,B(1,1,2) ,C(2,−1,0) ,求平面α 的一个法向量. 答案:易知AB⃗⃗⃗⃗⃗ =(2,1,1) ,AC ⃗⃗⃗⃗⃗ =(3,−1,−1) ,设平面α 的法向量为n =(x,y,z) , 则{n ⋅AB ⃗⃗⃗⃗⃗ =2x +y +z =0,n ⋅AC ⃗⃗⃗⃗⃗ =3x −y −z =0,令z =−1 ,则y =1,x =0 ,∴n =(0,1,−1) ∴ 平面α 的一个法向量为n =(0,1,−1) .素养演练直观想象、数学运算、逻辑推理——在关于法向量的探索性问题中的应用已知四边形ABCD 是矩形,PA ⊥ 平面ABCD,PA =AB =1,AD =√2 ,点M 、N 在线段PB 、DC 上(不含端点),且满足BM⃗⃗⃗⃗⃗⃗ =λMP ⃗⃗⃗⃗⃗⃗ ,DN ⃗⃗⃗⃗⃗⃗ =λNC ⃗⃗⃗⃗⃗ ,其中λ>0 .(1)若λ=1 ,求平面PBD 的一个法向量;(2)是否存在λ ,使MN⃗⃗⃗⃗⃗⃗⃗ 是平面PAB 的法向量?请说明理由. 答案:(1)建立空间直角坐标系,当λ=1 时,M,N 分别为PB,DC 的中点,因为A(0,0,0) ,P(0,0,1) ,B(1,0,0) ,D(0,√2,0) ,C(1,√2,0) ,所以M(12,0,12) ,N(12,√2,0) ,PD ⃗⃗⃗⃗⃗ =(0,√2,−1) ,BD⃗⃗⃗⃗⃗⃗ =(−1,√2,0) , 设平面PBD 的法向量为n =(x,y,z) , 则{n ⋅PD⃗⃗⃗⃗⃗ =√2y −z =0,n ⋅BD⃗⃗⃗⃗⃗⃗ =−x +√2y =0,令y =1 ,则x =z =√2 ,所以n =(√2,1,√2) , 所以平面PBD 的一个法向量为n =(√2,1,√2) . (2)假设存在λ ,因为BM ⃗⃗⃗⃗⃗⃗ =λMP ⃗⃗⃗⃗⃗⃗ ,DN ⃗⃗⃗⃗⃗⃗ =λNC ⃗⃗⃗⃗⃗ , 所以M(1λ+1,0,λλ+1),N(λλ+1,√2,0) , 所以MN⃗⃗⃗⃗⃗⃗⃗ =(λ−1λ+1,√2,−λλ+1) , 易知PB⃗⃗⃗⃗⃗ =(1,0,−1),AB ⃗⃗⃗⃗⃗ =(1,0,0), 若MN⃗⃗⃗⃗⃗⃗⃗ 是平面PAB 的法向量,则MN ⃗⃗⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =0 ,MN ⃗⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0 ,即{2λ−1λ+1=0,λ−1λ+1=0, 此方程组无解,即假设不成立,所以不存在λ ,使MN⃗⃗⃗⃗⃗⃗⃗ 是平面PAB 的法向量. 素养探究:(1)由题意建立空间直角坐标系,渗透了直观想象的素养;设出平面PBD 的法向量,根据法向量的定义,建立方程组求解,渗透了数学运算的素养.(2)假设存在λ ,使MN ⃗⃗⃗⃗⃗⃗⃗ 是平面PAB 的法向量,然后根据平面法向量的定义建立方程组求解,渗透了逻辑推理、数学运算的素养. 迁移应用在三棱锥S −ABC 中,底面是边长为2√3 的正三角形,点S 在底面ABC 上的射影O 恰是BC 的中点,侧棱SA 和底面成45∘ 角.(1)在侧棱SA 上是否存在一点D ,使BD ⃗⃗⃗⃗⃗⃗ 是平面SAC 的法向量?请说明理由; (2)求平面ACS 的一个法向量.答案:连接OA ,由题意可知SO ⊥ 底面ABC ,且OA ⊥BC ,所以以O 为原点,OC 所在直线为x 轴,OA 所在直线为y 轴,OS 所在直线为z 轴建立空间直角坐标系.因为△ABC 是边长为2√3 的正三角形,且SA 与底面所成的角为45∘ ,所以∠SAO =45∘,SO =AO =3 ,所以O(0,0,0),C(√3,0,0),A(0,3,0),S(0,0,3),B(−√3,0,0) . (1)假设存在点D , 设AD =a ,则D(0,3−√22a,√22a) ,所以BD ⃗⃗⃗⃗⃗⃗ =(√3,3−√22a,√22a) , 易知AC⃗⃗⃗⃗⃗ =(√3,−3,0),AS ⃗⃗⃗⃗⃗ =(0,−3,3), 若BD⃗⃗⃗⃗⃗⃗ 是平面SAC 的法向量, 则{BD ⃗⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =3−3(3−√22a)=0,BD ⃗⃗⃗⃗⃗⃗ ⋅AS ⃗⃗⃗⃗⃗ =−3(3−√22a)+3√22a =0,,此方程组无解,所以在侧棱SA 上不存在一点D ,使BD⃗⃗⃗⃗⃗⃗ 是平面SAC 的法向量. (2)由(1)知AS⃗⃗⃗⃗⃗ =(0,−3,3) ,AC ⃗⃗⃗⃗⃗ =(√3,−3,0) ,设平面ACS 的法向量为n =(x,y,z) ,则{n ⋅AC ⃗⃗⃗⃗⃗ =√3x −3y =0,n ⋅AS ⃗⃗⃗⃗⃗ =−3y +3z =0,令z =1 ,则x =√3 ,y =1 ,所以n =(√3,1,1) ,所以平面ACS 的一个法向量为n =(√3,1,1) .课时评价作业 基础达标练1.若A(−1,0,2) ,B (1,4,10)在直线l 上,则直线l 的一个方向向量为( ) A.(1,2,4)B.(1,4,2)C.(2,1,4)D.(4,2,1) 答案:A2.设A 是空间中一定点,n 为空间内任一非零向量,则满足条件AM ⃗⃗⃗⃗⃗⃗ ⋅n =0 的点M 构成的是( )A.圆B.直线C.平面D.线段 答案:C3.(2020湖南张家界高二期末)已知直线l 的一个方向向量为m =(2,−1,3) ,且直线l 过A(0,y,3) 和B (−1,2,z) 两点,则y −z = ( ) A.0B.1C.32 D.3 答案:A4.在正方体ABCD −A 1B 1C 1D 1 中,平面ACB 1 的一个法向量为( ) A.BD 1⃗⃗⃗⃗⃗⃗⃗⃗ B.DB ⃗⃗⃗⃗⃗⃗ C.BA 1⃗⃗⃗⃗⃗⃗⃗⃗ D.BA ⃗⃗⃗⃗⃗ 答案:A5.平面α 经过三点O(0,0,0) ,A(2,2,0) ,B(0,0,2) ,则平面α 的法向量可以是( ) A.(1,0,1)B.(1,0,-1)C.(0,1,1)D.(-1,1,0) 答案:D6.(多选题)在如图所示的空间直角坐标系中,ABCD −A 1B 1C 1D 1 为正方体,则下列结论正确的是( )A.直线DD 1 的一个方向向量为(0,0,1)B.直线BC 1 的一个方向向量为(0,-1,-1)C.平面ABB 1A 1 的一个法向量为(0,1,0)D.平面B 1CD 的一个法向量为(1,1,1) 答案:ABC7.若A(0,2,198) ,B(1,−1,58) ,C(−2,1,58) 是平面α 内的三点,设平面α 的法向量为a =(x,y,z) ,则x:y:z = . 答案:2:3:(-4)素养提升练8.(多选题)已知空间中的三点A(0,1,0) ,B(2,2,0) ,C(−1,3,1) ,则下列说法不正确的是( )A.AC⃗⃗⃗⃗⃗ 不是直线AB 的一个方向向量 B.直线AB 的一个单位方向向量是(2√55,−√55,0)C.AB ⃗⃗⃗⃗⃗ 与BC ⃗⃗⃗⃗⃗ 夹角的余弦值是√5511D.平面ABC 的一个法向量是(1,-2,5) 答案:BC解析:易知AB ⃗⃗⃗⃗⃗ =(2,1,0) ,AC ⃗⃗⃗⃗⃗ =(−1,2,1) ,所以不存在实数λ ,使得AB ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ ,故A 中说法正确;因为AB ⃗⃗⃗⃗⃗ =(2,1,0) ,所以(2√55,−√55,0) 与AB ⃗⃗⃗⃗⃗ 不共线,所以B 中说法错误; 易知BC⃗⃗⃗⃗⃗ =(−3,1,1) ,所以cos <AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >=AB⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ ||BC ⃗⃗⃗⃗⃗ |=−√5511,所以C 中说法错误;设平面ABC 的法向量是n =(x,y,z) ,则{n ⋅AB⃗⃗⃗⃗⃗ =0,n ⋅BC ⃗⃗⃗⃗⃗ =0, 即{2x +y =0,−x +2y +z =0, 令x =1 ,则平面ABC 的一个法向量是n =(1,−2,5) ,所以D 中说法正确.9.(2020河南平顶山高二期末)如图,在正方体ABCD −A 1B 1C 1D 1 中,以D 为原点建立空间直角坐标系Dxyz ,E,F 分别在棱BB 1 ,CC 1 上,且B 1E =2EB ,CF =2FC 1 ,则下列向量中,能作为平面AEF 的法向量的是( )A.(1,-1,3)B.(1,-1,-3)C.(2,-3,6)D.(-2,3,-6) 答案:A解析:设正方体的棱长为1,平面AEF 的法向量为n =(x,y,z) , 则A(1,0,0),E(1,1,13),F(0,1,23) ,所以AE⃗⃗⃗⃗⃗ =(0,1,13) ,EF ⃗⃗⃗⃗⃗ =(−1,0,13) , 则{n ⋅AE⃗⃗⃗⃗⃗ =0,n ⋅EF ⃗⃗⃗⃗⃗ =0, 即{y +13z =0,−x +13z =0,取x =1, 则y =−1,z =3 ,故n =(1,−1,3) .10.(多选题)(2021福建泉州高二期中)已知平面α 过点A(1,−1,2) ,且其法向量n =(2,−1,2) ,则下列点中不在平面α 内的是( )A.(2,3,3)B.(3,-3,4)C.(-1,2,0)D.(-2,-3,4)答案:B C解析:对于A ,设Q(2,3,3) ,则AQ⃗⃗⃗⃗⃗ =(1,4,1) ,所以AQ ⃗⃗⃗⃗⃗ ⋅n =1×2+4×(−1)+1×2=0 ,故Q 在平面α 内;对于B ,设R(3,−3,4) ,则AR⃗⃗⃗⃗⃗ =(2,−2,2) ,所以AR ⃗⃗⃗⃗⃗ ⋅n =2×2+(−2)×(−1)+2×2=10≠0 ,故R 不在平面α 内;对于C ,设M(−1,2,0) ,则AM ⃗⃗⃗⃗⃗⃗ =(−2,3,−2) ,所以AM ⃗⃗⃗⃗⃗⃗ ⋅n =−2×2+3×(−1)+(−2)×2=−11≠0 ,故M 不在平面α 内;对于D ,设N(−2,−3,4) ,则AN⃗⃗⃗⃗⃗⃗ =(−3,−2,2) ,所以AN ⃗⃗⃗⃗⃗⃗ ⋅n =−3×2+(−2)×(−1)+2×2=−6+2+4=0 ,故N 在平面α 内.11.(2021山东济宁鱼台一中高二月考)四棱柱ABCD −A 1B 1C 1D 1 的底面ABCD 是正方形,O 为底面的中心,A 1O ⊥ 平面ABCD ,AB =AA 1=√2 ,则平面OCB 1 的一个法向量为n = .答案:(1,0,-1)(答案不唯一)解析:建立空间直角坐标系如图,∵ 四边形ABCD 是正方形,且AB =√2 ,∴AO =OC =1 ,∵A 1O ⊥ 平面ABCD ,且AO ⊂ 平面ABCD,∴AO ⊥A 1O,∴OA 1=√AA 12−OA 2=1,∴O(0,0,0),C(0,1,0),B 1(1,1,1), 即OC ⃗⃗⃗⃗⃗ =(0,1,0) ,OB 1⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,1) ,设向量n =(x,y,z) 是平面OCB 1 的法向量,∴{OC ⃗⃗⃗⃗⃗ ⋅n =y =0,OB 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅n =x +y +z =0, 取x =1, 则z =−1, 故n =(1,0,−1) .创新拓展练 12.已知点P 是平行四边形ABCD 所在平面外一点,如果AB ⃗⃗⃗⃗⃗ =(2,−1,−4) ,AD ⃗⃗⃗⃗⃗ =(4,2,0) ,AP⃗⃗⃗⃗⃗ =(−1,2,−1) .(1)写出直线BD 的一个方向向量;(2)求证:AP⃗⃗⃗⃗⃗ 是平面ABCD 的法向量; (3)求平行四边形ABCD 的面积.命题分析 本题考查了直线的方向向量的求解、平面法向量的证明、平行四边形面积的求法,考查了向量坐标的运算、法向量的定义等基础知识,考查了运算求解能力、逻辑推理能力. 答题要领 (1)直线BD 的一个方向向量是与BD 平行或共线的向量,可根据向量的线性运算求解.(2)由题意结合空间向量的数量积计算可得AP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,AP ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗ =0 ,即可得结论.(3)利用平面向量的坐标运算可得|AB ⃗⃗⃗⃗⃗ |=√21,|AD ⃗⃗⃗⃗⃗ |=2√5,AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗ =6 ,进而可得sin⟨AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ >, 然后利用公式S ▱ABCD =|AB⃗⃗⃗⃗⃗ |⋅|AD ⃗⃗⃗⃗⃗ |sin <AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ > 求解. 详细解析 (1)BD ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ =(4,2,0)−(2,−1,−4)=(2,3,4) ,故直线BD 的一个方向向量可以是(2,3,4).(2)证明:∵AP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =(−1,2,−1)⋅(2,−1,−4)=0 ,,AP ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗ =(−1,2,−1)⋅(4,2,0)=0 ,∴AP ⊥AB,AP ⊥AD ,又AB ∩AD =A,AB,AD ⊂ 平面ABCD ,∴AP ⊥ 平面ABCD ,∴AP⃗⃗⃗⃗⃗ 是平面ABCD 的法向量. (3)∵|AB⃗⃗⃗⃗⃗ |=√22+(−1)2+(−4)2=√21 , |AD⃗⃗⃗⃗⃗ |=√42+22+02=2√5 , AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗ =(2,−1,−4)⋅(4,2,0)=6 ,∴cos <AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ >=√21×2√5=√10535 , 故sin <AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ >=√3235, ∴S ▱ABCD =|AB ⃗⃗⃗⃗⃗ |⋅|AD ⃗⃗⃗⃗⃗ |sin <AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ >=8√6 .解题感悟 直线的方向向量是与该直线平行或共线的向量,可根据向量线性运算和坐标运算求解;法向量的判定或证明,要根据法向量的定义判断;面积的求解,常根据图形的形状结合三角形的面积公式求解.在求解过程中,准确运算是关键.。

人教A版数学必修一1.1.1第1课时.docx

人教A版数学必修一1.1.1第1课时.docx

第一章集合与函数概念§1.1 集合1.1.1 集合的含义与表示第1课时集合的含义课时目标1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.4.元素与集合的关系关系概念记法读法元素与集合的关系属于如果________的元素,就说a属于集合Aa∈A a属于集合A 不属于如果________中的元素,就说a不属于集合Aa∉A a不属于集合A5.常用数集及表示符号:名称自然数集正整数集整数集有理数集实数集符号________________________一、选择题1.下列语句能确定是一个集合的是( )A.著名的科学家B.留长发的女生C .2010年广州亚运会比赛项目D .视力差的男生2.集合A 只含有元素a ,则下列各式正确的是( )A .0∈AB .a ∉AC .a ∈AD .a =A3.已知M 中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )A .1B .-2C .6D .25.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可6.由实数x 、-x 、|x |、x 2及-3x 3所组成的集合,最多含有( )A .2个元素B .3个元素C .4个元素D .5个元素题 号 1 2 3 4 5 6答 案二、填空题7.由下列对象组成的集体属于集合的是______.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________.9.用符号“∈”或“∉”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z .三、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;(4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升12.设P、Q为两个非空实数集合,P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是多少?13.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第一章集合与函数概念§1.1 集合1.1.1 集合的含义与表示第1课时集合的含义知识梳理1.(1)研究对象小写拉丁字母a,b,c,…(2)一些元素组成的总体大写拉丁字母A,B,C,… 2.确定性互异性无序性3.一样 4.a是集合A a不是集合A 5.N N*或N+Z Q R作业设计1.C [选项A、B、D都因无法确定其构成集合的标准而不能构成集合.]2.C [由题意知A中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应用“=”,故选C.]3.D [集合M的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D.]4.C [因A中含有3个元素,即a2,2-a,4互不相等,将选项中的数值代入验证知答案选C.]5.B [由2∈A可知:若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A={0,3,2},符合题意.]6.A [方法一因为|x|=±x,x2=|x|,-3x3=-x,所以不论x取何值,最多只能写成两种形式:x、-x,故集合中最多含有2个元素.方法二 令x =2,则以上实数分别为:2,-2,2,2,-2,由元素互异性知集合最多含2个元素.]7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④.8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素.(4)不正确.因为个子高没有明确的标准.11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32. 则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3, ∴a =-32. 12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明 (1)若a ∈A ,则11-a∈A . 又∵2∈A ,∴11-2=-1∈A . ∵-1∈A ,∴11-(-1)=12∈A . ∵12∈A ,∴11-12=2∈A . ∴A 中另外两个元素为-1,12. (2)若A 为单元素集,则a =11-a, 即a 2-a +1=0,方程无解.∴a ≠11-a,∴A 不可能为单元素集.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 1.1 1.1.1 第1课时
1.下列各组对象中不能构成集合的是()
A.2010年参展上海世博会的所有展馆
B.北京大学2011级的新生
C.2012年伦敦奥运会的所有参赛运动员
D.美国NBA的篮球明星
解析:选项A、B、C的对象都是确定的,而且是不同的,因而能构成集合;而选项D 中“明星”标准不明确,不满足确定性,不能构成集合.
答案:D
2.设集合A只含一个元素a,则下列各式正确的是()
A.0∈A B.a∉A
C.a∈A D.a=A
解析:由已知条件知,a是集合A中的一个元素,因此选用符号∈.故选C.
答案:C
3.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是() A.1 B.-2
C.6D.2
解析:验证,看每个选项是否符合元素的互异性.
答案:C
4.若a∈N,但a∉N*,则a=________.
解析:N表示的是自然数集,N*表示的是正整数集.
答案:0
5.以方程x2-5x+6=0和方程x2-x-2=0的解为元素的集合中共有________个元素.解析:方程x2-5x+6=0的解是2,3;方程x2-x-2=0的解是-1,2.由集合元素的互异性知,以这两个方程的解为元素的集合中共有3个元素.
答案:3
6.设A是满足x<6的所有自然数组成的集合,若a∈A,且3a∈A,求a的值.
解:∵a∈A且3a∈A,∴a<6且3a<6,∴a<2,
又a是自然数,∴a=0或1.
(时间:60分钟满分:60分)
知识点及角度
难易度及题号
基础中档稍难
集合的概念110
集合中元素的特性4,5,89
元素与集合的关系2,36,7
1.下列几组对象可以构成集合的是()
A.充分接近π的实数的全体
B.善良的人
C.某校高一所有聪明的同学
D.某单位所有身高在1.7 m以上的人
解析:A、B、C中标准不明确,故选D.
答案:D
2.下面有四个语句:
①集合N*中最小的数是0;②-a∉N则a∈N;③a∈N,b∈N,则a+b的最小值是2;
④x2+1=2x的解集中含有2个元素.
其中正确语句的个数是()
A.0 B.1
C.2D.3
解析:N*是不含0的自然数,所以①错;
取a=2,则-2∉N,2∉N,所以②错;
对于③,当a=b=0时,a+b取得最小值是0,而不是2,所以③错;对于④,解集中只含有元素1,故④错.
答案:A
3.已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,则a为()
A.2 B.2或4
C.4 D.0
解析:若a=2∈A,则6-a=4∈A;或a=4∈A,则6-a=2∈A;若a=6∈A,则6
-a=0∉A.故选B.
答案:B
4.若一个集合中的三个元素a,b,c是△ABC的三边长,则此三角形一定不是() A.锐角三角形B.直角三角形
C.钝角三角形D.等腰三角形
解析:△ABC的三边长两两不等,故选D.
答案:D
二、填空题(每小题4分,共12分)
5.已知集合A中只含有1、a2两个元素,则实数a不能取的值为________.
解析:由a2≠1,得a≠±1.
答案:±1
6.由实数x,-x,x2,-3
x3所组成的集合中最多有________个元素.
解析:因为x2=|x|,-3x3=-x,所以当x=0时,这几个实数均为0;当x>0时,它们分别是x,-x,x,-x;当x<0时,它们分别是x,-x.-x,-x,均最多表示两个不同的数,故集合中的元素最多为2个.
答案:2
7.设集合M={平行四边形},p表示某个矩形,q表示某个梯形,则p________M,q________M.
解析:矩形是平行四边形,梯形不是平行四边形,故p∈M,q∉M.
答案:∈∉
三、解答题(共32分)
8.(10分)已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,求x.
解:当3x2+3x-4=2时,
即x2+x-2=0,则x=-2或x=1.
经检验,x=-2,和x=1均不合题意.
当x2+x-4=2时,即x2+x-6=0,
则x=-3或x=2.
经检验,x=-3和x=2均合题意.
∴x=-3或x=2.
9.(10分)设P、Q为两个非空实数集合,P中含有0,2,5三个元素,Q中含有1,2,6三
个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?
解:∵当a =0时,b 依次取1,2,6, 得a +b 的值分别为1,2,6; 当a =2时,b 依次取1,2,6, 得a +b 的值分别为3,4,8;
当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11. ∴由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.
10.(12分)定义满足“如果a ∈A ,b ∈A ,那么a ±b ∈A ,且ab ∈A ,且a
b (b ≠0)∈A ”的
集合A 为“闭集”.试问数集N 、Z 、Q 、R 是否分别为“闭集”?若是,请说明理由;若不是,请举反例说明.
解:数集N ,Z 不是“闭集”,数集Q ,R 是“闭集”. 例如,3∈N,2∈N ,而3
2
=1.5∉N ;
3∈Z ,-2∈Z ,而3
-2=-1.5∉Z ,故N 、Z 不是闭集.由于两个有理数a 与b 的和、
差、积、商,即a ±b ,ab ,a
b
(b ≠0)仍是有理数,故Q 是闭集.同理R 是闭集.。

相关文档
最新文档