永磁同步电机控制系统参数测定实验报告
永磁同步电机实训报告
永磁同步电机实训报告永磁同步电机实训报告一、实训目的二、实训设备三、实训内容1. 永磁同步电机的工作原理2. 永磁同步电机的特点3. 永磁同步电机的控制方法四、实训过程1. 实验前准备2. 实验一:永磁同步电机启动控制实验3. 实验二:永磁同步电机转速控制实验五、实训总结一、实训目的:本次永磁同步电机实训旨在通过学习永磁同步电机的工作原理和特点,了解永磁同步电机的控制方法,并通过实际操作,掌握永磁同步电机启动和转速控制技术。
二、实训设备:本次永磁同步电机实训所用设备为一台永磁同步电机,一台变频器以及相关接线和测试仪器。
三、实训内容:1. 永磁同步电机的工作原理:永磁同步电机是一种利用定子上与转子上的稀土永磁体产生的恒定磁场与旋转磁场作用,实现转矩传递和能量转换的电机。
当定子上的三相交流电流流过定子绕组时,会在定子上产生一个旋转磁场,而转子上的永磁体则会产生一个恒定的磁场。
当两者相互作用时,就会产生一个旋转力矩,使得转子开始旋转。
2. 永磁同步电机的特点:永磁同步电机具有高效、高功率密度、高精度、低噪音等特点。
由于永磁体的存在,使得永磁同步电机不需要外部励磁,因此具有较好的稳态性能和动态性能。
3. 永磁同步电机的控制方法:永磁同步电机可以通过改变定子上的三相交流电压来控制其速度和力矩。
常用的控制方法包括:直接转换法、间接转换法、空间向量PWM 控制法等。
四、实训过程:1. 实验前准备:(1) 连接变频器:将变频器与永磁同步电机连接,并按要求进行参数设置。
(2) 接线:根据实验要求进行接线,并将测试仪器连接到相应的接口。
(3) 实验器材检查:对实验所用的器材进行检查,确保其正常工作。
2. 实验一:永磁同步电机启动控制实验(1) 按照实验要求,设置变频器参数。
(2) 将永磁同步电机启动,观察其启动过程,并记录相关数据。
(3) 改变变频器输出频率,观察永磁同步电机的转速变化情况。
3. 实验二:永磁同步电机转速控制实验(1) 按照实验要求,设置变频器参数。
同步发电机励磁控制实验报告
竭诚为您提供优质文档/双击可除同步发电机励磁控制实验报告篇一:同步发电机励磁控制实验同步发电机励磁控制实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。
二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
图1励磁控制系统示意图实验用的励磁控制系统示意图如图1所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自380V市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。
微机励磁调节器的控制方式有四种:恒uF(保持机端电压稳定)、恒IL(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于90°;当正常停机或事故停机时,调节器使控制角α大于90°,实现逆变灭磁。
电力系统稳定器――pss是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。
同步发电机励磁控制实验报告
竭诚为您提供优质文档/双击可除同步发电机励磁控制实验报告篇一:同步发电机励磁控制实验同步发电机励磁控制实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。
二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
图1励磁控制系统示意图实验用的励磁控制系统示意图如图1所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自380V市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。
微机励磁调节器的控制方式有四种:恒uF(保持机端电压稳定)、恒IL(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于90°;当正常停机或事故停机时,调节器使控制角α大于90°,实现逆变灭磁。
电力系统稳定器――pss是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。
同步发电机励磁控制系统实验报告
同步发电机励磁控制系统实验摘要:本课题主要针对如何提高和维持同步发电机运行的稳定性,是保证电力系统安全、经济运行,及延长发电机寿命而进行的同步发电机励磁方式,励磁原理,励磁的自动控制进行了深入的解剖。
发电机在正常运行时,负载总是不断变化的,而不同容量的负载,以及功率因数的不同,对发电机励磁磁场的作用是不同的,对同步发电机的内部阻抗压降也是不一样的。
为了保持同步发电机的端电压稳定,需要根据负载的大小及负载的性质调节同步发电机的励磁电流,因此,研究同步发电机的励磁控制具有十分重要的应用价值。
本课题主要研究同步发电机励磁控制在不同状态下的情况,同步发电机起励、控制方式及其相互切换、逆变灭磁和跳变灭磁开关灭磁、伏赫实验等。
主要目的是是同学们加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;了解自并励励磁方式和它励励磁方式的特点;了解微机励磁调节器的基本控制方式。
关键词:同步发电机;励磁控制;它励第一章文献综述1.1概述向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。
励磁系统是同步发电机的重要组成部分,它的可靠性对于发电机的安全运行和电网的稳定有很大影响。
发电机事故统计表明发电机事故中约1/3为励磁系统事故,这不但影响发电机组的正常运行而且也影响了电力系统的稳定,因此必须要提高励磁系统的可靠性,而根据实际情况选择正确的励磁方式是保证励磁系统可靠性的前提和关键。
我国电力系统同步发电机的励磁系统主要有两大类,一类是直流励磁机励磁系统,另一类是半导体励磁系统。
1.2同步发电机励磁系统的分类与性能1.2.1 直流励磁机励磁系统直流励磁机励磁系统是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流。
其中直流发电机称为直流励磁机。
直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流,形成有碳刷励磁。
直流励磁机励磁系统又可分为自励式和它励式。
自励与他励的区别是对主励磁机的励磁方式而言的,他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数,他励直流励磁机励磁系统一般只用在水轮发电机组上。
永磁同步电机速度控制实验概要
永磁同步电机速度控制实验一、实验目的1.了解正弦波永磁同步电机的驱动器的接口和常用参数的设定2.掌握正弦波永磁同步电机调速系统起动过程转速与电流的关系3.掌握正弦波永磁同步电机调速系统过程中P、I调节的作用。
二、实验原理当给定速度的大小和方向改变时,调速系统和转速也会发生相应变化,而当负载发生变化时,转速应基本保持不变。
这是因为速度闭环,通过速度给定信号与速度反馈信号的比较,由此得到的偏差进行PI调节,起到抵抗扰动的作用,从而保证系统的转速基本不变。
速度控制希望有足够的调速范围、稳速精度和快且平稳的启动、制动性能。
三、实验步骤1.熟悉伺服电机与驱动器的型号、接线以及控制接口。
2.启动计算机,打开启动器电源,打开安川伺服驱动串口通信软件(SisMa软件,在软件中点击search按钮找到驱动器的编号:SGDM-10ADA,在点击connect按钮,这样SigMa软件和交流伺服驱动器就连上了。
3.在SigMa软件里我们可以点击parameters菜单,再点击edit parameters 菜单,选择Pn000参数的第一位设成“0”,为速度控制(模拟量指令,这时候我们可以打开实验箱上使能的开关,再旋动速度给定的定位器旋钮,这时候伺服电机开始旋转起来,定位器接的是-5V~+5V,当运行在0~-5V的时候电机逆时针旋转,运行在0~+5V的时候电机顺时针旋转。
4.点击SigMa软件的tarce&turning菜单下的trace单,进入setup窗口,在data1和data2选择需要跟踪的信号,我们选择Feedbak Speed 和Speed Prference 两个,在右边的Sampline time 为250*10ms,然后点击Start按钮,在采集信号的时候,实现伺服电机的两次启动,等信号传到软件中,我们可以进行分析。
5.前面第4步是选的默认参数,现在我们改变速度参数,Pn100:速度环增益和Pn101:速度环积分时间常数,再重复第四步的动作。
永磁同步电机参数测量
永磁同步电机参数测量1. 引言大家好,今天咱们要聊的可是一个技术活儿——永磁同步电机(PMSM)的参数测量。
听起来是不是有点高大上?其实,这玩意儿在咱们生活中可无处不在,尤其是在电动汽车、家电甚至工业设备中。
说到参数测量,很多人可能会皱眉头,觉得这事儿复杂得很,跟做高数差不多。
嘿,别担心,咱们轻松聊,保证让你听得津津有味,保证不让你打瞌睡。
2. 永磁同步电机的基本概念2.1 什么是永磁同步电机?首先,咱们得搞清楚啥是永磁同步电机。
简单来说,这是一种利用永磁体产生磁场的电机,它的转子跟电网的频率是同步的,换句话说,转速跟电流的频率成正比。
就像大海里的波浪,电流一涨,转子也跟着转,速度那叫一个稳!有了这点,咱们就能更好地理解接下来的参数测量了。
2.2 为啥要测量参数?那么,为什么要测量这些参数呢?其实,电机的性能、效率、甚至寿命都和这些参数息息相关。
比如,如果你想让你的电动汽车跑得更远,电机的参数就得调得恰到好处。
就像调味品,太多了太少了都不好,得找个平衡点。
通过测量参数,我们才能精准调校电机,确保它发挥出最佳性能。
3. 参数测量的基本步骤3.1 测量前的准备工作在开始之前,咱们得先做些准备工作。
首先,要准备好测量设备,比如电流表、频率计和电压表。
这就像做饭之前先把食材准备齐全,否则你想做个大菜,结果一切都没搞定,那可就尴尬了!其次,要确保电机的连接正常,避免意外情况的发生,就像开车之前要检查刹车一样,安全第一!3.2 具体测量过程好了,准备工作完成后,就可以进入测量环节了。
这时候,要先测量电机的空载电流和空载电压。
空载就像是在看一场精彩的表演,电机转起来了,但什么负载都没有。
这时候的电流和电压可以告诉咱们电机的基本状态。
接下来,咱们就要加上负载,看看电机在不同负载下的表现如何。
这个过程就像是考验运动员在比赛中的表现,不同的压力下,谁能更好地发挥出自己的能力?4. 测量参数的注意事项4.1 安全第一在测量过程中,安全永远是第一位的。
同步电机检测实验报告
同步电机检测实验报告同步电机检测实验报告三相同步发电机的1. 掌握三相同步发电机的空载、短路及零功率因素负载特性的实验求取法2. 学会用试验方法求取三相同步发电机对称运行时的稳态参数实验在电力系统监控实验室进行,每套实验装置以直流电动机作为原动机,带动同步电动机转动,配置常规仪表进行实验参数进行测量,本次同步发电机运行试验,仅采用常规控制方式。
同步发电机的参数如下额定功率 2kw额定电压 400v额定电流 3.6A额定功率因素 0.8◆主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。
◆ 载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。
◆ 切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。
◆ 交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。
通过引出线,即可提供交流电源。
◆ 感应电势有效值:每相感应电势的有效值为◆ 感应电势频率:感应电势的频率决定于同步电机的转速n 和极对数p ,即◆ 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。
◆同步转速从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。
我国电网的频率为50Hz ,故有:◆要使得发电机供给电网50Hz 的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。
例如2极电机的同步转速为3000r/min,4极电机的同步转速为1500r/min,依次类推。
只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。
◆同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。
作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。
永磁同步电机驱动系统效率优化控制参数变化影响研究
o ti e y o r a ay i. B n lsssmu ai g t e I MS d v y t m a e n t e e c e c p i z t n c nr l b an d b u n l ss y a ay i i l t P M r e s se b s d o h f in y o t n h 机参数变化对永磁 同步电机( MS 运行时效率优化 的影响 , P M) 即对保证 电机损耗最小
的 d q轴电流( / 后称为优化电流) 的影 响。首先分析 P M运行 时的各种损耗 , MS 进而建 立其总损耗模 型 , 并将 电机 的效率优 化建 模 为基 于 约束 ( 转矩 约 束 、 电流 约束 和 电 压约 束 ) 的优 化 问题 ; 着 用 优 化 理论 中 的 接 K rs— u nT c e 条件导 出优化 电流所满足 的方程 ; a hK h —uk r u 最后 改变 电机 的参数 , 分析该 参数 的变化对 优化 电流 的影响 。通过分 析得出 , 并不 是所有参数对优 化电流都存在影 响 。仿真基 于效 率优化控制 的内置式永 磁 同
控制与应用技术 E C MA
迫札 与控制 应闭21 , 6 023 ) 9(
永磁 同步 电机驱 动 系统效 率优 化控 制 参数 变 化影 响研 究 术
吴 钦木 , 韦书龙 , 李捍 东 , 王海 涛 ( 州大 学 电气工程 学 院 , ・贵 阳 贵 贵 1 1 ,
摘
50 0 ) 5 0 3
cnt it n oaecnt it ,t fc nyo t zt no em t a oee steo t ztnpolm o sa dvlg os a ) h e i c pi ao fh oo w sm dl a h pi ao rbe rn a t rn ei e mi i t r d mi i
《2024年永磁同步电机的参数辨识及控制策略研究》范文
《永磁同步电机的参数辨识及控制策略研究》篇一一、引言随着电力电子技术的飞速发展,永磁同步电机(PMSM)作为高效、节能的电机驱动系统,在工业、交通、航空航天等领域得到了广泛应用。
然而,永磁同步电机的性能和效率受到其参数辨识和控制策略的深刻影响。
因此,对永磁同步电机的参数辨识及控制策略进行研究,对于提高电机性能、优化系统运行具有重要意义。
二、永磁同步电机参数辨识1. 参数辨识的重要性永磁同步电机的性能和运行状态受到其参数的影响,如电感、电阻、永磁体磁链等。
准确的参数辨识对于电机的控制、优化设计以及故障诊断具有重要意义。
2. 参数辨识方法(1)传统方法:通过电机设计参数和实验测试获得,但受环境、温度等因素影响较大。
(2)现代方法:利用现代信号处理技术和智能算法,如最小二乘法、卡尔曼滤波器、神经网络等,对电机运行过程中的数据进行实时辨识和更新。
3. 参数辨识的挑战与解决方案在参数辨识过程中,如何提高辨识精度、降低辨识误差、适应不同工况是主要挑战。
针对这些问题,可以通过优化算法、提高采样精度、引入多源信息融合等方法进行解决。
三、永磁同步电机的控制策略研究1. 控制策略的种类与特点永磁同步电机的控制策略主要包括矢量控制、直接转矩控制、模型预测控制等。
矢量控制具有高精度、高动态响应的特点;直接转矩控制具有转矩响应快、控制简单的优点;模型预测控制则具有较好的鲁棒性和适应性。
2. 控制策略的优化与改进针对不同应用场景和需求,可以对控制策略进行优化和改进。
例如,通过引入智能算法,如模糊控制、神经网络控制等,提高电机的自适应性和鲁棒性;通过优化算法参数,提高电机的能效和运行效率。
3. 控制策略的挑战与未来方向在控制策略研究中,如何提高系统的稳定性和可靠性、降低能耗是主要挑战。
未来研究方向包括:深度学习在永磁同步电机控制中的应用、多源信息融合在电机控制中的研究等。
四、实验与分析通过搭建永磁同步电机实验平台,对上述参数辨识及控制策略进行研究与验证。
三相永磁同步电机实验
实验三三相永磁同步电机实验一、实验目的1、掌握三相永磁同步电机结构特点2、掌握三相永磁同步电机工作原理3、掌握三相永磁同步电机运行特性二、预习要点1、三相永磁同步电机的工作原理2、三相永磁同步电机的运行特性三、实验项目1、测量定子绕组的冷态电阻。
2、速度—频率n=f(f)测试3、压频—转矩特性的测定4、测取三相永磁同步电机在工频下的工作特性。
四、实验方法1序号型号名称数量1 HK01 电源控制屏1件2 HK02 实验桌1件3 HK03 涡流测功系统导轨1件4 HK91 三相永磁同步电机控制箱1件5 HK91 三相永磁同步电机1件2、屏上挂件排列顺序HK913、测量定子绕组的冷态直流电阻。
将电机在室内放置一段时间,用温度计测量电机绕组端部或铁心的温度。
当所测温度与冷却介质温度之差不超过2K时,即为实际冷态。
记录此时的温度和测量定子绕组的直流电阻,此阻值即为冷态直流电阻。
(1) 伏安法测量线路图为图3-1。
直流电源用主控屏上电枢电源先调到50V。
开关S选用D51挂件上的双刀双掷开关,R用1800Ω可调电阻。
图3-1 三相交流绕组电阻测定量程的选择:测量时通过的测量电流应小于额定电流的20%,约为50毫安,因而直流电流表的量程用200mA档,直流电压表量程用20V档。
按图3-1接线。
把R调至最大位置,合上开关S,调节直流电源及R阻值使试验电流不超过电机额定电流的20%,以防因试验电流过大而引起绕组的温度上升,读取电流值,再读取电压值。
调节R使A表分别为50mA,40mA,30mA测取三次,取其平均值,测量定子三相绕组的电阻值,记录于表3-1中。
表3-1 室温℃绕组Ⅰ绕组Ⅱ绕组ⅢI(mA)U(V)R(Ω)R平均(Ω)4、速度—频率n=f(f)测试(1) 按图3-2接线。
电机绕组为Y接法,直接与涡流测功机同轴联接。
图3-2 速度—频率n=f(f)测试接线图(2) 按下控制屏上的“启动”按钮,把交流调压器调至电压380V,首先按下变频器上的PU/EXT按钮,调节左侧旋钮使频率显示为零,然后按下RUN使电机运转起来,然后调节变频器左侧旋钮既可调节频率从而改变转速。
永磁同步电机参数测量试验方法(精编文档).doc
【最新整理,下载后即可编辑】永磁同步电机参数测量实验一、实验目的1. 测量永磁同步电机定子电阻、交轴电感、直轴电感、转子磁链以及转动惯量。
二、实验内容1. 掌握永磁同步电机dq 坐标系下的电气数学模型以及机械模型。
2. 了解三相永磁同步电机内部结构。
3. 确定永磁同步电机定子电阻、交轴电感、直轴电感、反电势系数以及转动惯量。
三、拟需实验器件1. 待测永磁同步电机1台;2. 示波器1台;3. 西门子变频器一台;4. 测功机一台及导线若干;5. 电压表、电流表各一件;四、实验原理1. 定子电阻的测量采用直流实验的方法检测定子电阻。
通过逆变器向电机通入一个任意的空间电压矢量U i (例如U 1)和零矢量U 0,同时记录电机的定子相电流,缓慢增加电压矢量U i 的幅值,直到定子电流达到额定值。
如图1所示为实验的等效图,A 、B 、C 为三相定子绕组,U d 为经过斩波后的等效低压直流电压。
I d 为母线电流采样结果。
当通入直流时,电机状态稳定以后,电机转子定位,记录此时的稳态相电流。
因此,定子电阻值的计算公式为:1,2a dbcd I I I I I ===- (1) 23d s d U R I = (2)图1 电路等效模型 2. 直轴电感的测量在做直流实验测量定子电阻时,定子相电流达到稳态后,永磁转子将旋转到和定子电压矢量重合的位置,也即此时的d 轴位置。
测定定子电阻后,关断功率开关管,永磁同步电机处于自由状态。
向永磁同步电机施加一个恒定幅值,矢量角度与直流实验相同的脉冲电压矢量(例如U 1),此时电机轴不会旋转(ω=0),d 轴定子电流将建立起来,则d 轴电压方程可以简化为:d d d q q d di u Ri L i L dt ω=-+d d d d di u Ri L dt =+ (3)对于d 轴电压输入时的电流响应为:()(1)d R t L U i t e R -=- (4)利用式(4)以及测量得到的定子电阻值和观测的电流响应曲线可以计算得到直轴电感值。
永磁同步电机参数测量系统的研究的开题报告
永磁同步电机参数测量系统的研究的开题报告一、研究背景与意义随着国家经济的快速发展,能源领域的发展十分迅速,电机在整个能源领域中起着至关重要的作用。
永磁同步电机作为一种新型、高效、环保、稳定的电机,在现代工业生产领域中得到了广泛应用。
永磁同步电机的主要特点是功率密度大、效率高、体积小、重量轻,但同时也面临着一些问题,例如电动汽车用的永磁同步电机在高速运行时会出现高温的问题,这就需要对永磁同步电机的参数进行准确测量以解决这些问题。
为了更好地解决永磁同步电机所面临的这些问题,需要对永磁同步电机的各项参数进行精确测量。
当前市面上已经有大量的电机参数测量系统,但是针对永磁同步电机的参数测量方法尚不成熟,因此需要开发一种专门针对永磁同步电机的参数测量系统,以提高永磁同步电机的性能和稳定性。
二、研究内容和目标本研究旨在开发一种基于 LabVIEW 平台的永磁同步电机参数测量系统,实现对永磁同步电机转速、电压、电流等参数的实时测量和监测,为提高永磁同步电机的性能和稳定性提供技术支持和保障。
具体研究内容包括:1. 实现对永磁同步电机转速、电压、电流等参数的实时测量和监测。
2. 设计合理的硬件电路,保证测量系统的稳定性和准确度。
3. 采用 LabVIEW 编程语言进行程序设计,并进行系统的软件开发。
研究目标包括:1. 实现对永磁同步电机的电气参数进行准确、实时的测量和监测。
2. 提高永磁同步电机的性能和稳定性,降低永磁同步电机的故障率和维修成本。
3. 推广和应用该测量系统,提高永磁同步电机在现代工业生产中的应用水平。
三、研究方法和步骤本研究采用实验研究和理论分析相结合的方法,具体步骤如下:1. 确定永磁同步电机参数测量系统的测量范围和测量精度。
2. 设计合理的硬件电路,选择合适的测量仪表和传感器。
3. 建立永磁同步电机的数学模型,并进行理论分析。
4. 采用 LabVIEW 编程语言进行程序设计,并进行系统的软件开发。
控制电机实验——永磁同步交流伺服电机 -实验报告样板1
控制电机实验——永磁同步交流伺服电机一、实验目的:1. 了解交流伺服电机、交流伺服驱动器的工作原理;2. 熟悉控制器对交流伺服电机实行控制的方法;3. 掌握交流伺服驱动的工作特性。
二、实验仪器:1. 交流伺服电机一台(松下MSMA042A1G );2. 交流伺服驱动器一台(松下MSDA043A1A );3. RS232C 连接器一根;4. 计算机一台;三、实验原理:1. 交流伺服电机工作原理交流伺服电机分为同步电机和异步电机两大类,本实验用电机为永磁同步交流伺服电机。
电机主要由定子、转子和检测元件组成。
定子具有齿槽,内有三相绕组,形状与普通交流电动机的定子相同,但其外形呈多边形,且无外壳,利于散热。
转子由多块永久磁铁和冲片组成。
定子三相绕组接上交流电源后,就会产生一个旋转磁场,以同步转速n s 旋转。
定子旋转磁场与转子的永久磁铁磁极相互吸引,并带着转子一起旋转。
使转子也以同步转速n s 旋转。
当转子加上负载转矩之后,将造成定子磁场轴线与转子磁极轴线不重合,其夹角为θ。
若负载发生变化,θ角也跟着变化,但只要不超过一定的限度,转子始终跟着定子的旋转磁场以恒定的同步转速n s 旋转。
2. 交流伺服驱动器工作原理永磁同步交流伺服电机转子转速可以用下式表示: pf n n s 60==(r/min )可以通过改变电动机电源频率来调节电动机的转速。
3. 伺服电机的机械特性机械特性是衡量电机性能的重要指标。
本实验将通过控制电机,验证该转矩—速度特性曲线。
四、实验步骤1.按要求接线,并认真检查接线是否正确。
图5 接线示意图1——485转串口电缆线; 2——电机控制线; 3——编码器反馈线2.使交流伺服电机在空载状态下进行试运行要求:修改电机驱动器参数,让电机分别工作在位置方式和速度方式,观察电机运行情况,并作记录。
1) 熟悉交流伺服电机的交互界面;2).电机没有负载情况下的试运转(JOG );操作步骤如下: ① 接通电源电机面板显示电机转速② 切入参数设定按SET 键按MODE 键4次向下键2次③ 设置JOG 方式按SET 键向上键(按下3秒)此时横杠向左增加向左键(按住直到显示5rU_on )④电机旋转反时针旋转注意:JOG 方式速率由Pr57确定3)JOG 方式下,对交流伺服电机转速的调整方法;操作步骤如下:① 接通电源电机面板显示电机转速② 切入参数设定按SET 键按MODE 键向下键直至PA_ 57变量按SET 键(显示设定速率)用或 键可设定所需要的速率注意:JOG 方式下速率的设定范围为了0~500 r/min按SET 键(显示设定速率)3. 增益的调整(负载的影响) 在伺服电机的场合,往往要求电机按照指令动作,不得延迟,不得有误。
电机控制实验报告分析(3篇)
第1篇一、实验背景电机控制技术在现代工业和日常生活中扮演着重要角色,其性能直接影响着设备的运行效率和稳定性。
为了更好地理解和掌握电机控制技术,我们进行了一系列电机控制实验。
本报告将对实验过程、结果及分析进行详细阐述。
二、实验目的1. 熟悉电机控制系统的基本组成和原理;2. 掌握电机控制实验的操作步骤和注意事项;3. 分析实验数据,验证电机控制理论;4. 提高实际操作能力和故障排除能力。
三、实验内容1. 电机控制实验平台搭建实验平台主要包括电机、控制器、传感器、电源等设备。
实验过程中,我们需要根据实验要求,正确连接各设备,确保实验顺利进行。
2. 电机调速实验通过调整PWM信号的占空比,实现对电机转速的调节。
实验中,我们测试了不同占空比下电机的转速,并记录实验数据。
3. 电机转向控制实验通过改变PWM信号的极性,实现对电机转向的控制。
实验中,我们测试了不同极性下电机的转向,并记录实验数据。
4. 电机制动实验通过调整PWM信号的占空比和极性,实现对电机制动的控制。
实验中,我们测试了不同制动条件下电机的制动效果,并记录实验数据。
四、实验结果与分析1. 电机调速实验结果分析实验结果显示,随着PWM占空比的增大,电机转速逐渐提高。
当占空比为100%时,电机达到最大转速。
实验数据与理论分析基本一致。
2. 电机转向控制实验结果分析实验结果显示,通过改变PWM信号的极性,可以实现对电机转向的控制。
当PWM信号极性为正时,电机正转;当PWM信号极性为负时,电机反转。
实验数据与理论分析相符。
3. 电机制动实验结果分析实验结果显示,通过调整PWM信号的占空比和极性,可以实现对电机制动的控制。
当PWM信号占空比为0时,电机完全制动;当占空比逐渐增大时,电机制动效果逐渐减弱。
实验数据与理论分析基本一致。
五、实验结论1. 电机控制实验平台搭建成功,能够满足实验要求;2. 电机调速、转向和制动实验均取得了良好的效果,验证了电机控制理论;3. 通过实验,提高了实际操作能力和故障排除能力。
《2024年永磁同步电机的参数辨识及控制策略研究》范文
《永磁同步电机的参数辨识及控制策略研究》篇一一、引言随着电力电子技术的不断发展和应用,永磁同步电机(PMSM)因其高效、节能、稳定等优点,在工业、交通、家用电器等领域得到了广泛应用。
为了更好地发挥永磁同步电机的性能,对其参数辨识及控制策略的研究显得尤为重要。
本文旨在探讨永磁同步电机的参数辨识方法及控制策略,以期为相关领域的研究和应用提供参考。
二、永磁同步电机基本原理永磁同步电机是一种利用永磁体产生磁场的电机,其转子无需电流激励。
电机定子上的三相绕组通过交流电源供电,产生旋转磁场,与转子永磁体相互作用,从而实现电机的旋转。
了解其基本原理有助于更好地理解参数辨识及控制策略的必要性。
三、永磁同步电机参数辨识(一)参数辨识的意义永磁同步电机的性能与其参数密切相关,如电感、电阻、转子惯量等。
为了准确控制电机,需要对其参数进行准确辨识。
参数辨识能够提高电机的控制精度,优化电机的运行性能。
(二)参数辨识方法目前,常用的永磁同步电机参数辨识方法包括基于模型的方法、基于信号的方法和基于优化算法的方法。
其中,基于模型的方法利用电机的数学模型和实验数据,通过对比分析得到电机参数;基于信号的方法通过分析电机运行过程中的电压、电流等信号,提取出电机参数;基于优化算法的方法则通过优化算法对电机参数进行优化估计。
四、永磁同步电机控制策略(一)矢量控制策略矢量控制是永磁同步电机常用的控制策略之一。
它通过坐标变换将三相电流转换为直流分量,实现对电机转矩和磁场的独立控制。
矢量控制能够提高电机的控制精度和动态性能。
(二)直接转矩控制策略直接转矩控制是一种基于转矩的电机控制策略。
它通过直接控制电机的定子磁链和转矩,实现对电机的快速响应和精确控制。
直接转矩控制具有响应速度快、转矩脉动小等优点。
(三)滑模控制策略滑模控制是一种非线性控制策略,适用于永磁同步电机的控制。
它通过设计滑模面和滑模控制器,使电机运行在滑模状态上,实现对电机的稳定控制和快速响应。
永磁同步电机电抗参数的测定
永磁同步电机电抗参数的测定永磁同步电机是一种高效的电动机,在工业、交通等领域得到广泛应用。
其中,电抗参数的测定对于电机的性能优化、控制等方面具有重要意义。
本文将详细介绍永磁同步电机电抗参数的测定方法与应用。
一、永磁同步电机电抗参数概述永磁同步电机是指通过磁场同步转子转速的电机。
其电抗参数是电机电路的基本参数之一,反映了电机对交流电的阻抗。
在电机运行中,电抗参数会对转矩、转速、效率等方面产生影响。
二、电抗参数的测量方法通常采用同步反演法、交流化直流法和轴承测试法等方法来测定永磁同步电机的电抗参数。
1.同步反演法同步反演法是一种基于转子定子同步原理的测量方法。
在该方法中,将永磁同步电机的绕组接入谐振电路,调节电路频率,使电流在电机电抗参数的作用下与电压同步,并测量出相位差。
通过反演计算,可以得到电机的电抗参数。
2.交流化直流法交流化直流法是一种基于电压与电流的比值得出电抗值的测量方法。
在该方法中,将永磁同步电机的绕组分别接入直流电源和交流电源,分别测量电流、电压,并计算出电阻值和电抗值。
3.轴承测试法轴承测试法是一种通过测量永磁同步电机的轴承电流得到电抗值的测量方法。
在电机运行过程中,因为转子与定子的相互作用,会产生轴承电流,通过测量轴承电流的幅值和相位,可以计算出电机的电抗参数。
三、电抗参数的应用与优化在永磁同步电机的应用过程中,通过测量电抗参数,可以优化电机的控制性能,提高电机的效率。
其中,电抗参数的改变会对电机的转速、转矩产生影响,因此在优化电机效率时,需要根据具体的应用场景进行选择。
例如,在电动汽车中,需要优化电机的效率和噪音,因此需要调整电抗参数以实现高效、低噪音的运行。
综上所述,永磁同步电机电抗参数的测定对于电机的优化、控制等方面具有重要意义。
通过合适的测量方法和参数优化,可以实现更高效、更稳定的永磁同步电机运行。
永磁同步电机参数测量试验方法(精编文档).doc
永磁同步电机参数测量试验⽅法(精编⽂档).doc【最新整理,下载后即可编辑】永磁同步电机参数测量实验⼀、实验⽬的1. 测量永磁同步电机定⼦电阻、交轴电感、直轴电感、转⼦磁链以及转动惯量。
⼆、实验内容1. 掌握永磁同步电机dq 坐标系下的电⽓数学模型以及机械模型。
2. 了解三相永磁同步电机内部结构。
3. 确定永磁同步电机定⼦电阻、交轴电感、直轴电感、反电势系数以及转动惯量。
三、拟需实验器件1. 待测永磁同步电机1台;2. ⽰波器1台;3. 西门⼦变频器⼀台;4. 测功机⼀台及导线若⼲;5. 电压表、电流表各⼀件;四、实验原理1. 定⼦电阻的测量采⽤直流实验的⽅法检测定⼦电阻。
通过逆变器向电机通⼊⼀个任意的空间电压⽮量U i (例如U 1)和零⽮量U 0,同时记录电机的定⼦相电流,缓慢增加电压⽮量U i 的幅值,直到定⼦电流达到额定值。
如图1所⽰为实验的等效图,A 、B 、C 为三相定⼦绕组,U d 为经过斩波后的等效低压直流电压。
I d 为母线电流采样结果。
当通⼊直流时,电机状态稳定以后,电机转⼦定位,记录此时的稳态相电流。
因此,定⼦电阻值的计算公式为:1,2a dbcd I I I I I ===- (1) 23d s d U R I = (2)图1 电路等效模型 2.直轴电感的测量在做直流实验测量定⼦电阻时,定⼦相电流达到稳态后,永磁转⼦将旋转到和定⼦电压⽮量重合的位置,也即此时的d 轴位置。
测定定⼦电阻后,关断功率开关管,永磁同步电机处于⾃由状态。
向永磁同步电机施加⼀个恒定幅值,⽮量⾓度与直流实验相同的脉冲电压⽮量(例如U 1),此时电机轴不会旋转(ω=0),d 轴定⼦电流将建⽴起来,则d 轴电压⽅程可以简化为:d d d q q d di u Ri L i L dt ω=-+d d d d di u Ri L dt =+ (3)对于d 轴电压输⼊时的电流响应为:()(1)d R t L U i t e R -=- (4)利⽤式(4)以及测量得到的定⼦电阻值和观测的电流响应曲线可以计算得到直轴电感值。
同步电机实验报告
一、实验目的1. 理解同步电机的原理和结构。
2. 掌握同步电机参数的测量方法。
3. 分析同步电机在不同运行状态下的性能。
二、实验原理同步电机是一种交流电机,其转速与电源频率成正比,因此被称为同步电机。
同步电机主要由定子和转子组成,其中定子为三相绕组,转子为永磁体或电磁体。
本实验主要研究三相永磁同步电机。
三、实验仪器与设备1. 同步电机实验台2. 三相交流电源3. 数字多用表4. 数据采集卡5. 电脑及实验软件四、实验步骤1. 准备阶段:检查实验台各部件是否完好,连接三相交流电源,打开实验软件。
2. 测量定子电阻:将数字多用表设置在电阻测量模式,分别测量三相定子绕组的电阻值。
3. 测量电感:将数字多用表设置在电感测量模式,分别测量三相定子绕组的交轴电感和直轴电感。
4. 测量反电势系数:将同步电机接入三相交流电源,使电机达到稳定运行状态。
在dq坐标系下,通过实验软件测量三相定子绕组的反电势系数。
5. 测量转动惯量:将同步电机接入三相交流电源,使电机达到稳定运行状态。
通过实验软件测量电机的转动惯量。
6. 实验数据分析:将实验数据整理成表格,分析同步电机在不同运行状态下的性能。
五、实验结果与分析1. 定子电阻:实验测得三相定子绕组的电阻值分别为R1、R2、R3。
2. 电感:实验测得三相定子绕组的交轴电感为Lq,直轴电感为Ld。
3. 反电势系数:实验测得三相定子绕组的反电势系数分别为Kq、Kd。
4. 转动惯量:实验测得同步电机的转动惯量为J。
根据实验数据,可以分析同步电机在不同运行状态下的性能,如启动转矩、调速范围、启动时间等。
六、实验结论1. 通过实验,掌握了同步电机的原理和结构。
2. 熟悉了同步电机参数的测量方法。
3. 分析了同步电机在不同运行状态下的性能。
七、实验心得本次实验使我对同步电机有了更深入的了解,提高了我的动手能力和实验技能。
在实验过程中,我遇到了一些问题,但在老师和同学的帮助下,最终顺利完成了实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程名称:电气装备计算机控制技术指导老师:成绩:实验名称:永磁同步电机控制系统参数测定实验类型:同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.掌握永磁同步电机的基本结构和原理2.探究永磁同步电机矢量控制算法的实现方法3.研究PID控制器在电机控制系统中的整定方法4.掌握运用MATLAB/Simulink实现电气控制相关控制系统的虚拟仿真实验二、实验内容和原理1.实验内容依照上节设计的控制结构图,在MATLAB/simulink模块中建立仿真模型。
系统参数设置:永磁电机转子磁通为0.22Wb,定子电阻为2.875Ω,d轴和q轴电感均为8.5mH,极对数设为1,额定转速设定为3000r/min,转动惯量为0.05kgm2。
逆变器直流侧电压设定为600V,脉冲产生模块(SVWPM)中开关频率为5kHz,转速调节器比例系数Kp1、积分系数Kt1和电流调节器比例系数Kp2、及积分系数Kt2自行设定2.实验原理(1)永磁同步电机的基本分类与组成永磁同步电机的分类多种多样,按照转子结构的不同可以分为表面式和内置式两种。
表面式指永久磁极镶于转子导磁材料的外表面,这种结构易于获得足够的磁通密度和较高的矫顽力,但是这种结构的电机很难实现恒功率调速(弱磁调速),一般只能用于恒转矩的工业场合;内置式永磁同步电机是指永久磁极嵌于转子导磁材料内部,这种结构能够利用电枢反应实现弱磁调速,在恒功率和恒转矩场合都能应用。
根据电机转子磁钢几何形状的不同,转子磁场在空间的分布也不相同,应用广泛的主要有梯形波和正弦波两种。
所以,当转子旋转时,产生在定子上的反电动势波形也有两种:一种为梯形波;另一种为正弦波。
这样的变化就使得两种电机在模型、原理及控制方法上有所区别,为了区分由它们组成的永磁同步电机调速系统,习惯上把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(PMSM)调速系统,而由梯形波(方波)永磁同步电动机组成的调速系统,在原理和控制方法上与直流电动机调速系统类似,故称这种系统为无刷直流电动机(BLDCM)调速系统。
本章选用正弦型永磁同步电机作为研究对象。
永磁同步电机基本结构主要包括:定子铁心、定子绕组和转子,其结构如图1所示:图1 永磁同步电机结构图(2)永磁同步电机的数学模型永磁同步电机与一般的交流励磁同步电机相比,只是转子的励磁绕组被永磁体所代替,定子侧励磁完全相同。
因此一般同步电机的基本公式对永磁同步电机同样适合,主要包括下面几个公式:n p f n 60=f πω2=ωψf e =0 me T P ω=m n e P ωω=上面公式中n 是电机转速(min /r ),f 为定子电流频率,n p为极对数,P 为电机功率,f ψ是励磁磁链,m ω为机械角速度(s rad /),0e 为电机反电动势的幅值,e ω为电气角速度(s rad /),e T 为电机电磁转矩。
①电机坐标变换根据交流调速的知识知道,永磁电机的定子侧各物理量均为交流量,而且在空间以同步速旋转,是高阶、非线性、多耦合的。
这给系统的计算和控制带来困难,一般都要通过坐标变换来简化电机的数学模型,降低控制结构设计的复杂度。
坐标变换能将原先静止坐标系下的交流耦合量等效变换为旋转坐标系下的直流量,这样模型将变得简单,也方便进行参数设置。
坐标变换的基本思想是保证在不同的坐标系上所产生的合成磁动势相等。
由三相静止坐标转换为两相旋转坐标过程如下: i.三相—两相变换(3s/2s 变换)永磁同步电机的定子按绕组轴线分为A 、B 、C 三相绕组,它们之间彼此互差120︒的电角度,三相绕组通入对称的三相交流电便产生一个旋转磁场。
根据等效原则,可以定义一个两相坐标系βα-,如图2所示。
在由α、β组成的两相绕组内通入两相对称交电流,通过调节幅值便可以使其产生一个和三相交流电效果相同的旋转磁场。
)(α图2 三相静止与两相静止坐标系图如图2所示,A-B-C 为定子绕组所在三相静止坐标系,空间互差120°,βα-为两相静止坐标系。
变换数学公式如式(1-6),就是CLARK 变换。
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=23230212112/3ss C s ——静止坐标系;r ——旋转坐标系。
ii.两相静止—两相旋转变换(2s/2r 变换)如图3所示,将转子轴向定义为d 轴,逆时针超前90︒方向为q 轴。
q d -坐标系以转子角速度在空间旋转。
因为转子轴向定在d 轴上,所以,虽然q d -坐标系旋转,但相对于转子是静止的,即为同步旋转坐标系。
如果在q d -绕组中通入直流电,因为坐标系本身是旋转的,同样可以产生旋转的磁场。
也就是说,在两相旋转坐标下中如果通入大小合适的两相直流电,可以产生与静止坐标系下通入两相交流电效果相同的旋转磁场。
βα-为两相静止坐标系,q d -为两相旋转坐标系,θ为旋转角,其值为角速度ω积分所得,⎰⋅=dt ωθ。
变换数学公式如式(1-7),这就是PARK 变换。
⎥⎦⎤⎢⎣⎡-=θθθθcos sin sin cos 2/2r s C图3 两相静止与两相旋转坐标系图iii.三相静止—两相旋转坐标转换(3s/2r 变换)dq θABC图4 三相静止与两相旋转坐标系图根据上述分析,把上述两个变换矩阵相乘,便推出三相静止到两相旋转坐标的变换如式(1-8):⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+----+-=)32sin()32sin(sin )32cos()32cos(cos 2/3πθπθθπθπθθrs C根据以上几个坐标变换结合电机等效电路基本方程便可以将同步电机数学模型中的交流量等效为直流量进行分析了。
②永磁同步电机在不同坐标系中的数学模型为方便永磁同步电机数学模型的建立,对永磁电机做如下假设: i. 忽略铁心饱和,磁滞损耗和涡流也可忽略不计; ii. 忽略转子阻尼绕组;iii. 定子绕组为Y 形连接,参数相同,空间相互差120°; iv. 定子三相绕组产生的感应电动势为对称正弦波; v. 忽略定子电流各次谐波的影响;vi. 所有自感、互感均为定值,且不依赖转子位置。
根据以上假设,永磁同步电机的电压矢量su 和磁链矢量s ψ可以表示为s S ss i R dt d u -=ψss f s i L +=ψψ其中,su 为定子电压矢量,sL 和sR 分别为定子电感和电阻,s i为定子电流,fψ和s ψ分别表示转子磁链矢量和定子磁链矢量。
根据式(1-9)、(1-10)可以推导出永磁同步电机在三相静止坐标系下的电压方程为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+---+---+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡C B A C B A s S S s S s S s s s S s C B A p i i i pL R pL pLpL pL R pLpL pL pL R u u u ψψψ.212121212121上式中A u 、B u 和Cu 为定子各相绕组端电压,A i 、B i 和Ci 表示绕组电流,A ψ、B ψ和C ψ表示转子磁场在定子绕组中的磁链,p 表示微分算子。
由于假定三相绕组为Y 型接法且转子磁链为标准正弦分布,所以有:A i +B i +C i =0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)32cos()32cos(cos πθπθθψψψψf C B A由式(1-11)、(1-12)和(1-13)联立计算可得:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+++-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡C B A C B A s S s S Ss C B A p i i i pL R pL R pL R u u u ψψψ.2302300023根据坐标变换原理,结合上面推出的永磁同步电机在三相静止坐标系中的数学方程,利用CLARK 变换和PARK 变换可以得出永磁同步电机在两相旋转坐标系下的数学方程:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡+----+-=⎥⎦⎤⎢⎣⎡C B A q d i i i i i .)2sin()32sin(sin )2cos()2cos(cos 32πθπθθπϑπθθ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡0100f q d q d q d i i L L ψψψ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡q d q d s s q d p p i i R R u u ψψωω0转矩公式为:)(23d q q de i i p T ψψ-=将式(1-16)带入式(1-18)中可得转矩公式(1-19):])([23q d q d q f n e i i L L i p T --=ψ上式中np 代表电机极对数,应与前面公式中代表微分算子的p 相区别,其余d u、q u 代表定子电压,d ψ、q ψ代表定子磁链,d L 、q L 为定子电感在q d -两轴的分量,e T 代表电机的电磁转矩。
(3)永磁同步电机的控制①同步电机的它控调速与自控调速永磁同步电机的变频调速控制可分为两大类:它控变频调速和自控变频调速。
它控变频调速的频率信号由外部给定,通常采用开环f V /控制,这种控制方式较为简单,但是存在失步危险,动态性能比较差;自控变频调速的频率由转子位置来控制,没有失步危险,动态性能相对它控变频要好很多。
它控调速多用于化工、纺织等行业中的小功率设备中,比较典型的是同步电机群f V /调速系统,如图5所示。
图5 小功率同步电动机群V/f调速示意图图6 永磁同步电机自控变频调速示意图永磁同步电机的自控变频调速系统示意图如图6所示。
同步电机转轴可以装一台转子位置(转速)检测器(PG),PG测得转子位置信号λ,然后将信号送给控制器,控制器根据λ来控制变频器输出电流或者电压的频率和相位,以此保证供电频率与转子转速保持同步。
当电机突加负载后,电机转速上升或者下降(电动机负载加大转速下降,发电机如果为负力矩则转速上升),变频器供电频率也随之变化,并维持功角位于稳定区域内,从而完全消除了失步的可能性。
一般大功率同步电机多采用自控变频调速方式,矢量控制就属于自控变频。
②矢量控制技术交流电机的矢量变换控制技术是高性能调速系统中的主要控制方法,它是在1971年由德国西门子的工程师Blaschke等人提出的。
其主要思想是把交流电机的定子电流利用坐标变换原理分解成旋转坐标系下用于控制电机转矩的转矩电流(有功电流)和控制电机磁场的励磁电流(无功电流),两个电流分量彼此独立控制且相互垂直,此时便可以模拟直流电机调速的相关方法对交流电机进行控制]25[。