大体积混凝土结构裂缝产生原因及预防控制
大体积混凝土裂缝的检测与处理
大体积混凝土裂缝的检测与处理在现代建筑工程中,大体积混凝土的应用越来越广泛,例如大型基础、桥梁墩台、大坝等。
然而,由于大体积混凝土的体积较大,水泥水化热释放集中,内部温升快,以及混凝土内外温差大等原因,容易导致裂缝的产生。
这些裂缝不仅会影响混凝土结构的外观,还可能降低其承载能力、耐久性和防水性能,从而危及建筑物的安全和正常使用。
因此,对大体积混凝土裂缝的检测与处理至关重要。
一、大体积混凝土裂缝的类型及成因(一)收缩裂缝收缩裂缝是大体积混凝土中最常见的裂缝类型之一。
混凝土在硬化过程中,由于水分的蒸发和水泥的水化反应,体积会逐渐缩小。
如果收缩受到约束,就会产生拉应力,当拉应力超过混凝土的抗拉强度时,就会出现收缩裂缝。
收缩裂缝通常表现为表面性的、较细的裂缝,且分布较为均匀。
(二)温度裂缝大体积混凝土在浇筑后的硬化过程中,水泥水化会释放出大量的热量,导致混凝土内部温度迅速升高。
而混凝土表面散热较快,形成较大的内外温差。
这种温差会使混凝土内部产生压应力,表面产生拉应力。
当拉应力超过混凝土的抗拉强度时,就会产生温度裂缝。
温度裂缝通常较宽,深度也较大,往往贯穿整个混凝土结构。
(三)荷载裂缝在大体积混凝土结构承受外部荷载时,如果荷载超过了混凝土的承载能力,就会产生裂缝。
荷载裂缝的形状和分布与荷载的类型、大小和作用方式有关。
(四)施工裂缝施工过程中的不当操作也可能导致大体积混凝土裂缝的产生。
例如,混凝土浇筑不连续、振捣不均匀、拆模过早、养护不当等。
二、大体积混凝土裂缝的检测方法(一)外观检查外观检查是最直观、最简单的检测方法。
通过肉眼观察混凝土表面是否有裂缝,以及裂缝的形态、宽度、长度和分布情况等。
对于较宽的裂缝,可以使用塞尺或裂缝宽度测量仪进行测量。
(二)超声波检测超声波检测是一种无损检测方法,通过发射和接收超声波在混凝土中的传播,来判断混凝土内部是否存在裂缝以及裂缝的位置、深度和走向等。
超声波检测具有检测精度高、操作方便等优点,但对于细小的裂缝检测效果可能不太理想。
大体积混凝土质量通病及防治措施
大体积混凝土质量通病及防治措施在建筑工程中,大体积混凝土的应用越来越广泛。
然而,由于其体积大、结构厚实、施工技术要求高,在施工过程中容易出现一些质量通病,如裂缝、蜂窝麻面、孔洞等,这些问题不仅影响混凝土的外观质量,还可能降低其结构性能和耐久性。
因此,了解大体积混凝土质量通病的产生原因,并采取有效的防治措施,对于保证工程质量具有重要意义。
一、大体积混凝土质量通病(一)裂缝裂缝是大体积混凝土最常见的质量通病之一。
裂缝按深度不同可分为表面裂缝、深层裂缝和贯穿裂缝。
表面裂缝一般危害性较小,但在外界因素的影响下,可能会发展成为深层裂缝或贯穿裂缝。
深层裂缝和贯穿裂缝会严重影响混凝土的结构性能和耐久性。
裂缝产生的原因主要有以下几个方面:1、水泥水化热大体积混凝土中水泥用量较大,水泥在水化过程中会释放出大量的热量,导致混凝土内部温度升高。
由于混凝土的导热性能较差,内部热量不易散发,从而形成较大的内外温差。
当温差超过一定限度时,混凝土表面就会产生拉应力,当拉应力超过混凝土的抗拉强度时,就会产生裂缝。
2、外界气温变化在混凝土施工过程中,如果外界气温突然下降,会导致混凝土表面温度急剧下降,而内部温度下降较慢,从而形成较大的内外温差,产生裂缝。
3、混凝土收缩混凝土在硬化过程中会发生收缩,包括塑性收缩、干燥收缩和自收缩等。
如果收缩受到约束,就会产生拉应力,导致裂缝的产生。
4、约束条件大体积混凝土在浇筑过程中,如果受到地基、模板等的约束,不能自由变形,就会在混凝土内部产生拉应力,当拉应力超过混凝土的抗拉强度时,就会产生裂缝。
(二)蜂窝麻面蜂窝麻面是指混凝土表面局部出现酥松、砂浆少、石子多,石子之间形成空隙类似蜂窝状的窟窿,以及混凝土表面局部缺浆、粗糙,或有许多小凹坑的现象。
蜂窝麻面产生的原因主要有以下几个方面:1、混凝土配合比不当混凝土中水泥、砂、石的比例不合适,或者砂率过小、石子粒径过大,都会导致混凝土和易性差,容易产生蜂窝麻面。
大体积混凝土裂缝控制方法及改进措施
大体积混凝土裂缝控制方法及改进措施在现代建筑工程中,大体积混凝土的应用越来越广泛。
然而,由于其体积大、结构厚、施工条件复杂等特点,大体积混凝土在施工和使用过程中容易出现裂缝,这不仅影响结构的外观和耐久性,还可能危及结构的安全性。
因此,如何有效地控制大体积混凝土裂缝的产生,成为了工程界关注的重点问题。
一、大体积混凝土裂缝产生的原因1、温度变化大体积混凝土在浇筑后,由于水泥水化反应会释放出大量的热量,导致混凝土内部温度迅速升高。
而混凝土表面散热较快,形成了较大的内外温差。
当温差超过一定限度时,混凝土内部产生压应力,表面产生拉应力。
一旦拉应力超过混凝土的抗拉强度,就会产生裂缝。
2、收缩变形混凝土在硬化过程中会发生体积收缩,包括自收缩、干燥收缩和碳化收缩等。
大体积混凝土由于体积较大,收缩受到约束,容易产生裂缝。
3、约束条件大体积混凝土在施工过程中,往往受到基础、模板、钢筋等的约束。
当混凝土的收缩变形受到约束时,会产生拉应力,从而导致裂缝的产生。
4、原材料质量原材料的质量对大体积混凝土的裂缝控制也有重要影响。
例如,水泥的品种和用量、骨料的级配和含泥量、外加剂的种类和掺量等,如果选择不当,都可能导致混凝土裂缝的产生。
5、施工工艺施工工艺不合理也是导致大体积混凝土裂缝的一个重要原因。
例如,混凝土的浇筑顺序、振捣方式、养护措施等,如果不符合要求,都可能影响混凝土的质量,从而导致裂缝的产生。
二、大体积混凝土裂缝控制方法1、优化配合比设计(1)选用低水化热的水泥品种,如粉煤灰水泥、矿渣水泥等。
(2)减少水泥用量,可通过掺入适量的粉煤灰、矿渣粉等矿物掺合料来替代部分水泥。
(3)优化骨料级配,选用粒径较大、级配良好的骨料,以减少混凝土的水泥浆用量。
(4)掺入适量的外加剂,如减水剂、缓凝剂等,以改善混凝土的性能。
2、控制混凝土温度(1)降低混凝土的浇筑温度,可通过对原材料进行降温(如对骨料进行喷水冷却、使用低温水搅拌混凝土等)、在运输和浇筑过程中采取隔热措施等方法来实现。
大体积混凝土施工质量通病防治对策措施
大体积混凝土施工质量通病防治对策措施在建筑工程中,大体积混凝土的施工是一项具有挑战性的任务。
由于其体积大、结构厚、施工技术要求高,容易出现一系列质量通病,如裂缝、温差过大、泌水等问题。
这些问题不仅会影响混凝土的外观和耐久性,还可能危及结构的安全性和稳定性。
因此,采取有效的防治对策措施至关重要。
一、大体积混凝土施工质量通病(一)裂缝问题裂缝是大体积混凝土施工中最常见的质量问题之一。
裂缝的产生主要有以下几种原因:1、温度裂缝:由于混凝土在浇筑后,水化热释放集中,内部温度升高,而表面散热较快,形成内外温差。
当温差超过一定限度时,就会产生温度裂缝。
2、收缩裂缝:混凝土在硬化过程中,会发生体积收缩。
如果收缩受到约束,就会产生收缩裂缝。
3、荷载裂缝:在混凝土尚未达到足够强度时,过早承受荷载,可能导致裂缝的产生。
(二)温差过大大体积混凝土内部与表面的温差过大,会引起混凝土的不均匀变形,从而产生温度应力。
当温度应力超过混凝土的抗拉强度时,就会出现裂缝。
(三)泌水现象混凝土在浇筑过程中,由于水灰比过大、外加剂使用不当等原因,可能会出现泌水现象。
泌水会导致混凝土表面形成浮浆层,影响混凝土的质量。
二、大体积混凝土施工质量通病的防治对策措施(一)优化混凝土配合比1、选用低水化热的水泥,如矿渣水泥、粉煤灰水泥等。
2、减少水泥用量,可通过掺入适量的粉煤灰、矿渣粉等掺和料来替代部分水泥。
3、控制骨料的级配和含泥量,选用粒径较大、级配良好的骨料,降低混凝土的收缩。
4、合理控制水灰比,在保证混凝土和易性的前提下,尽量减少用水量。
(二)控制混凝土浇筑温度1、对原材料进行降温处理,如对骨料进行遮阳、洒水降温,对水泥进行储存降温等。
2、在搅拌过程中加入冰水,降低混凝土的出机温度。
3、选择适宜的浇筑时间,尽量避开高温时段进行浇筑。
(三)加强施工中的温度控制1、预埋冷却水管,通过循环水来降低混凝土内部温度。
2、采取保温保湿养护措施,如覆盖塑料薄膜、草帘等,减少混凝土表面的热量散失,控制混凝土内外温差。
大体积混凝土裂缝成因及控制措施
大体积混凝土裂缝成因及控制措施水利建设工程中大体积混凝土结构比较多,混凝土重力坝、大型船闸、混凝土挡墙等建筑物,虽然设计时都分成好多块,但每一块都仍然有几百方,甚至上千方混凝土。
工程实践证明,大体积混凝土施工难度较大,混凝土产生裂缝的机率较多,稍有差错,将会造成无法估量的损失。
为了提高工程质量,降低不必要的经济损失,我们一定要减少和控制裂缝的的出现。
从裂缝的形成过程可以看到,混凝土特别是大体积混凝土之所以开裂,主要是混凝土所承受的拉应力大于混凝土本身的抗拉强度的结果。
因此为了控制大体积混凝土裂缝,就必须从提高混凝土本身抗拉强度性能和降低拉应力(特别是温度应力)这两方面综合考虑。
抗拉强度主要决定于混凝土的强度等级及组成材料,要保证抗拉强度关键在于原材料的优选和配合比的优化(混凝土强度等级设计已经确定),由于混凝土选用地材,从经济角度来考虑,原材料优化的空间相对较小,所以降低拉应力是控制混凝土裂缝的有效途径。
而降低拉应力主要通过减少温度应力和沉缩应力来控制温度裂缝和沉缩裂缝。
一、温度裂缝1、温度裂缝产生的主要原因:一是由于混凝土结构内外温差较大引起的。
在混凝土结构硬化期间,水泥释放大量的水化热,如果散热不及时,内部温度就会不断上升,使混凝土表面和内部温差变大。
混凝土内部膨胀高于外部,此时混凝土表面将受到很大的拉应力,而混凝土的早期抗拉强度很低,因而出现温度裂缝。
这种温度应力一般在表面处较大,离开表面就很快减弱,因此裂缝只在接近表面的范围内发生,表面层以下结构仍保持完整。
二是由于结构温差较大,受到外界的约束引起的,当大体积混凝土浇筑在约束地基(例如桩基)上时,又没有采取特殊措施降低、放松或取消约束,或根本无法消除约束,则易发生深度、甚至是贯穿的温度裂缝。
2、温度裂缝形成的过程:一般(认为)分为三个时期:一是初期裂缝—就是在混凝土浇筑的升温期。
由于水化热,混凝土浇筑后2~3天内温度急剧上升,内热外冷引起的“约束力”超过混凝土抗拉强度引起裂缝。
大体积混凝土温度裂缝产生原因和防治措施
大体积混凝土温度裂缝产生原因和防治措施在现代建筑工程中,大体积混凝土的应用越来越广泛。
然而,大体积混凝土在施工过程中容易出现温度裂缝,这不仅会影响混凝土结构的外观,还可能降低其承载能力和耐久性,给工程质量带来隐患。
因此,深入了解大体积混凝土温度裂缝产生的原因,并采取有效的防治措施,具有重要的现实意义。
一、大体积混凝土温度裂缝产生的原因1、水泥水化热的影响水泥在水化过程中会释放出大量的热量,这是大体积混凝土内部温度升高的主要原因。
由于混凝土的导热性能较差,热量在内部积聚不易散发,导致混凝土内部温度迅速上升,而表面温度相对较低,形成较大的内外温差,从而产生温度应力。
当温度应力超过混凝土的抗拉强度时,就会产生裂缝。
2、混凝土的收缩变形混凝土在硬化过程中会发生收缩,包括自收缩、干燥收缩和碳化收缩等。
大体积混凝土由于体积较大,表面水分蒸发较快,内部水分不易散失,导致表面收缩较大,内部收缩较小,从而产生拉应力,引起裂缝。
3、外界气温变化的影响在混凝土施工过程中,外界气温的变化对混凝土的温度有着直接的影响。
特别是在混凝土浇筑初期,混凝土的强度较低,当外界气温骤降时,混凝土表面的温度迅速下降,而内部温度变化相对较小,从而产生较大的温度梯度,引起温度裂缝。
4、约束条件的影响大体积混凝土在浇筑过程中,通常会受到基础、钢筋、模板等的约束。
当混凝土因温度变化而产生膨胀或收缩时,由于受到约束而无法自由变形,从而产生约束应力。
当约束应力超过混凝土的抗拉强度时,就会产生裂缝。
5、施工工艺的影响施工工艺不当也是导致大体积混凝土温度裂缝产生的原因之一。
例如,混凝土的搅拌、运输、浇筑、振捣等环节控制不当,可能会导致混凝土的均匀性和密实性差,从而影响混凝土的强度和抗裂性能。
此外,混凝土的养护措施不到位,如养护时间不足、养护温度和湿度控制不当等,也会增加裂缝产生的风险。
二、大体积混凝土温度裂缝的防治措施1、优化混凝土配合比(1)选用低水化热的水泥品种,如粉煤灰水泥、矿渣水泥等,以减少水泥水化热的产生。
大体积混凝土裂缝产生原因及控制措施
大体积混凝土裂缝产生原因及控制措施大体积混凝土造粒的裂缝是指混凝土某一部分中的裂缝,该部分的尺寸比一般的钢筋混凝土结构大得多。
这样的混凝土结构由于自重和重载等的压力,受到了较大的拉应力,容易产生裂纹,影响其使用寿命和结构性能。
本文将探讨大体积混凝土裂缝的产生原因及控制措施。
一、产生原因:1. 温度变化:混凝土构造物受季节变化和日夜变化的影响,会发生温度变化。
由于温度的变化会导致混凝土膨胀和收缩,因此在膨胀和收缩的过程中,如果其能力和约束力不匹配,就会产生应力,从而产生裂缝。
2. 湿度变化:混凝土中水的变化也是裂缝的一个重要原因。
如果混凝土湿度变化过大,会导致水的蒸发和吸收。
水分的吸收会造成混凝土的膨胀,而水的蒸发会使混凝土干缩。
如果混凝土不能够吸收或释放水分,就容易产生裂缝。
3. 材料的反应:如果混凝土中的一些化学受潮或自发燃烧,会在混凝土中产生碱性物质的反应,从而导致混凝土的膨胀和收缩,产生裂缝。
4. 应力集中:混凝土制造和施工过程中涉及到的应力分布是不均匀的,某些区域容易出现应力集中。
应力集中区域因受到超负荷应力而破裂成裂缝。
5. 其他原因:混凝土中存在的空气孔隙,坍落度不合适,水灰比偏高或者混凝土受到的外力等都可能导致裂缝的产生。
二、控制措施:1. 选用合适的混凝土比例和材料:首先,为了避免混凝土的裂缝,应该选择合适的混凝土比例和材料,确保混凝土的坍落度、水灰比和密实度达到最佳水平。
2. 加强混凝土的质量控制:加强混凝土的质量控制,确保混凝土的制作和浇筑过程中不出现任何失误。
结实,未受到外力损害的混凝土在日常使用中容易受到外力的损害而破裂。
3. 选择正确的施工方法:为了避免因施工不当而造成混凝土裂缝,应该根据所建造的混凝土结构采用合适的施工方法,在施工过程中控制混凝土软化或者干缩时间,以确保结构体的完整性。
4. 控制场地温度和湿度:为了控制混凝土结构中水分和温度的变化,在施工过程中需要控制场地的温度和湿度。
大体积混凝土温度裂缝防治措施
大体积混凝土温度裂缝防治措施一、背景介绍在混凝土的浇筑过程中,由于温度的变化,往往会出现温度裂缝。
对于大体积混凝土结构来说,这种情况更加常见。
温度裂缝不仅影响美观,还会降低混凝土的强度和耐久性。
因此,在大体积混凝土结构中,必须采取有效的措施来防止温度裂缝的发生。
二、原因分析1. 混凝土浇筑时内部水分蒸发导致收缩;2. 大体积混凝土结构自身重量压力;3. 气温变化引起的热胀冷缩。
三、预防措施1. 控制水分含量:在混凝土浇筑前应进行充分的调配和搅拌,确保混合物均匀。
同时,应控制好水灰比和砂率等参数,以避免过多的水分蒸发导致收缩。
2. 合理设置伸缩缝:在大体积混凝土结构中设置伸缩缝是必要的措施之一。
通过设置伸缩缝,可以使混凝土结构在温度变化时有一定的伸缩空间,从而避免温度裂缝的发生。
3. 控制浇筑温度:在大体积混凝土结构的浇筑过程中,应控制好混凝土的温度。
一般来说,混凝土的浇筑温度应控制在20℃~30℃之间。
如果温度过高,则会导致混凝土内部产生较大的热胀冷缩变形,从而引起温度裂缝。
4. 采用降温剂:在大体积混凝土结构中,可以采用降温剂来控制混凝土的温度。
降温剂可以有效地降低混凝土内部的温度,从而避免因热胀冷缩引起的裂缝。
5. 加强养护:在大体积混凝土结构浇筑完成后,必须进行充分的养护。
养护时间应不少于28天,并且要保持适宜的湿润环境,以确保混凝土内部完全干燥和固化。
四、治理措施1. 填补温度裂缝:如果出现了温度裂缝,必须及时进行治理。
一般来说,可以采用填补的方式来修复温度裂缝。
填补材料应选择与原混凝土相同的材料,并且要充分保证填补材料与原混凝土的粘结性。
2. 加固结构:在大体积混凝土结构中,如果出现了较大的温度裂缝,可能会影响结构的安全性。
这时,可以采用加固措施来增强结构的承载能力。
加固方法可以根据具体情况选择,比如设置加筋板、加固梁柱等。
五、总结针对大体积混凝土结构中出现的温度裂缝问题,必须从预防和治理两个方面来进行措施。
大体积混凝土温度裂缝产生的原因及控制措施
大体积混凝土温度裂缝产生的原因控制措施一、大体积混凝土温度裂缝产生的原因1、混凝土内部与外部的温差过大会产生裂缝。
温差裂缝的主要影响因素是水泥水化热引起的混凝土内部与混凝土表面的温差过大。
特别是大体积混凝土更易发生此类裂缝。
大体积混凝土结构一般要求一次性整体浇筑,浇筑后,水泥因水化引起水化热,由于混凝土体积大,聚集在内部的水泥水化热不容易散发,混凝土内部温度将显著升高,而混凝土表面土则散热较快,形成了较大的温度差,使混凝土内部产生压应力,表面产生拉应力,此时,混凝龄期短,抗拉强度很低。
当温差产生的表面抗拉应力超过混凝土极限抗拉强度,则会在混凝土的表面产生裂缝。
2、大体积混凝土施工,由于混凝土内部与表面散热速率不一样,在其表面形成较大的温度梯度,从而引起较大的表面拉应力。
同时,此时混凝土的龄期很短,抗拉强度很低,温差产生的表面拉应力,超过此时的混凝土极限抗拉强度,就会在混凝土表面产生表面裂缝。
此种裂缝一般产生在混凝土浇筑后的第3天(升温阶段)。
混凝土降温阶段,由于逐渐降温而产生收缩,再加上混凝土硬化过程中,由于混凝土内部拌合水的水化与蒸发以及胶质体的胶凝等作用,促使混凝土硬化时收缩。
这两种收缩由于受到基底或结构本身的约束,也会产生很大的拉应力,直至出现收缩裂缝。
二、大体积混凝土温度裂缝控制措施:1、严格控制混凝土原材料的的质量与技术标准,选用低水化热水泥,粗细骨料的含泥量应尽量减少(1~1.5%以下)。
2、细致分析混凝土集料的配比,控制混凝土的水灰比,减少混凝土的坍落度,合理掺加塑化剂与减少剂。
3、采用综合措施,控制混凝土初始温度如在混凝土体内埋设冷却水管与风管、表面洒水冷却、表面保温材料保护。
主要是针对后期而言,对早期因热原因引起的裂缝是无助的。
比如表面保温材料保护可以减少内外温差,但不可避免的招致混凝土体内温度T1很高,从受约束而导致贯穿裂缝的角度看,是一个潜在恶化裂缝的条件。
因为体内热量迟早是要散发掉的。
简述大体积混凝土结构产生裂缝的主要原因及浇筑方案
简述大体积混凝土结构产生裂缝的主要原因及浇筑方案摘要:一、大体积混凝土结构裂缝产生的主要原因1.温度变化2.收缩变形3.应力集中4.施工不当二、浇筑方案1.选择合适的浇筑时间2.合理设计混凝土配合比3.浇筑过程中的温度控制4.施工后的养护措施正文:在大体积混凝土结构的建设过程中,裂缝问题是工程师们最为关注的问题之一。
裂缝的出现不仅影响结构的美观,更重要的是可能导致结构性能的下降,甚至引发安全隐患。
本文将对大体积混凝土结构裂缝产生的主要原因进行分析,并提出相应的浇筑方案,以期为混凝土结构施工提供参考。
一、大体积混凝土结构裂缝产生的主要原因1.温度变化:混凝土在浇筑、硬化、养护过程中,由于温度变化引起的膨胀和收缩,可能导致结构内部产生应力集中,从而引发裂缝。
2.收缩变形:混凝土在硬化过程中,水分蒸发导致体积收缩,若收缩变形受到约束,将产生裂缝。
3.应力集中:混凝土结构在承受荷载过程中,可能由于局部构造原因,如钢筋配置不均、转角处过度圆滑等,导致应力集中,从而引发裂缝。
4.施工不当:混凝土浇筑、养护过程中,施工措施不当也可能导致裂缝产生,如浇筑速度过快、养护不到位等。
二、浇筑方案1.选择合适的浇筑时间:避免在高温、干燥、大风等恶劣天气条件下进行混凝土浇筑,以减小温度变化和收缩变形对结构的影响。
2.合理设计混凝土配合比:根据工程特点和环境条件,优化混凝土配合比,确保混凝土的抗裂性能。
3.浇筑过程中的温度控制:采用预冷措施,如降低混凝土入模温度、使用冷却水等,以降低混凝土温度应力。
4.施工后的养护措施:及时对混凝土结构进行养护,确保混凝土充分湿润,以减小收缩裂缝的产生。
综上所述,要预防大体积混凝土结构的裂缝问题,需从多方面入手。
通过合理选择浇筑时间、设计混凝土配合比、控制浇筑过程中的温度以及加强施工后的养护措施,可以降低裂缝产生的风险。
谈大体积混凝土裂缝控制措施
谈大体积混凝土裂缝控制措施大体积混凝土结构是指结构体积较大、惯性力较大、变形能力较弱的混凝土结构。
由于大体积混凝土结构具有自重大、应力集中、温度变形大等特点,容易出现裂缝问题,因此需要采取相应的控制措施。
1. 控制热应力和温度变形:大体积混凝土结构在施工和硬化过程中会产生热应力和温度变形,这是裂缝形成的主要原因之一。
为了控制热应力和温度变形,可以采取以下几种措施:- 合理安排浇筑顺序:控制大体积混凝土结构的浇筑顺序,尽量避免大面积浇筑或连续浇筑,减少热应力的积累和温度变形的影响。
- 采取降温措施:在夏季高温或高热量条件下施工时,可以采取降温措施,如喷水、覆盖遮阳网等,降低混凝土的温度,减少温度变形和热应力。
- 控制混凝土温升速率:控制混凝土升温速率,避免过快的升温导致热应力和温度变形。
可以通过调整施工方法、混凝土配合比等来实现。
2. 加强结构连接和约束:大体积混凝土结构在强度和变形能力上相对较弱,容易出现裂缝。
为了加强结构的连接和约束,可以采取以下措施:- 增加连接件和补强构件:在结构的关键部位或易裂缝部位设置连接件和补强构件,增强结构的整体强度和刚度,减少裂缝的形成。
- 采用预应力技术:在大体积混凝土结构中采用预应力技术,增加结构的内部应力,提高结构的整体强度和刚度,减少裂缝的产生和扩展。
- 设置伸缩缝:大体积混凝土结构可能由于温度变形而引起裂缝,可以在结构中设置伸缩缝,减少温度变形的传递和积累,控制裂缝的扩展。
3. 控制混凝土收缩和膨胀:混凝土在硬化过程中会发生收缩和膨胀,也是裂缝形成的原因之一。
为了控制混凝土的收缩和膨胀,可以采取以下措施:- 选用低收缩混凝土:在施工中选用低收缩混凝土,减少混凝土收缩引起的裂缝。
- 使用控制收缩剂:在混凝土中添加控制收缩剂,减缓混凝土收缩速度,降低收缩引起的应力和裂缝。
- 采用膨胀剂:在混凝土中添加膨胀剂,促使混凝土发生膨胀,减轻收缩引起的应力和裂缝。
4. 加强施工质量控制:大体积混凝土结构的裂缝问题与施工质量密切相关。
大体积混凝土裂缝控制及预防措施
大体积混凝土裂缝控制及预防措施1 引言随着我国基础建设的快速发展,大体积混凝土施工日益增多,而大体积混凝土施工中普遍会受到裂缝影响工程质量的问题。
大体积混凝土产生裂缝的原因是多方面的,涉及的因素很多,具有综合性。
因为混凝土体积大,聚集了大量的水化热,容易导致混凝土内外散热不均匀,最终为工程结构埋下严重质量隐患.因此,从对原材料、混凝土配合比以及施工过程各环节入手,加强事前控制,事后养护控制,掌握施工过程各环节控制要点,系统地进行大体积混凝土浇筑与养护,才能保证大体积混凝土的施工质量。
2 混凝土裂缝的分类2.1 按成因划分2.1.1 结构性裂缝由各种外荷载引起的裂缝,也称荷载裂缝。
它包括由外荷载的直接应力引起的裂缝和在外荷载作用下结构次应力引起的裂缝。
2.1.2 非结构性裂缝由各种变形变化引起的裂缝。
它包括温差,干缩湿胀和不均匀沉降等因素引起的裂缝。
这类裂缝是在结构的变形受到限制时引起的内应力造成的。
从国内外的研究资料以及大量的工程实践看,非结构性裂缝在工程中占了绝大多数,约为80% ,其中以收缩裂缝为主导。
2.2 按时间划分2.2.1 施工期间出现的裂缝包括塑性收缩裂缝、沉降收缩裂缝、干燥收缩裂缝、自身收缩裂缝、温度裂缝、施工操作不当出现的裂缝、早期冻胀作用引起的裂缝以及一些不规则裂缝。
2.2.2 使用期间出现的裂缝包括钢筋锈蚀膨胀产生的裂缝、盐碱类介质及酸性侵蚀气液引起的裂缝、冻融循环造成的裂缝、碱骨料反应引起的裂缝以及循环动荷载作用下损伤累积引起的裂缝等。
2.3 按形状划分2.3.1 纵向裂缝平行于构件底面,顺筋分布,主要由钢筋锈蚀作用引起;2.3.2 横向裂缝垂直于构件底面,主要由荷载作用、温差作用引起;2.3.3 剪切裂缝由于竖向荷载或震动位移引起;2.3.4 斜向裂缝、八字形或倒八字形裂缝常见于墙体混凝土梁,主要因地基的不均匀沉降以及温差作用引起;2.3.5 X形裂缝常见于框架梁、柱的端头以及墙面上,由于瞬间的撞击作用或者地震荷载作用引起;2.3.6 各种不规则裂缝如反复冻融或火灾等引起的裂缝。
大体积混凝土裂缝产生原因及其预防控制措施
大体积混凝土裂缝产生原因及其预防控制措施一、大体积混凝土裂缝类型及裂缝产生原因分析大体积混凝土结构裂缝主要包括干燥收缩裂缝、塑性收缩裂缝、自身收缩裂缝、安定性裂缝、温差裂缝、碳化收缩裂缝等。
1.收缩裂缝。
影响混凝土收缩的主要因素主要是混凝土中的用水量、水泥用量及水泥品种。
混凝土中的用水量和水泥用量越高,混凝土收缩就越大。
水泥品种对干缩量及收缩量也有很大的影响,一般中低热水泥和粉煤灰水泥的收缩量较小。
自身收缩是混凝土收缩的一个主要来源。
自身收缩主要发生在混凝土拌合后的初期。
塑性收缩也是大体积混凝土收缩一个主要来源。
出现裂缝以后,混凝土体内的水分蒸发进一步加快,于是裂缝迅速扩展。
所以在这种情况下混凝土浇筑后需要及早覆盖养生。
2.温差裂缝。
混凝土内部和外部的温差过大会产生裂缝。
温差裂缝产生的主要原因是水泥水化热引起的混凝土内部和混凝土表面的温差过大。
特别是大体积混凝土更易发生此类裂缝。
温差的产生主要有三种情况:第一种是在混凝土浇筑初期,这一阶段产生大量的水化热,形成内外温差并导致混凝土开裂,这种裂缝一般产生在混凝土浇筑后的第3天(升温阶段)。
另一种是在拆模前后,这时混凝土表面温度下降很快,从而导致裂缝产生。
第三种情况是当混凝土内部温度高达峰值后,热量逐渐散发而达到使用温度或最低温度,它们与最高温度的差值即内部温差。
这三种温差都会产生裂缝,但最严重的是水化热引起的内外温差。
3.安定性裂缝。
安定性裂缝表现为龟裂,主要是由于水泥安定性不合格而引起。
二、裂缝的防治措施1.设计措施。
(1)精心设计混凝土配合比。
在保证混凝土具有良好工作性的情况下,应尽可能降低混凝土的单位用水量,采用“三低(低砂率、低坍落度、低水胶比)二掺(掺高效减水剂和高性能引气剂)一高(高粉煤灰掺量)”的设计准则,生产出“高强、高韧性、中弹、低热和高抗拉值”的抗裂混凝土。
(2)增配构造筋,提高抗裂性能。
应采用小直径、小间距的配筋方式,全截面的配筋率应在0.3%~0.5%。
大体积混凝土裂缝的控制
大体积混凝土裂缝的控制一、引言随着建筑工程的不断发展,混凝土结构已经成为建筑工程中最常用的材料之一。
然而,在混凝土结构中,裂缝是不可避免的现象。
特别是在大体积混凝土结构中,由于内部温度和湿度的变化,裂缝问题更加突出。
因此,如何控制大体积混凝土裂缝已成为一个重要的研究课题。
二、大体积混凝土裂缝的形成原因1.温度变化:在大体积混凝土结构中,由于内部温度和外部环境温度的差异,混凝土表面会产生收缩或膨胀现象,从而导致裂缝的形成。
2.干燥收缩:在混凝土刚浇筑时,水分会逐渐蒸发并释放出空气,这种过程被称为干燥收缩。
干燥收缩也是导致混凝土结构裂缝形成的主要原因之一。
3.荷载影响:当大体积混凝土承受荷载时,由于内部应力分布不均,裂缝也容易产生。
三、大体积混凝土裂缝控制的方法1.使用合适的混凝土配合比:在大体积混凝土结构中,应选择合适的配合比,控制混凝土的水灰比和气泡含量等参数。
这样可以有效地降低干燥收缩率,从而减少裂缝的产生。
2.增加钢筋数量:在大体积混凝土结构中,钢筋是承担荷载的主要部件之一。
增加钢筋数量可以有效地提高混凝土结构的抗拉强度和韧性,从而降低裂缝发生的概率。
3.使用预应力技术:预应力技术是一种常用于大型混凝土结构中的技术。
通过在混凝土中设置预应力钢筋,可以使整个结构处于压缩状态,从而有效地控制裂缝的产生。
4.控制温度变化:在大体积混凝土结构中,温度变化是导致裂缝形成的主要原因之一。
因此,在施工过程中应该采取相应措施来控制温度变化,例如使用降温剂、覆盖隔热材料等。
5.增加混凝土的湿度:在混凝土刚浇筑时,应该保持一定的湿度,避免过早地蒸发水分。
这样可以有效地降低干燥收缩率,从而减少裂缝的产生。
四、结论大体积混凝土结构裂缝是建筑工程中常见的问题之一。
为了控制裂缝的产生,我们可以采取一系列措施,例如选择合适的配合比、增加钢筋数量、使用预应力技术、控制温度变化和增加混凝土的湿度等。
通过这些措施,可以有效地降低裂缝发生的概率,提高混凝土结构的安全性和耐久性。
大体积混凝土结构裂缝成因及预防措施
现代建筑中我们时常会涉及到大体积混凝土施工,如高层楼房基础、大型设备基础、水利大坝等。
它主要的特点就是体积大:混凝土浇注量大于100平方米;长、宽、高任意一边不小于1米。
大体积混凝土水泥水化热释放比较集中,内部温升比较快。
混凝土内外温差较大时,会使混凝土产生温度裂缝。
其他因素也会导致大体积混凝土出现裂缝,影响结构安全和正常使用。
所以必须从根本上分析它,来保证施工的质量。
下面就大体积混凝土结构裂缝成因及预防措施简要论述如下1. 大体积混凝土结构裂缝的概念混凝土结构在建设和使用过程中出现不同程度、不同形式的裂缝,这是一个相当普遍的现象。
大体积混凝土结构出现裂缝更普遍。
在全国调查的高层建筑地下结构中,底板出现裂缝的现象占调查总数的20%左右,地下室的外墙混凝土出现裂缝的现象占调查总数的80%左右。
所以,混凝土结构的裂缝是建筑工程长期困扰的一个技术难题,一直未能很好地解决。
国内外工程技术界都认为,规定钢筋混凝土结构的最大裂缝宽度主要是为了保证钢筋不产生锈蚀。
不同的规范中有关允许最大裂缝宽度的规定虽不完全一致,但基本相同。
如在正常的空气环境中裂缝允许宽度为0.3~0.4mm;在轻微腐蚀介质中,裂缝允许宽度为0.2~0.3mm;在严重腐蚀介质中,裂缝允许宽度为0.1~0.2mm。
但对建筑物的抗裂缝要求过严,必将付出巨大的经济代价。
科学的要求是将其有害程度控制在允许范围之内。
根据国内外的调查资料,工程实践中结构物的裂缝原因,属于由变形变化(温度、湿度、地基变形)引起的约占80%以上,属于荷载引起的约占20%左右。
在大体积混凝土工程施上中,由于水泥水化热引起混凝土浇筑内部温度和温度应力剧烈变化,从而导致混凝土发生裂缝。
因此,控制混凝土浇筑块体因水化热引起的温升、混凝土浇筑块体的内外温差及降温速度,防止混凝土出现有害的温度裂缝(包括混凝土收缩)是其施工技术的关键问题。
2. 大体积混凝土裂缝的原因大体积混凝土结构裂缝的发生是由多种因素引起的。
大体积混凝土裂缝产生原因及控制措施
大体积混凝土裂缝产生原因及控制措施随着建筑结构的不断发展,大体积混凝土结构的使用越来越广泛。
大体积混凝土结构中常常会出现裂缝问题,这不仅会影响结构的美观性,还会降低结构的承载能力和使用寿命。
对于大体积混凝土结构的裂缝产生原因和控制措施进行深入的研究和分析,对于提高结构的质量和安全性具有重要意义。
1.温度变化大体积混凝土结构在温度变化的作用下,由于混凝土的收缩率大于钢筋的收缩率,容易产生裂缝。
当温度升高时,混凝土会膨胀,而在温度下降时,混凝土会收缩,造成内部应力的不平衡,最终导致混凝土结构裂缝的产生。
2.干缩混凝土在凝固过程中,由于水分的蒸发脱水,混凝土内部会产生干缩现象。
如果干缩过程中得不到有效的补水保养,混凝土内部的内应力会逐渐积累,最终形成裂缝。
3.不均匀收缩大体积混凝土结构由于尺寸大、体积大,在硬化过程中会产生不均匀的收缩。
尤其是在混凝土中使用了粗骨料的情况下,更容易产生不均匀收缩,从而导致结构裂缝的产生。
4.基础沉降大体积混凝土结构在基础遇到沉降时,由于结构自重的影响,会造成结构内部的应力不平衡,从而导致混凝土结构的裂缝产生。
5.外部荷载外部荷载的作用下,如风荷载、地震荷载等,会导致混凝土结构内部的应力集中,从而引发裂缝。
6.质量缺陷在大体积混凝土结构的施工过程中,如混凝土质量不合格、施工工艺不规范等,都容易造成混凝土结构的裂缝产生。
二、大体积混凝土裂缝控制措施1. 设计合理通过合理的设计,可以减小混凝土结构内部的应力集中区域,在梁、柱、墙等结构部位设置适当的伸缩缝,以及加入预应力钢筋等措施,来减小混凝土结构的应力,有效控制裂缝的产生。
2. 优化混凝土配合比通过优化混凝土的配合比,降低混凝土的收缩率,控制混凝土的裂缝产生。
在混凝土中适量添加膨胀剂、缓凝剂等措施,也可以有效控制混凝土的收缩裂缝。
4. 加强养护措施在混凝土施工后,需要加强养护措施,及时进行混凝土的湿润养护,保证混凝土充分的龄期,减小干缩裂缝的产生。
大体积混凝土裂缝原因及控制措施
大体积混凝土裂缝原因及控制措施大体积砼产生裂缝的原因是由于砼内部水化热作用产生的温度与砼表面温度存在着温差,势必产生温度应力,而温度应力与温差成正比,当这种温度应力超过砼抗拉强度时就会产生裂缝。
因此,防止砼出现裂缝的关键就是控制砼内部与表面的温差。
砼因温度应力而产生的裂缝分为两个阶段:第一阶段是因水泥水化热使砼内部温度升高,而在升温阶段砼内外温差过大,造成裂缝;第二阶段是砼内部温度达到最高后,砼因表面散热(或缩水)过快而产生较大的温降差,造成裂缝。
砼内部因水化热而温度增大达到最大值的时间为砼浇筑后第三天。
这些裂缝大致可分为两种:1、表面裂缝:大体积混凝土浇筑后,水泥产生大量水化热,使混凝土的温度上升,但由于混凝土内部和表面的散热条件不同,因而中心温度高表面温度低,形成温度梯度,使混凝土内部产生压应力,表面产生拉应力,当这个拉应力超过混凝土的抗拉强度时,混凝土表面就会产生裂缝。
2、贯穿裂缝:大体积混凝土浇筑初期,混凝土处于升温阶段,弹性模量很小,由变形所引起的应力很小,故温度应力一般可忽略不计,但是过了数日,混凝土逐渐降温,这时温差引起的变形加上混凝土多余水分蒸发时引起的体积收缩变形引起拉应力,当该拉应力超过;混凝土抗拉强度时,混凝土整个截面应会产生贯穿裂缝。
从影响结构安全的角度讲表面裂缝的危害性较小,而贯穿裂缝则会影响结构的正常使用,所以应采取措施避免表面裂缝,并坚决控制贯穿裂缝的开展。
裂缝给工程带来不同程度的危害,因此如何进一步控制温度变形裂缝的开展,是该工程大体积混凝土构件施工中的一个重要课题。
由于大体积混凝土施工的条件比较复杂,施工情况各异,再加上混凝土原材料的材质各向异性较大,且混凝土由各种非均质材料组成,它的破坏很复杂,在施工过程中控制温度变形裂缝,是涉及材料组成和物理力学性能及施工工艺等学科的综合性问题。
要采取相应的技术措施妥善处理温度差值,合理解决温度应力并控制裂缝的展开。
3、大体积混凝土裂缝产生的规律根据大体积砼因水化热升温和降温阶段砼内部的应力变化,表面裂缝和收缩裂缝的内在联系及产生的原因,大体积混凝土裂缝产生的规律有以下几点:(1)温差和收缩越大,越容易开裂,裂缝越宽、越密。
大体积混凝土裂缝产生原因及措施分析
大体积混凝土裂缝产生原因及措施分析大体积混凝土裂缝是指在混凝土结构中出现的较宽较长的裂缝。
这些裂缝不仅影响美观,还可能降低结构的承载能力和耐久性,因此必须及时采取措施进行修复。
大体积混凝土裂缝产生的原因很多,主要可以归结为以下几个方面:1. 强度问题:如果混凝土配比设计不合理,材料的强度不足以承受荷载,就会导致混凝土出现裂缝。
2. 温度变化:混凝土在硬化过程中会发生体积变化,当温度变化较大时,会引起热应力或冷却收缩应力,导致混凝土裂缝的产生。
3. 施工质量问题:施工过程中,如果混凝土浇筑不均匀、养护不当或者震捣不充分,就会导致混凝土中存在缺陷,进一步引发裂缝。
4. 荷载变化:当混凝土结构承受荷载时,如果荷载过大或者荷载作用频繁,就会导致混凝土出现裂缝。
针对大体积混凝土裂缝问题,可以采取以下措施:1. 在混凝土配比设计时,应根据工程要求确定合适的配方,并确保混凝土的强度、流动性等性能满足要求。
2. 进行合理的温度控制,可以通过采用防护措施,如使用遮阳网、覆盖保温材料等防止混凝土过早脱水和快速冷却,从而减少温度应力的产生。
3. 在施工过程中,要加强对混凝土的养护,保持适当的湿度和温度,防止混凝土过早脱水和干缩,同时还要确保混凝土的均匀浇注和有效震捣。
4. 如果施工中出现了不可避免的荷载变化,可以通过在混凝土中添加合适的密封、抗裂剂等措施来提高混凝土的抗裂性能。
针对大体积混凝土裂缝产生的原因,可以通过优化混凝土配比、合理控制温度、加强施工质量管理以及选择合适的措施进行修复等方式来减少或避免裂缝的产生。
在混凝土结构设计和施工过程中,还应加强监测和检验,及时发现和处理裂缝问题,确保结构的安全和持久性。
大体积混凝土产生裂缝的原因及预防措施
大体积混凝土产生裂缝的原因及预防措施混凝土结构物实体最小尺寸不小于1米的混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土称为大体积混凝土。
类似这种混凝土结构在现代建筑中时常涉及到,如高层楼房基础、大型设备基础、水利大坝等。
这种混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用。
所以必须从根本上分析它,来保证施工质量。
标签:大体积混凝土裂缝;原因;预防措施1、大体积混凝土产生裂缝的原因1.1水泥水化热水泥在水化过程中要产生大量的热量,是大体积砼内部热量的主要来源。
由于大体积砼截面厚度大,水化热聚集在结构内部不易散失,使砼内部的温度升高。
当砼的内部与表面温差过大时,就会产生温度应力和温度变形。
温度应力与温差成正比,温差越大,温度应力也越大。
当砼的抗拉强度不足以抵抗该温度应力时,便开始产生温度裂缝。
这是大体积砼容易产生温度裂缝的主要原因。
1.2约束条件大体积钢筋砼与地基浇筑在一起,当早期温度上升时产生的膨胀变形受到下部地基的约束而形成压应力。
由于砼的弹性模量小,徐变和应力松弛度大,使砼与地基连接不牢固,因而压应力较小。
但当温度下降时,产生较大的拉应力,若超过砼的抗拉强度,砼就会出现垂直裂缝。
1.3外界气温变化大体积砼在施工期间,外界气温的变化对大体积砼的开裂有重大影响。
砼内部温度是由浇筑温度、水泥水化热的绝热温度和砼的散热温度三者的叠加。
外界温度越高,砼的浇筑温度也越高。
外界温度下降,尤其是骤降,大大增加外层砼与砼内部的温度梯度,产生温差应力,造成大体积砼出现裂缝。
因此控制砼表面温度与外界气温温差,也是防止裂缝的重要一环。
1.4砼的收缩变形混凝土的拌合水中,只有约20%的水分是水泥水化所必需的,其余80%要被蒸发。
砼中多余水分的蒸发是引起砼体积收缩的主要原因之一。
这种收缩变形不受约束条件的影响,若存在约束,就会产生收缩应力而出现裂缝。
2、控制大体积混凝土裂缝的预防措施2.1技术措施大体积混凝土施工阶段所产生的温度裂缝,一方面是混凝土内部因素:由于内外温差而产生的;另一方面是混凝土的外部因素,为了有效地控制有害裂缝的出现和发展,必须从控制混凝土的水化升温、延缓降温速率、减小混凝土收缩、提高混凝土的极限拉伸强度、改善约束条件和设计构造等方面全面考虑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析大体积混凝土结构裂缝产生原因及预防控制
摘要:大体积混凝土施工中普遍会遇到裂缝控制问题,这是因为混凝土体积大,聚集的大量水化热会导致混凝土内外散热不均匀,在受到内外约束的情况下,混凝土内部会产生较大的温度应力并很可能导致裂缝产生,最终为工程结构埋下严重质量隐患。
因此,大体积混凝土施工中应严格控制裂缝产生和发展,以保证工程质量。
本文结合工作实际,简要分析大体积混凝土结构裂缝产生原因,并提出预防控制措施。
关键词:混凝土裂缝;产生原因;预防控制
引言:大体积混凝土是指最小断面任何一个方向尺寸大于1m以上,一次性浇筑量较大的混凝土结构,其尺寸已大到必须采取相应技术措施降低其温差,控制温度应力与裂缝开展的混凝土。
大体积混凝土与普通混凝土相比,具有结构厚、体形大、钢筋密、一次浇筑量多,施工难度大等特点。
大体积混凝土除需满足普通混凝土强度、刚度、整体性和耐久性等要求外,还必须控制混凝土温度变形裂缝的产生和发展。
由于大体积混凝土施工条件复杂、施工情况各异,砼原材料质量性能差别很大,因此控制砼温度裂缝就不单纯是结构理论问题,还涉及到结构计算与设计、材料组成和其物理力学指标、施工工艺等方面的综合技术问题。
一、裂缝产生原因分析
混凝土结构裂缝分微观裂缝和宏观裂缝。
微观裂缝是包括骨料与水泥石结合面的裂缝、水泥石自身裂缝及骨料本身裂缝等。
微观裂
缝的分布无规则、不贯通,一般用肉眼看不见。
而宏观裂缝是由微观裂缝发展扩大而来,是用肉眼看得见的,其宽度一般不小于
0.05mm。
混凝土结构裂缝的产生主要由以下三个方面的原因:一是由外荷载引起或由主要计算应力引起;二是由于结构的实际工作与计算假设理想模型间的差异而产生的结构次应力引起的;三是由温度、收缩、膨胀、不均匀沉降等因素引起结构变形,当结构变形受到约束时就产生应力,且应力大于混凝土抗拉强度时就产生裂缝。
建筑结构中的大体积混凝土所承受的变形主要由温差和收缩所产生,是我们控制的主要内容之一。
建筑工程中的大体积混凝土结构中,由于结构截面大,水泥用量多,水泥水化所产生的热量不能及时排散而产生温度变化和收缩作用。
由此产生的温度收缩应力是导致砼产生裂缝的主要原因。
温度裂缝有表面裂缝和贯通裂缝两种。
砼表面裂缝一般无规则可言,且深度小于钢筋保护层厚度;而贯通裂缝是在大体积混凝土强度发展过程中,由于温差超过一定限度(一般按20-25℃考虑)而引起的温差变形以及砼失水引起的体积收缩变形,受到地基或其它结构的约束限制时引起拉应力超过混凝土抗拉极限强度时可能产生贯通整个混凝土截面的裂缝。
这两种裂缝对结构物均具有危害性。
二、控制裂缝开展的方法
1.精心设计混凝土配合比。
在保证混凝土具有良好工作性的情况下,应尽可能降低混凝土的单位用水量,采用“三低(低砂率、低
坍落度、低水胶比)二掺(掺高效减水剂和高性能引气剂)一高(高粉煤灰掺量)”的设计准则,生产出“高强、高韧性、中弹、低热和高抗拉值”的抗裂混凝土。
2.增配构造筋,提高抗裂性能。
应采用小直径、小间距的配筋方式,全截面的配筋率应在0.3~0.5%之间。
3.避免结构突变产生应力集中。
在易产生应力集中的薄弱环节采取加强措施。
4.在易裂的边缘部位设置暗梁,提高该部位的配筋率,提高混凝土的极限抗拉强度。
5.设置永久性伸缩缝:在超长的现浇砼结构中间设置若干变形缝,以释放大部分变形。
如宁波建龙炼钢连铸系统的在线连铸机设备基础,在设计中便考虑了每跨设置一道变形缝。
变形缝一般控制在40-60m左右。
6.设置后浇带:在施工中设置后浇带,可有效控制温度裂缝的扩展。
如宁波建龙连铸车间的横移台车基础便在中间设了两道后浇带,上海浦东宏力半导体钢结构厂房1000mm厚钢砼地面施工中也采用了后浇带法来防止温度应力引起地面破坏。
7.采用分段间隔浇筑和水平分层间歇浇注法,如山东东明中谷国家粮食储备库地面施工中,即采用分仓浇筑法。
而一般的砼浇筑均采用分层浇筑来减小温度应力引起的结构破坏。
8.采用改善配筋,减少砼收缩,提高砼抗拉强度等方法,以抵抗温度和收缩变形所产生的应力。
9.通过施工技术措施控制温度和收缩裂缝。
三、控制温度和收缩裂缝的技术措施
1、降低水泥水化热
(1)采用低水化热的矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰水泥来配制混凝土。
如在宁波建龙连铸主机区设备基础底板砼中就采用了矿渣硅酸盐水泥,达到了预期效果。
(2)利用混凝土后期强度,以减少砼的水泥用量。
根据有关资料显示,每增减压10kg/m3水泥,水化热将使砼温度相应升降1℃。
(3)掺加粉煤灰或掺加相应的减水剂,改善砼和易性、降低水灰比以达到减少水泥用量、降低水泥水化热的目的。
(4)少筋或无筋的大体积砼中,抛入20-30%的大石块(15-30cm),既节省水泥和减少水化热,又能减少砼用量。
2、降低混凝土入模温度
(1)选择较适宜的气温浇筑混凝土,避开炎热天气和高温时段,也可用低温水或冰水搅拌混凝土,以达到降温的目的。
(2)掺入缓凝型减水剂,如木质素磺酸钙等。
3、加强施工中的温度控制
(1)砼浇筑完后及时做好砼保温保湿养护,夏季避免暴晒,注意保湿,冬天采取保温覆盖,以免发生温度剧变。
(2)采用长时间养护,规定合理拆模时间,延缓降温时间和速度,充分发挥砼的“应力松驰效应”。
(3)加强温度监控与管理,将砼内外温差控制在20-25℃以内。
(4)合理安排施工程序,减缓分层浇筑速度,分层浇筑厚度控制在30-50cm以内。
结构施工完要及时回填土,避免砼长期暴露。
4、采取分层或分块浇筑大体积混凝土,合理设置水平或垂直施工缝,或在适当位置设后浇带,以改善约束条件,降低温度应力。
5、提高混凝土的极限抗拉强度
(1)选择良好级配的粗骨料,严格控制其含泥量,加强砼振捣,提高砼密实度和抗拉强度,减少砼收缩变形。
(2)采取二次投料、二次振捣法,浇筑后及时排除表面积水,加强早期养护,提高砼早期强度的抗拉强度和弹性模量。
(3)在大体积砼内设置必要的温度配筋,在截面突变和转折处、墙体与底、顶板连接处,孔洞转角及砼周边,增设斜向构造配筋,以改善应力集中,防止裂缝出现。
6.施工方法控制措施:大体积混凝土施工时内部应适当预留一些孔道,在内部通循环冷水或冷气冷却,降温速度不应超过0.5℃~1.0℃/h。
对大型设备基础可采用分块分层浇筑(每层间隔时间5d~7d),分块厚度为1.0m~1.5m,以利于水化热散发和减少约束作用。
当混凝土浇筑在岩石地基或厚大的混凝土垫层上时,在岩石地基或混凝土垫层上铺设防滑隔离层(浇二度沥青胶撒铺5mm厚砂子或铺二毡三油),底板高低起伏和截面突变处,做成渐变化形式,以消除或减少约束作用。
此外,还应加强混凝土的浇灌振捣,提高密实度。
尽可能晚拆模,拆模后混凝土表面温度不应下降15℃以上。
尽量采用两次振捣技术,改善混凝土强度,提高抗裂性。
还可根据具
体工程特点,采用uea补偿收缩混凝土技术。
四、结论
大体积混凝土的施工条件复杂,施工条件各异,而且受自然环境、原材料供应及材料性能的影响都很大,需要因地制宜地加以分析,选择经济合理、施工方便且行之有效的一种或几种方案进行,切不可盲目行事甚至失得其反。
参考文献:
[1]侯君伟.现浇混凝土建筑结构施工手册.机械工业出版
社.2003
[2]杨南方等.混凝土结构施工实用手册.中国建筑工业出版
社.2001。