聚类分析与判别分析

合集下载

第11章 聚类分析与判别分析

第11章 聚类分析与判别分析

第十一章聚类分析与判别分析聚类分析与判别分析是两类常用多元分析方法。

聚类分析可以将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强;而判别分析则可以根据已掌握的样本信息建立判别函数,当遇到新的样本点时根据判别函数可以判断该样本点所属的类别。

第一节聚类分析一、聚类分析的基本思想“物以类聚,人以群分”。

分类处理,在现实中极为普遍。

在生物、经济、社会、人口等领域的研究中,存在着大量量化分类研究。

例如:在生物学中,为了研究生物的演变,生物学家需要根据各种生物不同的特征对生物进行分类;在经济研究中,为了研究不同地区城镇居民生活中的收入和消费情况,往往需要划分不同的类型去研究;在人口学研究中,需要构造人口生育分类模式、人口死亡分类状况,以此来研究人口的生育和死亡规律。

历史上,这些分类方法多半是人们主要依靠经验作定性分类,致使许多分类带有主观性和任意性,特别是对于多因素、多指标的分类问题,定性分类的准确性不好把握。

为了克服定性分类存在的不足,人们把数学方法引入分类中,形成了数值分类学,进而产生了聚类分析这一最常用的技巧。

聚类分析将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。

其目的在于:使类内对象的同质性最大化和类间对象的异质性最大化。

聚类分析通常可以分为两种:Q型聚类和R型聚类。

Q型聚类是对观测个体的分类,R 型聚类是对变量的分类。

二者在数学上是对称的,没有本质区别。

二、符号说明多元统计分析中要注意区分样本和变量。

每个样品有p个指标(变量)从不同方面描述其性质,形成一个p维的向量,可以把n 个样品看成p维空间中的n个点。

X表示第k个变量第j次观测值(或称第j个项目的测量值),即:我们用记号jkX=第k个变量第j次观测值jkp个变量的n个观测值可表示如下:11121121222212121212k p k pj j jk jp n n nknpkp X X X X X X X X j X X X X nX X XX 变量变量变量变量观测观测观测观测记为:1112112122221212k p k p j j jk jp n n nknp X X X X X X X X X X X X X X X X ⎛⎫⎪ ⎪⎪=⎪ ⎪⎪ ⎪ ⎪⎝⎭X 记12(,,,)'jp j j jp X X X X R =∈,表示第j 个样品,它表示p 维空间的一个点。

聚类分析与判别分析

聚类分析与判别分析

(xi yi )2
i
平方欧氏距离(Squared Euclidean) (xi yi )2 i
绝对距离(Block): Si|xi-yi|
切比雪夫距离 (Chebychev ) Maxi|xi-yi|
1
明考夫斯基距离(Minkowski)
(
xi
yi
)q
q
i
10
(2)相似系数
向量x =(x1,…, xp)与y =(y1,…, yp)之间的相似系数:
夹角余弦cosine
Cxy (1) cos xy
xi yi i
xi2 yi2
i
i
cosθ =1,说明x和y完全相似;接近1,x和y比较相似。
cosθ=0,说明x和y完全不一样;接近0,x和y差别很大。
相关系数
(xi x )( yi y)
Pearson correlation Cxy (2) rxy
1
提纲
1 聚类分析
1-1 概述
1-1-1聚类分析的原理 1-1-2 距离和相似系数 1-1-3 类间距离的算法
1-2系统聚类分析(Hierarchical clustering) 1-2-1 基本思想
1-2-2 分类
1-2-3 SPSS 实现
1-3 k-均值聚类 ( K-Means Cluster)
每一种样品都具有多种特性,或称之为具有多种变量。聚类分析是基于
多变量数据,对n个样品进行分类的一种方法,即将那些相似的样品归为一类, 不相似的样品分别归到各自不容的类别中。
目的:寻找数据中潜在的自然分组结构 和感兴趣的关系。
3
自然分组结构 Natural grouping : 例如:有16张牌,如何将他们分为一组一组的牌?

聚类分析与判别分析区别

聚类分析与判别分析区别
ij
表示

cos
!
ij





!

ia

ja




!







!


"
ia
ja


cos
!
ij



cos
!
ij
=1

说明两个样品





完全相似

cos
!
ij




















cos
!
ij
=0

说明





完全不一样

cos
!
ij
接近









差别大。把所有两两样品的相似系数都
通过聚类分析可以达到简化数据的目的


众多的样品先聚集成比较好处理的几个类别或子


然后再进行后续的多元分析。
比如在回归分析


有时不对原始数据进行拟合

而是对这些子集
的中心作拟合

可能会更有意义。又比如

为了研
究不同消费者群体的消费行为特征

「聚类分析与判别分析」

「聚类分析与判别分析」

「聚类分析与判别分析」聚类分析和判别分析是数据挖掘和统计学中常用的两种分析方法。

聚类分析是一种无监督学习方法,通过对数据进行聚类,将相似的样本归为一类,不同的样本归入不同的类别。

判别分析是一种有监督学习方法,通过学习已知类别的样本,构建分类模型,然后应用模型对未知样本进行分类预测。

本文将对聚类分析和判别分析进行详细介绍。

聚类分析是一种数据探索技术,其目标是在没有任何先验知识的情况下,将相似的样本聚集在一起,形成互相区别较大的样本群。

聚类算法根据样本的特征,将样本分为若干个簇。

常见的聚类算法有层次聚类、k-means聚类和密度聚类。

层次聚类是一种自下而上或自上而下的层次聚合方法,通过测量样本间的距离或相似性,不断合并或分裂簇,最终形成一个聚类树状结构。

k-means聚类将样本划分为k个簇,通过优化目标函数最小化每个样本点与其所在簇中心点的距离来确定簇中心。

密度聚类基于样本点的密度来判断是否属于同一簇,通过划定一个密度阈值来确定簇的分界。

聚类分析在很多领域中都有广泛的应用,例如市场分割、医学研究和社交网络分析。

在市场分割中,聚类分析可以将消费者按照其购买行为和偏好进行分组,有助于企业制定更精准的营销策略。

在医学研究中,聚类分析可以将不同患者分为不同的亚型,有助于个性化的治疗和药物开发。

在社交网络分析中,聚类分析可以将用户按照其兴趣和行为进行分组,有助于推荐系统和社交媒体分析。

相比之下,判别分析是一种有监督学习方法,其目标是通过学习已知类别的样本,构建分类模型,然后应用模型对未知样本进行分类预测。

判别分析的目标是找到一个决策边界,使得同一类别内的样本尽可能接近,不同类别之间的样本尽可能远离。

常见的判别分析算法有线性判别分析(LDA)和逻辑回归(Logistic Regression)。

LDA是一种经典的线性分类方法,它通过对数据进行投影,使得同类样本在投影空间中的方差最小,不同类样本的中心距离最大。

逻辑回归是一种常用的分类算法,通过构建一个概率模型,将未知样本划分为不同的类别。

聚类分析和判别分析

聚类分析和判别分析

18
24 30 36 42 48 54 60 66 72
0.69
0.77 0.59 0.65 0.51 0.73 0.53 0.36 0.52 0.34
1.33
1.41 1.25 1.19 0.93 1.13 0.82 0.52 1.03 0.49
0.48
0.52 0.30 0.49 0.16 0.35 0.16 0.19 0.30 0.18
i i
( xi x ) 2 ( yi y ) 2
i i
i
当变量的测量值相差悬殊时,要先进行 标准化. 如R为极差, s 为标准差, 则标 准化的数据为每个观测值减去均值后 再除以R或s. 当观测值大于0时, 有人 采用Lance和Williams的距离
1 | xi yi | x y p i i i
Number of Cases in each Cluster Cluster 1 2 3 4 1.000 1.000 2.000 15.000 19.000 .000
Valid Missing
结果解释
参照专业知识,将儿童生长发育分期定为: 第一期,出生后至满月,增长率最高; 第二期,第2个月起至第3个月,增长率次之; 第三期,第3个月起至第8个月,增长率减缓; 第四期,第8个月后,增长率显著减缓。
k-均值聚类:案例
为研究儿童生长发育的分期,调查1253名1月至7岁儿 童的身高(cm)、体重(kg)、胸围(cm)和坐高(cm) 资料。资料作如下整理:先把1月至7岁划成19个月份段, 分月份算出各指标的平均值,将第1月的各指标平均值与出 生时的各指标平均值比较,求出月平均增长率(%),然后 第2月起的各月份指标平均值均与前一月比较,亦求出月平 均增长率(%),结果见下表。欲将儿童生长发育分为四期, 故指定聚类的类别数为4,请通过聚类分析确定四个儿童生 长发育期的起止区间。

判别分析与聚类分析的基本原理

判别分析与聚类分析的基本原理

判别分析与聚类分析的基本原理数据分析是在如今信息时代中,越来越重要的一项技能。

在数据分析的过程中,判别分析和聚类分析是两个非常重要的方法。

本文将介绍判别分析和聚类分析的基本原理,以及它们在数据分析中的应用。

一、判别分析的基本原理判别分析是一种用于分类问题的统计方法,其目的是通过学习已知类别的样本数据,来构建一个分类器,从而对未知样本进行分类。

判别分析的基本原理可以简单概括为以下几个步骤:1. 数据预处理:首先需要对数据进行预处理,包括数据清洗、缺失值处理、特征选择等,以获得更好的数据质量。

2. 特征提取:在进行判别分析之前,需要将原始数据转化为有效的特征。

特征提取的方法有很多种,常用的包括主成分分析、线性判别分析等。

3. 训练分类器:利用判别分析算法对已知类别的样本数据进行训练,建立分类模型。

常用的判别分析方法有线性判别分析、二次判别分析等。

4. 分类预测:通过训练好的分类器,对未知样本进行分类预测。

分类预测的结果可以是离散的类标签,也可以是概率值。

判别分析广泛应用于医学、金融、市场营销等领域。

例如,在医学领域,可以利用判别分析来预测疾病的状态,辅助医生做出诊断决策。

二、聚类分析的基本原理聚类分析是一种无监督学习方法,其目的是将相似的数据对象分组,使得同一组内的对象相似度较高,不同组间的相似度较低。

聚类分析的基本原理可以概括为以下几个步骤:1. 选择相似性度量:首先需要选择一个合适的相似性度量,用于评估数据对象之间的相似程度。

常用的相似性度量包括欧氏距离、曼哈顿距离等。

2. 选择聚类算法:根据具体的问题需求,选择合适的聚类算法。

常用的聚类算法有K-means、层次聚类等。

3. 确定聚类数目:根据实际问题,确定聚类的数目。

有些情况下,聚类数目事先是已知的,有些情况下需要通过评价指标进行确定。

4. 根据聚类结果进行分析:将数据对象划分到各个聚类中,并对聚类结果进行可视化和解释。

聚类分析被广泛应用于市场分析、图像处理、社交网络等领域。

聚类分析与判别分析

聚类分析与判别分析

第一节聚类分析统计思想一、聚类分析的基本思想1.什么是聚类分析俗语说,物以类聚、人以群分。

当有一个分类指标时,分类比较容易。

但是当有多个指标,要进行分类就不是很容易了。

比如,要想把中国的县分成若干类,可以按照自然条件来分:考虑降水、土地、日照、湿度等各方面;也可以考虑收入、教育水准、医疗条件、基础设施等指标;对于多指标分类,由于不同的指标项对重要程度或依赖关系是相互不同的,所以也不能用平均的方法,因为这样会忽视相对重要程度的问题。

所以需要进行多元分类,即聚类分析。

最早的聚类分析是由考古学家在对考古分类中研究中发展起来的,同时又应用于昆虫的分类中,此后又广泛地应用在天气、生物等方面。

对于一个数据,人们既可以对变量(指标)进行分类(相当于对数据中的列分类),也可以对观测值(事件,样品)来分类(相当于对数据中的行分类)。

2.R型聚类和Q型聚类对变量的聚类称为R型聚类,而对观测值聚类称为Q型聚类。

这两种聚类在数学上是对称的,没有什么不同。

聚类分析就是要找出具有相近程度的点或类聚为一类;如何衡量这个“相近程度”?就是要根据“距离”来确定。

这里的距离含义很广,凡是满足4个条件(后面讲)的都是距离,如欧氏距离、马氏距离…,相似系数也可看作为距离。

二、如何度量距离的远近:统计距离和相似系数1.统计距离距离有点间距离好和类间距离2.常用距离统计距离有多种,常用的是明氏距离。

3.相似系数当对个指标变量进行聚类时,用相似系数来衡量变量间的关联程度,一般地称为变量和间的相似系数。

常用的相似系数有夹角余弦、相关系数等。

夹角余弦:相关系数:对于分类变量的研究对象的相似性测度,一般称为关联测度。

第二节如何进行聚类分析一、系统聚类1.系统聚类的基本步骤2.最短距离法3.最长距离法4.重心法和类平均法5.离差平方和法二、SPSS中的聚类分析1、事先要确定分多少类:K均值聚类法;2、事先不用确定分多少类:分层聚类;分层聚类由两种方法:分解法和凝聚法。

聚类和判别分析

聚类和判别分析

市场细分
在市场营销中,判别分析可用于 识别消费者群体的特征和行为模 式,以便进行更有效的市场细分 和定位。
04
判别分析算法
线性判别分析(LDA)
01
基本思想:通过找到一个投影方向,使得同类样本在该方 向上投影后尽可能接近,不同类样本在该方向上投影后尽 可能远离。
02
算法步骤
03
1. 计算各类样本均值。
04
2. 计算类间散度矩阵和类内散度矩阵。
05
3. 计算投影方向,使得类间散度矩阵最大,类内散度矩 阵最小。
06
4. 将样本投影到该方向上,得到判别结果。
支持向量机(SVM)
算法步骤
2. 计算支持向量所构成的法向量 。
基本思想:通过找到一个超平面 ,使得该超平面能够将不同类样 本尽可能分开,同时使得离超平 面最近的样本距离尽可能远。
目的
聚类分析的目的是揭示数据集中的内在结构,帮助我们更好地理解数据的分布 和特征,为进一步的数据分析和挖掘提供基础。
聚类方法分类
01
基于距离的聚类
根据对象之间的距离进行聚类,常见的算法有K-means 、层次聚类等。
02
基于密度的聚类
根据数据点的密度进行聚类,将密度较高的区域划分为 一类,常见的算法有DBSCAN、OPTICS等。
聚类和判别分析
目录
• 聚类分析概述 • 聚类分析算法 • 判别分析概述 • 判别分析算法 • 聚类与判别分析的比较与选择
01
聚类分析概述
定义与目的
定义
聚类分析是一种无监督学习方法,旨在将数据集中的对象按照它们的相似性或 差异性进行分组,使得同一组内的对象尽可能相似,不同组之间的对象尽可能 不同。

聚类分析和判别分析

聚类分析和判别分析

垂直冰柱图
树状图是将实 际的距离按比 例调整到0-25 例调整到 的范围内, 的范围内,用 逐级连线的方 式连线距离相 近的样品和新 类,直至成为 一大类. 一大类.
判别分析
判别分析也是一种常用比较常用的分 类分析方法, 类分析方法,它先根据已知类别的事物 的性质(自变量) 建立函数式( 的性质(自变量),建立函数式(自变量的 线性组合,即判别函数) 线性组合,即判别函数),然后对未知类 别的新事物进行判断以将之归入已知的 类别中. 类别中.
1,快速聚类 快速聚类也称为逐步聚类, 快速聚类也称为逐步聚类,它先 对数据进行初始分类, 对数据进行初始分类,然后系统采用标 准迭代算法进行运算,逐步调整, 准迭代算法进行运算,逐步调整,把所 有的个案归并在不同的类中, 有的个案归并在不同的类中,得到最终 分类.它适用于大容量样本的情形. 分类.它适用于大容量样本的情形.
利用快速聚类分析对20家上市公司进行分类. 20家上市公司进行分类 例1:利用快速聚类分析对20家上市公司进行分类.
SPSS实现 SPSS实现 (1)打开文件 打开文件: (1)打开文件:上市 公司.sav .sav. 公司.sav. (2)点击 分析/ 点击" (2)点击"分析/分 /K类/K-均值聚 类". (3)选择变量 选择变量, (3)选择变量, 个案标记依据, 个案标记依据, 分类类别数. 分类类别数. (如图对话框中 2表示把所有个 案分为两类) 案分为两类)
聚类分析主要解决的问题: 聚类分析主要解决的问题:所研究的对 象事前不知道应该分为几类, 象事前不知道应该分为几类,更不知道分类 情况, 情况,需要建立一种分类方法来确定合理的 分类数目,并按相似程度, 分类数目,并按相似程度,相近程度对所有 对象进行具体分类. 对象进行具体分类. 基本思路:在样本之间定义距离, 基本思路:在样本之间定义距离,在指 标之间定义相关系数,按距离的远近, 标之间定义相关系数,按距离的远近,相似 系数的大小对样本或指标进行归类. 系数的大小对样本或指标进行归类. SPSS实现 实现: 分析/分类"命令. SPSS实现:"分析/分类"命令. 常用的有快速( K-均值)聚类分析, 常用的有快速( K-均值)聚类分析,系统聚 类分析. 类分析.

判别分析与聚类分析

判别分析与聚类分析

判别分析与聚类分析判别分析与聚类分析是数据分析领域中常用的两种分析方法。

它们都在大量数据的基础上通过统计方法进行数据分类和归纳,从而帮助分析师或决策者提取有用信息并作出相应决策。

一、判别分析:判别分析是一种有监督学习的方法,常用于分类问题。

它通过寻找最佳的分类边界,将不同类别的样本数据分开。

判别分析可以帮助我们理解和解释不同变量之间的关系,并利用这些关系进行预测和决策。

判别分析的基本原理是根据已知分类的数据样本,建立一个判别函数,用来判断未知样本属于哪个分类。

常见的判别分析方法包括线性判别分析(LDA)和二次判别分析(QDA)。

线性判别分析假设各类别样本的协方差矩阵相同,而二次判别分析则放宽了这个假设。

判别分析的应用广泛,比如在医学领域可以通过患者的各种特征数据(如生理指标、疾病症状等)来预测患者是否患有某种疾病;在金融领域可以用来判断客户是否会违约等。

二、聚类分析:聚类分析是一种无监督学习的方法,常用于对数据进行分类和归纳。

相对于判别分析,聚类分析不需要预先知道样本的分类,而是根据数据之间的相似性进行聚类。

聚类分析的基本思想是将具有相似特征的个体归为一类,不同类别之间的个体则具有明显的差异。

聚类分析可以帮助我们发现数据中的潜在结构,识别相似的群组,并进一步进行深入分析。

常见的聚类分析方法包括层次聚类分析(HCA)和k-means聚类分析等。

层次聚类分析基于样本间的相似性,通过逐步合并或分割样本来构建聚类树。

而k-means聚类分析则是通过设定k个初始聚类中心,迭代更新样本的分类,直至达到最优状态。

聚类分析在市场细分、社交网络分析、图像处理等领域具有广泛应用。

例如,可以将客户按照他们的消费喜好进行分组,以便为不同群体提供有针对性的营销活动。

总结:判别分析和聚类分析是两种常用的数据分析方法。

判别分析适用于已知分类的问题,通过建立判别函数对未知样本进行分类;聚类分析适用于未知分类的问题,通过数据的相似性进行样本聚类。

判别分析与聚类分析方法

判别分析与聚类分析方法

⎪⎩∞
如果G P 和Gq 是近邻 否则
聚类方法比较
综合特性最好的聚类方法为类平均法或Ward 最小方差法,而最差的则为最短距离法。 Ward最小方差法倾向于寻找观察数相同的类。 类平均法偏向寻找等方差的类。 拉长的或无规则的类使用最短距离法比其他 方法好。 非参数问题的聚类方法为密度估计法。
5
类的统计量
3
修改后的程序
data newiris;/*测试新数据*/
input sepallen sepalwid petallen petalwid @@;
cards;
56 30 41 13
51 35 14 23
67 25 18 15
run;
proc discrim data=iris pool=test outstat=plotiris testdata=newiris testout=plotp;
样品聚类法2:动态(快速)聚类法
K-means cluster ①选择若干个观察作为“凝聚点”或称类的中心点,作
proc candisc <选项列表>; class 变量; by 变量表; freq 变量; var 变量表; weight 变量; run;
candisc选项
out=数据集名——生成一个包含原始数据和 典型变量得分的SAS数据集。 ncan=——指定将被计算的典型变量的个数。
实例分析
Fisher鸢尾花(Iris)数据 修改后的程序chap8_01B
∑ ( ) k exp i =1

0.5Di2
( x, Gi
)
广义平方距离
Di2 (x)
=
d
2 i
(
x)

聚类分析聚类分析和判别分析有相似的作用,都是起到分类的作用...

聚类分析聚类分析和判别分析有相似的作用,都是起到分类的作用...

聚类分析聚类分析和判别分析有相似的作用,都是起到分类的作用。

但是,判别分析是已知分类然后总结出判别规则,是一种有指导的学习;而聚类分析则是有了一批样本,不知道它们的分类,甚至连分成几类也不知道,希望用某种方法把观测进行合理的分类,使得同一类的观测比较接近,不同类的观测相差较多,这是无指导的学习。

所以,聚类分析依赖于对观测间的接近程度(距离)或相似程度的理解,定义不同的距离量度和相似性量度就可以产生不同的聚类结果。

SAS/STAT中提供了谱系聚类、快速聚类、变量聚类等聚类过程。

谱系聚类方法介绍谱系聚类是一种逐次合并类的方法,最后得到一个聚类的二叉树聚类图。

其想法是,对于个观测,先计算其两两的距离得到一个距离矩阵,然后把离得最近的两个观测合并为一类,于是我们现在只剩了个类(每个单独的未合并的观测作为一个类)。

计算这个类两两之间的距离,找到离得最近的两个类将其合并,就只剩下了个类……直到剩下两个类,把它们合并为一个类为止。

当然,真的合并成一个类就失去了聚类的意义,所以上面的聚类过程应该在某个类水平数(即未合并的类数)停下来,最终的类就取这些未合并的类。

决定聚类个数是一个很复杂的问题。

设观测个数为,变量个数为,为在某一聚类水平上的类的个数,为第个观测,是当前(水平)的第类,为中的观测个数,为均值向量,为类中的均值向量(中心),为欧氏长度,为总离差平方和,为类的类内离差平方和,为聚类水平对应的各类的类内离差平方和的总和。

假设某一步聚类把类和类合并为下一水平的类,则定义为合并导致的类内离差平方和的增量。

用代表两个观测之间的距离或非相似性测度,为第水平的类和类之间的距离或非相似性测度。

进行谱系聚类时,类间距离可以直接计算,也可以从上一聚类水平的距离递推得到。

观测间的距离可以用欧氏距离或欧氏距离的平方,如果用其它距离或非相似性测度得到了一个观测间的距离矩阵也可以作为谱系聚类方法的输入。

根据类间距离的计算方法的不同,有多种不同的聚类方法。

第六章 聚类分析与判别分析

第六章  聚类分析与判别分析

y0 1E-06 1E-06 1E-06 1E-06 1E-06 华北 华北 长江中下游 长江中下游 长江中下游
15.6
23.9 9.48 13.5
8.88
15.2 6.43 7.47
31
22.38 13.14 19.11
21.01
9.66 10.43 20.49
11.8
13.9 8.3 10.3
0.16
1.19 1.11 1.76
j
k l
114
74.96 5.6
41.44
50.13 50.88
33.2
13.9 5.21
11.2
9.62 3.89
48.72
16.14 12.94
30.77
10.18 9.49
14.9
14.5 6.77
11.1
1.ቤተ መጻሕፍቲ ባይዱ1 1.27
每 个聚 类 中 的案 例 数 聚类 1 2 3 4 5 6 7 8 有效 缺失 1.000 1.000 3.000 2.000 1.000 1.000 2.000 1.000 12.000 .000
第六章 聚类分析与判别分析
介绍: 1、聚类分析 2、判别分析
分类学是人类认识世界的基础科学。聚类分析和判别分析是 研究事物分类的基本方法,广泛地应用于自然科学、社会科 学、工农业生产的各个领域。
主要分类 快速样本聚类
事先指定用于聚类分析的类数
系统聚类
不指定最终的类数,结论将在聚类过程中寻求
从聚类结果可知,地区a为一类;地区b、c、k为 一类;地区d、h为一类;地区e和g为一类;地区f为 一类;地区j为一类;地区l为一类
系统聚类(分层聚类分析)

聚类分析与判别分析

聚类分析与判别分析

10.2.4 层次聚类R型聚类
判别分析先层根据次已聚知类类别R的型事物聚的类性质是建对立函研数究式,对然象后对的未观知类察别变的新量事进物进行行分判断类以,将之它归使入已具知有的类共别同中。特征的变量 在判取别分在析一中有起如,下假以定便: 可以从不同类中分别选出具有代表性的变量作为分析,从而减少分析 如但果两变观 者察的量值不的的同个在个数于数多:或层。文次其件聚非类计常可算庞以大对公,不式则同宜的与使聚Q用类型快类速数聚聚产类类生分一计析系算方列法的公。聚式类解相,似而快,速不聚类同只的能产是生R固型定类聚数类的聚是类对解,变类量数需进要行用户事 先指距定。离的计算,Q型聚类是对样本间进行距离的计算。
观测变量的平均值和方差不相关。 快速聚类分析的实质是K-Mean聚类。
10.2.5 层次聚类R型聚类应用实例 不同在于,因素分析在合并变量的时候,是同时考虑所有变量之间的关系;
层次聚类分析中的Q型聚类可使具有共同特点的样本聚齐在一起,以便对不同类的样本进行分析。 聚类分析的方法主要有两种,一种是“快速聚类分析”; 而变量的聚类分析,则采用层次式的判别方式,根据个别变量之间的亲疏程度逐次进行聚类。
10.2 层次聚类
Ø 层次聚类Q型聚类 Ø 层次聚类Q型聚类应用实例 Ø 层次聚类R型聚类 Ø层次聚类R型聚类应用实例
10.2.1 层次聚类Q型聚类
层次聚类分析中的Q型聚类可使具有共同特点的样本聚齐在一起,以便对 不同类的样本进行分析。层次聚类分析中,测量样本之间的亲疏程度,一种是 样本数据与小类,小类与小类之间的亲疏程度。
该例可以借用层次聚类Q型聚类的实例,分析某班级中语文成绩、数学成绩、化 学成绩和外语成绩四门,哪些课程属于同一个类。
10.3 快速聚类
Ø快速聚类分析的概念 Ø 快速聚类分析的计算过程及公式 Ø快速聚类分析应用实例

聚类分析与判别分析比较实证研究

聚类分析与判别分析比较实证研究

聚类分析与判别分析的比较聚类分析统计是比较各个事物间的性质,根据需要将性质相近的事物归为同一类,而将性质相差较大的归入不同的类。

它的本质是建立一种分类方法,他能够将一批样本数据按照他们性质上的亲密程度在没有先验知识的情况下自动进行分类。

聚类分析方法主要有两种:一种是快速聚类分析方法,一种是层次聚类分析方法。

层次聚类分析按其分类对象的不同分为Q型聚类分析它是根据被观测的样品的各种特征,将特征相似的样品归并为一类;R型聚类分析是根据被观测的变量之间的相似性,将其特征相似的变量归并为一类。

快速样本聚类适合聚成的类数已确定和大样本的聚类分析;而分层聚类则事先无法确定类别数,但给出的统计量可以帮助确定最好的分类结果。

后者对大样本分析受限制。

以下,我用《按三次产业分地区生产总值(2008年)》(来自国家统计局网站年度数据)通过快速聚类分析方法进行分类结果分析:从输出结果可以看出,当样本层次聚类分析成3个类时,样本的类归属情况:第一类包括7个省:北京、上海、安徽、福建、湖南、湖北、四川;第二类包含17个省:天津、山西、内蒙古、吉林、黑龙江、江西、广西、海南、重庆、贵州、云南、西藏、陕西、甘肃、青海、宁夏、新疆;第三类包含4省:河北、辽宁、浙江、河南;第四类包含3个省:江苏、山东、广东判别分析是另一种处理分类分体的统计方法。

它是先根据已知类别的事物的性质,建立函数式,然后对未知类别的新事物进行判断以将之归入已知的类别中。

判别分析的内容十分丰富,按照已知分类的多少,分成两组判别喝多组判别;按照判别方法分为逐步判别和序贯判别;按照判别则分为距离判别、贝叶斯判别和费歇判别等。

通过聚类分析我们已经知道以上31个省的分类情况,现在将福建、江西、山东、河南四个省的聚类结果删除掉。

然后进行判别分析。

得出结果如上图,福建,江西,山东,河南四省的判别结果与之前分类结果一样。

典型判别式函数系数函数1 2 3第一产业.000 .002 .001第二产业.001 -.001 .000第三产业.000 .001 .000(常量) -3.744 -1.017 -.516非标准化系数由此图得出三个函数(X1,X2,X3分别为第一产业、第二产业、第三产业)D1=-3.744+0.001X2D2==1.017+0.002X1-0.001X2+0.001X3D3=-0.516+0.001X1通过聚类分析和判别分析,我们得到了31省的分类结果。

第九章 聚类分析和判别分析 讲过

第九章 聚类分析和判别分析  讲过

第九章 聚类分析与判别分析在实际工作中, 我们经常遇到分类问题.若事先已经建立类别, 则使用判别分析, 若事先没有建立类别, 则使用聚类分析.聚类分析主要是研究在事先没有分类的情况下,如何将样本归类的方法.聚类分析的内容包含十分广泛,有系统聚类法、动态聚类法、分裂法、最优分割法、模糊聚类法、图论聚类法、聚类预报等多种方法.聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。

它是一种重要的人类行为。

聚类分析的目标就是在相似的基础上收集数据来分类。

聚类源于很多领域, 包括数学, 计算机科学, 统计学, 生物学和经济学。

在不同的应用领域, 很多聚类技术都得到了发展, 这些技术方法被用作描述数据, 衡量不同数据源间的相似性, 以及把数据源分类到不同的簇中。

聚类与分类的不同在于, 聚类所要求划分的类是未知的。

聚类是将数据分类到不同的类或者簇这样的一个过程, 所以同一个簇中的对象有很大的相似性, 而不同簇间的对象有很大的相异性。

从统计学的观点看, 聚类分析是通过数据建模简化数据的一种方法。

§9.1 聚类分析基本知识介绍在MA TLAB 软件包中, 主要使用的是系统聚类法.系统聚类法是聚类分析中应用最为广泛的一种方法.它的基本原理是:首先将一定数量的样品(或指标)各自看成一类, 然后根据样品(或指标)的亲疏程度, 将亲疏程度最高的两类合并, 然后重复进行, 直到所有的样品都合成一类.衡量亲疏程度的指标有两类:距离、相似系数.一、常用距离1)欧氏距离假设有两个 维样本 和 , 则它们的欧氏距离为∑=-=nj j jx xx x d 122121)(),(2)标准化欧氏距离假设有两个 维样本 和 , 则它们的标准化欧氏距离为T x x D x x x x sd )()(),(2112121--=-其中: 表示 个样本的方差矩阵, , 表示第 列的方差. 3)马氏距离假设共有 个指标, 第 个指标共测得 个数据(要求 ):⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=im i i i x x x x 21, 11211122121212(,,,)n n n mmnn x x x xx x X x x x x x x ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭于是, 我们得到 阶的数据矩阵 , 每一行是一个样本数据. 阶数据矩阵 的 阶协方差矩阵记做.两个 维样本 和 的马氏距离如下:T x x X Cov x x x x mahal )())()((),(2112121--=-马氏距离考虑了各个指标量纲的标准化, 是对其它几种距离的改进.马氏距离不仅排除了量纲的影响, 而且合理考虑了指标的相关性.4)布洛克距离两个 维样本 和 的布洛克距离如下:∑=-=nj j j x x x x b 12121||),(5)闵可夫斯基距离两个 维样本 和 的闵可夫斯基距离如下:pn j p j j x x x x m 112121||),(⎪⎪⎭⎫ ⎝⎛-=∑= 注: 时是布洛克距离; 时是欧氏距离.6)余弦距离⎪⎪⎭⎫⎝⎛-=TT T x x x x x x x x d 221121211),( 这是受相似性几何原理启发而产生的一种标准, 在识别图像和文字时, 常用夹角余弦为标准. 7)相似距离TTTx x x x x x x x x x x x x x d ))(())(())((1),(22221111221121-------=二、MATLAB 中常用的计算距离的函数假设我们有 阶数据矩阵 , 每一行是一个样本数据.在MATLAB 中计算样本点之间距离的内部函数为y=pdist(x) 计算样本点之间的欧氏距离y=pdist(x,'seuclid') 计算样本点之间的标准化欧氏距离 y=pdist(x,'mahal') 计算样本点之间的马氏距离 y=pdist(x,'cityblock') 计算样本点之间的布洛克距离 y=pdist(x,'minkowski') 计算样本点之间的闵可夫斯基距离y=pdist(x,'minkowski',p) 计算样本点之间的参数为p 的闵可夫斯基距离 y=pdist(x,'cosine') 计算样本点之间的余弦距离 y=pdist(x,'correlation') 计算样本点之间的相似距离另外, 内部函数yy=squareform(y)表示将样本点之间的距离用矩阵的形式输出.三、常用的聚类方法常用的聚类方法主要有以下几种: 最短距离法、最长距离法、中间距离法、重心法、平方和递增法等等.四、创建系统聚类树假设已经得到样本点之间的距离y, 可以用linkage函数创建系统聚类树, 格式为z=linkage(y).其中: z为一个包含聚类树信息的(m-1) 3的矩阵.例如:z=2.000 5.000 0.23.0004.000 1.28则z的第一行表示第2.第5样本点连接为一个类, 它们距离为0.2;则z的第二行表示第3.第4样本点连接为一个类, 它们距离为1.28.在MA TLAB中创建系统聚类树的函数为z=linkage(y) 表示用最短距离法创建系统聚类树z=linkage(y,'complete') 表示用最长距离法创建系统聚类树z=linkage(y,'average') 表示用平均距离法创建系统聚类树z=linkage(y,'centroid') 表示用重心距离法创建系统聚类树z=linkage(y,'ward') 表示用平方和递增法创建系统聚类树§9.2 聚类分析示例例1 在MA TLAB中写一个名为opt_linkage_1的M文件:x=[3 1.7;1 1;2 3; 2 2.5; 1.2 1; 1.1 1.5; 3 1];y=pdist(x,'mahal');yy=squareform(y)%Reformat a distance matrix between upper triangular and square form z=linkage(y,'centroid')h=dendrogram(z) %Plot dendrogram graphs 画树状图存盘后按F5键执行, 得到结果如下:yy =0 2.3879 2.1983 1.6946 2.1684 2.2284 0.88952.3879 0 2.6097 2.0616 0.2378 0.6255 2.37782.1983 2.6097 0 0.6353 2.5522 2.0153 2.98901.69462.0616 0.6353 0 1.9750 1.5106 2.41722.1684 0.2378 2.5522 1.9750 0 0.6666 2.14002.2284 0.6255 2.0153 1.5106 0.6666 0 2.45170.8895 2.3778 2.9890 2.4172 2.1400 2.4517 0z =2.0000 5.0000 0.23786.0000 8.0000 0.63533.00004.0000 0.63531.0000 7.0000 0.88959.0000 10.0000 2.106311.0000 12.0000 2.0117按重心距离法得到的系统聚类树为其中: h=dendrogram(z)表示输出聚类树形图的冰状图.一、根据系统聚类树创建聚类假设已经求出系统聚类树z, 我们根据z来创建聚类, 使用cluster函数.例2 在MA TLAB中写一个名为opt_cluster_1的M文件:x=[3 1.7;1 1;2 3; 2 2.5; 1.2 1; 1.1 1.5; 3 1];y=pdist(x,'mahal');yy=squareform(y)z=linkage(y,'centroid')h=dendrogram(z)t=cluster(z,3)其中: “t=cluster(z,3)”表示分成3个聚类, 需要分成几个由人工选择.存盘后按F5键执行, 得到结果如下:t =3122113即第1.第7样本点为第3类, 第2.第5.第6样本点为第1类, 第3.第4样本点为第2类.二、根据原始数据创建分类在MA TLAB软件包中, 内部函数clusterdata对原始数据创建分类, 格式有两种:1)clusterdata(x,a), 其中0<a<1, 表示在系统聚类树中距离小于a的样本点归结为一类;2)clusterdata(x,b), 其中b>1是整数, 表示将原始数据x分为b类.例3 在MA TLAB中写一个名为opt_clusterdata_1的M文件:x=[3 1.7;1 1;2 3; 2 2.5; 1.2 1; 1.1 1.5; 3 1];t= clusterdata(x,0.5)z= clusterdata(x,3)存盘后按F5键执行, 得到结果如下:t =4322314z =2311332其中: t的结果表示距离小于0.5的样本点归结为一类, 这样, 共有四类, 第1类: 样本点6;第2类: 样本点3.4;第3类: 样本点2.5;第4类: 样本点1.7.而z的结果表示首先约定将原始数据x分为3类, 然后计算, 结果如下: 第1类: 样本点3.4;第2类: 样本点1.7;第3类: 样本点2.5.6.利用内部函数clusterdata对原始数据创建分类, 其缺点是不能更改距离的计算法.比较好的方法是分步聚类法.三、分步聚类法假设有样本数据矩阵x,第一步对于不同的距离, 利用pdist函数计算样本点之间的距离:y1=pdist(x)y2=pdist(x,'seuclid')y3=pdist(x,'mahal')y4=pdist(x,'cityblock')第二步计算系统聚类树以及相关信息:z1=linkage(y1)z2=linkage(y2)z3=linkage(y3)z4=linkage(y4)第三步利用cophenet函数计算聚类树信息与原始数据的距离之间的相关性, 这个值越大越好: %cophenet Cophenetic correlation coefficient 同表象相关系数, 同型相关系数, 共性分类相关系数CPCCt1=cophenet(z1,y1)t2=cophenet(z2,y2)t3=cophenet(z3,y3)t4=cophenet(z4,y4)注: z在前, y在后, 顺序不能颠倒.第四步选择具有最大的cophenet值的距离进行分类.利用函数clusterdata(x,a)对数据x进行分类, 其中0<a<1, 表示在系统聚类树中距离小于a的样本点归结为一类.例4 在MA TLAB中写一个名为opt_cluster_2的M文件:x=[3 1.7;1 1;2 3; 2 2.5; 1.2 1; 1.1 1.5; 3 1];y1=pdist(x);y2=pdist(x,'seuclid');y3=pdist(x,'mahal');y4=pdist(x,'cityblock');z1=linkage(y1);z2=linkage(y2);z3=linkage(y3);z4=linkage(y4);t1=cophenet(z1,y1)t2=cophenet(z2,y2)t3=cophenet(z3,y3)t4=cophenet(z4,y4)存盘后按F5键执行, 得到结果如下:t1 =0.9291t2 =0.9238t3 =0.9191t4 =0.9242结果中t1=0.9291最大, 可见此例利用欧式距离最合适.于是, 在MA TLAB中另写一个名为opt_cluster_3的M文件:x=[3 1.7;1 1;2 3; 2 2.5; 1.2 1; 1.1 1.5; 3 1];y1=pdist(x);z1=linkage(y1)存盘后按F5键执行, 得到结果如下:z1 =2.0000 5.0000 0.20003.00004.0000 0.50006.0000 8.0000 0.50991.0000 7.0000 0.70009.0000 11.0000 1.280610.0000 12.0000 1.3454矩阵z1的第1行表示样本点2.5为一类, 在系统聚类树上的距离为0.2, 其它类推.考察矩阵z1的第3列, 系统聚类树上的6个距离, 可以选择0.5作为聚类分界值.在MATLAB中另写一个名为opt_cluster_4的M文件:x=[3 1.7;1 1;2 3; 2 2.5; 1.2 1; 1.1 1.5; 3 1];y1=pdist(x);z1=linkage(y1)b1=cluster(z1,0.5)存盘后按F5键执行, 得到结果如下:b1 =4322314结果表示将原始数据x分为4类, 第1类: 样本点6;第2类: 样本点3.4;第3类: 样本点2.5;第4类: 样本点1.7.主要应用商业聚类分析被用来发现不同的客户群, 并且通过购买模式刻画不同的客户群的特征。

判别分析与聚类分析

判别分析与聚类分析

判别分析(Discriminant Analysis)一、概述:判别问题又称识别问题,或者归类问题。

判别分析是由Pearson于1921年提出,1936年由Fisher首先提出根据不同类别所提取的特征变量来定量的建立待判样品归属于哪一个已知类别的数学模型。

根据对训练样本的观测值建立判别函数,借助判别函数式判断未知类别的个体。

所谓训练样本由已知明确类别的个体组成,并且都完整准确地测量个体的有关的判别变量。

训练样本的要求:类别明确,测量指标完整准确。

一般样本含量不宜过小,但不能为追求样本含量而牺牲类别的准确,如果类别不可靠、测量值不准确,即使样本含量再大,任何统计方法语法弥补这一缺陷。

判别分析的类别很多,常用的有:适用于定性指标或计数资料的有最大似然法、训练迭代法;适用于定量指标或计量资料的有:Fisher二类判别、Bayers多类判别以及逐步判别。

半定量指标界于二者之间,可根据不同情况分别采用以上方法。

类别(有的称之为总体,但应与population的区别)的含义——具有相同属性或者特征指标的个体(有的人称之为样品)的集合。

如何来表征相同属性、相同的特征指标呢?同一类别的个体之间距离小,不同总体的样本之间距离大。

距离是一个原则性的定义,只要满足对称性、非负性和三角不等式的函数就可以称为距绝对距离马氏距离:(Manhattan distance)设有两个个体(点)X与Y(假定为一维数据,即在数轴上)是来自均数为μ,协方差阵为∑的总体(类别)A的两个个体(点),则个体X与Y的马氏距离为(,)X与总体(类别)A的距离D X Y=(,)为D X A=明考斯基距离(Minkowski distance):明科夫斯基距离欧几里德距离(欧氏距离)二、Fisher两类判别一、训练样本的测量值A类训练样本编号 1x 2xm x1 11A x 12A x 1A m x 221A x22A x2A m xA n1A An x 2A An xA An m x 均数1A x2A xAm xB 类训练样本编号 1x 2x m x1 11B x 12B x 1B m x 221B x22B x2B m xB n1B Bn x 2B Bn x B Bn m x 均数1B x2B xBm x二、建立判别函数(Discriminant Analysis Function)为:1122m m Y C X C X C X =+++其中:1C 、2C 和m C 为判别系数(Discriminant Coefficient ) 可解如下方程组得判别系数。

聚类分析和判别分析

聚类分析和判别分析
聚类分析和判别分析 张守刚
西安科技大学
数学建模
Mathematical Modeling
1. 系统聚类法核心思想
设有 n 个样品,每个样品测得 m 项指标。系统 聚类法的基本思想是:首先定义样品间的距离(或 相似系数)和类与类之间的距离。初始将 n 个样品 看成 n 类(每一类包含一个样品) ,这时类间的距离 与样品间的距离是等价的;然后将距离最近的两类 合并成为新类,并计算新类与其它类的类间距离, 再按最小距离准则并类。这样每次缩小一类,直到 所有的样品都并成一类为止。
聚类分析和判别分析 张守刚
西安科技大学
数学建模
Mathematical Modeling
• 总体来说,聚类分析就是把没有分类信息 的资料按照相似程度进行归类; • 两类:系统聚类法和非系统聚类法,系统 聚类法是应用最广泛的一种方法; • 聚类分析的核心是确定“度量==分类的准 则”;
聚类分析和判别分析
聚类分析和判别分析
张守刚
西安科技大学
数学建模
Mathematical Modeling
• 逐步判别法:与逐步回归法思想类似,都 是逐步引入变量,每引入一个“最重要” 的变量进入判别式,同时也考虑较早引入 判别式的某些变量,若其判别能力不显著 了,就剔除,知道判别式中没有不重要的 变量需要剔除,且没有重要的变量需要引 入为止。这个筛选过称的本质就是假设检 验。
聚类分析和判别分析
张守刚
西安科技大学
数学建模
Mathematical Modeling
案例1
• 中国统计年鉴,2005,主要城市日照时数。 变量有: City—城市名称; 月份—Jan、Feb、……、Dec。 注:聚类可分为变量聚类和观测量聚类, 本案例采用变量聚类方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一步,将原始数据经标准化处理后,以 欧氏距离作为分类统计量,得初始距离 矩阵D(0),如下表所示.
G1 G2 G3 G4 G5 G6 0.375 0.483 1.749 1.516 1.972 0.776 1.596 1.336 1.743 1.926 1.662 2.154 0.501 0.693 0.589 G2 G3 G4 G5
间的距离Drk。
3.将D(0)表中的第p、q行和p、q列删去,加上第r行和第r列。这 样就得到了一个新距离矩阵D(1)表。为了清楚计算,应在表下方 注明新类是由哪两类聚合成的。 4.对D(1)表,重复上面的步骤,最后绘出聚类图。
例:以我国新疆地区6个地点和4个指标 为例,用最短距离法进行聚类分析.
式中,xik代表第i个地点第k个指标的值,xjk代表第j个地点第k个 指标的值,k=1,2,…,m个指标个数。 距离系数越小,两点的相似程度越大,反之则小。
四、地理系统的聚类方法 系统聚类法中的最短距离法 距离的计算是应用欧氏距离计算方法
原理:在n×n距离矩阵的非对角元素中找出

d pq min{ d ij } 把分类对象 Gp和 Gq归并为一新类Gr,然后按计算公式
G1 G1 G2 0
G2
G3
G4
G5
G6
G7
1.52 0
G3
G4 G5 G6 G7
3.1
2.7
0
5.86 6.02 3.64 0 4.72 4.46 1.86 1.78 0 5.79 5.53 2.93 0.83 1.07 0 1.32 0.88 2.24 5.14 3.96 5.03 0
五、最远距离聚类法


多组判别分析; 按区分不同总体的所用的数学模型来分,有线性判 别和非线性判别; 按判别时所处理的变量方法不同,有逐步判别和序 贯判别等。 判别分析可以从不同角度提出问题,因此有不同的 判别准则,如马式距离最小准则、Fisher准则、平 均损失最小准则、最小平方准则、最大似然准则、 最大概率准则等等, 仅学习Fisher\贝叶斯两类判别。
一、判别分析概述
1. 判别分析的概念 判别分析是判别样品所属类型的一种统 计方法,是在已知研究对象分成若干类型(或 组别)并已取得各种类型的一批已知样品的观 测数据,在此基础上根据某些准则建立判别 式,然后对未知类型的样品进行判别分类。
判别分析应用非常广泛。 在生产、科研和日常生活中经常需要根据观测 到的数据资料,对所研究的对象进行分类。例如在 经济学中,根据人均国民收入、人均工农业产值、 人均消费水平等多种指标来判定一个国家的经济发 展程度所属类型; 在市场预测中,根据以往调查所得的各种指标, 判别下季度产品是畅销、平常或滞销; 在医疗诊断中,根据某人多种体检指标(如体温、 血压、白血球等)来判别此人是有病还是无病。
d rk min{ d pk , d qk }
(k p, q)
计算原来各类与新类之间的距离,这样就得到一个新的(m -1)阶的距离矩阵; 再从新的距离矩阵中选出最小者dij,把 Gi和Gj归并成新类;再计算各类与新类的距离,这样一直下去, 直至各分类对象被归为一类为止。
步骤: 1.确定计算距离方法,计算出各地点间距离,列出初始距离矩阵 D (0)表, 2.在初始距离矩阵D(0)中,选出非对角线上的最短距离,即最小 元素Dpq,将Gp和Gq合并成一新类Gr,再计算新类Gr与其他各类
直到把所有的站点都聚合完毕,最后便可根据各类之间的亲疏关 系,逐步画成一张完整的分类系统图,又称谱系图。
二、聚类分析的数据处理 (一)地理数据的对数变换 减小数据的变幅让数据变均匀 P131 表7-2
(二)地理数据的标准化, 消除数量级、量纲的不同
1. 标准差标准化 就是把变换后的数据(xij),再除以其标准差(Sj),即:
第七章 地理系统的聚类分析 和判别分析
第一节
聚类分析
16种饮料的热量、咖啡因、钠及价格四种变量
一、地理系统分类的概念及基本步骤原理 聚类分析是根据地理变量(或指标或样品)的属性或特征的相 似性、亲疏程度,用数学的方法把他们逐步地分型划类,最后得到
一个能反映个体或站点之间、群体之间亲疏关系的分类系统。
二、判别分析的基本原理
1.判别分析的基本准则
1)费歇Fisher准则
2)贝叶斯Bayes准则
应用费歇准则进行判别分析时,要对原始地
理数据经—定方式进行线性组合,使其形成 一个新变量,即判别函数:要使判别函数值 能充分地区分开地理类型,就需要使各类均 值之间的差别最大(即使不同类之间的差别最 大),而使各类内部的离差平方和为最小(即 使同类间的差别最小)换句话说,即要求类间 (或组间)均值差与类内(或组内)方差之比最大, 这样就能把地理类型区分得最清楚。
第二步,在D(0)中,最小元素为D12=0.375,将 G1与G2合并成一新类G7,G7 G1, G2 ,然后再 计算新类G7与其它各类间的距离.
D7 ,3 min(d13 , d 23 ) min(0.483,0.776) 0.483 D7 , 4 min(d14 , d 24 ) min( 1.749,1.596) 1.596 D7 ,5 min(d15 , d 25 ) min( 1.516,1.336) 1.336 D7 ,6 min(d16 , d 26 ) min( 1.972,1.743) 1.743
第四步,在D(1)表中,最小元素为D37=0.483, 再将G3与G7合成一新类G8,G8 G3 , G7 ,然后 再计算新类G8与其它类间的距离.
D8, 4 min(d 34 , d 47 ) min( 1.926,1.596) 1.596 D8,5 min(d 35 , d 57 ) min( 1.662,1.336) 1.336 D8, 6 min(d 36 , d 67 ) min(2.154,1.743) 1.743
最远距离聚类法与最短距离聚类法的区别 在于计算原来的类与新类距离时采用的公式不 同。 最远距离聚类法的计算公式是
d rk max{ d pk , d qk } (k p, q)
(3.4.11)
类平均法、重心法、离差平方和等
第二节 地理系统的判别分析 (Discriminant Analysis )
3. 地理研究中判别分析的作用
概括为以下三点:
1)对已分好的类型进行合理性检验; 2)判别某地地理类型的归属问题和确定区域
界线(两类判别可以用于划分地理区的界线, 这时,把界线两边视为不同的类型; 3)评价各要素特征值在判别分析中贡献率的 大小。
4. 判别分析的类型
判别分析按判别的级数来区分,有两组判别分析和
k 1
m
式中,xk为要素或特征值,ck为判别系数,它可反映各要素 或特征值的作用方向和贡献率的大小。只要确定了ck,判 别函数y也就确定了。
为了使判别函数(y)能充分地反映出 A、B两种地理类型的差 别,就要使两类之间的均值差 [( y ( A) y ( B)]2 尽可能的大,而各 类内部的离差平方和
例:以我国新疆地区6个地点和4个指标 为例,用最短距离法进行聚类分析.
第一步,将原始数据经标准化处理后,以 欧氏距离作为分类统计量,得初始距离 矩阵D(0),如下表所示.
G1 G2 G3 G4 G5 G6 0.375 0.483 1.749 1.516 1.972 0.776 1.596 1.336 1.743 1.926 1.662 2.154 0.501 0.693 0.589 G2 G3 G4 G5
D9,6 min(d 46 , d 56 ) min(0.693,0.589) 0.589 D9,8 min(d 48 , d58 ) min( 1.596,1.336) 1.336
第七步,作D(3)表,先从D(2)表中删去G4类 和G5类所在的行与列中的元素,再把新计 算出来的D9,6和D9,8的值填到D(2)中,即成 D(3)表. G6 G8
联结顺序 1 2 3 4 5
联结法 新类
G7 G8 G9 G10 G11
类别
G1,G2 G3,G1,G2 G4,G5 G6,G4,G5 G3,G1,G2,G6,G4,G5
距离系数 0.375 0.483 0.501 0.589 1.336
A
16
D 5
9 10 B 8
E
C
作业:对下表应用最短距离法进行系统聚类分析
1)费歇Fisher准则
判别分析依其判别类型的多少与方式不同,可分为两类判别 ,多类判别等,我们主要掌握应用费歇准则进行两类判别分析。 依费歇准则的要求,就要根据已知的地理特征值进行线性组 合,构造一个线性判别函数y,即
y c1 x1 c2 x2 cm xm ck xk
G8
G9
1.743
0.589 1.336
第八步,在D(3)表中,最小元素为 D69=0.589,再将G6和G9合成一新类 G10, G10 G8 , G9 G6 , G4 , G5 ,然后再计 算G10与其它类间的距离
D10,8 min(d68 , d89 ) min( 1.743 ,1.336) 1.336
2.判别分析与聚类分析
判别分析兼有判别与分类的两种性质,但以判别为
主。 判别分析判别分析与聚类分析不同之点在于:判别 分析必须事先己知分几类为前提;聚类分析则不必 事先确定类型,而类型的形成是聚类分析的结果。 判别分析和聚类分析往往联合起来使用,例如判别 分析是要求先知道各类总体情况才能判断新样品的 归类,当总体分类不清楚时,可先用聚类分析对原 来的一批样品进行分类,然后再用判别分析建立判 别式以对新样品进行判别。
xij '
xij x j sj
相关文档
最新文档