南京工业大学 工程力学弯曲应力习题答案
大学《工程力学》课后习题解答-精品
大学《工程力学》课后习题解答-精品2020-12-12【关键字】情况、条件、动力、空间、主动、整体、平衡、建立、研究、合力、位置、安全、工程、方式、作用、结构、水平、关系、分析、简化、倾斜、支持、方向、协调、推动(e)(c)(d)(e)’CD2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点(2) AC 与BC 2-3 水平力F A 和D 处的约束力。
解:(1) 取整体(2) 2-4 在简支梁,力的大小等于20KN ,如图所示。
若解:(1)(2)求出约束反力:2-6 如图所示结构由两弯杆ABC 和DE 构成。
构件重量不计,图中的长度单位为cm 。
已知F =200 N ,试求支座A 和E 的约束力。
解:(1) 取DE (2) 取ABC2-7 在四连杆机构ABCD 试求平衡时力F 1和F 2解:(1)取铰链B (2) 取铰链C 由前二式可得:F FF ADF2-9 三根不计重量的杆AB,AC,AD在A点用铰链连接,各杆与水平面的夹角分别为450,,450和600,如图所示。
试求在与O D平行的力F作用下,各杆所受的力。
已知F=0.6 kN。
解:(1)间汇交力系;(2)解得:AB、AC3-1 已知梁AB 上作用一力偶,力偶矩为M ,梁长为l ,梁重不计。
求在图a ,b ,c 三种情况下,支座A 和B 的约束力解:(a) (b) (c) 3-2 M ,试求A 和C解:(1) 取 (2) 取 3-3 Nm ,M 2解:(1)(2) 3-5 大小为AB 。
各杆 解:(1)(2)可知:(3) 研究OA 杆,受力分析,画受力图:列平衡方程:AB A3-7 O1和O2圆盘与水平轴AB固连,O1盘垂直z轴,O2盘垂直x轴,盘面上分别作用力偶(F1,F’1),(F2,F’2)如题图所示。
南京工业大学 工程力学弯曲应力习题答案
3、 悬臂梁受力及截面尺寸如图所示。
图中的尺寸单位为mm 。
求:梁的1-1截面上A 、B 两点的正应力。
解:1. 计算梁的1-1截面上的弯矩:31m 110N 1m+600N/m 1m 1300N m 2M ⎛⎫=-⨯⨯⨯⨯=-⋅ ⎪⎝⎭2. 确定梁的1-1截面上A 、B 两点的正应力: A 点:()3363-3-315010m 1300N m 2010m210P a M P a ()10010m 15010m12z A z M y I σ--⎛⎫⨯⋅⨯-⨯ ⎪⎝⎭==⨯=⨯⨯⨯=2.54 2.54拉应力B 点:())1.62MPa(Pa 1062.1120.15m 0.1m m 04.020.150m m N 130063压应力=⨯=⨯⎪⎭⎫⎝⎛-⨯⋅==z z B I y M σ4、 圆截面外伸梁,其外伸部分是空心的,梁的受力与尺寸如图所示。
图中尺寸单位为mm 。
已知F P =10kN ,q =5kN/m ,许用应力[]σ=140 MPa ,试校核梁的强度。
习题7-4图习题7-8图解:画弯矩图如图所示:()()[]36max1max 3-3132306510N m113810Pa=1138MPa<π14010m ...M W σσ⨯⨯⋅==⨯⨯实= ()()[]36max2max 432-3322010N m 100310Pa=1003MPa<100π14010m 1140..MW σσ⨯⨯⋅==⨯⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦空= 所以,梁的强度是安全的。
5、 悬臂梁AB 受力如图所示,其中F P =10 kN ,M =70 kN ·m ,a =3 m 。
梁横截面的形状及尺寸均示于图中(单位为mm),C 为截面形心,截面对中性轴的惯性矩I z =1.02×108 mm 4,拉伸许用应力[]+σ=40 MPa , 压缩许用应力[]-σ=120 MPa 。
试校核梁的强度是否安全。
弯曲应力典型习题解析
[ q ] = 15.68 kN / m 。
讨论:本题中根据题意,没有考虑工字梁腹板上的弯曲切应力。在实际工程设计时,工字钢
3
等薄壁截面梁一般不宜忽略切应力。 3 材料相同,宽度相等,厚度 h 1/ h 2 = 1 / 2 的两板叠放在一起组成一简支梁如图所示,梁上
承受均布载荷 q。(1) 若两板简单叠放在一起,且忽略接触面上的摩擦力,试计算此时两板 内最大正应力;(2) 若两板胶合在一起不能相互滑动,则此时的最大正应力比前种情况减少 了多少?
q
h1 h2 A l
B
b
题3图 解题分析:两板叠放在一起,在均布载荷 q 作用下,两梁一起变形,在任一截面上,两者弯 曲时接触面的曲率相等。小变形情况下,近似认为两者中性层的曲率相等。根据该条件,可 计算出各梁分别承担的弯矩。然后再分别计算两梁的最大应力。两板胶合在一起时,按一个 梁计算。 解:1、计算两板简单叠放在一起时的最大应力 设变形后任一截面处两梁中性层曲率半径分别为 ρ 1 和 ρ 2 ,两梁承担的弯矩分别为 M 1 和 M 2 ,截面惯性矩分别为 I 1 和 I 2 。则由前面分析知 ρ 1 = ρ 2 。
2
得 d = 227 mm 。 6 截面为 40 mm×5 mm 的矩形截面直杆,受轴向拉力 F = 12kN 作用,现将杆件一侧开一
切口,如图 a 所示。已知材料的许用应力 [σ ] = 100 MPa , (1) 计算切口许可的最大深度,并 画出切口处截面的应力分布图。(2) 如在杆的另一侧切出同样的切口,正应力有何变化?
讨论:从计算结果可以看出,杆的两侧有切口虽然截面面积减少,但正应力却比一侧切口时 的最大正应力为小, 可见弯矩的出现明显增大构件中的应力。 这也是工程上尽可能避免或减 小结构中弯矩的原因。 7 图示直径为 d 的均质圆杆 AB 承受自重,B 端为铰链支撑,A 端靠在光滑的铅垂墙上。试
工程力学第六章答案 梁的变形-工程力学梁的弯曲答案
第五章 梁的变形测试练习1. 判断改错题5-1-1 梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角亦为零. ( ) 5-1-2 两根几何尺寸、支承条件完全相同的静定梁,只要所受荷栽相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。
( ) 5-1-3 悬臂梁受力如图所示,若A 点上作用的集中力P 在A B 段上作等效平移,则A 截面的转角及挠度都不变。
( ) 5-1-4 图示均质等直杆(总重量为W ),放置在水平刚性平面上,若A 端有一集中力P 作用,使A C 部分被提起,C B 部分仍与刚性平面贴合,则在截面C 上剪力和弯矩均为零。
( )5-1-5 挠曲线近似微分方程不能用于求截面直梁的位移。
( ) 5-1-6 等截面直梁在弯曲变形时,挠度曲线的曲率最大值发生在转角等于零的截面处。
( ) 5-1-7两简支梁的抗刚度E I 及跨长2a 均相同,受力如图所示,则两梁跨中截面的挠度不等而转角是相等的。
( ) 5-1-8 简支梁在图示任意荷载作用下,截面C 产生挠度和转角,若在跨中截面C 又加上一个集中力偶M 0作用,则梁的截面C 的挠度要改变,而转角不变。
( )5-1-9 一铸铁简支梁,在均布载荷作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力及变形均相同。
( ) 5-1-10 图示变截面梁,当用积分法求挠曲线方程时,因弯矩方程有三个,则通常有6个积分常量。
( )题5-1-3图题5-1-4图题5-1-8图题5-1-7图题5-1-9图2.填空题5-2-1 挠曲线近似微分方程EIx M x y )()("-= 的近似性表现在 和 。
5-2-2 已知图示二梁的抗弯度E I 相同,若使二者自由端的挠度相等,则=21P P 。
5-2-3 应用叠加原理求梁的变形时应满足的条件是: 。
5-2-4 在梁的变形中挠度和转角之间的关系是 。
5-2-5 用积分法求图示的外伸梁(B D 为拉杆)的挠曲线方程时,求解积分常量所用到的边界条件是 ,连续条件是 。
第9章弯曲应力与弯曲变形习题解答
第9章 弯曲应力与弯曲变形 习题解答题9 – 1 试计算下列各截面图形对z 轴的惯性矩I z (单位为mm )。
解:(a )mm 317400250500350200400250250500350≈⨯-⨯⨯⨯-⨯⨯=c y()()49323mm 107314002502003171240025050035025031712500350⨯≈⎪⎪⎭⎫ ⎝⎛⨯⨯-+⨯-⎪⎪⎭⎫ ⎝⎛⨯⨯-+⨯=.I Z (b )mm 431550400800500375550400400800500≈⨯-⨯⨯⨯-⨯⨯=c y()()410323mm 1054615504003754311255040080050040043112800500⨯≈⎪⎪⎭⎫ ⎝⎛⨯⨯-+⨯-⎪⎪⎭⎫ ⎝⎛⨯⨯-+⨯=.I Z (c )()mm 3060202060506020102060=⨯+⨯⨯⨯+⨯⨯=c y()()46323mm103616020503012602020601030122060⨯=⎪⎪⎭⎫ ⎝⎛⨯⨯-+⨯+⎪⎪⎭⎫ ⎝⎛⨯⨯-+⨯=.Z I(a) (b) (c)题9-1图题9–2 悬臂梁受力及截面尺寸如图所示。
设q = 60kN/m ,F = 100kN 。
试求(1)梁1– 1截面上A 、B 两点的正应力。
(2)整个梁横截面上的最大正应力和最大切应力。
解:(1)求支反力kN 220100260=+⨯=A F (↑)m kN 32021001260⋅=⨯+⨯⨯=A M ( ) (2)画F S 、M 图(3)求1-1截面上A 、B 两点的正应力 m kN 1305016011001⋅=⨯⨯+⨯=.MF MA 点:MPa 254Pa 1025412150100550101306331=⨯≈⨯⨯⨯==...I y M zA t σB 点:MPa 162Pa 107816112150100*********331=⨯≈⨯⨯⨯==....I y M σzB c (4)求最大正应力和最大切应力MPa 853Pa 10385361501010320623max max =⨯≈⨯⨯==...W M σzMPa 22Pa 10221501010220232363max =⨯≈⨯⨯⋅=⋅=..A F τS 题9 - 3 简支梁受力如图所示。
材料力学习题册答案-第5章 弯曲应力5页word文档
第 五 章 弯 曲 应 力一、是非判断题1、设某段梁承受正弯矩的作用,则靠近顶面和靠近底面的纵向纤维分别是伸长的和缩短的。
(×)2、中性轴是梁的横截面与中性层的交线。
梁发生平面弯曲时,其横截面绕中性轴旋转。
(√)3、 在非均质材料的等截面梁中,最大正应力maxσ不一定出现在maxM的截面上。
( × )4、等截面梁产生纯弯曲时,变形前后横截面保持为平面,且其形状、大小均保持不变。
5、梁产生纯弯曲时,过梁内任一点的任一截面上的剪应力都等于零。
( × )6、控制梁弯曲强度的主要因素是最大弯矩值。
( × )7、横力弯曲时,横截面上的最大切应力不一定发生在截面的中性轴上。
( √ )二、填空题1、应用公式y I Mz=σ时,必须满足的两个条件是 满足平面假设 和 线弹性 。
2、跨度较短的工字形截面梁,在横力弯曲条件下,危险点可能发生在 翼缘外边缘 、 翼缘腹板交接处 和 腹板中心 处。
3、 如图所示的矩形截面悬臂梁,其高为h 、宽为b 、长为l ,则在其中性层的水平剪力4、梁的三种截面形状和尺寸如图所示,则其抗弯截面系数分别为226161bH BH -、 H Bh BH 66132- 和 Hbh BH 66132- 。
)2、 如图所示的两铸铁梁,材料相同,承受相同的载荷F 。
则当F 增大时,破坏的情况是 ( C )。
A 同时破坏 ;B (a )梁先坏 ;C (b )梁先坏3、为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。
若矩形截面梁的弯矩图如图所示,则梁内钢筋(图中虚线所示)配置最合理的是( D )x四、计算题1、长为l 的矩形截面梁,在自由端作用一集中力F ,已知m h 18.0=,m b 12.0=,m y 06.0=,m a 2=,kN F 1=,求C 截面上K 点的正应力。
解:MPa I y M Z C K1.21218.012.006.0210133=⨯⨯⨯⨯==σ2、⊥形截面铸铁悬臂梁,尺寸及载荷如图所示。
弯曲应力练习题
弯曲应力练习题弯曲应力是工程力学中的重要概念,涉及到物体在受到弯曲力作用时的应力分布和变化。
掌握弯曲应力的计算方法对于力学领域的学习至关重要。
在本文中,我们将介绍一些常见的弯曲应力练习题,旨在帮助读者加深对弯曲应力的理解和运用。
1. 长方形截面材料的弯曲应力考虑一块长度为L、宽度为b、高度为h的长方形截面材料,在其最大弯曲力矩为M的作用下,我们希望计算其截面处的最大弯曲应力σ。
根据工程力学的理论,我们可以使用以下公式进行计算:σ = (M * y) / (I * c)其中,y表示距离截面中性轴的距离,I是截面的惯性矩,c是截面最大应力面的最大距离。
2. 悬臂梁的最大弯曲应力考虑一个长度为L、所受力矩为M的悬臂梁,我们希望计算其截面处的最大弯曲应力σ。
对于悬臂梁而言,最大弯曲应力出现在悬臂梁固定端。
根据工程力学的理论,我们可以使用以下公式进行计算:σ = (M * L) / (I * c)其中,M是所受力矩,L是悬臂梁的长度,I是截面的惯性矩,c是截面最大应力面的最大距离。
3. 圆柱体的弯曲应力考虑一个半径为r、所受力矩为M的圆柱体,我们希望计算其截面处的最大弯曲应力σ。
根据工程力学的理论,我们可以使用以下公式进行计算:σ = (M * r) / (I * c)其中,M是所受力矩,r是圆柱体的半径,I是截面的惯性矩,c是截面最大应力面的最大距离。
以上是三个常见的弯曲应力计算问题的解决方法。
在实际的工程应用中,我们需要根据具体情况选择合适的公式并进行计算。
同时,为了准确评估材料的弯曲性能,我们还需要了解材料的力学性质,如弹性模量、截面惯性矩等。
通过练习和实践,我们可以逐渐提高对弯曲应力问题的解决能力。
总结:本文简要介绍了弯曲应力的概念和计算方法,并提供了三个常见的弯曲应力练习题。
这些题目涉及到了不同结构的材料,如长方形截面材料、悬臂梁和圆柱体。
通过解决这些练习题,读者可以深入理解弯曲应力的计算过程,进一步掌握工程力学的基础知识。
理论力学 第四章_07.8.28_
第四章 弯曲应力4-1 试求图示各梁中指定横截面上的剪力和弯矩。
解:(a )m kN M kN F m kN M F s s ⋅−=−=⋅−==12 ,5 ,2 ,02211 (b )m kN M kN F m kN M kN F s s ⋅=−=⋅==6 ,3 ,6 ,22211 (c )m kN M kN F m kN M kN F s s ⋅−==⋅==6 ,4 ,4 ,42211 (d ) ,5 ,67.111m kN M kN F s ⋅==(e )e e s e e s M M aMF M M a M F −=−=−=−=2211 ,4 ,4 ,4, e s M M F −==33 ,0 (f )m kN M kN F m kN M kN F s s ⋅−=−=⋅−==25.15 ,81.11 ,25.15 ,5.122211 (g )m kN M F m kN M kN F s s ⋅−==⋅−==40 ,0 ,45 ,302211(h )34 ,0 ,1211 ,4302220101aq M F a q M a q F s s ====4-3 试利用载荷集度、剪力和弯矩间的微分关系作下列各梁的剪力图和弯矩图。
解:(a)(b)(c)(g)(d)(e)(f)4-4 试作下列具有中间铰的梁的剪力图和弯矩图。
解:有中间铰的梁的内力图画法与普通梁无异,关键是求出约束反力。
4-6 已知简支梁的剪力图如图所示。
试作梁的弯矩图和载荷图。
已知梁上没有集中力偶作用。
解:(a )A 、B 、D 截面剪力突变,说明截面上有集中力作用,集中力的值等于该截面剪力的突变值。
CD 段剪力图为下斜直线,说明该段上有向下的均布载荷作用,载荷集度等于该段剪力图的斜率。
(b )A 、C 、D 截面剪力突变,说明截面上有集中力作用,集中力的值等于相应截面上剪力的突变值。
AC 段剪力图为下斜直线,说明该段上有向下的均布载荷作用,载荷集度等于该段剪力图的斜率。
弯曲应力
第5章 弯 曲 应 力 习题(1) 如图5.18所示吊车梁,吊车的每个轮子对梁的作用力都是F ,试问: ① 吊车在什么位置时,梁内的弯矩最大?最大弯矩等于多少?② 吊车在什么位置时,梁的支座反力最大?最大支反力和最大剪力各等于多少?(2) 如图5.19所示一由16号工字钢制成的简支梁承受集中荷载F ,在梁的截面C —C 处下边缘上,用标距s =20mm 的应变仪量得纵向伸长s ∆=0.008mm 。
已知梁的跨长l =1.5m ,a =1m ,弹性模量E =210GPa 。
试求F 力的大小。
图5.18 习题(1)图图5.19 习题(2)图(3) 由两根28a 号槽钢组成的简支梁受三个集中力作用,如图5.20所示。
已知该梁材料为Q235钢,其许用弯曲正应力[]σ=170MPa 。
试求梁的许可荷载[F ]。
图5.20 习题(3)图(4) 简支梁的荷载情况及尺寸如图5.21所示,试求梁的下边缘的总伸长。
图5.21 习题(4)图(5) 一简支木梁受力如图5.22所示,荷载F =5kN ,距离a =0.7m ,材料的许用弯曲正应力[]σ=10MPa ,横截面为bh =3的矩形。
试按正应力强度条件确定梁横截面的尺寸。
图5.22 习题(5)图(6) 如图5.23所示,一矩形截面简支梁由圆柱形木料锯成。
已知F =5kN , 1.5a =m ,[]σ=10MPa 。
试确定弯曲截面系数为最大时矩形截面的高宽比bh ,以及梁所需木料的最小直径d 。
图5.23 习题(6)图(7) 一正方形截面悬臂木梁的尺寸及所受荷载如图5.24所示。
木料的许用弯曲正应力[]σ=10MPa 。
现需在梁的截面C 上中性轴处钻一直径为d 的圆孔,试问在保证梁强度的条件下,圆孔的最大直径d (不考虑圆孔处应力集中的影响)可达多大?图5.24 习题(7)图(8) 当荷载F 直接作用在跨长为l =6m 的简支梁AB 之中点时,梁内最大正应力超过许可值30%。
材料力学第6章弯曲应力习题答案
02-弯曲应力-习题课
第6章弯曲应力6-1 选择题答案:Aa σb σ材料和横截面均相同的两根梁,变形后其轴线为两同心圆弧,如图所示。
梁a 、b 内的最大弯曲正应力分别为和 ,则比较二者可知_____。
R aabR ba bσσ<a b σσ=a bσσ>A. B. C. D. 其大小关系不定 1=,,a a b b a b a b a bM EIR R M M M EI ρρρρσσρρ==>=<<,,显然,由知,所以6-2 选择题答案:C图示截面的抗弯截面模量 A.B.C. z W =_____。
32π1326d bh -43π16412d bh -431π1326d bh d ⎛⎫-⎪⎝⎭431π1326d bh h ⎛⎫-⎪⎝⎭D. 43max max π1,,64122z z z I d dW I bh y y ==-=其中bhzd6-3 选择题答案:B三根正方形截面梁如图所示,其长度、横截面面积和受力状态相同,其中(b)、(c)梁的截面为两个形状相同 的矩形拼合而成,拼合后无胶接。
在三根梁中,____梁内的最大正应力相等。
FAB(a)Fz(b)Fz 1 z 1b /2 (c)Fzb /2b /2 b /2A .(a)和(b) B. (a)和(c) C. (b)和(c) D. (a)、 (b)和(c)max,(a)(c)z M Fl W =与相同。
3max 336=,6/6z b Fl FlW b bσ==max σ(b)12331max 3112,,/6224224z b b Fl b Flz W b bσ⎛⎫⎛⎫=⋅=== ⎪ ⎪⎝⎭⎝⎭所以 相等。
而 的两层截面各自的中性轴为(a)a Aa aBM 06-4 选择题答案:CA. B. C. D. 200GPa E =0M 43.010ε-=⨯max σ=图(a)所示工字钢简支梁,弹性模量 。
若在力偶矩 作用下测得横截面A 处梁顶面的纵向应变,则梁内最大弯曲正应力 _____。
弯曲应力习题答案
弯曲应力习题答案在材料力学中,弯曲应力是结构分析中的一个重要概念,它涉及到梁或板在受到弯曲作用时内部产生的应力。
以下是一些弯曲应力习题的答案示例:习题一:简单梁的弯曲应力计算问题描述:一根长为 \( L \) 米,截面为矩形的梁,宽 \( b \) 米,高 \( h \) 米,材质为钢,弹性模量 \( E \) 为 \( 200 \) GPa。
梁的一端固定,另一端自由,中间受到一个集中力 \( P \) 的作用。
解答:1. 首先,确定梁的截面惯性矩 \( I \):\[ I = \frac{b \cdot h^3}{12} \]2. 根据梁的受力情况,计算梁的弯曲应力 \( \sigma \):\[ \sigma = \frac{M \cdot c}{I} \]其中 \( M \) 是弯矩,对于集中力 \( P \) 作用在梁的中点,弯矩 \( M \) 为 \( \frac{PL}{4} \)。
3. 将弯矩代入弯曲应力公式中:\[ \sigma = \frac{P \cdot L \cdot c}{4 \cdot I} \] 其中 \( c \) 是梁截面上距离中性轴的距离,对于矩形截面,\( c = \frac{h}{2} \)。
4. 将已知数值代入公式,计算出弯曲应力。
习题二:悬臂梁的弯曲应力分析问题描述:一根悬臂梁,长度 \( L \) 米,材料的弹性模量 \( E \) 为 \( 200 \) GPa,梁的一端固定,另一端受到一个向下的集中力 \( P \)。
解答:1. 悬臂梁在末端受到集中力作用时,最大弯矩 \( M \) 出现在梁的末端,其值为 \( P \cdot L \)。
2. 假设梁的截面为圆形,半径 \( r \),则截面惯性矩 \( I \) 为: \[ I = \frac{\pi r^4}{4} \]3. 计算弯曲应力 \( \sigma \):\[ \sigma = \frac{M}{I} = \frac{P \cdot L}{\frac{\pir^4}{4}} \]4. 将已知数值代入公式,计算出弯曲应力。
测试题-弯曲应力(答案)
班级: 学号: 姓名:《工程力学》弯曲应力测试题一、判断题(每小题2分,共20分)1、弯曲变形梁,其外力、外力偶作用在梁的纵向对称面内,梁产生对称弯曲。
( √ )2、铁路的钢轨制成工字形,只是为了节省材料。
( × )3、为了提高梁的强度和刚度,只能通过增加梁的支撑的办法来实现。
( × )4、中性轴是中性层与横截面的交线。
( √ )5、最大弯矩M max 只可能发生在集中力F 作用处,因此只需校核此截面强度是否满足梁的 强度条件。
( × )6、大多数梁只进行弯曲正应力强度校核,而不计算弯曲切应力,这是因为他们横截面上只有正应力存在。
( × )7、抗弯截面系数仅与截面形状和尺寸有关,与材料种类无关。
( √ )8、矩形截面梁,若其截面高度和宽度都增加一倍,则强度提高到原来的16倍。
( × )9、在梁的弯曲正应力公式中,I z 为梁截面对于形心轴的惯性矩。
( √ ) 10、梁弯曲最合理的截面形状,是在横截面积相同条件下W z 值最大的截面形状。
( √ ) 二、单项选择题(每小题2分,共20分)1、材料弯曲变形后( B )长度不变。
A .外层 B .中性层 C .内层2、梁弯曲时横截面上的最大正应力在( C )。
A. 中性轴上B. 对称轴上C. 离中性轴最远处的边缘上3、一圆截面悬臂梁,受力弯曲变形时,若其它条件不变,而直径增加一倍,则其最大正 应力是原来的( A )倍。
A.81B. 8C. 2D.214、图示受横力弯曲的简支梁产生纯弯曲变形的梁段是( D )A. AC 段B. CD 段C. DB 段D. 不存在 5、由梁弯曲时的平面假设,经变形几何关系分析得到( C )A. 中性轴通过截面形心B. 梁只产生平面弯曲;C. y ερ=;D. 1zM EI ρ=6、图示的两铸铁梁,材料相同,承受相同的载荷F 。
当F 增大时,破坏的情况是( C )。
第四章弯曲应力习题解
[习题4-1] 试求图示各梁中指定截面上的剪力和弯矩.(a)解: 011=-Qm kN M ⋅-=-211。
kN Q 522-=-)(1225222m kN M ⋅-=⨯--=-(b)解:(1)求支座反力)(2552kN R A =⨯=(↑) )(3553kN R B =⨯=(↑) (2)求指定截面上的内力kN R Q A 211==-)(632311m kN R M A ⋅=⨯=⨯=-)(35222kN Q -=-=-)(623222m kN R M B ⋅=⨯=⨯=-(c)解:(1)求支座反力由力偶只能由偶平衡的原理可知:A 、B 支座的反力构成一约束反力偶,与主动力偶等值、共面、反向,故:)(45.210kN R A ==(↑) )(4kN R R A B ==(↓)(2)求指定截面上的内力kN R Q A 411==-; )(414111m kN R M A ⋅=⨯=⨯=-。
kN R Q A 422==-; )(66.145.122m kN R M B ⋅-=⨯-=⨯-=-(d)解:(1)求支座反力因为AB 平衡,所以:① 0=∑A M032)20221(2=⨯⨯⨯-⋅B R )(667.6320kN R B ==(↑) ② 0=∑Y020221=⨯⨯-+B A R R 020667.6=-+A R)(333.13kN R A =(↑)(2)求指定截面上的内力kN R Q A 667.121)2010(333.1311-=⨯+-==-)(531)10121(1667.611m kN M ⋅=⨯⨯⨯-⨯=-。
(e )解:(1)求支座反力由力偶只能由偶平衡的原理可知:A (左)、C (右)支座的反力构成一约束反力偶,与主动力偶等值、共面、反向,故:a M R e A 4=(↓);aM R R e A C 4==(↑) (2)求指定截面上的内力a M R Q e A 411-=-=-; 4411e e A M a a M a R M -=⋅-=⨯-=-。
工程力学(静力学与材料力学)习题及答案 - 应力状态分析
习题9-1图 习题9-2图 习题9-2图工程力学(静力学与材料力学)习题第9章 应力状态分析9-1 木制构件中的微元受力如图所示,其中所示的角度为木纹方向与铅垂方向的夹角。
试求:1.面内平行于木纹方向的切应力;2.垂直于木纹方向的正应力。
9-2 层合板构件中微元受力如图所示,各层板之间用胶粘接,接缝方向如图中所示。
若已知胶层切应力不得超过1MPa 。
试分析是否满足这一要求。
9-3 结构中某点处的应力状态为两种应力状态的叠加结果。
试求叠加后所得应力状态的主应力、面内最大切应力和该点处的最大切应力。
9-4 已知平面应力状态的最大正应力发生在与外力作用的自由表面AB 相垂直的面上,其值为0σ。
试求应力分量x σ、y σ和xy τ。
习题9-6图习题9-4图 习题9-5图习题9-7图 习题9-8图9-5 从构件中取出的微元受力如图所示,其中AC 为自由表面(无外力作用)。
试求x σ和xy τ。
9-6 构件微元表面AC 上作用有数值为14MPa 的压应力,其余受力如图所示。
试求x σ和xy τ。
9-7 受力物体中某一点处的应力状态如图所示(图中p 为单位面积上的力)。
试求该点处的主应力。
9-8 从构件中取出的微元,受力如图所示。
试:1.求主应力和最大切应力;2.确定主平面和最大切应力作用面位置。
(b)习题9-9图(a) 习题9-11图 习题9-12图 9-9 一点处的应力状态在两种坐标中的表示方法分别如图a 和b 所示。
试:1.确定未知的应力分量xy τ、y x ''τ、y 'σ的大小;2.用主应力表示这一点处的应力状态。
9-10 试确定图示应力状态中的最大正应力和最大切应力。
图中应力的单位为MPa 。
习题9-10图9-11 对于图示的应力状态,若要求其中的最大切应力max τ<160MPa ,试求xy τ取何值。
9-12 对于图示的应力状态,若要求垂直于xy 平面的面内最大切应力≤'τ150MPa ,试求y σ的取值范围。
第六章弯曲应力(习题解答)
216-3、图示矩形截面梁受集中力作用,试计算1-1横截面上a 、b 、c 、d 四点的正应力。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
中性轴z 轴过形心C 与载荷垂直,沿水平方向。
(2)内力分析,弯矩图如图(b )所示,1-1横截面的弯矩为:1115230(M-=-⨯=-⋅kN m )(3)应力分析,梁上边有弯矩图,上侧纤维受拉。
1-1横截面上的a 点处于拉伸区,正应力为正;c 点处于中性层上,正应力为零;b 、d 两点处于压缩区,正应力为负。
3111111m ax 2301011.1110.1800.36a a zzzM M M y y I I W σ---⨯=⋅=⋅===⨯⨯P a M P a 。
11.11b a σσ=-=-M Pa0c σ=31133010(0.1500.050)7.4110.1800.312d d zM y I σ-⨯=-⋅=-⨯-=-⨯⨯P a M P a37.5M kN ·m)V 图(kN )(a)(c)(b)30-(c)(e)(d)10102+q l /8M kN ·m)(f)20201z+25001150015bd (b)18015kNac (a)BqAlaz z az 22题6-3图 题6-5图6-5、两根矩形截面简支木梁受均布荷载q 作用,如图所示。
梁的横截面有两种情况,一是如图(b)所示是整体,另一种情况如图(c)所示是由两根方木叠合而成(二方木间不加任何联系且不考虑摩擦)。
若已知第一种情况整体时梁的最大正应力为10MPa ,试计算第二种情况时梁中的最大正应力,并分别画出危险截面上正应力沿高度的分布规律图示。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
第一种情况中性层为过轴线的水平纵向面,中性轴z 轴过整体形心C 与载荷垂直,沿水平方向。
而第二种情况,两根木梁以各自的水平纵向面为中性层发生弯曲,两根中性轴为与荷载垂直的水平形心主轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、 悬臂梁受力及截面尺寸如图所示。
图中的尺寸单位为mm 。
求:梁的1-1截面上A 、B 两点的正应力。
解:1. 计算梁的1-1截面上的弯矩:
3
1m 110N 1m+600N/m 1m 1300N m 2M ⎛⎫
=-⨯⨯⨯⨯=-⋅ ⎪⎝
⎭
2. 确定梁的1-1截面上A 、B 两点的正应力: A 点:
()
33
6
3
-3-315010m 1300N m 2010m
210P a M P a ()
10010m 15010m
12
z A z M y I σ--⎛⎫⨯⋅⨯-⨯ ⎪⎝⎭==⨯=⨯⨯⨯=2.54 2.54拉应力
B 点:
()
)1.62MPa(Pa 1062.112
0.15m 0.1m m 04.020.150m m N 130063
压应力=⨯=⨯⎪⎭⎫
⎝⎛-⨯⋅==z z B I y M σ
4、 圆截面外伸梁,其外伸部分是空心的,梁的受力与尺寸如图所示。
图中尺寸单位为mm 。
已知F P =10kN ,q =5kN/m ,许用应力[]σ=140 MPa ,试校核梁的强度。
习题7-4图
习题7-8图
解:画弯矩图如图所示:
()()[]36max1max 3
-31
32306510N m
113810Pa=1138MPa<π14010m ...M W σσ⨯⨯⋅==⨯⨯实= ()()
[]36
max2max 4
32
-3
322010N m 100310Pa=1003MPa<100π14010m 1140..M
W σσ⨯⨯⋅=
=⨯⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
空= 所以,梁的强度是安全的。
5、 悬臂梁AB 受力如图所示,其中F P =10 kN ,M =70 kN ·m ,a =3 m 。
梁横截面的形状及尺寸均示于图中(单位为mm),C 为截面形心,截面对中性轴的惯性矩I z =1.02×108 mm 4,拉伸许用应力[]+
σ=40 MPa , 压缩许用应力[]-
σ=120 MPa 。
试校核梁的强度是否
安全。
解:画弯矩图如图所示:
M (kN.m)
习题7-9图
C 截面 33+6max
8124
3010N m 96.410m 283510Pa=2835MPa 1.021010m ..σ
--⨯⋅⨯⨯==⨯⨯⨯ 336max
8124
3010N m 153.610m 451710Pa=4517MPa 1.021010m
σ--⨯⋅⨯⨯==⨯⨯⨯..- D 截面
[]33+6max
8124
4010N m 153.610m 602410Pa=6024MPa>1.021010m
σ
σ--⨯⋅⨯⨯==⨯⨯⨯..
336max
8124
4010N m 96.410m 37810Pa=378MPa 1.021010m
..σ
--⨯⋅⨯⨯==⨯⨯⨯- 所以,梁的强度不安全。
M (kN.m)
6、试求图示T 形截面铸铁梁的最大拉应力和最大压应力。
试题答案:
解:最大压应力在截面B 下边缘 33
max
5
251014210137 MPa 2.5910B y M y I s
---创?===´
最大拉应力在截面D 下边缘 33max
5
14.1101421077.3 MPa 2.5910D y M y I s
-+
-创?===´
7、当力F 直接作用在梁AB 中点时,梁内的最大正应力超过许用应力30%。
当配置了辅助梁CD 后,强度满足要求,已知梁长 6 m l =,试求此辅助梁的跨度a 。
试题答案:
解:分别作无辅助梁和有辅助梁 的弯矩图
m a x
(130%)[M W
s s ==+]
, 4 1.34 1.3Fl Fl W s []=
=创所以 1.385 m 1.3
l
a l =-=
45
m 10
59.2-⨯I =z
7-2 图示之AB 为简支梁,当载荷F P 直接作用在梁的跨度中点时,梁内最大弯曲正应力超过许用应力30%。
为减小AB 梁内的最大正应力,在AB 梁配置一辅助梁CD ,CD 也可以看作是简支梁。
试求辅助梁的长度a 。
解: 1.没有辅助梁时
[][]max
max P 4130,.M W
F l
W
σσσ=
≤=
[]()[]max
max P 322,M W
F l
a W
σσσ=
≤-= ()[]()P P 32241301303231384m
...F l F l a W W
a a σ-==⨯⨯-==。