LED开关电源比较常见的几种保护电路

合集下载

常用的六种开关电源输入保护电路

常用的六种开关电源输入保护电路

常用的六种开关电源输入保护电路
开关电源是开关稳压线性电源的简称,以前的电源产品是采用线性电源,这是一种晶体管线性稳压电源,由于效率低下等原因已逐渐被开关电源取代。

开关电源,顾名思义就是通过控制开关管的导通时间以及关断时间来维持输出电压的稳定的电源,已逐渐向小型化、效率化、模块化、高可靠性等方向发展。

对于开关电源,输入保护电路很重要,开关输入保护电路具有过流保护、过压保护以及浪涌抑制等功能,对于电网的电压冲击以及EMC等具有至关重要的作用。

下面列举6种开关电源输入保护电路
一、保险丝形式
保险丝有普通型的也有快速型的,具有熔点低、熔断速度快特点,但是在熔断时候会产生火花、冒烟,甚至有玻璃管的会爆裂,因此安全性较差。

仅有保险丝的输入保护电路,只有过流保护作用,一般选择保险丝时候实际的熔断电流要等于额定电流的1.5倍左右。

二、保险丝、压敏电阻形式
这种电路多了压敏电阻,压敏电阻规格有07471、10471、14471等规格,具有浪涌抑制功能,因此这种电路有过压、过流保护功能,有些还具有防雷击保护
三、熔断电阻器、压敏电阻形式
熔断电阻器与保险丝作用相同,都是起到过流保护,但是与保险丝不同的是熔断电阻器熔断时候不会产生火花以及烟雾,就安全性来说安全高一点;而压敏电阻具有浪涌电压吸收作用,因此这种电路形式具有过压、过流保护功能
四、保险丝、NTC热敏电阻形式
热敏电阻采用的是负温度系数的,它的阻值随温度的升高为降低,它具有抑制电路的浪涌电流能力
五、压敏电阻、NTC热敏电阻形式
六、保险丝、压敏电阻、NTC热敏电阻形式。

开关电源常用的几种保护电路

开关电源常用的几种保护电路

开关电源常用的几种保护电路评价开关电源的质量指标应该是以安全性、可靠性为第一原则。

在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。

开关电源常用的几种保护电路如下:1、防浪涌软启动电路开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。

在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。

当电容器C充电到约80%额定电压时,逆变器正常工作。

经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。

图1 采用晶闸管和限流电阻组成的软启动电路图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。

电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。

限流的延迟时间取决于时间常(R2C2),通常选取为0.3~0.5s。

为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。

图2 采用继电器K1和限流电阻构成的软启动电路图3 替代RC的延迟电路2、过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

LED驱动电源恒流电路方案设计详解

LED驱动电源恒流电路方案设计详解

LED驱动电源恒流电路方案设计详解一、引言LED(Light Emitting Diode)作为一种新型的发光元件,由于其高效、长寿命、低功耗和环保等特点,已经广泛应用于照明、显示、通信和汽车行业等领域。

由于LED的亮度与注入电流之间的关系呈非线性特性,为了确保LED的工作性能和寿命,必须采用恒流驱动方式。

本文将详细介绍LED驱动电源恒流电路方案设计的各个重要部分和关键参数。

二、基本原理恒流驱动的LED电源主要通过对驱动电流进行精确控制来保持LED的亮度恒定。

常见的恒流驱动方式有线性调整电流、PWM调光和开关电源调整电流等,其中开关电源调整电流方式具有成本低、效率高和体积小等优点。

三、方案设计1.整流电路:将交流电转换为直流电的整流电路是LED驱动电源的基础,常见的整流电路有整流桥式电路和谐振电路等。

整流电路应具备稳定的输出电压和低的纹波电流。

2.滤波电路:滤波电路主要去除整流电路输出的纹波电压和纹波电流,以保证输出电压和电流的稳定性。

常见的滤波电路有电容滤波和电感滤波等。

3.恒流控制电路:恒流控制电路是LED驱动电源中最重要的部分,其主要功能是确保输出电流的稳定性,以保障LED的亮度和寿命。

常见的恒流控制方法有反馈控制和开环控制两种。

在反馈控制中,可以通过调整电阻、电流比较器和反馈回路等来控制输出电流。

开环控制则主要通过设置器件的参数来实现,如电阻、电感和电容等。

4.保护电路:保护电路主要用于预防LED驱动电源过压、过流和过温等异常情况,以保护LED的正常工作和延长其寿命。

常见的保护电路有过压保护、过流保护和过温保护等。

四、关键参数1.输出电流:输出电流是LED驱动电源中最关键的参数之一,它决定了LED的亮度和寿命。

输出电流应根据LED的特性和应用场景来确定,一般常见的输出电流为350mA、500mA和700mA等。

2.输出电压:输出电压是LED驱动电源的另一个重要参数,它应根据所驱动的LED串联电压来确定。

开关电源常见的过流保护方法(一)

开关电源常见的过流保护方法(一)

开关电源常见的过流保护方法(一)开关电源常见的过流保护方法1. 瞬时电流保护(OCP)•通过监测负载电流来实现过流保护。

•当负载电流超过事先设定的阈值时,保护电路将关闭开关管,以防止继续提供电流给负载。

•这种保护方法能够快速响应,既能提供较高的保护效果,又能保护开关电源的电子元件。

2. 耗能电阻法•在开关电源的输出端串联一个大功率耗能电阻。

•当负载电流超过设定值时,过多的电流会通过耗能电阻放电,起到限制电流的作用。

•耗能电阻法简单有效,但能量转化为热量,会造成能源浪费。

3. 电流限制保护(CLP)•使用一个电流限制保护器件来监测负载电流并将其维持在一个安全范围内。

•一旦负载电流超过设定的极限值,保护器件会自动降低输出电流,以达到过流保护的目的。

•这种方法能够精确控制电流,确保负载在安全范围内运行。

4. 电流折返保护(CRP)•通过在开关管的源极和漏极之间添加一个分流电阻,将一部分电流引导回开关管的源极。

•当负载电流超过设定值时,分流电阻将分担一部分电流,减小负载电流。

•这种方式能够减少开关管和负载电流的波动,降低了过流保护时的能量损耗。

5. 预过流保护(OCP)•在开关电源的控制电路中添加一个过流检测电路,监测电流是否超出设定的范围。

•当电流超过设定范围时,过流检测电路会及时触发保护措施,例如关闭开关管或减小输出电流。

•预过流保护能够在过流发生之前及时采取措施,提高了系统的安全性。

6. 温度保护(OTP)•通过监测开关电源内部的温度,实现过流保护。

•当温度超过指定阈值时,保护电路会自动断开输出,以防止进一步加热。

•温度保护是一种有效的过流保护方法,能够防止过热引起的故障和损坏。

以上是开关电源常见的过流保护方法,请根据实际情况选择适合的保护方式。

开关电源的各种过压保护电路

开关电源的各种过压保护电路

开关电源的各种过压保护电路开关电源输出过压保护电路,有通过控制自身电源来调节的,也有防止外部电压过高带来的电源损伤,自身调节一般是指,过压电路是在反馈环路出现问题的时候,控制输出电压不至于太高,或者是关闭开关电源控制,来避免输出电解电容与后级的用电设备损坏。

那我们就要知道当过压时,是限制电压不要超过一个电压还是要求关闭电源。

只有知道了要求后就根据要求来设计电路。

图1是输出保护电路的一种,这种电路应用非常多,他是用TL431与光耦的搭配,靠光耦的导通来控制原边的控制芯片停机,实现过于保护,的他的好处是过压保护电压精度高,一般应用到后级需要严格控制电源的电源。

他的成本是比较高的。

图2也是一种输出保护电路,这种电路就是在上一个电路的基础上进行了变动,原理是本来利用TL431来检测输出电压的电路改成了一个稳压管,稳压管的精度是没有TL431高的,但是价格比TL431便宜,这也就是他的优势,缺点是他的精度不高,对于这种电路一般应用在没有要求具体多少电压过压的电源,就是在出现过压的时候起到一个保护电解电容的作用,不至于电解电容坏。

上面的两种方法,我们一直看到有一个光耦的存在,这是应为我们的电源是隔离的原因,但是光耦的价格也是不便宜的。

如果不需要过压精度很高,那么我们是不是可以想办法吧光耦去除,而且是能检测输出电压的办法,是不是最好了,那有什么好的办法了,隔离不用光耦,我们是不是就想到用互感器等磁芯器件,但是这又违背了价格便宜的问题,最好是在不增加其他器件的基础上就能实现过压保护功能。

隔离电源我们都会有一个隔离变压器,这是每一个开关电源都有的,那么我们是不是可以利用这一个开关变压器来实现,我们知道电源是有VCC绕组,我们能不能用VCC绕组来实现过压保护了,肯定是可以的,只是精度与一致性不好,但是价格便宜,如果在你的接受范围内的话,是不是很好。

那么就有了下面的电路图,下面Latch脚是芯片检测过压的脚。

上面的三种电路都是对于电源自身反馈环路有问题的时才有作用,那要是输出电压被外电压强制提高怎么办了,很多的时候就想到了,看下面的图,是不是增加了一个TVS,这一个TVS 只能够钳位过压非常短的时间,要是长时间的,可能会坏,但是他的价格便宜。

开关电源电路组成及常见电路详解

开关电源电路组成及常见电路详解

开关电源电路组成及常见电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4为安规电容,L2、L3为差模电感。

②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

几款常用的保护电路

几款常用的保护电路

几款常用的保护电路鉴于电源电路存在一些不稳定因素,而设计用来防止此类不稳定因素影响电路效果的回路称作保护电路。

在各类电子产品中,保护电路比比皆是,例如:过流保护、过压保护、过热保护、空载保护、短路保护等等,本文就整理了一些常见的保护电路。

1、电机过热保护电路生产中所用的自动车床、电热烘箱、球磨机等连续运转的机电设备,以及其它无人值守的设备,因为电机过热或温控器失灵造成的事故时有发生,需要采取相应的保安措施。

PTC热敏电阻过热保护电路能够方便、有效地预防上述事故的发生。

下图是以电机过热保护为例,由PTC热敏电阻和施密特电路构成的控制电路。

图中,RT1、RT2、RT3为三只特性一致的阶跃型PTC热敏电阻器,它们分别埋设在电机定子的绕组里。

正常情况下,PTC热敏电阻器处于常温状态,它们的总电阻值小于1KΩ。

此时,V1截止,V2导通,继电器K得电吸合常开触点,电机由市电供电运转。

当电机因故障局部过热时,只要有一只PTC热敏电阻受热超过预设温度时,其阻值就会超过10KΩ以上。

于是V1导通、V2截止,VD2显示红色报警,K失电释放,电机停止运转,达到保护目的。

PTC热敏电阻的选型取决于电机的绝缘等级。

通常按比电机绝缘等级相对应的极限温度低40℃左右的范围选择PTC热敏电阻的居里温度。

例如,对于B1级绝缘的电机,其极限温度为130℃,应当选居里温度90℃的PTC热敏电阻。

2、逆变电源中的保护电路逆变器经常需要进行电流转换,如果电路中的电流超出限定范围,将对电路和关键器件造成很大伤害,因此保护电路在逆变电源中就显得尤为重要。

(1)防反接保护电路如果逆变器没有防反接电路,在输入电池接反的情况下往往会造成灾难性的后果,轻则烧毁保险丝,重则烧毁大部分电路。

在逆变器中防反接保护电路主要有三种:反并肖特基二极管组成的防反接保护电路,如下图所示。

由图可以看出,当电池接反时,肖特基二极管D导通,F被烧毁。

如果后面是推挽结构的主变换电路,两推挽开关MOS管的寄生二极管的也相当于和D并联,但压降比肖特基大得多,耐瞬间电流的冲击能力也低于肖特基二极管D,这样就避免了大电流通过MOS管的寄生二极管,从而保护了两推挽开关MOS管。

开关电源保护电路原理

开关电源保护电路原理

开关电源保护电路原理开关电源保护电路是一种用于保护开关电源的电路设计,能够保证开关电源在异常情况下正常工作,提高其稳定性和可靠性。

本文将从开关电源的工作原理、保护电路的分类和常见保护电路的原理等方面进行介绍。

开关电源是一种将电能转换为稳定输出电压或电流的电源装置。

其工作原理是通过控制开关管的导通和截止,使得输入电压以一定的频率和占空比转换为脉冲信号,再经过滤波电路和稳压电路,最终输出稳定的直流电压或电流。

开关电源具有高效率、体积小、重量轻和可调性好等优点,因此被广泛应用于电子设备中。

然而,开关电源在工作过程中可能会遇到多种异常情况,如输入电压过高或过低、输出短路、过载和过温等。

这些异常情况可能会导致开关管损坏、输出电压波动或无输出等问题,严重影响开关电源的稳定性和可靠性。

因此,保护电路的设计就显得尤为重要。

根据保护电路的功能和作用方式,可以将保护电路分为输入保护电路、输出保护电路和过温保护电路等。

输入保护电路主要用于对开关电源的输入电压进行监测和保护,防止过高或过低的输入电压对开关电源产生不利影响。

常见的输入保护电路包括过压保护电路和欠压保护电路。

过压保护电路通过检测输入电压是否超过设定值来进行保护。

当输入电压超过设定值时,保护电路会迅速切断开关管的导通,以防止过高的电压损坏开关管和其他电路元件。

欠压保护电路则是在输入电压低于设定值时进行保护,避免开关电源在低电压下无法正常工作。

输出保护电路主要用于对开关电源的输出电流和电压进行监测和保护。

过载保护电路是其中一种常见的输出保护电路。

它通过检测输出电流是否超过设定值来进行保护。

当输出电流超过设定值时,保护电路会迅速切断开关管的导通,以防止过大的电流对开关管和其他电路元件造成损坏。

另外,还有短路保护电路用于对输出短路情况进行保护。

过温保护电路是为了防止开关电源在长时间高负载工作或环境温度过高时产生过热而设计的。

该保护电路通过检测开关电源的温度来进行保护。

开关电源短路保护电路

开关电源短路保护电路

开关电源短路保护电路
1、在输出端短路的状况下,PWM掌握电路能够把输出电流限制在一个平安范围内,它可以用多种方法来实现限流电路,当功率限流在短路时不起作用时,只有另增设一部分电路。

2、短路爱护电路通常有两种,下图是小功率短路爱护电路,其原理简述如下:
当输出电路短路,输出电压消逝,光耦OT1不导通,UC3842①脚电压上升至5V左右,R1与R2的分压超过TL431基准,使之导通,UC3842⑦脚VCC电位被拉低,IC停止工作。

UC3842停止工作后①脚电位消逝,TL431不导通UC3842⑦脚电位上升,UC3842重新启动,周而复始。

当短路现象消逝后,电路可以自动恢复成正常工作状态。

3、下图是中功率短路爱护电路,其原理简述如下:
当输出短路,UC3842①脚电压上升,U1 ③脚电位高于②脚时,比较器翻转①脚输出高电位,给C1充电,当C1两端电压超过⑤脚基准电压时U1⑦脚输出低电位,UC3842①脚低于1V,UCC3842 停止工作,输出电压为0V,周而复始,当短路消逝后电路正常工作。

R2、C1是充放电时间常数,阻值不对时短路爱护不起作用。

4、下图是常见的限流、短路爱护电路。

其工作原理简述如下:
当输出电路短路或过流,变压器原边电流增大,R3 两端电压降增大,
③脚电压上升,UC3842⑥脚输出占空比渐渐增大,③脚电压超过1V时,UC3842关闭无输出。

5、下图是用电流互感器取样电流的爱护电路,
有着功耗小,但成本高和电路较为简单,其工作原理简述如下:输出电路短路或电流过大,TR1次级线圈感应的电压就越高,当UC3842③脚超过1伏,UC3842 停止工作,周而复始,当短路或过载消逝,电路自行恢复。

三种常用的LED驱动电源电路图详解

三种常用的LED驱动电源电路图详解

三种常用的LED驱动电源电路图详解展开全文LED电源有很多种类,各类电源的质量、价格差异非常大,这也是影响产品质量及价格的重要因素之一。

LED驱动电源通常可以分为三大类,一是开关恒流源,二是线性IC电源,三是阻容降压电源。

1、开关恒流源采用变压器将高压变为低压,并进行整流滤波,以便输出稳定的低压直流电。

开关恒流源又分隔离式电源和非隔离式电源,隔离是指输出高低电压隔离,安全性非常高,所以对外壳绝缘性要求不高。

非隔离安全性稍差,但成本也相对低,传统节能灯就是采用非隔离电源,采用绝缘塑料外壳防护。

开关电源的安全性相对较高(一般是输出低压),性能稳定,缺点是电路复杂、价格较高。

开关电源技术成熟,性能稳定,是目前LED照明的主流电源。

图1:开关恒流隔离式日光灯管电源图2:开关恒流隔离电源原理图图3:开关恒流源电源图4:开关恒流非隔离电源原理图。

2、线性IC电源采用一个IC或多个IC来分配电压,电子元器件种类少,功率因数、电源效率非常高,不需要电解电容,寿命长,成本低。

缺点是输出高压非隔离,有频闪,要求外壳做好防触电隔离保护。

市面上宣称无(去)电解电容,超长寿命的,均是采用线性IC电源。

IC驱电源具有高可靠性,高效率低成本优势,是未来理想的LED驱动电源。

图5:线性IC电源图6:线性IC电源原理图3、阻容降压电源采用一个电容通过其充放电来提供驱动电流,电路简单,成本低,但性能差,稳定性差,在电网电压波动时及容易烧坏LED,同时输出高压非隔离,要求绝缘防护外壳。

功率因数低,寿命短,一般只适于经济型小功率产品(5W以内)。

功率高的产品,输出电流大,电容不能提供大电流,否则容易烧坏,另外国家对高功率灯具的功率因数有要求,即7W以上的功率因数要求大于0.7,但是阻容降压电源远远达不到(一般在0.2-0.3之间),所以高功率产品不宜采用阻容降压电源。

市场上,要求不高的低端型的产品,几乎全部是采用阻容降压电源,另外,一些高功率的便宜的低端产品,也是采用阻容降压电源。

三种常用的LED驱动电源详解(开关恒流源-线性IC电源-阻容降压电源)

三种常用的LED驱动电源详解(开关恒流源-线性IC电源-阻容降压电源)

三种常用的LED驱动电源详解(开关恒流源/线性IC电源/阻容降压电源)什么是LED驱动电源LED驱动电源就是把电源供应转换为特定的电压电流以驱动LED发光的电源转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

而LED驱动电源的输出则大多数为可随LED正向压降值变化而改变电压的恒定电流源。

LED驱动电源的特点1.高可靠性特别像LED路灯的驱动电源,装在高空,有防水铝壳驱动电源,质量好的话不容易坏,减少维修次数。

2.高效率LED是节能产品,驱动电源的效率要高。

对于电源安装在灯具内的结构,尤为重要。

因为LED的发光效率随着LED温度的升高而下降,所以LED的散热非常重要。

电源的效率高,它的耗损功率小,在灯具内发热量就小,也就降低了灯具的温升。

对延缓LED的光衰有利。

3.高功率因数功率因数是电网对负载的要求。

一般70瓦以下的用电器,没有强制性指标。

虽然功率不大的单个用电器功率因素低一点对电网的影响不大,但晚上大家点灯,同类负载太集中,会对电网产生较严重的污染。

对于30瓦~40瓦的LED驱动电源,据说不久的将来,也许会对功率因数方面有一定的指标要求。

4.驱动方式现在通行的有两种:其一是一个恒压源供多个恒流源,每个恒流源单独给每路LED供电。

这种方式,组合灵活,一路LED故障,不影响其他LED的工作,但成本会略高一点。

另一种是直接恒流供电,LED串联或并联运行。

它的优点是成本低一点,但灵活性差,还要解决某个LED故障,不影响其他LED运行的问题。

这两种形式,在一段时间内并存。

多路恒流输出供电方式,在成本和性能方面会较好。

也许是以后的主流方向。

5.浪涌保护LED抗浪涌的能力是比较差的,特别是抗反向电压能力。

加强这方面的保护也很重要。

有些LED灯装在户外,如LED路灯。

由于电网负载的启甩和雷击的感应,从电网系统会侵入各种浪涌,有些浪涌会导致LED的损坏。

一文说清开关电源常用的几种保护

一文说清开关电源常用的几种保护

一文说清开关电源常用的几种保护摘要:一、开关电源保护电路的概述二、开关电源常用的保护电路1.过流保护2.过压保护3.过热保护4.短路保护5.空载保护三、保护电路在开关电源中的重要性四、选择合适的保护方案和电路结构正文:开关电源是电子设备中不可或缺的组成部分,其性能直接影响着设备的稳定性和可靠性。

为了保证开关电源的正常工作,保护电路的设计尤为重要。

本文将详细介绍开关电源常用的几种保护电路。

首先,开关电源的保护电路主要包括过流保护、过压保护、过热保护、短路保护和空载保护。

这些保护电路可以防止电源因异常工作状态而损坏,确保电源的稳定性和可靠性。

1.过流保护:过流保护是开关电源中最常见的保护方式。

当电源负载电流超过额定电流时,过流保护电路会立即切断电源,以保护电源和负载设备。

2.过压保护:过压保护主要针对输入电压过高的情况。

当输入电压超过电源的额定电压时,过压保护电路会启动,切断电源,以防止电源因电压过高而损坏。

3.过热保护:过热保护主要针对开关电源内部器件的过热情况。

当电源内部器件的温度超过额定值时,过热保护电路会启动,切断电源,以防止电源因过热而损坏。

4.短路保护:短路保护主要针对电源负载短路的情况。

当负载短路时,短路保护电路会立即切断电源,以防止电源因负载短路而损坏。

5.空载保护:空载保护主要针对电源在无负载情况下的保护。

当电源处于空载状态时,空载保护电路会启动,切断电源,以防止电源因长时间空载而损坏。

保护电路在开关电源中的重要性不言而喻。

合适的保护电路可以有效延长电源的使用寿命,提高电源的稳定性和可靠性。

因此,在设计开关电源时,应根据实际需求选择合适的保护方案和电路结构。

总之,开关电源的保护电路是电源稳定性和可靠性的重要保障。

led电源的工作原理

led电源的工作原理

led电源的工作原理
LED电源的工作原理是通过将交流电转换为直流电来供应电
流给LED灯。

整个电源系统主要由变压器、整流器和稳流器
组成。

首先,交流电输入到变压器中,变压器会将输入电压进行相应的变换。

变压器一般采用高频开关电源来提高效率,并减小体积和重量。

接下来,经过变压器变压后的电压通过整流器进行整流。

整流器可以将交流电转换为直流电,并消除交流电的部分负载。

整流器可以采用单相或三相整流桥等电路,以便实现高效的条件。

最后,经过整流的直流电经过稳流器的调整,稳流器主要负责稳定输出电流。

LED灯需要特定的稳定电流才能正常工作,
稳流器可以确保电流的稳定性,防止因电流波动引起LED灯
的损坏。

此外,LED电源还有其他保护电路,如过流保护、过压保护
和短路保护等。

这些保护电路可以在异常情况下及时切断电源,以保护LED灯和电源。

总结起来,LED电源的工作原理是通过变压器对输入电压进
行变换、整流器将交流电转换为直流电,并通过稳流器调整输出电流来为LED灯供应稳定的电流。

同时,还需要其他保护
电路来确保电源和LED的安全性。

开关电源常用的几种保护电路

开关电源常用的几种保护电路

开关电源常用的几种保护电路1 引言评价开关电源的质量指标应该是以安全性、可靠性为第一原则。

在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。

2 开关电源常用的几种保护电路2.1 防浪涌软启动电路开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。

在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。

当电容器C充电到约80%额定电压时,逆变器正常工作。

经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。

图1 采用晶闸管和限流电阻组成的软启动电路图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。

电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。

限流的延迟时间取决于时间常数(R2C2),通常选取为0.3~0.5s。

为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。

图2 采用继电器K1和限流电阻构成的软启动电路图3 替代RC的延迟电路2.2 过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

开关电源中几种过流保护方式

开关电源中几种过流保护方式

开关电源中几种过流保护方式的比较来源:电源技术应用作者:恒摘要:在输出短路或过载时对电源或负载进行的保护,即为过电流保护,简称过流保护。

介绍了过流保护的几种型式,如フ字型、恒流型、恒功率型等,并进行了比较。

关键词:过流保护;检测;比较引言电源作为一切电子产品的供电设备,除了性能要满足供电产品的要求外,其自身的保护措施也非常重要,如过压、过流、过热保护等。

一旦电子产品出现故障时,如电子产品输入侧短路或输出侧开路时,则电源必须关闭其输出电压,才能保护功率MOSFET和输出侧设备等不被烧毁,否则可能引起电子产品的进一步损坏,甚至引起操作人员的触电及火灾等现象,因此,开关电源的过流保护功能一定要完善。

1 开关电源中常用的过流保护方式过电流保护有多种形式,如图1所示,可分为额定电流下垂型,即フ字型;恒流型;恒功率型,多数为电流下垂型。

过电流的设定值通常为额定电流的110%~130%。

一般为自动恢复型。

图1中①表示电流下垂型,②表示恒流型,③表示恒功率型。

1.1 用于变压器初级直接驱动电路中的限流电路在变压器初级直接驱动的电路(如单端正激式变换器或反激式变换器)的设计中,实现限流是比较容易的。

图2是在这样的电路中实现限流的两种方法。

图2电路可用于单端正激式变换器和反激式变换器。

图2(a)与图2(b)中在MOS FET的源极均串入一个限流电阻Rsc,在图2(a)中,Rsc提供一个电压降驱动晶体管S2导通,在图2(b)中跨接在Rsc上的限流电压比较器,当产生过流时,可以把驱动电流脉冲短路,起到保护作用。

图2(a)与图2(b)相比,图2(b)保护电路反应速度更快及准确。

首先,它把比较放大器的限流驱动的门槛电压预置在一个比晶体管的门槛电压Vbe更精确的围;第二,它把所预置的门槛电压取得足够小,其典型值只有100mV~200mV,因此,可以把限流取样电阻Rsc的值取得较小,这样就减小了功耗,提高了电源的效率。

当AC输入电压在90~264V围变化,且输出同等功率时,则变压器初级的尖峰电流相差很大,导致高、低端过流保护点严重漂移,不利于过流点的一致性。

最新开关电源保护电路44327

最新开关电源保护电路44327

开关电源保护电路44327开关电源保护电路程伟,李定宣(合肥三宇电器技术研究所,安徽合肥 230088)摘要:为使开关电源在恶劣环境及突发故障状况下安全可靠,提出了几种实用的保护电路,并对电路的工作原理进行了详尽分析。

关键词:开关电源;保护电路;可靠性1 引言评价开关电源的质量指标应该是以安全性、可靠性为第一原则。

在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。

2 开关电源常用的几种保护电路2.1 防浪涌软启动电路开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。

在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。

当电容器C充电到约80%额定电压时,逆变器正常工作。

经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。

图1 采用晶闸管和限流电阻组成的软启动电路图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。

电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源V cc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。

电源保护电路

电源保护电路

开关电源保护电路1 引言评价开关电源的质量指标应该是以安全性、可靠性为第一原则。

在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。

2 开关电源常用的几种保护电路2.1 防浪涌软启动电路开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。

在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。

当电容器C充电到约80%额定电压时,逆变器正常工作。

经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。

图1 采用晶闸管和限流电阻组成的软启动电路图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。

电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。

限流的延迟时间取决于时间常数(R2C2),通常选取为0.3~0.5s。

为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。

图2 采用继电器K1和限流电阻构成的软启动电路图3 替代RC的延迟电路2.2 过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

开关电源中几种过流保护电路

开关电源中几种过流保护电路

开关电源中几种过流保护方式2005年02月23日 0引言电源作为一切电子产品的供电设备,除了性能要满足供电产品的要求外,其自身的保护措施也非常重要,如过压、过流、过热保护等。

一旦电子产品出现故障时,如电子产品输入侧短路或输出侧开路时,则电源必须关闭其输出电压,才能保护功率MOSFET和输出侧设备等不被烧毁,否则可能引起电子产品的进一步损坏,甚至引起操作人员的触电及火灾等现象,因此,开关电源的过流保护功能一定要完善。

1开关电源中常用的过流保护方式过电流保护有多种形式,如图1所示,可分为额定电流下垂型,即フ字型;恒流型;恒功率型,多数为电流下垂型。

过电流的设定值通常为额定电流的110%~130%。

一般为自动恢复型。

中表示电流下垂型,表示恒流型,表示恒功率型。

图1①②③图1过电流保护特性1.1用于变压器初级直接驱动电路中的限流电路在变压器初级直接驱动的电路(如单端正激式变换器或反激式变换器)的设计中,实现限流是比较容易的。

图2是在这样的电路中实现限流的两种方法。

图2电路可用于单端正激式变换器和反激式变换器。

图2(a)与图2(b)中在MOSFET的源极均串入一个限流电阻Rsc,在图2(a)中,Rsc提供一个电压降驱动晶体管S2导通,在图2(b)中跨接在Rsc上的限流电压比较器,当产生过流时,可以把驱动电流脉冲短路,起到保护作用。

图2(a)与图2(b)相比,图2(b)保护电路反应速度更快及准确。

首先,它把比较放大器的限流驱动的门槛电压预置在一个比晶体管的门槛电压Vbe更精确的范围内;第二,它把所预置的门槛电压取得足够小,其典型值只有100mV~200mV,因此,可以把限流取样电阻Rsc的值取得较小,这样就减小了功耗,提高了电源的效率。

(a)晶体管保护(b)限流比较器保护图2在单端正激式或反激式变换器电路中的限流电路当AC输入电压在90~264V范围内变化,且输出同等功率时,则变压器初级的尖峰电流相差很大,导致高、低端过流保护点严重漂移,不利于过流点的一致性。

详解3大保护电路:浪涌保护、过流保护、过压保护

详解3大保护电路:浪涌保护、过流保护、过压保护

详解3大保护电路:浪涌保护、过流保护、过压保护
对于开关电源而言, 安全、可靠性历来被视为重要的性能之一. 开关电源在电气技术指标满足电子设备正常使用要求的条件下, 还要满足外界或自身电路或负载电路出现故障的情况下也能安全可靠地工作. 为此, 须有多种保护措施. 对保护电路的特点分析, 对存在不足期待克服, 希望设计出更安全、更可靠的保护电路。

 一、浪涌电流电路剖析
 浪涌电流是由于电压突变所引起. 如电子设备在第一次加电压时, 由于大容量电源电容器充电引起的涌入初始电流——开机浪涌电流; 又如直击雷、感应雷沿着电源线进入开关电源的突变电压所产生瞬态电流雷浪涌电流. 浪涌电流上升时间非常快, 持续时间非常短, 破坏作用非常大. 为防止或减轻浪涌电流的破坏, 设置抑制浪涌电流或将浪涌电流转移到地线等方式来保护开关电源避免浪涌电流的损害。

 1)启动限流保护
 开关电源的初级整流电路有大容量滤波电容,开机瞬间整流管向这些大电容充电, 使整流管瞬时电流超过额定值. 为减小开机启动限流( 浪涌电流) ,开关电源通常都设有抗冲击电路. 如图1 电路, 在开机瞬间, 开关电源变压器的3、4 绕组电压为0V, VD5截止, 晶闸管VD6 的G、K 极间电压为0V, VD6 截止.充电电流路径: AC220V→VD1- 4 正极→大电容C1→地→R2→VD1- 4 负极. 由于R2 有阻碍大电流作用( 一般设为3. 3Ω)因此能有效限制开机浪涌电流.。

开关电源常用保护电路-过热、过流、过压以及软启动保护电路

开关电源常用保护电路-过热、过流、过压以及软启动保护电路

1引言随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源。

同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间。

但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。

为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。

2、开关电源的原理及特点2、1工作原理直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。

功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。

它主要由开关三极管和高频变压器组成。

图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。

实际上,直流开关电源的核心部分是一个直流变压器。

2、2特点为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT 技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。

因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。

直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。

由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高,3、直流开关电源的保护基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多种保护电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LED开关电源比较常见的几种保护电路
通常一个比较不错的电源产品了除了应该拥有高效稳定和可靠性外,对于电路的各种保护措施也是必定要去用心的设计制作,以免led开关电源产品在复杂环境下能很好的对开关电源电路和负载来进行很好的保护,所以本文小编带大家一起来了解led电源比较常见的集中保护电路。

led开关电源过电流保护电路
在直流LED开关电源电路中,为能保护调整管在电路短路、电流增大时不被烧毁。

它的大概方法是,当输出电流超过某一值时,调整管处于反向偏置状态,从而截止,自动切断电路电流。

过电流保护电路由三极管BG2 和分压电阻R4、R5组成。

电路正常工作时,通过R4与R5的压作用,使得BG2 的基极电位比发射极电位高,发射结承受反向电压。

于是BG2 处于截止状态(相当于开路),对稳压电路没有影响。

当电路短路时,输出电压为零,BG2 的发射极相当于接地,则BG2 处于饱和导通状态(相当于短路),进而使调整管BG1 基极和发射极近于短路,而处于截止状态,切断电路电流,最终达到保护的结果。

led开关电源过电压保护电路
直流LED开关电源中开关稳压器的过电压保护包括输入过电压保护和输出过电压保护。

加入开关稳压器所使用的未稳压直流电源(诸如蓄电池和整流器)的电压如果过高,会导致开关稳压器不能正常运行,甚至损坏到内部元器件,所以LED开关电源中是很有必要使用输入过电压保护电路。

当输入直流电源的电压高于稳压二极管的击穿电压值时,稳压管击穿,有电流流过电阻R,使晶体管T 导通,继电器动作,常闭接点断开,切断输入。

输入电源的极性保护电路可以跟输入过电压保护结合在一起,构成极性保护鉴别与过电压保护电路。

led开关电源软启动保护电路
开关稳压电源的电路相对要复杂,开关稳压器的输入端通常接有小电感、大电容的输入滤波器。

在开机瞬间,滤波电容器会流过很大的浪涌电流,这个浪涌电流可以为正常输入电流的数倍。

如此大的浪涌电流会使普通电源开关的触点或继电器的触点熔化,并使输入保险丝熔断。

另外,浪涌电流也会损害电容器,使之寿命缩短,过早损坏。

为此,开机时应该接入一个限流电阻,通过这个限流电阻来对电容器充电。

为了不让该限流电阻消耗过多的功率,以致影响到开关稳压器的正常运行,必须在开机暂态过程结束后,用一个继电器自动短接它,使直流电源直接对开关稳压器供电,这种电路称之谓直流LED开关电源的“软启动”电路。

在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C 充电,限制浪涌电流。

当电容器C充电到约80%额定电压时,逆变器正常工作。

经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,LED开关电源处于正常工作状态。

led开关电源过热保护电路
直流LED开关电源中开关稳压器的高集成化和轻量小体积,使其单位体积内的功率密度大大提高,所以加入电源装置内部的元器件对其工作环境温度的要求没有相应提高,一定会使电路性能变坏,元器件过早失效。

因此在大功率直流LED开关电源中应该设过热保护电路。

本文采用温度继电器来检测电源装置内部的温度,当电源装置内部产生
过热时,温度继电器就动作,使整机告警电路处于告警状态,实现对电源的过热保护。

在保护电路中将P型控制栅热晶闸管放置在功率开关三极管附近,根据TT102的特性(由Rr值确定该器件的导通温度,Rr越大,导通温度越低),当功率管的管壳温度或者装置内部的温度超过允许值时,热晶闸管就导通,使发光二极管发亮告警。

倘若配合光电耦合器,就可使整机告警电路动作,保护LED开关电源。

本文我们说了四点led开关电源比较常见的电路保护形式,在开关电源的研发学习中,我们了解到除了产品的可靠性、稳定性和高效性,保护电路也是比较重要的一个环节。

一个良好的开关电源产品需要能够对于恶劣环境产生足够好的应对。

我们沃尔开关电源生产厂家研发生产开关电源已经十余年,产品在市场的反馈良
好,希望有技术需要帮助的可以联系我们沃尔开关电源生产厂家,跟我们一起把开关电源事业做大做强。

相关文档
最新文档