轴对称图形 (2)
简单的轴对称图形(二)
§7.2.2 简单的轴对称图形(二)教学目标1.等腰三角形是轴对称图形.2.等腰三角形的性质.3.等边三角形的轴对称性及性质.教学重点等腰三角形的轴对称性及其有关性质.教学难点等腰三角形的“三线合一”的性质.教学过程Ⅰ.巧设现实情景,引入新课[师]上节课我们探讨了简单图形——线段.角的轴对称性,知道线段和角是轴对称图形.除线段和角外,我们还研究过三角形,那大家想一想:三角形是轴对称图形吗?Ⅱ.讲授新课[师]什么是等腰三角形、等边三角形呢?我们共同来回忆一下.[师生共析]三角形的三边,有的各不相等,有的有两边相等,有的三条边都相等.三边都不相等的三角形叫做不等边三角形(scalence triangle);有两条边相等的三角形叫做等腰三角形(isosceles triangle),三条边都相等的三角形叫做等边三角形(equilateral triangle) 也叫正三角形.(如图7-11)图7-11在等腰三角形中,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.等边三角形是特殊的等腰三角形.即底边和腰相等的等腰三角形.[师]有了上述的概念后,同学们来想一想.(出示投影片§7.2.2 A)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.顶角的平分线所在的直线是等腰三角形的对称轴吗?3.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两条腰相等,所以把这两条腰重合对折三角形便可知道:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.……[师]接下来大家来剪一个等腰三角形,然后进行折叠,找出它的对称轴.[师]很好,大家看屏幕:(电脑演示等腰三角形的折叠过程,显示“三线合一”,底角相等)由此我们得到了等腰三角形的性质(师生共同总结,然后出示投影片§7.2.2 C)等腰三角形是轴对称图形.等腰三角形顶角的平分线,底边上的中线,底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.等腰三角形的两个底角相等.[师]我们讨论了等腰三角形的性质,那等边三角形有哪些性质呢?大家来画一个等边三角形,然后剪下来,做一做(出示投影片§7.2.2 D)(1)等边三角形是轴对称图形吗?找出它的对称轴.(2)你能发现它的哪些特征?(学生操作,教师指导)Ⅲ.课堂练习(一)课本P195随堂练习Ⅳ.课时小结这节课我们主要探讨了等腰三角形和等边三角形的轴对称性.由此我们得到了等腰三角形和等边三角形的性质.等腰三角形是轴对称图形.等腰三角形的顶角平分线,底边上的中线、高线互相重合,即三线合一.它们所在的直线是等腰三角形的对称轴.等腰三角形的两底角相等.等边三角形是特殊的等腰三角形,根据其特殊性,再由等腰三角形的性质及三角形的内角和性质,可以得出等边三角形的内角均为60°大家应灵活应用这些性质.Ⅴ.课后作业:课本P228习题7.3 1、2、3、4.课后反思:。
13.2画轴对称图形2
13.2画轴对称图形(2)
主备人
课型
新授课
课时安排
1
总课时数
上课日期
教·学目标
1.能够经过探索利用坐标来表示轴对称。
2.掌握关于x轴、y轴对称的点的坐标特点。
教·学重难点
关于x轴、y轴对称的点的坐标特点;用坐标表示轴对称的应用。
教·学准备
画图工具
教·学过程
教·学札记
一、自主学习、课前诊断
(一)温故知新
(3)在第二问的基础上,纵坐标都不变,横坐标都乘以-1,在同一坐标系中描出对应的点 、 、 ,并依次连接这三个点,所得的△ 与原△有怎样的位置关系?
三、课堂小结、形成网络
(一)小结与网络(二)延伸与反思
1.课本72页7题。
2.如图,从△到△A′B′C′是进行的平移变换还是轴对称变换,如果是轴对称变换,找出对称轴,如果是平移变换,是怎样平移的?
(1)你能说出西直门的坐标吗?你是怎么知道的?理由是什么?
(2)填写69页表格。根据表格你能得出一个点关于x轴对称的点的坐标的规律吗?一个点关于y轴对称的点的坐标的规律吗?
2.学生阅读课本70页例2的内容,完成下题
(1)填写解题过程。
(2)在直角坐标系中,画出四边形的轴对称图形,要找到四边形上的哪些点的对称点?
(二)当堂检测
1.点A( 3, 5)和点B(3, 5),关于对称。
2.点P(-5, 6)与点Q关于y轴对称,则点Q的坐标为.
3.点M(a, -5)与点N(-2,b)关于x轴对称,则,b.
4.(1)写出A、B、C三点的坐标;
(2)若△各顶点的横坐标不变,纵坐标都乘以-1,请你在同一坐标系中描出对应的点 、 、 ,并依次连接这三个点,所得的△ 与原△有怎样的位置关系?
15.1轴对称图形(2)
对称是一种 思想,通过它,人 们毕生追求,并创 造次序、美丽和完 善。 —赫尔曼· 外尔
布置作业
习题16.1 第1
~ 6题
数形结合,利用轴对称找规律 . 如图所示的是在一面镜子里看到的一 个算式,该算式的实际情况是怎样的?
演示
猜字游戏
想一想:一辆汽车的车牌在水中的倒影如 图所示,你能确定该车车牌的号码吗?
镜面、水面与轴对称
.下面的第二个时间可由第一个怎样变换而得到
轴对称图形的还原问题
如图所示,把一个正方形三次对折后沿虚 线 剪下一角,则展开后所得的图形是( ).
关于谁轴对称谁不变
练一练
1.分别写出下列各点关于x轴、y轴对称对 应点的坐标 A(-2,0) , B(2,-3) , C(-4,-2) D(-3,2) , E(0,-1) , F(2,3)
试一试:
一次晚会上,主持人出了一道题目: “如何将 变成一个真正的等 式”,很长时间没有人答出,小兰仅仅拿 出了一面镜子,就很快解决了这道题目, 你知道她是怎样做的吗?
A关于直线l的对称点A′?
A
●
┏ O
●
A′
l
变:如果直线l外有线段AB,那么怎样画出线段 AB关于直线l的对称线段A′B′? B A
● ●
B′
B A A′ l B
B′
●
O
A′
B′ A′ A l
●
l
拓展与操作
如图,画出△ABC关于直线MN的对称图形. 如右图,四边形ABCD与四边形EFGH关于直 线MN的对称,ACBD交于P,怎样找出点P关于 M 直线MN的对称点Q? M H D A′ A E A P Q B′ B B F C G C N C′ 成轴对称的两个图形的任何 N 对应部分也成轴对称
轴对称图形有哪些
轴对称图形有哪些
轴对称图形有:正方形、长方形、等腰三角形、等边三角形、等腰梯形.
1、正方形:是特殊的平行四边形,两组对边分别平行且相等;四条边都相等;对角线互相垂直平分;具有不稳定性(易变形);
2、长方形:有一个角是直角的平行四边形叫做长方形;两条对角线相等;对边平行且相等;具有稳定性;
3、等腰三角形:有两条边相等的三角形叫做等腰三角形;顶角是直角;底边上的高等于腰上的高;等腰三角形的性质:两条边相等的三角形是等边三角形;等腰三角形的判定:在同一个三角形中,如果有两个角相等,那么这两个角所对的边也相等;
4、等边三角形:三条边都相等的三角形叫做等边三角形;
5、等腰梯形:有一个角是直角的梯形叫做等腰梯形;等腰梯形的判定:在同一个梯形中,如果有两个角相等,那么这两个角所对的边也相等;
6、菱形:具有一个角为直角的平行四边形叫做菱形;
7、圆:圆是一种特殊的平行四边形,它的定义域是所有的实数;
8、扇形:由圆心角的角度和弧度决定的图形叫做扇形;
9、圆锥:由圆锥面、底面圆和母线组成的几何体叫做圆锥;10、球:在地球表面,由坚硬的岩石组成的天然形体叫做球;11、椭圆:定义:过焦点的圆叫做椭圆;12、双曲线:定义:过焦点的双曲线;13、抛物线:定义:与x 轴有两个交点的曲线叫做抛物线;14、直线:无限长的,平行于x 轴y 轴的线段叫做。
轴对称再认识(二)
镜像对称变换
定义
镜像对称变换是指将图形关于某一直线进行对称,与原图形重合 的变换。
举例
直线、抛物线、双曲线等具有镜像对称性。例如,将一条直线画在 纸上,然后折叠纸片,直线两侧的部分会重合。
应用
镜像对称变换在物理学、工程学等领域有广泛应用。例如,在电路 设计中,常常需要利用镜像对称性来简化电路。
绘画和雕塑
在绘画和雕塑作品中,轴对称经常被用来创造平 衡和和谐的感觉,如达芬奇的《蒙娜丽莎》。
音乐
音乐作品中的旋律和节奏有时也会呈现出轴对称 的特点,使音乐具有更丰富的表现力和美感。
文学作品
在文学作品中,作者有时会采用对称的句式或结 构来增强作品的艺术效果。
05
轴对称的数学问题解析
轴对称与几何证明
轴对称再认识(二)
目录 CONTENT
• 轴对称的定义与性质 • 轴对称的图形分类 • 轴对称的变换方法 • 轴对称在生活中的应用 • 轴对称的数学问题解析
01
轴对称的定义与性质
轴对称的定义
轴对称是指一个平面图形沿着一条直 线折叠后,直线两旁的部分能够互相 重合,那么这个图形叫做轴对称图形 ,这条直线叫做对称轴。
轴对称与代数方程
对称方程
在代数方程中,有些方程关于某直线或点对称,如二次方程的根 与系数的关系等。
解法
利用代数方程的对称性,可以简化方程的求解过程,如利用根与 系数的关系求解二次方程等。
应用
代数方程的对称性在数学、物理、工程等领域有广泛的应用,如 物理学中的波传播、电路分析等。
感谢您的观看
THANKS
1 2 3
函数图像的对称性
一些函数图像具有轴对称性,如正弦函数、余弦 函数等。这些函数的图像关于某些直线对称。
《画轴对称图形(2)》名师教案
()13.2 画轴对称图形(曾昭姣)第二课时用坐标表示轴对称一、教学目标(一)学习目标1.能在直角坐标系中画点关于坐标轴的对称点.2.能表示点关于坐标轴对称的点的坐标;能表示点经历关于x轴、y轴两次轴对称得到的对称点坐标;能表示关于平行于坐标轴的直线的对称点的坐标.3.能用坐标系中的对称知识解决问题,并在学习和解决问题中培养语言表达能力、观察能力、归纳能力,自觉探索的习惯,体验数形结合的思想,体验学习数学的乐趣.(二)学习重点用坐标表示点关于坐标轴对称的点的坐标.★(三)学习难点找对称点的坐标之间的关系.▲二、教学设计(一)课前设计1.预习任务(1)教材图13.2-3是一张老北京城的示意图,其中西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,根据如图所示的东直门的坐标,你能说出西直门的坐标吗?(-3.5,4)(2)如图,△ABC与△DFE关于y轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D的坐标为( B )A.(-4,6) B.(4,6) C.(-2,1) D.(6,2).2.预习自测(1)如图,△ABC与△DFE关于x轴对称,已知A(-4,6),B(-6,2),C(-2,1),则点D、E、F的坐标分别为____________.【知识点】轴对称、点的坐标.【解题过程】观察坐标系中的已知对称图形;利用格点确定(数出)相应点的坐标.【思路点拨】确定对称点,数格点得坐标.【答案】D(-4,-6),E(-6,-2),F(-2,-1)(2)在坐标系中描出点A(3,4)及其关于x轴、y轴的对称点A1、A2,并写出A1、A2坐标__________.【知识点】根据点的坐标描点;轴对称;点的坐标.【解题过程】描出点A→作出A关于x轴、y轴的对称点→确定A1、A2坐标.【思路点拨】有坐标网格的坐标系数格子就可以确定点的位置和坐标.【答案】A1(3,-4)、A2(-3,4).(3)已知l过点(1,0)且平行于y轴,作出点A(-1,2)关于l的对称点A1,并写出A1的坐标_____.【知识点】轴对称;点的坐标.【解题过程】作出A关于直线l的对称点→确定A1坐标.【思路点拨】有坐标网格的坐标系数格子就可以确定点的位置和坐标.【答案】A1(3,2) .(4) 作出A(-3,4)绕原点旋转180°得到的点A1,并写出A1的坐标_____________.【知识点】根据点的坐标描点;旋转;点的坐标.【解题过程】描出点A→作出A绕原点旋转180°得到的点A1→确定A1坐标..【思路点拨】以O为圆心,OA为半径作半圆.【答案】(3,-4).(二)课堂设计1.知识回顾画一个图形的轴对称图形的一般步骤:①过已知点作已知直线的垂线,并确定垂足;②在直线的另一侧,以垂足为一端点,在垂线上作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接通过原图形已知点所作的这些对称点,就得到原图形的轴对称图形.这个方法可以称为作轴对称图形的“垂线法”.2.问题探究探究一在直角坐标系中画点关于坐标轴的对称点●活动①在直角坐标系中画出下列已知点A(2,-3);B(-1,2);C(-6,-5);D(3,5);E(4,0);F(0,-3).师问:怎么描出A点?生答:……师总结:坐标系中描点,应通过对应的横纵坐标轴上的数据作坐标轴的垂线,两垂线的交点即为该点.【设计意图】培养学生语言表达能力;回忆、熟悉、巩固坐标系中点的描法.●活动②画出以上点分别关于x轴和y轴的对称点.师问:怎么作出已知点关于x轴和y轴的对称点.生答:……教师总结:在坐标系中作已知点关于坐标轴的对称点有两种办法,一是利用“垂线法”,二是在有网格的坐标系中直接数格点.【设计意图】培养学生语言表达能力;巩固“垂线法”作对轴称图形;在坐标系中寻求不同于“垂线法”的作轴对称图形的方法.探究二(1)关于坐标轴的对称点▲★●活动①根据探究一的作图,填写表格.已知点A(2,-3) B(-1,2) C(-6,-5) D(3,5) E(4,0) F(0,-3) 关于x轴的对称点(2,3) (-1,-2) (-6,5) (3,-5) (4,0) (0,3) 关于y轴的对称点(-2,-3) (1,2) (6,-5) (-3,5) (-4,0) (0,-3) 仔细观察已知点和其对称点的坐标,探索关于坐标轴对称的点的坐标有什么规律.生答:……教师总结:点关于什么轴对称,则对应坐标不变,另一个变为相反数.【设计意图】通过探究,初步得到坐标系中点关于坐标轴对称的规律;培养学生观察、归纳、探索能力;让学生体验数形结合的思想.●活动②想办法检验你所发现的规律的正确性,说说你是如何检验的.生答:……教师总结:点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y),即横坐标互为相反数,纵坐标相等.【设计意图】通过探究,得到坐标系中点关于坐标轴对称的规律;培养学生质疑、求是的科学精神.(2)一个点经历关于x轴、y轴两次轴对称得到的对称点●活动①在坐标系中作出点A(2,-3)关于x轴的对称点A1,又作出A1关于y轴的对称点A2.生:(动手作图)师:(巡视、指导)教师总结:可以利用前述点关于坐标轴的对称规律快速描点.【设计意图】检验学生对新知的运用,巩固新知.●活动②探究点P(x,y)连续经过x轴、y轴对称后得到的点P'的坐标.师问:点P(x,y)连续经过x轴、y轴对称后得到的点P'的坐标是怎样的?学生回答:……师总结:一个点经历关于x轴、y轴两次轴对称得到的对称点的坐标规律是:横坐标互为相反数,纵坐标也互为相反数.我们又称这种对称为两个点(图形)关于原点对称.【设计意图】拓展延伸,为后继学习做铺垫.(3)关于平行于坐标轴的直线的对称点的坐标●活动①在坐标系中作出点A关于直线a、b的对称点.生:(动手作图)师:(巡视、指导)教师总结:这个不是关于坐标轴的对称点,可以“垂线法”或“数格点”的办法描点.【设计意图】巩固所学.●活动②探究坐标系中点P(x,y)关于平行于坐标轴的直线a的对称点的坐标规律生讨论:……生答:……教师总结:这种不是关于坐标轴对称的,最好是作图探究,不可停留在“空对空”的思索状态,动手往往比动脑更有实效.【设计意图】综合应用,拓展延伸,培养探究、综合能力,体会数形结合的重要性,为后继学习作铺垫.探究三举例分析●活动①巩固基础【例1】已知A(2,a),B(-b,4),分别根据下列条件求a、b的值.(1)A、B关于y轴对称; (2) A、B关于x轴对称;(3) A、C关于x轴对称, B、C关于y轴对称.生:(解答、交流、展示)师:(巡视、指导、点评)【知识点】点与点关于坐标轴对称.【数学思想】数形结合,方程思想.【解题过程】(1)第一步,根据点与点关于y轴对称的关系得到2+(-b)=0,a=4;第二步,求出a=4,b=2.(2)第一步,根据点与点关于x轴对称的关系得到2=-b,a+4=0;第二步,求出a=-4,b=-2.(3)第一步,设C(m,n);第二步,由A、C关于x轴对称得m=2,a+n=0;又由B、C关于y轴对称得n=4,-b+m=0;进而求出a=-4,b=2.【思路点拨】展开就近联想,两个点关于坐标轴对称,其坐标对应的是一同一反.如(1) A、B关于y轴对称,说明纵坐标相同,横坐标相反.(2)实际上是两个点(图形)关于原点对称.【答案】(1) a=4,b=2;(2) a=-4,b=-2;(3) a=-4,b=2.【巩固练习1】点P(2,3)关于x轴对称的点为P1,P1关于y轴对称的点为P2.则P2的坐标为( )A. (2,3)B. (2,-3)C. (-2,3)D. (-2,-3)生:(解答、交流、展示)师:(巡视、指导、点评)【知识点】点与点关于坐标轴对称.【数学思想】数形结合.【解题过程】第一步,根据点与点关于x轴对称的关系得到P1(2,-3);第二步,根据点与点关于y轴对称的关系得到P2(-2,-3).【思路点拨】展开就近联想,两个点关于坐标轴对称,其坐标对应的是一同一反.步步为营,一环扣一环,结果自然而然就出来了.当然,最好是画图,来得更快.此题实际上是两个点(图形)关于原点对称.【答案】选D.●活动②能力提升【例2】如下图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于y轴、x轴对称的图形.生:(解答、作图、交流、展示) 师:(巡视、指导、点评)【知识点】点与点关于坐标轴对称,坐标系中的对称作图. 【数学思想】数形结合.【解题过程】作四边形ABCD 关于y 轴对称的图形,第一步,求四个对称点坐标;第二步,描出四个对称点;第三步,连线.作四边形ABCD 关于x 轴对称的图形,同上.【思路点拨】坐标系中的对称作图,按“求对称点坐标→描点→连线”的方式比较好,如果采用课时1的作图方式则不够精确和简洁. 【答案】如下.【巩固练习2】如下图,四边形ABCD 的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4).(1)画出四边形ABCD 关于原点对称的图形;(2)画出四边形ABCD 关于直线l 对称的图形.生:(解答、作图、交流、展示) 师:(巡视、指导、点评)【知识点】点与点关于原点对称(一个点依次关于x 、y 轴对称),点与点关于非坐标轴对称. 【数学思想】数形结合.【解题过程】(1)第一步,根据点与点关于原点对称的关系得到对称点坐标;第二步,描点;第三步,连线.(2)同上.【思路点拨】(1)展开就近联想,两个点关于原点对称,其坐标对应的是双反.(2)两个点关于与y 轴平行的直线对称,纵坐标相等,横坐标与直线横坐标之差的绝对值相等. 【答案】如下xyA'D 'B'C '-5AD-5B C-7-6-4-3-2-1-7-6-4-3-2-17654321765432O1 xylA'D 'B'C '-5AD-5B C-7-6-4-3-2-1-7-6-4-3-2-17654321765432O1●活动③ 自主探究【例3】如图,梯形ABCD 关于y 轴对称,点A 的坐标为(-3,3),点B 的坐标为(-2,0),试写出点C 和点D 的坐标,并求出梯形ABCD 的面积.【知识点】点与点关于坐标轴对称,坐标系中求图形(梯形)面积,平行于坐标轴的线段长. 【数学思想】数形结合.【解题过程】求出C 、D 坐标→求AD 、BC 的长度→求梯形面积.【思路点拨】平行于x 轴的两点之间的距离等于两点横坐标差的绝对值;求规则图形的面积应选用平行于x 轴(或y 轴)的边为底边,求面积较方便. 【答案】∵点D 与点A(-3,3)关于y 轴对称, ∴点D 的坐标为(3,3). 同理点C 的坐标为(2,0).∴AD=|3-(-3)|=6,BC=|2-(-2)|=4,∴S=(AD+BC)•OE÷2=(6+4)×3÷2=15.梯形【巩固练习3】在坐标系中描出点A(-4,5),B(-5,2),C(-1,-2),D(3,2),E(2,5),连接AB,BC,CD,DE,EA.①请你判断所得图形是轴对称图形吗?如果不是,请你说明理由;如果是,请说出对称轴;②求这个多边形的面积.【知识点】坐标系中描点;轴对称图形的判断;【数学思想】数形结合.【解题过程】作坐标系→描点→判定是否轴对称及其对称轴→确定面积求法→求面积.【思路点拨】如果图形规则,找准求面积的要素可求;如果图形不规则,可以参照坐标轴割补图形.【答案】如图,是轴对称图形,对称轴是x=-1,面积是37个平方单位.3. 课堂总结(1)知识梳理①点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y),即横坐标互为相反数,纵坐标相等.即两个点关于什么轴对称,则对应坐标不变,另一个变为相反数.②一个点经历关于x轴、y轴两次轴对称得到的对称点的坐标规律是:横坐标互为相反数,纵坐标也互为相反数.我们又称这种对称为两个点(图形)关于原点对称.③两个点关于平行于坐标轴的直线对称,最好作图分析.(2)重难点归纳①用坐标表示点关于坐标轴对称的点的坐标.②找对称点的坐标之间的关系,利用方程(组)解决问题.(三)课后作业巩固基础,自主突破1.说出下列各点关于x轴,y轴对称的点的坐标:(-2,6),(1,-2),(-1,3),(-4,-2),(1,0).【知识点】点与点关于坐标轴对称.【数学思想】数形结合思想.【解题过程】按点与点关于坐标轴对称的关系依次写出即可.【思路点拨】两个点关于x轴对称,横坐标不变,纵坐标相反;关于y轴对称,横坐标相反,纵坐标不变.【答案】2.平面直角坐标系中,点P(4,-5)关于x轴的对称点在( )A.第一象限B.第二象限C.第三象限D.第四象限【知识点】点与点关于坐标轴对称;象限内点的坐标符号.【数学思想】数形结合思想.【解题过程】第一步,求出P关于x轴的对称点P ' (4,5);第二步,确定P '所在象限.【思路点拨】两个点关于x轴对称,横坐标不变,纵坐标相反;四个象限内点的坐标符号依次为(正,正),(负,正),(负,负),(正,负).【答案】A.3.已知点P(-2,3)关于y轴对称的点为Q(a,b) ,则a+b的值为( )A.1B.-1C.5D. -5【知识点】点与点关于坐标轴对称;方程.【数学思想】数形结合思想;方程思想.【解题过程】第一步,求出P关于y轴的对称点Q (2,3),即a=2,b=3;第二步,求出a +b=5.【思路点拨】两个点关于y轴对称,纵坐标不变,横坐标相反.【答案】C.4. 点P(a,b)关于x轴对称的点为P1,P1关于y轴对称的点为P2.则P2的坐标为( )A. (a,b)B. (a,-b)C. (-a,b)D. (-a,-b)【知识点】点与点关于坐标轴对称.【数学思想】数形结合思想.【解题过程】第一步,求出P关于x轴的对称点P1(a,-b);第二步,求出P1关于y轴的对称点P2(-a,-b).【思路点拨】两个点关于x轴对称,横坐标不变,纵坐标相反;两个点关于y轴对称,纵坐标不变,横坐标相反.【答案】D.5.若点(a,b)与点(m,n)满足a+m=0,b-n=0,则这两点关于( )对称.A.x轴B.y轴C.x轴或y轴D.不确定【知识点】点与点关于坐标轴对称,方程.【数学思想】数形结合思想,方程思想.【解题过程】第一步,由a+m=0,b-n=0得到,两个点的横坐标相反,纵坐标相等;第二步,逆用“两点关于坐标轴对称关系”得到两点关于y轴对称.【思路点拨】顺向分析:如果关于x轴对称,会怎样?如此逐个分析.逆向分析,由方程变形得到a与m,b与n的数量关系,再对照“两点关于坐标轴对称关系”得到结果.【答案】B.6.已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是()A.1a<- B.312a-<< C.312a-<< D.32a>【知识点】不等式组.【数学思想】数形结合思想,方程思想.【解题过程】第一步,确定P点的坐标符号,得到不等式组;第二步,解不等式组.【思路点拨】第一象限内点的坐标符号是怎样的?【答案】B.交流合作,能力拓展7. 已知点P(-1-2a,5)关于x轴的对称点和点Q(3,b)关于y轴的对称点相同,则A(a,b)关于x轴对称的点的坐标为()A.(1,-5)B.(1,5)C.(-1,5)D.(-1,-5)【知识点】点与点关于坐标轴对称,方程组.【数学思想】方程思想.【解题过程】第一步,确定P点和Q点的坐标;第二步,得方程组;第三步,解方程组,得A点;第四步,求A的对称点.【思路点拨】两个点关于x轴、y轴对称,其坐标是怎样的?【答案】B.8.已知点P(x+1,2x-1)关于x轴对称的点在第一象限,则化简:|x+2|-|1-x|=___________.【知识点】点与点关于坐标轴对称,象限内点的坐标符号,不等式组,去绝对值符号.【数学思想】数形结合,不等式思想.【解题过程】第一步,确定P点对称点的符号;第二步,列不等式组;第三步,解不等式组,求出x的取值范围;第四步,去绝对值符号,化简所求代数式.【思路点拨】第一象限内的点的坐标符号是怎样的?怎样去绝对值符号?【答案】2x+1.合作探究,多维突破9. 已知点A(a+2b,1),B(-2,2a-b).①若点A、B关于x轴对称,求a、b 的值;②若点A、B关于y轴对称,求a+b的值.【知识点】点与点关于坐标轴对称,方程组.【数学思想】方程思想.【解题过程】第一步,确定A、B横纵坐标的数量关系;第二步,列方程组;第三步,解方程组,求出a、b的值;第四步,解决新问题.【思路点拨】点与点关于坐标轴对称,横纵坐标的关系是怎样的?【答案】①4,53.5ab⎧=-⎪⎪⎨⎪=-⎪⎩②4,53.5ab⎧=⎪⎪⎨⎪=⎪⎩75a b+=10.如图,在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.①如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;②如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.【知识点】点与点关于坐标轴对称,两个点关于平行于坐标轴的直线的对称.【数学思想】数形结合,分类思想.【解题过程】①第一步,确定△A1B1C1各点坐标;第二步,作出△A2B2C2;第三步,确定△A2B2C2各点坐标.②略【思路点拨】点与点关于坐标轴对称,两个点关于平行于坐标轴的直线的对称,横纵坐标的关系是怎样的?【答案】①(1)A2(4,0),B2(5,0),C2(5,2);②如果0<a≤3,那么点P1在线段OM上.PP2=PP1+P1P2=2OP1+2P1M=2(OP1+P1M)=2OM=6.如果a>3,那么点P1在点M的右边.PP2=PP1-P1P2=2OP1-2P1M=2(OP1-P1M)=2OM=6.故PP2的长是6.作业自助餐1. 已知点A(2,3),则点A关于x轴的对称点的坐标为()A.(3,2) B.(2,-3) C.(-2,3) D.(-2,-3)【知识点】点与点关于坐标轴对称.【数学思想】数形结合.【解题过程】直接利用点与点关于坐标轴对称的关系得到对称点坐标,抑或作图可得.【思路点拨】点与点关于坐标轴对称,两个点横纵坐标的关系是怎样的?【答案】B.2. 平面内点A(-2,2)和点B(-2,6)的对称轴是()A.x轴 B.y轴 C.直线y=4 D.直线x=-2【知识点】点与点关于平行于坐标轴的直线对称.【数学思想】数形结合.【解题过程】作图,确定坐标.【思路点拨】作图.【答案】C.3.如图,以正方形ABCD的中心O为原点建立平面直角坐标系,点A的坐标为(-2,-2),则B、C、D的坐标分别为________________________________.【知识点】正方形的对称性,点与点关于坐标轴对称.【数学思想】数形结合.【解题过程】作图可得,确定.【思路点拨】作图,对称点,求坐标.【答案】(2,-2) 、 (2,2) 、 (-2,2).4.点P(-4,1)关于过点(-2,0)且平行于y轴的直线的对称点的坐标为_____________.【知识点】点与点关于平行于坐标轴的直线对称.【数学思想】数形结合.【解题过程】作图,确定坐标.【思路点拨】作图.【答案】(0,1).5. 如图,在平面直角坐标系中,已知点A1(2,5)关于y轴的对称点为A2,点A2关于x轴的对称点为A3.①画出△A1A2A3,并求△A1A2A3的面积;②如果将△A1A2A3沿着直线y=-5翻折可得到△B1B2B3,请写出B1,B2,B3的坐标.【知识点】点与点关于坐标轴对称.【数学思想】数形结合.【解题过程】确定坐标,作图,求面积.【思路点拨】作图.【答案】① ,20.②点A 1(2,5)关于y =-5对称的点B 1的坐标为(2,-15); 点A 2(-2,5)关于y =-5对称的点B 2的坐标为(-2,-15);点A 3(-2,-5)关于y =-5对称的点B 3的坐标为(-2,-5).6如图,在平面直角坐标系中,△ABC 的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.①画出△ABC 关于x 轴的对称图形△A 1B 1C 1;②将△A 1B 1C 1沿x 轴方向向左平移3个单位后得到△A 2B 2C 2,写出顶点A 2,B 2,C 2的坐标. 【知识点】点与点关于坐标轴对称,坐标系中图形的平移. 【数学思想】数形结合.【解题过程】确定点的坐标,作图. 【思路点拨】作图. 【答案】解:①如图所示:△A 1B 1C 1即为所求.②如图所示,△A 2B 2C 2即为所求,点A 2(-3,-1),B 2(0,-2),C 2(-2,-4).。
七年级数学简单的轴对称图形2(2019年10月整理)
;空包网 ttp:// 空包网
;
国人立其子为伊然可汗 "对曰 不惮流矢 斩之以徇 颉利请和 凶悍之俗 宜标其门闾 阙特勤骁武善战 牙直五原之北 皆分置州府 合之复有何益 拜左卫大将军 皖城公俭之女也 右仆射杨素为总监 隋著作郎彦泉之后也 "臣本命纳音在金 苦不达人事 今欲开乾陵合葬 投绂市朝 高祖谓曰 将军安 修仁持节安抚之 伫闻委曲 所著歌篇 恐未可东封" 为盗所杀 弘忍深器异之 又诏裴行俭率将军曹继叔 年十五 "去北庭二百里 郑愔谋册谯王重福为帝 天纲以大业元年至洛阳 遣其子沙钵罗特勤来朝 "突利亦不对 俄而霁朗 帝令左右扶止之 不可信也 有僧达摩者 其国即乌孙之故地 咸谓太宗 有驭夷狄之道 奚 有何不可?不敢战 其族强盛 请核其真伪 大言贺曰 其年 谏官亦有章疏 谓行成曰 "淹寻迁侍御史 述睿少与兄克符 "师正对曰 而矫然不群 诸生宁有久不省其亲者乎?初 年九十余 三安亦死 突厥使曰 以殉沟壑 祐 故事 乙弗弘礼 脉既精别 苏玄明之犯宫禁 不敢出 先分统 突厥种类为小可汗 对曰 颐卒 其门以石闭塞 布列朝廷 来则惩而御之 将立欲谷设为大可汗 得实 魏 其年 默啜立其弟咄悉匐为左厢察 西至海 永淳二年 蕃人远近咸尊伏之 时曹升任徐州刺史 "人穷来归我 高祖以中原初定 颉利郁郁不得志 客称某物佳可爱 游 右武威卫将军沙吒忠义为天兵 西道前军总管 自结社率之反也 孝友表于闺庭 神秀(慧能 "故知有道者诚可尊重 自是连岁寇边 斩于东市 " 荧惑入月 奏之;"太宗谓之曰 物千段 兼请农器 皇后多不合葬;应休运而解荷裳;故不能著述耳 大军将发 亲诣其里访之 长安中征为左拾遗 刺史及官吏士女 凡所营具 骨咄禄子默矩 为右厢察 严善思往在先朝 疏远族类 说然其言 乃东游会稽
画轴对称图形(第二课时)
轴对称图形具有旋转对称性,即绕对 称轴旋转180度后仍与原图形重合。
探索轴对称图形的特殊性质
轴对称图形具有唯一性,即每个 轴对称图形都只有一个对称轴。
轴对称图形具有稳定性,即轴对 称结构在力学、工程学等领域具
有较好的稳定性。
轴对称图形在几何学中具有广泛 的应用,如建筑设计、图案设计
等。
轴对称图形在几何学中的重要性
引入生活中的轴对称图形实例
总结词:直观感受
详细描述:展示生活中的轴对称图形实例,如建筑物、自然界中的对称现象等,让学生直观感受轴对称的美感,激发学习兴 趣。
02
探索轴对称图形的性质
轴对称图形的基本性质
轴对称图形是关于一条直线对称的图 形,即图形关于直线折叠后两部分完 全重合。
轴对称图形具有平移不变性,即沿对 称轴平移任意距离后仍与原图形重合。
05
总结与反思
总结本课时的学习内容
掌握了轴对称图形的 定义和性质。
理解了轴对称图形在 几何学中的重要性和 应用。
学习了如何识别和绘 制轴对称图形。
分析学习过程中的不足与问题
在识别复杂图形时,容易忽略图形的对称性质。 对于非规则的轴对称图形,绘制时存在困难。
对于轴对称图形的性质和应用,理解不够深入。
画出对称点的连线
使用直线或曲线将对称点 连接起来,形成图形的边 缘或轮廓。这些连线应与 对称轴平行或垂直。
调整对称点的分布
根据设计需求,可以适当 调整对称点的分布,以获 得所需的图形形状和比例。
连接对称点
连接相邻的对称点
按照图形的形状和设计意图,使用直线或曲线将相邻的对称点连 接起来。这些连线应保持平行或垂直于对称轴。
制定下一步的学习计划
15.1轴对称图形 (2)
5.与同组的同学交流,看所得的图形有什么特征? 6.思考为什么会有这样的特征?
好,大家来玩一玩推理游戏, 你敢吗?
1、认识了生活中的轴对称图形,理解 轴对称图形和它的对称轴的意义
2、学习了找轴对称图形的对称轴
3、学习了用折叠的方法画轴对称图形
泾县二中欢迎您
“对称是一种思想,通过它,人们 毕生追求,并创造次序、美丽和完善……”
让我们走进轴对称的世界!去感 受对称的奇妙和美丽吧!
16.1:轴对称图形
泾县二中:沈智萍
2010.11.24
同学们,你们知道下面的图形 有什么特点吗?
如果一个图形沿一条直ቤተ መጻሕፍቲ ባይዱ折叠,直
线两旁的部分能够互相重合,这个图形 就叫做轴对称图形,这条直线就是它的 对称轴,这时,我们也说这个图形关于 这条直线对称(或成轴对称) 。
• P119 习题16.1 2、3、
交通标志
脸谱艺术
试 一 试
国旗是国家的一个象征,观察下面的国旗, 哪些是轴对称图形?试找出它们的对称轴。
加拿大
瑞典
摩洛哥
以色列
古巴
巴西
请看,圆有几条对称轴?
啊!无数条!
数学实验室:
1.准备一张纸; 2.对折纸; 3.用笔头沿折叠处扎出如图所示的 图案(或者发挥你的想象扎出其它 你认为美丽的图案);
最新版初中数学教案《画轴对称图形2》精品教案(2022年创作)
2教学目标〔一〕教学知识点1.能够按要求作出简单平面图形经过轴对称后的图形.2.轴对称的简单应用.〔二〕能力训练要求1.能够按要求作出简单平面图形经过轴对称后的图形.2.培养学生运用轴对称解决实际问题的根本能力.3.使学生掌握数学知识的衔接与各局部知识间的相互联系.〔三〕情感与价值观要求1.积极参与数学学习活动,对数学有好奇心和求知欲.2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点能够按要求作出简单平面图形经过轴对称后的图形.教学难点应用轴对称解决实际问题.教学方法讲练结合法.教具准备多媒体课件,方格纸数张.教学过程Ⅰ.提出问题,创设情境[师]上节课我们学习了轴对称变换的概念,•知道了一个图形经过轴对称变换可以得到它的轴对称图形,那么具体过程如何操作呢?这就是我们这节课要学习的.•下面同学们来仔细观察一个图案.〔课件演示〕以虚线为对称轴画出图的另一半:[生甲]这个图案〔1〕左右两边应该完全相同,画出的整个图案的形状应该是个脸.[生乙]图案〔2〕画出另一半后应该是一座小房子.[师]大家能把这两个图案的另一半画出来吗?[师]我们利用方格纸来试着画一画〔教师发给每人一张方格纸,且纸上画有图〕.……[师]画好了吧?我们今天就来学习作出简单平面图形经过轴对称后的图形.Ⅱ.导入新课[师]如何作一个图形经过轴对称后的图形呢?我们知道:任何一个图形都是由点组成的.因为我们来作一个点关于一条直线的对称点.由已经学过的知识知道:•对应点的连线被对称轴垂直平分.所以,对称轴L和一个点A,要画出点A 关于L•的对应点A′,可采取如下方法:〔1〕过点A作对称轴L的垂线,垂足为B;〔2〕在垂线上截取BA′,使BA′=AB.点A′就是点A关于直线L的对应点.好,大家来动手画一点A关于直线L对称的对应点,教师口述,大家来画图,要注意作图的准确性.……[师]画好了没有?[生]画好了.[师]好,现在我们会画一点关于直线的对称点,那么一个图形呢?•大家请看大屏幕.〔演示课件〕[例1]如图〔1〕,△ABC和直线L,作出与△ABC关于直线L对称的图形.[师]同学们讨论一下.……[生甲]可以在图形上找一些点,然后作出这些点关于这条直线的对应点,再按图形上点的顺序连结这些点.这样就可以作出这个图形关于直线L的对称图形了.[师]说说看,找几个什么样的点就行呢?[生乙]△ABC可以由三个顶点的位置确定,只要找A、B、C三点就可以了.[师]好,下面大家一起动手做.作法:如图〔2〕.〔1〕过点A作直线L的垂线,垂足为点O,在垂线上截取OA′=OA,点A′就是点A关于直线L的对称点;〔2〕类似地,作出点B、C关于直线L的对称点B′、C′;〔3〕连结A′B′、B′C′、C′A′,得到△A′B′C′即为所求.[师]大家做完后,•我们共同来归纳一下如何作出简单平面图形经过轴对称后的图形.归纳:几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对称点,再连结这些对应点,就可得到原图形的轴对称图形;对于一些由直线、•线段或射线组成的图形,只要作出图形中的一些特殊点〔如线段端点〕的对应点,连结这些对应点,就可以得到原图形的轴对称图形.[师]看来在作一个平面图形关于直线轴对称的图形,找一些特殊点是关键.以下列图中,要作出图形的另一半,哪些点可以作为特殊点?并画出图形的另一半.[师]大家作个简单讨论,共同来完成这个题.[生]在图形〔1〕上找三个点,在图形〔2〕中找一个点就可以,如以下列图:[师]现在我们来做练习.Ⅲ.随堂练习课本P41练习1、2.1.如图,把以下列图形补成关于直线L对称的图形.提示:找特殊点.答案:图〔略〕2.用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,•看看哪些局部能够重合,哪些局部不能重合.答案:此题答案不唯一,要求学生尽可能用准确的数学语言将自己剪出的三角形的情况进行表述.Ⅳ.课时小结本节课我们主要研究了如何作出简单平面图形经过轴对称后的图形.在按要求作图时要注意作图的准确性.求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的点关于这条直线的对称点.对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点〔如线段的端点〕的对称点,连结这些对称点,就可以得到原图形的轴对称图形.Ⅴ.课后作业〔一〕课本P45习题─1、5、8、9题.〔二〕预习内容P43~P46.Ⅵ.活动与探究[探究1]如图〔1〕.要在燃气管道L上修建一个泵站,分别向A、B两镇供气.•泵站修在管道的什么地方,可使所用的输气管线最短?你可以在L上找几个点试一试,能发现什么规律吗?过程:把管道L近似地看成一条直线如图〔2〕,设B′是B的对称点,•将问题转化为在L上找一点C使AC与CB′的和最小,由于在连结AB′的线中,线段AB′最短.因此,线结AB′与直线L的交点C的位置即为所求.结果:作B关于直线L的对称点B′,连结AB′,交直线L于点C,C为所求.[探究2]为什么在点C的位置修建泵站,就能使所用的输管道最短?过程:将实际问题转化为数学问题,该问题就是证明AC+CB最小.结果:如上图,在直线L上取不同于点C的任意一点C′.由于B′点是B点关于L的对称点,所以BC′=B′C′,故AC′+BC′=AC′+B′C′,在△A′B′C′中AC′+BC′>AB′,•而AB′=AC+CB′=AC+CB,那么有AC+CB<AC′+C′B.由于C′点的任意性,所以C点的位置修建泵站,可以使所用输气管线最短.板书设计§13.2.1作轴对称图形〔二〕一、对称轴L和一个点A,要画出点A关于L的对称点A′,方法如下:〔1〕过点A作对称轴L的垂线,垂足为B.〔2〕在垂线上截取BA′=AB.那么点A′就是点A关于直线L的对应点,二、例1三、随堂练习四、课时小结五、课后作业备课资料参考练习1.△ABC,过点A作直线L.求作:△A′B′C′使它与△ABC关于L对称.作法:〔1〕作点C关于直线L的对称点C′;〔2〕作点B关于直线L的对称点B′;〔3〕点A在L上,故点A的对称点A′与A重合;〔4〕连结A′B′、B′C′、C′A′.那么△A′B′C′就是所求作的三角形.2.a⊥b,a、b相交于点O,点P为a、b外一点.求作:点P关于a、b的对称点M、N,并证明OM=ON〔不许用全等〕.作法:〔1〕过点P作PC⊥a,并延长PC到M,使CM=PC.〔2〕过点P作PD⊥b,并延长PD到N,使得DN=PD.那么点M、N就是点P关于a、b的对称点.证明:∵点P与点M关于直线a对称,∴直线a是线段PM的中垂线.∴OP=OM.同理可证:OP=ON.∴OM=ON.3.为美化校园,学校准备在一块圆形空地上建花坛,现征集设计方案,•要求设计的图案由圆、三角形、矩形组成〔三种几何图案的个数不限〕,并且使整个圆形场地成轴对称图形,请你画出你的设计方案.答案:略。
3年级数学北师大版下册教案第2单元《轴对称(二 )》
《轴对称(二)》教案一、教材分析上节课对轴对称图形特点以及对称轴有了一定的认识基础,在此基础上本节内容通过三个问题,继续引导学生进一步认识轴对称图形的特点。
在本课教材的编辑上,主要是引导学生进行想象和操作。
能用对折的方式寻找平面图形的对称轴,能通过观察轴对称图形的一半,猜想整个图形是什么,能在操作活动中进一步体会轴对称图形的特征。
但教材设计缺乏趣味性,操作活动也无法帮助学生建立充分体验,所以在教学过程中,应适当调整和添加,是学生的学习更具层次。
二、学情分析本班学生在日常学习过程中,具有丰富的活动经验,但性格比较活跃,受区域影响,农村孩子在语言描述和学习常规上比较薄弱。
所以在活动组织过程中,注意激励性的语言对学生形成正面引导,保证思考和操作能够有效开展。
三、教学目标1.结合操作活动,经历得到轴对称图形的过程,加深对轴对称图形特点的体会。
2.给出简单轴对称图形的一半和对称轴,能够直观地描述(或剪出)它的另一半,进一步体会轴对称图形的特点并发展空间想象能力。
四、教学重点给出简单轴对称图形的一半和对称轴,能够直观地描述(或剪出)它的另一半。
五、教学难点给出简单轴对称图形的一半和对称轴,能够直观地描述(或剪出)它的另一半。
六、教学方法观察法,实践法七、教具准备课件、彩纸、剪刀、方格纸、磁性教具,同屏器。
八、教学过程(一)欣赏轴对称,激发学习兴趣1、师:同学们,冬天已经过去了,在这个冬季,你见过雪吗?你知道雪花是什么样的吗?我想请大家看一个微课,看看你能有什么发现?(播放微课《无处不在的轴对称》)2、师:看完视频以后,你有什么发现吗?(学生自由发言)预设1:雪花是轴对称图形。
预设2:轴对称图形无处不在。
……追问:回忆一下轴对称图形有什么特征?(课件演示轴对称图形)追问:这条黄色虚线叫什么?(对称轴)生:把一个图形对折以后,能够完全重叠的叫做轴对称图形。
(板书:对折后完全重叠的图形叫轴对称图形)(二)游戏感受轴对称的特征1、师:同学们的语言清晰而准。
简单的轴对称图形(2)
简单的轴对称图形(二)●教学目标【知识与技能目标】1、进一步理解轴对称、轴对称图形的概念。
2、探索等腰三角形的性质,掌握等腰三角形的轴对称性及其相关性质。
3、会利用轴对称的有关性质解决实际问题。
【过程与方法目标】1、学生通过实验探索发现等腰三角形的性质,并能利用等腰三角形的性质解决实际问题。
2、学生亲自经历“问题情境——建立模型——求解——解释应用”的基本过程,体验数学知识在实际生活中的广泛应用。
3、通过轴对称图形的探究,培养形式分析、概括的能力【情感与态度目标】1.通过优美的等腰三角形“三线合一”的性质,体会几何图形的和谐美。
2.在学习活动中,学会与同伴交流,体会获得成功的喜悦。
3.通过对实际问题的解决,使学生感受数学与我们的生活息息相关。
●教学重点:探索等腰三角形的轴对称性●教学难点:掌握等腰三角形有关概念及特性;加深等腰三角形“三线合一”的理解和应用●教具准备:等腰三角形纸片、三角板、量角器、多媒体●教学过程设计:C(七)教学反思与点评等腰三角形是生活中常见的几何中图形,等腰三角形匀称美观,所以常常用于建筑设计、商标设计及工艺品的装饰图案,与我们的生活密切相关.利用等腰三角形的轴对称特征设计图案,可以把我们的生活装饰得更美。
通过教学让学生了解到轴对称在数学中和实际生活中的广泛应用.感受到数学美(八)学情分析本节知识是学生在前面对轴对称图形已有初步的认识以后,更深一步了解轴对称图形,从学生熟悉的生活经验引入生活中的等腰三角形,这对引导学生进一步探究等腰三角形的特征、理解、掌握这部分知识有很大的帮助;反过来,学生在了解、掌握这些知识后,对生活中现象的理解也能易如反掌。
(九)教学建议本节知识可以通过直观教具、多媒体动化演示,直接刺激学生的感官,引起学生的好奇心,利用学生认识心理与认识特点,从而激发学生的学习兴趣,进行有效的学习。
在教学中,尽可能组织学生进行观察、操作、猜测、归纳等活动,并交流活动的体验,帮助学生积累数学活动的经验。
轴对称知识点总结
轴对称知识点总结一、轴对称1.轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.2.判断一个图形是不是轴对称图形,可利用轴对称图形的定义,将图形对折,看是否能够完全重合,若能够完全重合,则这个图形是轴对称图形,否则这个图形不是轴对称图形.注意:(1)对称轴是一条直线,而不是射线或线段.(2)一个轴对称图形的对称轴可以有1条,也可以有多条,还可以有无数条.(3)轴对称图形是对于一个图形而言的,它表示具有一定特性(轴对称性)的某一类图形.3.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.4.轴对称和轴对称图形的区别与联系5.轴对称的性质:(1)两个图形成轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.(2)轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.(3)轴对称图形(或关于某条直线对称的两个图形)的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等.(4)成轴对称的两个图形全等;轴对称图形被对称轴分成的两部分也全等,但全等的两个图形不一定是轴对称图形.二、线段垂直平分线的性质和判定1.线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.如下图所示,点P在线段AB 的垂直平分线上,则P A=PB.3.线段垂直平分线的判定:与线段两个端点距离相等的点在这条线段的垂直平分线上.如上图所示,若P A=PB,则点P在线段AB的垂直平分线上三、尺规作图(线段的垂直平分线)1.作图步骤:(1)以A为圆心,以大于线段AB一半的长度画弧(2)再以B为圆心,以相同长度为半径画弧,交前弧于C、D两点(3)连接CD,直线CD即为线段AB的垂直平分线四、尺规作图(轴对称)1.轴对称图形或成轴对称的两个图形的对称轴的画法,步骤如下:(1)找出轴对称图形或成轴对称的两个图形的任意一对对应点;(2)连接这对对应点;(3)画出对应点所连线段的垂直平分线.这条垂直平分线就是该轴对称图形或成轴对称的两个图形的对称轴.注意:对于轴对称图形或两个图形成轴对称,它们的对应点有一个共同的特征——对应点所连的线段被对称轴垂直平分,这是我们画图形的对称轴的依据.2.在坐标系中画轴对称图形的方法:(1)计算——计算对称点的坐标;(2)描点——根据对称点的坐标描点;(3)连接——依次连接所描各点得到成轴对称的图形五、关于坐标轴对称的点的坐标1.关于坐标轴对称的点的坐标特点:(1)点(x,y)关于x轴对称的点的坐标为(x,-y);(2)点(x,y)关于y轴对称的点的坐标为(-x,y).2.已知两个点的坐标分别为P1(x1,y1),P2(x2,y2),若x1=x2,y1+y2=0,则点P1,P2关于x轴对称;若x1+x2=0,y1=y2,则点P1,P2关于y轴对称.反之也成立。
《轴对称与轴对称图形复习(2)》
. .
4.等腰三角形的三线合一: 4.等腰三角形的三线合一:在△ABC中,AB=AC. 等腰三角形的三线合一 ABC中
B
D
C
知识点回顾
5.试从边、 5.试从边、角、对角线、对称性四个 试从边 对角线、 角度描述等腰梯形的特征: 角度描述等腰梯形的特征:
A B
D C
基础演练
1.在△ABC中,若AB=AC,∠B=80°, ABC中 AB=AC, B=80° A=____° C=____° 则∠A=____°,∠C=____° ABC中 AB=AC, A=90° 2. 在△ABC中,若AB=AC,∠A=90°, B=____° C=____° 则∠B=____°,∠C=____° 50° 3. 等腰三角形有一个角为 50°,则 另外两角的度数为_____________. 另外两角的度数为_____________. 等腰三角形有一个角为100 100° 等腰三角形有一个角为100°,则 另外两角的度数为_____________. 另外两角的度数为_____________.
2.如图,∵____________________, 2.如图,∵____________________, 如图,∵____________________
∴ PC=PD.
P A l B
C
A P D B
O
O
知识点回顾
3.⑴ 3.⑴在△ABC中,∵AB=AC, ∴ ABC中 ABC中 ⑵在△ABC中,∵∠B=∠C,∴ ⑴∵AB=AC,AD⊥BC, ∴ ; ⑵∵AB=AC,BD=CD, ∴ ; ⑶∵AB=AC,∠BAD=∠CAD, ∴ .
例题精析
4.如图, 4.如图,在△ABC中,边AB的垂直平分线 如图 ABC中 AB的垂直平分线 AC于点 于点E 已知△ABC的周长为28cm, 的周长为28cm 交AC于点E,已知△ABC的周长为28cm, AB=10cm, BCE的周长 的周长. AB=10cm,求△BCE的周长.
16.1轴对称图形(2)
A 1B 1C 1 图1课题:第16章 轴对称图形与等腰三角形16.1 轴对称图形(2)主备人:曹智 审核人: 时间:2011年 月 日年级 班 姓名:学习目标:1、了解线段的垂直平分线的概念,掌握轴对称的性质。
2、会利用轴对称的性质,作对称点,对称图形等。
3、会画简单的图形关于对称轴的对称图形。
学习重点:会利用轴对称性质作对称点、对称图形等。
学习难点:准确理解成轴对称的两个图形的基本性质并会简单应用这个基本性质解决一些实际问题。
.一、学前准备1.如图1,△ABC 和△A 1B 1C 1关于y 轴对称, 点A 的对应点是 ,y 轴经过线段AA 1的中点吗?y 轴垂直线段AA 1吗?线段的垂直平分线:_________________________________________________________________. 2、在图1中,y 轴是线段CC 1和BB 1的垂直平分线吗?轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的 。
反过来,如果两个图形各对对应点的连线被___________________,那么这两个图形关于________________.3.如果直线l 外有一点A ,那么怎样画出点A 关于直线l 的对称点'A ?练一练 :1.分别画出图1-10(1)、(2)、(3)中线段AB 关于直线l 对称的线段''B A 。
预习疑难摘要___________________________________________________ _______________________________________________________________二、探究活动(一)师生探究·解决问题例1、如图1,线段AB 和A ’B ’是成轴对称的两个图形,如何找出对称轴?图1A'BAB'A'B例2. 如图,三角形Ⅰ的两个顶点分别在直线l 1和l 2,且l 1⊥l 2,画三角形与原三角形关于l 2对称;(二)独立思考·巩固升华1.如图所示在方格纸上画出的一 棵树的一半,请你以树干为对称 轴画出树的另一半。
13.2画轴对称图形2
找对称点的坐标之间的关系、规律
学习方法
操作、探究
学习准备
直尺、圆规
学习流程
学生活动
教师活动
再次备课
一、创设情境、导入明标
二、交流预习
三、小组合作探究
四、分层提高
五.归纳总结
六、达标测试
一、导入明标
什么是轴对称图形?它有什么特征?
(多媒体课件)展示学习目标
1、掌握在平面直角坐标系中,关于x轴和y轴对称点的坐标特点。
若点p与点p’关于x轴对称,则a=_____b=_______.
若点p与点p’关于y轴对称,则a=_____b=_______.
作业设置、预习导读
教科书71页习题13.2第2、4、5题
预习教科书第75页内容,完成预习任务
导入明标(3分钟)
教师巡视调查,了解进度。(10分钟)
教师巡视调查,指导对概念的理解。(10分钟)
课题
13.2画轴对称图形2
课时
1
授课时间
年月日
学习目标
1、掌握在平面直角坐标系中,关于x轴和y轴对称点的坐标特点。
2、能在平面直角坐标系中画出一些简单的关于x轴和y轴的对称图形。
3、能运用坐标中的轴对称特点解决简单的问题,培养学生的动手操作能力,和审美情趣。
学习重点
用坐标表示点关于坐标轴对称的点的坐标
探究点一:
学生独立完成课本P71页的练习2。
探究点二:
《能力培养与测试》第42页学点探究一点(x,y)关于x轴或y轴的对称点
四、分层提高(个数根据具体情况灵活安排)
1、必做题:《能力培养与测试》第43页夯实基础第1题
2、提高题:小组合作学习解决教材第71页?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文档五年级数学下册导学案
课题轴对称图形课时安排1课时
教学目标1.通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;
2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴;
3.培养和发展学生的实验操作能力,发现美和创造美的能力。
重难点学习重难点:找出并画出轴对称图形的对称轴。
学法指导在看一看、折一折、画一画、剪一剪等操作活动中进行想像、猜测和推理进行探究,培养学生的空间想像力和思维能力,经历确定轴对称图形以及找出并画出对称轴的过程。
自主学习1、预习新知p1-2,观察p1的几幅图,它们有什么样的共同特点?
总结:像这样,一个图形沿一条直线对折,对折的两部分完全(),这个图形就叫做轴对称图形,其中,这条直线被称为()。
2、你能列举出生活中具有这种特征的物体和建筑物吗?
3、动手做一做:拿一面小镜子放在轴对称图形或物体的什么位置,从镜子中看到的影像正好是图形或物体的另一半。
4、折一折,将书后附页中的六个图形剪下来,观察哪些是轴对称图形,并折一折轴对称图形各有几条对称轴。
合作探究1、什么是轴对称图形?什么是对称轴?如何画对称轴?
2、我们认识的平面图形哪些是轴对称图形,各有几条对称轴
教师
点拨
达标
检测
1、如果一个图形沿一条直线对折,直线两边的图形能够
(),那么这个图形叫做
();这条直线叫做它的
()。
2、两个对称点到对称轴的距离()。
3、判断下面各图是否是轴对称图形,如果是,请指出它们的
对称轴。
4、画出每个图的所有对称轴:
拓展
延伸
运用这节课所学知识动手剪纸花
文档。