弯曲与扭转组合变形实验0911
弯扭组合变形实验(内力素)
弯扭组合变形实验(内力素)变形实验是土木工程、机械结构与力学研究领域中应用广泛的手段之一,用以研究各类受力物体在外力作用下的内力及变形特性的变化。
在这项实验中,我们选取了一种特殊的变形实验,即弯曲扭组合变形实验(内力素),介绍如下:一、实验目的弯曲扭组合变形实验(内力素)主要用于研究材料在弯曲及扭转时结构上产生的内力与变形情况。
此类实验可以观察材料的强度特性,如材料的刚度、断裂强度特性及扭曲强度特性等,同时也可以帮助我们掌握材料的断裂模式,对设计及使用有较大的指导作用。
二、实验环境弯曲扭组合变形实验(内力素)需要使用相应的设备,其中最重要的是“弯曲扭组合变形实验仪”。
该仪器利用驱动力中心支撑件可搭载一条杆件,将外力施加在杆件上,以此来观察杆件内部的变形及产生的内力。
一次弯曲扭组合变形实验需要对一定大小的杆件、材料板及驱动力中心支撑件等设备进行安装。
三、实验步骤1. 安装杆件:先将杆件安装在驱动力中心支撑件上,然后用螺栓从外部将杆件支撑件固定,使之不受外力影响。
2. 加载实验:将所需外力施加到杆件上,通过驱动力中心支撑件将外力施加到杆件上。
外力的施加通常由步进电机控制。
3. 观测变形:采用轴心变形测量装置或激光测量仪探头来监测杆件的变形情况及内力的变化特点。
4. 结果分析:将获得的现场数据导入计算机进行分析,从而获得杆件内力与变形规律。
四、安全注意1. 操作者必须掌握实验知识,熟悉实验环境和安全注意事项,以减少可能发生的错误。
2. 使用完试验仪器后,应将电源断开以及必要的安全保险,以防事故发生。
3. 实验前,应当将实验杆件清理干净,对弯曲扭组合变形实验仪检查确认无损坏。
4. 建议实验过程中应有多人在场进行指导,以确保操作人员安全。
弯曲扭组合变形实验(内力素)是一种重要的变形实验方法,既可以让我们更好理解材料特性,也可以帮助优化结构设计,是一种十分有用的实验方法。
但是,实验中也有一定的危险性,因此实验中应加强安全注意。
弯扭组合实验实验报告
弯扭组合实验实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT乐享科技弯扭组合实验实验报告经营管理乐享实验二弯扭组合试验一、实验目的1.用电测法测定平面应力状态下一点处的主应力大小和主平面的方位角;2.测定圆轴上贴有应变片截面上的弯矩和扭矩;3.学习电阻应变花的应用。
二、实验设备和仪器1.微机控制电子万能试验机;2.电阻应变仪;3.游标卡尺。
三、试验试件及装置弯扭组合实验装置如图一所示。
空心圆轴试件直径D 0=42mm ,壁厚t=3mm , l 1=200mm ,l 2=240mm (如图二所示);中碳钢材料屈服极限s σ=360MPa ,弹性模量E =206GPa ,泊松比μ=。
图一 实验装置图四、实验原理和方法1、测定平面应力状态下一点处的主应力大小和主平面的方位角;圆轴试件的一端固定,另一端通过一拐臂承受集中荷载P ,圆轴处于弯扭组合变形状态,某一截面上下表面微体的应力状态如图四和图五所示。
在圆轴某一横截面A -B 的上、下两点贴三轴应变花(如图三),使应变花的各应变片方向分别沿0°和±45°。
根据平面应变状态应变分析公式:αγαεεεεεα2sin 22cos 22xyyx yx --++=(1)可得到关于εx 、εy 、γxy 的三个线性方程组,解得:4545045450εεγεεεεεε-=-+==--xy y x (2)图三 应变花示意图图四 圆轴上表面微体的应力状xxxx 图五 圆轴下表面微体的应力状由平面应变状态的主应变及其方位角公式:2221222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x y x γεεεεεε (3)0min max 2()2()xy xyx y tg γγαεεεε=-=---或yx xy tg εεγα--=02 (4) 将式(2)分别代入式(3)和式(4),即可得到主应变及其方位角的表达式。
弯扭组合变形实验报告
弯扭组合变形实验报告在科学研究领域中,变形实验是一种常见的实验方法,用于研究物体在外力作用下的变形规律。
而在变形实验中,弯扭组合变形实验是一种常见且重要的实验方法,可以用来研究材料的弯曲和扭转变形特性。
本报告将对弯扭组合变形实验进行详细的描述和分析。
我们需要了解弯扭组合变形实验的基本原理。
在弯扭组合变形实验中,试样将同时受到弯曲和扭转的作用,这种双重变形方式会导致试样表面和内部的变形状态复杂多样。
通过对试样进行弯扭组合变形实验,可以得到材料在不同变形模式下的力学性能参数,如弯曲强度、扭转强度等,从而更全面地了解材料的力学性能。
弯扭组合变形实验的操作步骤也非常关键。
首先,需要选择合适的试样形状和尺寸,然后将试样固定在试验机上,施加合适的弯曲和扭转载荷,同时记录试样的变形情况和载荷大小。
在实验过程中,需要确保试样受力均匀,避免出现局部过载或集中变形的情况,以保证实验结果的准确性和可靠性。
在进行弯扭组合变形实验时,需要注意一些实验技巧。
首先,应该根据试样的材料和形状特性合理选择试验条件,如载荷大小、加载速度等,以确保实验结果具有代表性。
其次,在实验过程中应及时观察试样的变形情况,注意是否出现裂纹或变形不均匀的现象,及时调整实验条件以保证实验的顺利进行。
在实验结束后,需要对实验数据进行分析和处理。
通过对试样在弯扭组合变形过程中的力学性能参数进行计算和统计,可以得到材料的弯曲和扭转性能指标,如弯曲模量、扭转刚度等。
这些数据对于材料的设计和应用具有重要的参考价值,可以帮助工程师更好地选择和使用材料。
总的来说,弯扭组合变形实验是一种重要的材料力学性能测试方法,通过该实验可以全面了解材料在弯曲和扭转载荷下的性能表现。
在进行弯扭组合变形实验时,需要注意选择合适的试验条件、掌握实验技巧,并对实验数据进行准确分析和处理。
希望本报告对弯扭组合变形实验有所帮助,能够促进材料力学性能研究的进展。
弯扭组合变形实验报告数据
实验名称:弯扭组合变形实验一、实验目的:1. 通过实验,了解和掌握材料在弯扭组合变形下的力学性能。
2. 熟悉和掌握弯扭组合变形的测量方法和数据处理技巧。
3. 通过实验,验证理论知识和计算方法的正确性。
二、实验设备:1. 材料试验机2. 弯曲和扭转加载装置3. 千分尺4. 数据记录仪三、实验材料:1. 实验材料为Q235钢,其化学成分和力学性能如下:-碳(C)含量:0.12%-锰(Mn)含量:0.3%-硅(Si)含量:0.3%-磷(P)含量:0.035%-硫(S)含量:0.035%-屈服强度:235MPa-抗拉强度:375MPa-伸长率:26%四、实验步骤:1. 将试样安装在试验机上,确保试样与加载装置之间的接触良好。
2. 设置试验机的弯曲和扭转加载参数,包括加载速度、加载时间等。
3. 开始加载,同时记录试样的弯曲和扭转角度以及载荷大小。
4. 当试样发生断裂时,停止加载,记录断裂载荷和断裂角度。
5. 清理实验现场,整理实验数据。
五、实验数据:1. 试样尺寸:长度100mm,宽度10mm,厚度2mm。
2. 弯曲加载参数:加载速度1mm/min,加载时间1min。
3. 扭转加载参数:加载速度1r/min,加载时间1min。
4. 实验数据记录如下:-弯曲角度:0°,15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°,180°。
-扭转角度:0°,15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°,180°。
-弯曲载荷:0N,2.5N,5N,7.5N,10N,12.5N,15N,17.5N,20N,22.5N,25N,27.5N,30N。
弯扭组合实验ZT2011
ε1( ε1F 、εT )
ε4( ε4F 、εT )
B
R1
读 1 4 1 F T 4 F T 1 F 4 FA
R4
C
方案3
读231 Ex
R
R
D
读 2 3 2 F T 3 F T 2 F 3 F 2 T
6 (5)
B4
a3 x
O
D
l
z
F
xz
A
x
x x
A
x
xz
B
x
x x
B
x
➢ 空心圆轴产生弯扭组合变形
➢ 在A点取一个单元体 ➢ 弯曲变形产生的正应力σx ➢ 扭转变形产生的切应力τxz
平面应力状态、主方向未知 需要粘贴三个应变片
应变片布置图
C
A1
2 (3)
S
6 (5)
B4
D
z
a2 a1 a3
E
半桥接桥方式
在两个桥臂上接入应变片,另外两 个桥臂上接入仪器内部的固定电阻。
读ABBC
全桥接桥方式
在四个桥臂上都接入应变片。
读 AB BC CD DA
举例:用半桥方式求正应力σ x
方案1
读14 E 2x
R1
消除温度影响,测出σ x 。
A
R
方案2
读251 Ex
排除τxz ,消除温度影响,测出σ x 。
用半桥和全桥接法测定弯曲正应力σx。 用半桥和全桥接法测定扭转切应力τxz。
测试 项目
接桥 方式
组桥方案
静定 (με)
静不定 (με)
纯扭转 (με)
x 半桥
全桥
xz 半桥全桥BR2R3A
弯曲与扭转组合实验
0o
x
y
2
x
y
2
2 45o
45o
x
y
2
xy
2
3 -45o
45o
x
y
2
+ xy
2
6.实验步骤
1.将传感器连接到BZ2208-A测力部分的信号输入端,打开仪 器,设置仪器的参数,测力仪的量程和灵敏度设为传感器量 程、灵敏度。
2.主应力测量:将两个应变花的公共导线分别接在仪器前任意 两个通道的A端子上,其余各导线按顺序分别接至应变仪的1-6 通道的B端子上,设置应变仪参数。
x
y
2
x
y
2
cos 2
1
2
xy sin 2
为了简 化计算,往往采用互成特殊角度的三片应变片组成的应 变花,本实验用了 45°应变花。
三个选定方向上的线应变
A点 1 0o
2 45o
0o
x
y
2
x
y
2
45o
x
y
2
xy
2
y
90o
45o
3 90o
90o
x
y
2
x
y
2
Hale Waihona Puke 0oxB点 1 0o
注意:扇形加力杆不与加载中心 线相切,将导致实验结果有误差, 甚至错误。
弯扭组合梁的贴片
5.实验原理
当竖向荷载P作用时,薄壁圆管发生
弯曲与扭转组合变形。A点所在截
面的内力有弯矩M、剪力Q、扭矩
MT.因此该截面同时存在弯曲引起的 正应力σW,扭转引起的剪应力τT (弯曲引起的剪应力比扭转引起的
剪应力小得多,故在此不予考虑)。
弯扭组合变形实验报告
弯扭组合变形实验报告在本次实验中,我们将探讨弯扭组合变形的现象及其可能的影响。
弯扭组合变形是一种常见的材料变形方式,特别是在金属材料中。
通过施加弯曲和扭转力,可以使材料发生复杂的变形,这既可以用于制造工艺中,也可以用于材料性能的研究。
我们进行了一组简单的实验,选取了不同种类的金属材料进行弯扭组合变形。
通过在材料上施加不同方向和大小的力,我们观察到了材料发生的变形情况。
在弯曲力的作用下,材料产生了弯曲变形,而扭转力则使材料发生了扭转变形。
当两种力同时作用在材料上时,就会出现弯扭组合变形的情况,这种变形形式更加复杂,具有更多的变形模式。
接着,我们对不同金属材料在弯扭组合变形过程中的性能进行了比较。
我们发现,一些材料在受到弯扭组合变形后,其强度和硬度有所提高,但塑性却有所下降。
这说明弯扭组合变形可以提高材料的强度,但也可能导致其脆性增加。
而对于另一些材料来说,弯扭组合变形后,其塑性反而有所提高,但强度和硬度可能会降低。
因此,在实际应用中,需要根据具体材料的性能需求来选择是否采用弯扭组合变形工艺。
我们还研究了弯扭组合变形对材料微观结构的影响。
通过金相显微镜的观察,我们发现在弯扭组合变形后,材料的晶粒结构发生了明显的变化。
晶粒可能会发生细化,晶界的移动和变形也会加剧。
这些微观结构的变化对材料的性能有着重要影响,因此对于材料的微观结构进行研究是十分必要的。
总的来说,弯扭组合变形是一种重要的材料变形方式,可以有效改善材料的性能,但也可能导致一些负面影响。
因此,在工程实践中,需要充分考虑弯扭组合变形对材料性能的影响,合理选择工艺参数,以实现最佳的效果。
希望通过本次实验,可以更深入地了解弯扭组合变形的机理及其在材料加工中的应用。
弯扭组合实验实验报告-推荐下载
根据广义虎克定律,可得:
又:
由式(7)~(9)得到:
y 0
x
Ri
Ri 图六
1 E
( x
1
22ExFra bibliotek
2
1
00 450
y )
M E Wz x
以某截面上应力最大的上点或下点作为测量点。测出 X 方向应变片的应变值 εX(
4 / 11
方向分别沿 0°和±45°。
根据平面应变状态应变分析公式:
可得到关于 εx、εy、γxy 的三个线性方程组,解得:
x 00 y 450 450 00 xy 450 450
由平面应变状态的主应变及其方位角公式:
tg0
1 x y
材料力学实验
实验二 弯扭组合试验
一、实验目的
1. 用电测法测定平面应力状态下一点处的主应力大小和主平面的方位角; 2. 测定圆轴上贴有应变片截面上的弯矩和扭矩; 3. 学习电阻应变花的应用。
二、实验设备和仪器
1. 微机控制电子万能试验机; 2. 电阻应变仪; 3. 游标卡尺。
三、试验试件及装置
弯扭组合实验装置如图一所示。空心圆轴试件直径 D0=42mm,壁厚 t=3mm,
材料力学实验
四、实验原理和方法
1、测定平面应力状态下一点处的主应力
大小和主平面的方位角;
圆轴试件的一端固定,另一端通过一拐臂承受集中荷载 P,圆轴处于弯扭组合变形状 态,某一截面上下表面微体的应力状态如图四和图五所示。
x x 图四 圆轴上表面微体的应力状态
在圆轴某一横截面 A-B 的上、下两点贴三轴应变花(如图三),使应变花的各应变片
弯曲、弯扭组合实验讲义ppt课件
横截面上正应力分布规律:
1、受拉区
拉应力,受压区
压应力;
2、中性轴上应力为零;
3、沿y轴线性分布,同一坐标y处,正应力相等。既沿截面
宽度均匀分布;
4、最大正应力发生在距中性轴最远处,即截面边缘处;
假设截面对称于中性轴, 那么最大拉应力等于最大压应力。
s
σmax M
M
M
σmax
smax M
中性轴
smax
应变片粘贴
• 如下图,沿梁的横截面高度已粘贴 一组应变片1~7号。另外,8号应 变片粘贴在梁的下外表与7号应变 片垂直的方向上。
• 当梁受载后,可由应变仪测得每片
7
应变片的应变,即得到实测的沿梁
横截面高度的应变分布规律,由单
向应力形状下的虎克定律公式,可
求出实验应力值。实验应力值与实
际应力值进展比较,以验证纯弯曲
梁的正应力计算公式。
• 假设实验测得应变片7和8号的应变 7
•
8和
曲时
满足 8 m
7
那么证明梁弯
•
近似为单向形状,即梁的纵向
纤维间无挤压的假设成立。
电桥接法—单臂半桥
• 是在AB 桥臂上接任务应变片,由于只需八个任务 应变片,因此,要八个惠斯登电桥;
• BC 桥臂上接补偿应变片,当用一个补偿片补偿多 个任务片时,称此接线方法为公共补偿接线法;
一、实验目的
• 掌握电阻应变花的运用 • 用电测法测定平面应力形状下一点主应力的大小
及方向 • 测定薄壁圆管在弯扭组合变形作用下,分别由弯
矩和扭矩所引起的应变
弯扭组合变形主应力的测定
二、实验安装
12
7
13
6 54
弯扭组合变形实验报告
弯扭组合变形实验报告薄壁圆管弯扭组合变形应变测定实验一.实验目的1.用电测法测定平面应力状态下主应力的大小及方向;2.测定薄壁圆管在弯扭组合变形作用下,分别由弯矩、剪力和扭矩所引起的应力。
二.实验仪器和设备1.弯扭组合实验装置;2.YJ-4501A/SZ 静态数字电阻应变仪。
三.实验原理薄壁圆管受力简图如图1所示。
薄壁圆管在P 力作用下产生弯扭组合变形。
薄壁圆管材料为铝合金,其弹性模量E为72 2m GN , 泊松比μ为0.33。
薄壁圆管截 图1面尺寸、如图2所示。
由材料力学分析可知,该截面上的内力有弯矩、剪力和扭矩。
Ⅰ-Ⅰ截面现有A 、B 、C 、D 四个测点,其应力状态如图3所示。
每点处已按 –450、00、+450方向粘贴一枚三轴450应变花,如图4所示。
图2 图3 图4四.实验内容及方法1. 指定点的主应力大小和方向的测定薄壁圆管A 、B 、C 、D 四个测点,其表面都处于平面应力状态,用应变花测出三个方向的线应变, 然后运用应变-应力换算关系求出主应力的大小和方向。
若测得应变ε-45、ε0、ε45 ,则主应力大小的计算公式为()()()⎥⎦⎤⎢⎣⎡-+--±++-=--245020454*******1211εεεεμεεμμσσE主应力方向计算公式为()()04545045452εεεεεεα----=--tg 或()45450454522εεεεεα+---=--tg2. 弯矩、剪力、扭矩所分别引起的应力的测定 a. 弯矩M 引起的正应力的测定只需用B 、D 两测点00方向的应变片组成图5(a )所示半桥线路,就可测得弯矩M 引的正应变 2MdM εε=然后由虎克定律可求得弯矩M 引起的正应力2MdM M E E εεσ== b. 扭矩M n 引起的剪应力的测定 图5 用A 、C 两被测点-450、450方向的应变片组成图5(b )所示全桥线路,可测得扭矩M n 在450方向所引起的线应变 4ndn εε=由广义虎克定律可求得剪力M n 引起的剪应力 ()214nd nd n G E εμετ=+=c. 剪力Q 引起的剪应力的测定用A 、C 两被测点-450、450方向的应变片组成图5(c )所示全桥线路,可测得剪力Q 在450方向所引起的线应变 4QdQ εε=由广义虎克定律可求得剪力Q 引起的剪应力 ()214QdQd Q G E εμετ=+=五.实验步骤1. 接通测力仪电源,将测力仪开关置开。
弯扭组合变形实验(主应力)
弯扭组合变形实验——主应力的测定一、实验目的1.测量薄壁圆管在弯曲和扭转组合变形下,其表面一点的主应力大小及方位。
2.掌握用电阻应变花测量某一点主应力大小及方位的方法。
3.将测点主应力值与该点主应力的理论值进行分析比较。
二、预习思考要点1.试分析本实验装置是如何使薄壁圆管产生弯曲和扭转组合变形的。
2.薄壁圆管在弯扭组合变形下其横截面上有几种内力?哪几种?有几种应力?哪几种?3.薄壁圆管在弯扭组合变形下其表面一点处于什么应力状态?在主应力方位未知的情况下,确定该点的应力状态需求解几个未知量?哪几个?三、实验装置及仪器1.弯扭组合变形实验装置如图1-29所示,装置上的薄壁圆管一端固定,另一端自由。
在自由端装有与圆管轴线垂直的加力杆,该杆呈水平状态。
载荷F作用于加力杆的自由端。
此时,薄壁圆管发生弯曲和扭转的组合变形。
在距圆管自由端为L1的横截面的上、下表面B和D处各贴有一个45°应变花(或60°应变花)如图1-29。
设圆管的外径为D,内径为d,载荷作用点至圆管轴线的距离为L2。
图1-29 簿壁圆管主应力测量装置2.静态电阻应变仪。
3.游标卡尺、钢尺等。
四、实验原理理论分析表明,薄壁圆管发生弯扭组合变形时,其表面各点均处于平面应力状态,如图1-29所示的I-I 截面的上表面B 点和下表面D 点的应力状态分别如图1-30所示。
(a ) (b )图1-30 簿壁圆管上、下表面点的应力状态由应力状态理论可知,对于平面应力状态问题,要用实验方法测定某一点的主应力大小及方位,一般只要测得该点一对正交方向的应变分量εx 、εy 及γxy 即可。
用实验手段测定线应变ε较为容易,但角应变γxy 的测定却困难得多,而由平面应力状态下一点的应变分析可知平面上某点处的坐标应 变分量εx 、εy 及γxy 与该点处任一指定方向α的线应变εα有下列关系:αγαεαεεα2sin 21sin cos 22xy y x ++= (1-55)从理论上说可以测定过该点任意三个不同方向上的线应变εα、εβ、εγ,建立三个如式1-55那样的独立方程,解此方程组即可完全地、唯一地确定εx 、εy 、γxy ,但因方程中出现了三角函数,为了解算简便,在实验测试中,生产厂家已将三个应变片互相夹一特殊角,组合在同一基底上组成应变花,本实验采用互成45°的直角应变花,布设方式如图1-31所示。
弯曲与扭转实验报告
《材料力学实验报告-弯曲扭转》扭转实验一、实验目的1.学习扭转实验机的构造原理,并进行操作练习。
2.测定低碳钢的剪切屈服极限、剪切强度极限和铸铁的剪切强度极限。
3.观察低碳钢和铸铁在扭转过程中的变形和破坏情况。
二、实验仪器扭转实验机,游标卡尺。
三.实验原理塑性材料和脆性材料在扭转时的力学性能。
(参考材料力学课本及其它相关书籍)四、实验步骤1.低碳钢实验(1)量取试件直径。
在试件上选取3个位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均直径值中取最小值作为试件的直径。
(2)将扭转实验机刻度盘的从动针调至靠近主动针。
主动针的调零方式为自动调整,如果主动针不在零位,应通知老师,由老师进行调整。
绝对不能用调从动针的方法,将两针调至零位。
(3)把试件安装在扭转试验机的夹头内,并将螺丝拧紧(勿太用力)。
安装时,一定要注意主动夹头的夹块要保持水平(固定夹头的夹块总是水平的),以避免引起初始扭矩。
如果已经出现小量的初始扭矩,只要不超过5N*m,可以开始加载。
另外,试件在水平面和垂直面上不能歪斜,否则加载后试件将发生扭曲。
(4)打开绘图记录器的开关;将调速旋钮置于低速位置。
开始用档慢速加载,每增加 5N*m 的扭矩,记录下相应的扭转角度。
实验过程中,注意观察试件的变形情况和图,当材料发生流动时,记录流动时的扭矩值和相应的扭转角度。
另外,注意记录扭矩刚开始下降时的扭矩值和相应的扭转角度。
扭矩值估读到0.1N*m。
(5)流动以后,继续加载,试件进入强化阶段,关闭记录器后,将电机速度选择在档,加快加载速度。
这时由于变形速度较快,可每增加180度取一次扭转角度。
直至试件扭断为止,记下断裂时的扭矩值,注意观察断口的形状。
注意,试件扭断后应立即停止加载,以便记录断裂时的扭转角度。
2.铸铁实验操作步骤与低碳钢相同。
因铸铁在变形很小时就破坏,所以只能用档慢速加载。
每增加5N*m 的扭矩,记录下相应的扭转角度。
弯扭组合变形实验报告
弯扭组合变形实验报告弯扭组合变形实验报告引言:弯扭组合变形是一种常见的材料力学实验方法,通过施加弯曲和扭转力,对材料的力学性能进行测试和研究。
本实验旨在探究不同弯曲和扭转力对材料变形行为的影响,为工程设计和材料选择提供参考依据。
实验过程:1. 实验材料准备选取了常见的金属材料样本,如钢材、铝材等,并根据实验要求制备成适当的尺寸和形状。
2. 实验装置搭建搭建了弯曲和扭转力施加装置,确保力的施加平稳和准确。
3. 弯曲实验将样本固定在弯曲装置上,施加不同大小的弯曲力,记录样本的弯曲程度和应力。
4. 扭转实验将样本固定在扭转装置上,施加不同大小的扭转力,记录样本的扭转角度和应力。
5. 弯扭组合实验将样本同时固定在弯曲和扭转装置上,施加不同大小的弯曲和扭转力,记录样本的变形情况和应力。
实验结果:通过实验记录和数据分析,得出以下结论:1. 弯曲实验结果显示,随着施加的弯曲力增加,样本的弯曲程度和应力呈线性增加关系。
不同材料的弯曲刚度存在差异,钢材相对较硬,而铝材相对较软。
2. 扭转实验结果显示,随着施加的扭转力增加,样本的扭转角度和应力呈线性增加关系。
与弯曲实验类似,不同材料的扭转刚度也存在差异。
3. 弯扭组合实验结果显示,当同时施加弯曲和扭转力时,样本的变形行为更为复杂。
在一定范围内,弯曲和扭转力的叠加会导致样本的非线性变形。
不同材料对弯扭组合力的响应也有所差异,这对于工程设计中的材料选择和结构优化具有重要意义。
讨论与分析:弯扭组合变形实验的结果表明,材料的力学性能受到多种因素的影响。
除了弯曲和扭转力的大小外,材料的组织结构、晶粒大小、温度等因素也会对材料的变形行为产生影响。
因此,在实际工程中,需要综合考虑这些因素,选择合适的材料和合理的设计方案。
此外,弯扭组合变形实验还可以用于材料的疲劳寿命评估和损伤分析。
通过施加不同弯曲和扭转力的循环加载,可以模拟实际工况下的变形情况,从而预测材料的寿命和损伤程度。
结论:弯扭组合变形实验是一种重要的材料力学测试方法,通过施加弯曲和扭转力,可以研究材料的力学性能和变形行为。
弯扭组合实验报告
弯扭组合实验报告弯扭组合实验报告引言:组合实验是一种常见的科学研究方法,通过对不同因素的组合进行实验,以探究它们之间的相互作用和影响。
本次实验旨在研究弯扭组合对材料性能的影响,并探索其中的规律和机理。
实验材料与方法:实验选用了两种不同材料的试样,分别是金属和塑料。
金属试样为钢材,塑料试样为聚乙烯。
实验中,我们将分别进行弯曲和扭转两种载荷的单独实验,以及弯扭组合实验。
实验设备包括弯曲试验机和扭转试验机。
实验结果与分析:在弯曲实验中,我们测量了不同载荷下试样的弯曲变形和应力。
结果显示,金属试样在弯曲载荷下出现了明显的弯曲变形,而塑料试样则表现出较大的应变。
这表明金属试样具有较高的强度和刚度,而塑料试样则具有较高的韧性和延展性。
在扭转实验中,我们测量了不同载荷下试样的扭转角度和扭转应力。
结果显示,金属试样在扭转载荷下出现了明显的扭转变形,而塑料试样则表现出较小的变形。
这进一步验证了金属试样具有较高的强度和刚度,而塑料试样具有较高的韧性和延展性。
接下来,我们进行了弯扭组合实验。
通过对金属和塑料试样施加同时弯曲和扭转的载荷,我们观察到了不同的变形行为。
金属试样在弯扭组合载荷下出现了更为复杂的变形,同时呈现出弯曲和扭转的特征。
而塑料试样在同样的载荷下则表现出更大的变形和应变。
这说明弯扭组合载荷对试样的变形行为产生了显著影响,并且不同材料的试样具有不同的响应。
讨论与结论:通过本次实验,我们得出了以下结论:1. 弯曲载荷对金属和塑料试样的变形行为具有显著影响,金属试样呈现出明显的弯曲变形,而塑料试样则表现出较大的应变。
2. 扭转载荷对金属和塑料试样的变形行为也具有显著影响,金属试样呈现出明显的扭转变形,而塑料试样则表现出较小的变形。
3. 弯扭组合载荷对试样的变形行为产生了更为复杂的影响,金属试样呈现出同时弯曲和扭转的特征,而塑料试样则表现出更大的变形和应变。
综上所述,本次弯扭组合实验研究了金属和塑料试样在不同载荷下的变形行为,并探讨了弯扭组合载荷对试样性能的影响。
弯扭组合实验
实验三 弯曲和扭转组合变形实验一、实验目的1、测定薄壁圆筒在复合力作用下的应力、应变,同时测定剪切弹性模量G ,并与理论值进行比较。
2、进一步熟悉电测法的原理及电阻应变仪的使用方法。
二、仪器设备1、多功能实验台2、带扇臂的薄壁圆筒(试件)3、静态电阻应变仪薄壁管材料为钢材,其弹性模量E 为202GPa ,剪切弹性模量G 为80GPa ,泊松比μ为0.28。
薄壁管截面尺寸见图2(a ),a =250mm ,l =230mm ,D =40mm ,t =4mm 。
I-I 截面为被测试截面,取两个被测点,位置见图2(a )所示的A 、C ,在每个被测点贴上两枚应变片(-45o 、45o ),如图3(a)所示,共计4片应变片。
图2(a) 薄壁圆筒受力图图2(b ) A 、B 、C 、D 点应力状态三、实验原理1、I -I 截面应力状态见图2(b )薄壁圆筒由于扭转引起的剪应力由下式计算202T T R t τπ=薄壁圆筒由于弯曲引起的剪应力由下式计算0V VR tτπ=式中,平均半径20r R R +=,平均壁厚t =R-r 。
Ⅰ2、测点布置及电桥连接方式图3(a) 测点布置 图3(b) 电桥连接3、扭矩T 引起的剪应变测定 ()1234εεεεε=-+-1234,,,T V T V T V T V εεεεεεεεεεεε=+=--=-=-+所以4T εε=由广义胡克定律可知:2T T γε= 因此2T εγ=式中:ε---应变仪读数。
4、剪切弹性模量G 的测定若已知载荷,可用下式计算扭矩引起的剪应力的理论值 202T R tτπ=理式中:T ――根据载荷计算的扭矩值;R ――薄壁圆筒平均半径20r R R +=;t ――薄壁圆筒平均壁厚t =R-r 。
然后由测得的扭矩引起的剪应变T γ,用下式计算剪切弹性模量 TG τγ=理取各应变片的应变读数增量的平均值代入上式得:CR3R 4AR 1R 2TG τγ∆=∆理四、 实验步骤a . 将应变片按照实验要求接至应变仪上,并进行参数设置;b . 拟定加载方案(分六级加载,最大荷载N F 500max =);c . 进行实验;d . 结束实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回
接桥方式:
(ds 1 2 3 4 )
B
¼ 桥接法
ds 1
半桥接法
ds 1 2
R1
测量片
I1 A
I2
R4
R2
补偿片
C
U1
R3
全桥接法
D
ds 1 2 3 4
返回
U0
应力单元体图
σ1
σ3
α0
X
σ1
σ3
三、基本原理 (测试原理)
2
2 T
tan 2 0
2 T w
(5-0) (5-1) (5-2)
三、基本原理 (实测主应变计算公式)
1 3
x
y
2
x
2
y
2
xy
2
2
45 45
2
2 0 45 45
X, y, xy
a
x
cos2 a
y
sin
2 a
xy sin
a
cos a
b
x cos2 b
y sin
2
b
xy
sin b
cosb
(5-3)
c
x cos2 c
y sin 2 c
xy sin c
接桥方式
四、实验步骤
2、电桥平衡
打开静态电阻应变仪开关,在载荷为 零时调整各测点电桥平衡。
四、实验步骤
3、加载测量 逆时针转动加载手轮对试件加载(测力 仪显示的单位为kN)试验分三次加载, 第一次分级加载,分别记录0N、150N、
300N和450N时各测点的应变值。 第二次和第三次直接由0 加到450N。取以 上三次P=450N时实测应变的平均值计算
二、实验装置与仪器
B D
测量应变片 温度补偿片
二、实验装置与仪器
-45° 0°
45°
二、实验装置与仪器
LL D=40 d=34
aa
E=0.7x105MPa
μ=0.33
P
二、实验装置与仪器
A B C D
三、基本原理 (理论公式)
w
M W
,
T
MT WT
1 3
w
2
w
2
1
(5-7)
1 3
E
1
2
1
2
45
45
1
2
45
0
2
0
45
2
tan 20
xy x y
45 45 2 0 45 45
四、实验步骤
1、导线连接 本次实验测定薄壁铝管,上表面测点B和下表面 测点6个应变测点于应 变仪上, -45°;0°;45°的导线颜色分别为 蓝、白、绿色 。接桥采用半桥外补偿方式。
cosc
X 0
y 45 45 0
(5-4)
xy 45 45
材料力学实验
弯曲与扭转组合变形实验
弯曲与扭转组合变形实验
一、实验目的 二、实验装置与仪器 三、基本原理 四、实验步骤 五、注意事项
梁弯曲正应力实验
σ= Eε
弯扭组合变形实验装置
L
a
测试截面 被测杆件
(薄壁铝管)
P
力传感器
一、实验目的
通过弯曲与扭转组合变形实验,学习 用电测法测定平面应力状态下一点处, 主应力大小和方向的方法。 进一步熟悉电阻应变仪的使用方法。
2
2
45
2
45
2
(5-5)
tan 20
xy x y
45 45 2 0 45 45
(5-6)
三、基本原理 (实测主应力计算公式)
1
E
1 2
1
3
3
E
1 2
3
B,D两点处主应力的大小和方向。
五、注意事项
1.本实验装置能承受的最大荷载500N 不要超载,否则会损坏薄壁管和传感器。
2.理论计算D点主应力时,由于D点弯曲引起
的是压应力故σw取负值。
抗弯截面系数: W D3 [1 ( d )4 ]
32 D
抗扭截面系数:
WT
D3
16
[1 ( d )4 ] D