带电粒子在电场重力场中的运动

合集下载

第十章 专题强化6 带电粒子在重力场与电场中的运动

第十章 专题强化6 带电粒子在重力场与电场中的运动

带电粒子在重力场与电场中的运动[学习目标] 1.会应用运动和力、功和能的关系分析带电粒子在复合场中的直线运动问题.2.会应用运动和力、功和能的关系分析带电粒子在复合场中的类平抛运动问题和圆周运动问题.一、带电粒子在复合场中的直线运动讨论带电粒子在复合场中做直线运动(加速或减速)的方法(1)动力学方法——牛顿运动定律、运动学公式.当带电粒子所受合力为恒力,且与速度方向共线时,粒子做匀变速直线运动,若题目涉及运动时间,优先考虑牛顿运动定律、运动学公式.在重力场和电场叠加场中的匀变速直线运动,亦可以分解为重力方向上、静电力方向上的直线运动来处理.(2)功、能量方法——动能定理、能量守恒定律.若题中已知量和所求量涉及功和能量,那么应优先考虑动能定理、能量守恒定律.(2019·广州二中高二期中)如图1所示,水平放置的平行板电容器的两极板M、N接直流电源,两极板间的距离为L=15 cm.上极板M的中央有一小孔A,在A的正上方h处的B 点有一小油滴自由落下.已知带正电小油滴的电荷量q=3.5×10-14 C、质量m=3.0×10-9 kg.当小油滴即将落到下极板时速度恰好为零.两极板间的电势差U=6×105 V .(不计空气阻力,取g=10 m/s2)图1(1)两极板间的电场强度E的大小为多少?(2)设平行板电容器的电容C=4.0×10-12 F,则该电容器所带电荷量Q是多少?(3)B点在A点正上方的高度h是多少?答案(1)4×106 V/m(2)2.4×10-6 C(3)0.55 m解析(1)由匀强电场的场强与电势差的关系式可得两极板间的电场强度大小为E=U L =4×106 V/m.(2)该电容器所带电荷量为Q =CU =2.4×10-6 C.(3)小油滴自由落下,即将落到下极板时,速度恰好为零由动能定理可得:mg (h +L )-qU =0则B 点在A 点正上方的高度是h =qU mg -L =3.5×10-14×6×1053.0×10-9×10m -15×10-2 m =0.55 m. 针对训练1 (多选)如图2所示,平行板电容器的两个极板与水平地面成一角度,两极板与一恒压直流电源相连 .若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子( )图2A .所受重力与静电力平衡B .电势能逐渐增加C .动能逐渐增加D .做匀变速直线运动答案 BD解析 对带电粒子受力分析如图所示,F 合≠0,A 错误 .由图可知静电力与重力的合力方向与v 0方向相反,F 合对粒子做负功,其中重力mg 不做功,静电力Eq 做负功,故粒子动能减少,电势能增加,B 正确,C 错误 .F 合恒定且F 合与v 0方向相反,粒子做匀减速直线运动,D 正确 .二、带电粒子的类平抛运动带电粒子在电场中的类平抛运动的处理方法:1 .运动分解的方法:将运动分解为沿初速度方向的匀速直线运动和垂直初速度方向的匀加速直线运动,在这两个方向上分别列运动学方程或牛顿第二定律 .2 .利用功能关系和动能定理分析:(1)功能关系:静电力做功等于电势能的减少量,W 电=E p1-E p2.(2)动能定理:合力做功等于动能的变化,W =E k2-E k1.(2019·全国卷Ⅲ)空间存在一方向竖直向下的匀强电场,O 、P 是电场中的两点 .从O 点沿水平方向以不同速度先后发射两个质量均为m 的小球A 、B .A 不带电,B 的电荷量为q (q >0) .A 从O 点发射时的速度大小为v 0,到达P 点所用时间为t ;B 从O 点到达P 点所用时间为t 2.重力加速度为g ,求: (1)电场强度的大小;(2)B 运动到P 点时的动能 .答案 (1)3mg q(2)2m (v 02+g 2t 2) 解析 (1)设电场强度的大小为E ,小球B 运动的加速度为a .根据牛顿第二定律、运动学公式和题给条件,有mg +qE =ma ①12a (t 2)2=12gt 2② 解得E =3mg q③ (2)设B 从O 点发射时的速度为v 1,到达P 点时的动能为E k ,O 、P 两点的高度差为h ,根据动能定理有mgh +qEh =E k -12m v 12④ 且有v 1t 2=v 0t ⑤ h =12gt 2⑥ 联立③④⑤⑥式得E k =2m (v 02+g 2t 2) .针对训练2 如图3所示,有三个质量相等,分别带正电、负电和不带电的小球,从平行板电场左端的中点P 以相同的初速度沿水平方向垂直于电场方向进入电场,它们分别落在A 、B 、C 三点,可以判断( )图3A .小球A带正电,B不带电,C带负电B .三个小球在电场中运动时间相等C .三个小球到达极板时的动能E k A>E k B>E k CD .三个小球在电场中运动的加速度a A>a B>a C答案 A解析三个小球在水平方向做匀速直线运动;竖直方向,带正电荷小球受静电力向上,合力为mg-F电,带负电荷小球受静电力向下,合力为mg+F电,不带电小球只受重力,因此带负电荷小球加速度最大,运动时间最短,水平位移最短,带正电荷小球加速度最小,运动时间最长,水平位移最大,不带电小球水平位移居中,选项A正确,选项B、D错误.在运动过程中,三个小球竖直方向位移相等,带负电荷小球合力做功最大,动能改变量最大,带正电荷小球动能改变量最小,即E k C>E k B>E k A,选项C错误.三、带电粒子在电场(复合场)中的圆周运动解决电场(复合场)中的圆周运动问题,关键是分析向心力的来源,向心力的来源有可能是重力和静电力的合力,也有可能是单独的静电力.如图4所示,半径为R的光滑绝缘圆环竖直置于场强大小为E、方向水平向右的匀强电场中,质量为m、带电荷量为+q的空心小球穿在环上,当小球从顶点A由静止开始下滑到与圆心O等高的位置B时,求小球对环的压力.(重力加速度为g)图4答案2mg+3Eq,方向水平向右解析小球从A到B的过程中,重力做正功,静电力做正功,动能增加,由动能定理有mgR +qER=12,在B点时小球受到重力mg、静电力qE和圆环对小球的弹力F1三个力的作用,2m v静电力和弹力沿半径方向指向圆心的合力提供向心力,则F1-Eq=m v2R联立解得F1=2mg+3Eq小球对环的压力与环对小球的弹力为作用力与反作用力,两者等大反向,即小球对环的压力大小F1′=F1=2mg+3Eq,方向水平向右.1.如图1所示,在某一真空中,只有水平向右的匀强电场和竖直向下的重力场,在竖直平面内有初速度为v0的带电微粒,恰能沿图示虚线由A向B做直线运动.那么()图1A .微粒带正、负电荷都有可能B .微粒做匀减速直线运动C .微粒做匀速直线运动D .微粒做匀加速直线运动答案 B解析微粒做直线运动的条件是速度方向和合力的方向在同一条直线上,只有微粒受到水平向左的静电力才能使得合力方向与速度方向在同一条直线上,由此可知微粒所受的静电力的方向与场强方向相反,则微粒必带负电,微粒所受合力与初速度方向相反,故微粒做匀减速直线运动,故选项B正确 .2.(多选)如图2所示,真空环境下,三个质量相同、带电荷量分别为+q、-q和0的小液滴a、b、c,从竖直放置的两板中间上方由静止释放,最后从两板间穿过,小液滴a、b、c的运动轨迹如图所示,则在穿过极板的过程中,下列说法正确的是()图2A .静电力对液滴a、b做的功相等B .三者动能的增量相同C .液滴a与液滴b电势能的变化量相等D .重力对液滴c做的功最多答案AC解析因为液滴a、b的带电荷量的绝对值相等,则液滴所受的静电力大小相等,由静止释放,穿过两板的时间相等,则偏转位移大小相等,静电力做功相等,故A正确;静电力对a、b 两液滴做功相等,重力做功相等,则a、b动能的增量相等,对于液滴c,只有重力做功,故c动能的增量小于a、b动能的增量,故B错误;对于液滴a和液滴b,静电力均做正功,静电力所做的功等于电势能的变化量,故C正确;三者在穿过极板的过程中竖直方向的位移相等,质量相同,所以重力做的功相等,故D错误.3.如图3所示,平行金属板A、B水平正对放置,分别带等量异号的电荷.一带电微粒沿水平方向射入板间,在重力和静电力共同作用下运动,其运动轨迹如图中虚线所示,那么()图3A .若微粒带正电荷,则A板一定带正电荷B .微粒从M点运动到N点,其电势能一定增加C .微粒从M点运动到N点,其动能一定增加D .微粒从M点运动到N点,其机械能一定增加答案 C解析由于不知道重力和静电力大小关系,所以不能确定静电力方向,不能由微粒电性确定极板所带电荷的电性,也不能确定静电力对微粒做功的正、负,选项A、B、D错误;根据微粒偏转方向可知微粒所受合外力一定竖直向下,则合外力对微粒做正功,由动能定理知微粒的动能一定增加,选项C 正确 .4.(多选)如图4所示,用绝缘细线拴一带负电小球,在竖直平面内做圆周运动,匀强电场方向竖直向下,则( )图4A .当小球运动到最高点a 时,细线的张力一定最小B .当小球运动到最低点b 时,小球的速度一定最大C .当小球运动到最高点a 时,小球的电势能最小D .小球在运动过程中机械能不守恒答案 CD解析 若qE =mg ,小球做匀速圆周运动,球在各处对细线的拉力一样大,故细线的张力一样大 .若qE <mg ,球在a 处速度最小,若qE >mg ,球在a 处速度最大,故A 、B 错误;a 点电势最高,负电荷在电势最高处电势能最小,故C 正确;小球在运动过程中除受到重力外,还受到静电力,静电力对小球做功,小球的机械能不守恒,D 正确 .5.(多选)两个共轴的半圆柱形电极间的缝隙中存在一沿半径方向的电场,如图5所示,带正电的粒子流由电场区域边缘的M 点射入电场,沿图中所示的半圆形轨道通过电场并从另一边缘的N 点射出,由此可知( )图5A .若入射粒子的电荷量相等,则出射粒子的质量一定相等B .若入射粒子的电荷量相等,则出射粒子的动能一定相等C .若入射粒子的比荷相等,则出射粒子的速率一定相等D .若入射粒子的比荷相等,则出射粒子的动能一定相等答案 BC解析 由题图可知,粒子在电场中做匀速圆周运动,静电力提供向心力,则有qE =m v 2R,得R =m v 2qE,R 、E 为定值,若入射粒子的电荷量相等,则出射粒子的动能一定相等,质量不一定相等;若入射粒子的比荷相等,则出射粒子的速率v一定相等,但动能不一定相等,故B、C正确.6.(多选)如图6所示,将一带正电的小球向右水平抛入范围足够大的匀强电场中,电场方向水平向左,不计空气阻力,则小球()图6A .做直线运动B .做曲线运动C .速率先减小后增大D .速率先增大后减小答案BC解析如图所示,对小球受力分析,小球受重力、静电力作用,合外力的方向与初速度的方向不在同一条直线上,故小球做曲线运动,选项A错误,B正确;在运动的过程中,合外力方向与速度方向间的夹角先为钝角后为锐角,故合外力对小球先做负功后做正功,所以速率先减小后增大,选项C正确,D错误.7 .(2020·河南郑州一中期中)在地面附近存在一个有界电场,边界将空间分成上、下两个区域Ⅰ、Ⅱ,在区域Ⅱ中有竖直向上的匀强电场,在区域Ⅰ中离边界某一高度处由静止释放一个质量为m的带电小球A,如图7甲所示,小球运动的v-t图像如图乙所示,不计空气阻力,则()图7A .小球受到的重力与静电力大小之比为4∶5B .t =5 s 时,小球经过边界MNC .在0~5 s 过程中,重力做的功大于克服静电力做的功D .在1~4 s 过程中小球机械能先减小后增大答案 D解析 由题意知,小球进入电场前做自由落体运动,进入电场后受到静电力作用先做减速运动后做加速运动,由题图分析可知,小球经过边界MN 的时刻是t =1 s 和t =4 s ,B 错误;由v -t 图像的斜率表示加速度,知小球进入电场前的加速度为a 1=v 1t 1=v 11=v 1(m/s 2),进入电场后的加速度大小为a 2=2v 1t 2=2v 13(m/s 2),由牛顿第二定律得mg =ma 1,F -mg =ma 2,得静电力F =mg +ma 2=53ma 1,可得重力mg 与静电力F 的大小之比为3∶5,A 错误;0~5 s 过程中,动能变化量为零,根据动能定理,整个过程中重力做的功与克服静电力做的功大小相等,C 错误;由题图可得,小球在0~2.5 s 内向下运动,在2.5~5 s 内向上运动,在1~4 s 过程中,静电力先做负功后做正功,小球的机械能先减小后增大,D 正确 .8.如图8所示,质量m =2.0×10-4 kg 、电荷量q =1.0×10-6 C 的带正电的微粒静止在空间范围足够大、电场强度为E 的匀强电场中,取g =10 m/s 2.图8(1)求匀强电场的电场强度E 的大小和方向;(2)在t =0时刻,电场强度大小突然变为E 0=4.0×103 N/C ,方向不变 .求在0.20 s 时间内静电力做的功;(3)在(2)的情况下,t =0.20 s 时刻突然撤掉电场,求带电微粒回到出发点时的动能 . 答案 (1)2×103 N/C 方向向上 (2)8.0×10-4 J (3)8.0×10-4 J解析 (1)因微粒静止,可知其受力平衡,对其进行受力分析可知静电力方向向上,且Eq =mg ,解得E =mg q =2.0×10-4×101.0×10-6 N/C =2.0×103 N/C ,微粒带正电,知电场方向向上 .(2)在t =0时刻,电场强度大小突然变为E 0=4.0×103 N/C ,设微粒的加速度大小为a ,在0.20 s 时间内上升的高度为h ,静电力做功为W ,则qE 0-mg =ma ,解得a =10 m/s 2,h =12at 2,解得h =0.20 m , W =qE 0h ,解得W =8.0×10-4 J.(3)设在t =0.20 s 时刻突然撤掉电场时微粒的速度大小为v ,回到出发点时的动能为E k ,则v =at ,E k =mgh +12m v 2, 解得E k =8.0×10-4 J.9.如图9所示,水平地面上方分布着水平向右的匀强电场 .一L 形的绝缘硬质管竖直固定在匀强电场中,管的水平部分为l 1=0.2 m ,离水平地面的距离为h =5.0 m ,竖直部分长为l 2=0.1 m .一带正电的小球从管的上端口A 由静止释放,小球与管间摩擦不计且小球通过管的弯曲部分(长度极短,可不计)时没有能量损失,小球在电场中受的静电力大小为重力的一半 .求:(g 取10 m/s 2)图9(1)小球运动到管口B 时的速度大小;(2)小球落地点与管的下端口B 的水平距离 .答案 (1)2.0 m/s (2)4.5 m解析 (1)小球从A 运动到B 的过程中,对小球,根据动能定理得mgl 2+F 电l 1=12m v B 2-0, F 电=12mg , 解得v B =g (l 1+2l 2),代入数据可得v B =2.0 m/s.(2)小球离开B 点后,设水平方向的加速度为a ,在空中运动的时间为t .水平方向有a =g 2,x =v B t +12at 2,竖直方向有h =12gt 2 联立以上各式可得x =4.5 m.10.(2020·雅安市期末)如图10所示,内表面光滑且绝缘的半径为1.2 m 的圆形轨道处于竖直平面内,有竖直向下的匀强电场,场强大小为3×106 V/m.有一质量为0.12 kg 、带负电的小球,电荷量大小为1.6×10-6 C ,小球在圆轨道内壁做圆周运动,当运动到最低点A 时,小球与轨道压力恰好为零,g 取10 m/s 2,求:图10(1)小球在A 点时的速度大小;(2)小球运动到最高点B 时对轨道的压力大小 .答案 (1)6 m/s (2)21.6 N解析 (1)重力:G =mg =0.12 kg ×10 N/kg =1.2 N ,静电力:F =qE =1.6×10-6 C ×3×106 V/m =4.8 N ,在A 点,有:qE -mg =m v 12R, 代入数据解得:v 1=6 m/s.(2)设球在B 点的速度大小为v 2,从A 到B ,由动能定理有:(qE -mg )2R =12m v 22-12m v 12, 在B 点,设轨道对小球的弹力为F N ,则有:F N +mg -qE =m v 22R, 由牛顿第三定律有:F N ′=F N ,代入数据解得:F N ′=21.6 N.11 .(多选)在空间水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图11所示 .重力加速度为g ,由此可见( )图11A .静电力为3mgB .小球带正电C .小球从A 到B 与从B 到C 的运动时间相等D .小球从A 到B 与从B 到C 的速度变化量的大小相等答案 AD解析 两个平抛过程水平方向的位移是二倍的关系,所以时间也是二倍的关系,故C 错误;分别列出竖直方向的方程,即h =12gt 2,h 2=12×F -mg m (t 2)2,解得F =3mg ,故A 正确;小球受到的静电力向上,与电场方向相反,所以小球应该带负电,故B 错误;速度变化量等于加速度与时间的乘积,即Δv =at ,结合以上的分析可得,AB 过程Δv =gt ,BC 过程Δv =3mg -mg m×t 2=gt ,故D 正确 .。

等效法处理带电粒子在电场和重力场中的运动

等效法处理带电粒子在电场和重力场中的运动

度垂直时,速度最小.设F合与竖直方向夹角为θ,
则 tan θ=mEqg=43,则 θ=37°,故 F 合=sinE3q7°=54mg.
设此时的速度为 v,由于合力恰好提供小球圆周运动的向心力,
由牛顿第二定律得:5m4 g=mvR2
解得 v=
5gR 4
从A点到该点由动能定理:
-mgR(1+cos 37°)-3m4gR(13+sin 37°)=12mv2-12mv02 解得 v0=25 gR
答案
3 4h
解析 剪断细线,小球在竖直方向做自由落体运动,水平方向做加速度为a的
匀加速运动,
由Eq=ma x=12at2 h=12gt2 联立解得:x=43h
(3)现将细线剪断,带电小球落地前瞬间的动能.
答案
25 16mgh
解析 从剪断细线到落地瞬间,由动能定理得:Ek=mgh+qEx=2156mgh.
最高点
mg
重力场 竖直面内
E 最高点
最低点 重力场、电场 光滑地面上 mg=FN qE为等效重力 qE=mv2/R
E 最高点
最低点 重力场、电场 光滑地面上
题型二 用“等效法”处理带电粒子在电场和重力场中的运动能力考点 师生共研
1.等效重力法
将重力与电场力进行合成,如图3所示,则F合为等效重力场中
专题解读
1.本专题主要讲解带电粒子(带电体)在电场中运动时动力学和能量观点的综合 运用,高考常以计算题出现.
2.学好本专题,可以加深对动力学和能量知识的理解,能灵活应用受力分析、 运动分析(特别是平抛运动、圆周运动等曲线运动)的方法与技巧,熟练应用 能量观点解题.
3.用到的知识:受力分析、运动分析、能量观点.
题型三 电场中的力电综合问题

带电粒子在电场中的运动

带电粒子在电场中的运动

2 mv = qU第一章9带电粒子在电场中的运动带电粒子在电场中受到静电力的作用,因此要产生加速度,速度的大小和方向都可能 发生变化。

对于质量很小的带电粒子,如电子、质子等,虽然它们也会受到万有引力(重 力)的作用,但万有引力(重力)一般远小于静电力,可以忽略。

在现代科学实验和技术设备中,常常利用电场来改变或控制带电粒子的运动。

利用电 场使带电粒子加速、利用电场使带电粒子偏转,就是两种最简单的情况。

带电粒子的加速如图1.9-1所示,在真空中有一对平行金属板,由于接上电池组而带电,两板间的电 势差为U 。

若一个质量为 m ,带正电荷q 的粒子,在静电力的作用下由静止开始从正极板 向负极板运动,计算它到达负极板时的速度。

在带电粒子的运动过程中,静电力对它做的功是W = qU设带电粒子到达负极板时的速率为 v ,其动能可以写为2 mv由动能定理可知于是求出思考与讨论 上述问题中,两块金属板是平行的,两板间的电场是匀强电场。

如果两极板是其他形 状,中间的电场不再均匀,上面的结果是否仍然适用?为什么?【例题1】炽热的金属丝可以发射电子。

在金属丝和金属板之间加以电压U = 2 500 V(图1.9-2),发射出的电子在真空中加速后,从金属板的小孔穿出。

电子穿出时的速度有图1.9-1 计算粒子到达另一个极板时的速度2qU v = mv= ,2eU 2X 1.6 X 10-19X 2500\ 0.9 X 10-30=3.0 X 107 m/s电子的质量多大?设电子刚刚离开金属丝时的速度为零。

H >1图1.9-2 带电粒子的加速。

电池E用来给金属丝加热【解】电荷量为e的电子从金属丝移动到金属板,两处的电势差为U,电势能的减少量是eU。

减少的电势能全部转化为电子的动能,所以1 mv2= eU解出速度v并把数值代入,得m= 0.9X 10-30 kg和电子的电荷量e= 1.6 X 10-19 C可以作为已知数据使用。

用“等效法”处理带电粒子在电场和重力场中的运动

用“等效法”处理带电粒子在电场和重力场中的运动

用“等效法”处理带电粒子在电场和重力场中的运动1.等效重力法将重力与电场力进行合成,如图所示,则F 合为等效重力场中的“重力”,g ′=F 合m 为等效重力场中的“等效重力加速度”,F 合的方向等效为“重力”的方向,即在等效重力场中的“竖直向下”方向. 2.物理最高点与几何最高点在“等效力场”中做圆周运动的小球,经常遇到小球在竖直平面内做圆周运动的临界速度问题.小球能维持圆周运动的条件是能过最高点,而这里的最高点不一定是几何最高点,而应是物理最高点.几何最高点是图形中所画圆的最上端,是符合人眼视觉习惯的最高点.而物理最高点是物体在圆周运动过程中速度最小的点.【题型1】在水平向右的匀强电场中,有一质量为m 、带正电的小球,用长为l 的绝缘细线悬挂于O 点,当小球静止时,细线与竖直方向夹角为θ,如图所示,现给小球一个垂直于悬线的初速度,小球恰能在竖直平面内做圆周运动,试问:(1)小球在做圆周运动的过程中,在哪一位置速度最小?速度最小值多大? (2)小球在B 点的初速度多大?【题型2】如图所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高为h 的A 处由静止开始下滑,沿轨道ABC 运动并进入圆环内做圆周运动.已知小球所受电场力是其重力的34,圆环半径为R ,斜面倾角为θ=60°,s BC =2R .若使小球在圆环内能做完整的圆周运动,h 至少为多少?(sin 37°=0.6,cos 37°=0.8)【题型3】如图所示,一质量为m1=1 kg,带电荷量为q=+0.5 C的小球以速度v0=3 m/s,沿两正对带电平行金属板(板间电场可看成匀强电场)左侧某位置水平向右飞入,极板长0.6 m,两极板间距为0.5 m,不计空气阻力,小球飞离极板后恰好由A点沿切线落入竖直光滑圆弧轨道ABC,圆弧轨道ABC的形状为半径R<3 m的圆截去了左上角127°的圆弧,CB为其竖直直径,在过A点竖直线OO′的右边界空间存在竖直向下的匀强电场,电场强度为E =10 V/m.(取g=10 m/s2)求:(1)两极板间的电势差大小U;(2)欲使小球在圆弧轨道运动时不脱离圆弧轨道,求半径R的取值应满足的条件.【题型4】如图所示,竖直平面内的直角坐标系O–xy中,第二象限内有一半径为R的绝缘光滑管道,其圆心坐标为(0,R),其底端与x轴相切于坐标原点处,其顶端与y轴交于B点(0,2R);第一象限内有一与x轴正方向夹角为45°、足够长的绝缘光滑斜面,其底端坐标为(R,0);x轴上0≤x≤R范围内是水平绝缘光滑轨道,其左端与管道底端相切、右端与斜面底端平滑连接;在第二象限内有场强大小E1=3mg、方向水平向右的匀强电场区域Ⅰ;在第一象限内x≥R范围内有场强大小E2=mgq、方向水平向左的匀强电场区域Ⅱ。

带电粒子在电场中的运动

带电粒子在电场中的运动

带电粒子在电场中的运动
带电粒子在匀强电场中运动时,若初速度与场强方向平行,它的运动是匀加速直线运动,其加速度大小为。

若初速度与场强方向成某一角度,它的运动是类似于物体在重力场中的斜抛运动。

若初速度与场强方向垂直,它的运动是类似于物体在重力场中的平抛运动,是x 轴方向的匀速直线运动和y 轴方向的初速度为零的匀加速直线运动的叠加,在任一时刻,x 轴方向和y 轴方向的速度分别为
位置坐标分别为
从上两式中消去t,得带电粒子在电场中的轨迹方程
若带电粒子在离开匀强电场区域时,它在x轴方向移动了距离l,它在y轴方向偏移的距离为
这个偏移距离h与场强E成正比,因此只要转变电场强度的大小,就可以调整偏移距离。

带电粒子进入无电场区域后,将在与原来运动方向偏离某一角度的方向作匀速直线运动。

可知

所以偏转角为
示波管中,就是利用上下、左右两对平行板(偏转电极)产生的匀强电场,使阴极射出的电子发生上下、左右偏转。

转变平行板间的电压,就能转变平行板间的场强,使电子的运动发生相应的变化,从而转变荧光屏上亮点的位置。

高一物理《带电粒子在电场中的运动》知识点总结

高一物理《带电粒子在电场中的运动》知识点总结

高一物理《带电粒子在电场中的运动》知识点总结一、带电粒子在电场中的加速分析带电粒子的加速问题有两种思路:1.利用牛顿第二定律结合匀变速直线运动公式分析.适用于匀强电场.2.利用静电力做功结合动能定理分析.对于匀强电场和非匀强电场都适用,公式有qEd =12m v 2-12m v 02(匀强电场)或qU =12m v 2-12m v 02(任何电场)等. 二、带电粒子在电场中的偏转如图所示,质量为m 、带电荷量为q 的粒子(忽略重力),以初速度v 0平行于两极板进入匀强电场,极板长为l ,极板间距离为d ,极板间电压为U .1.运动性质:(1)沿初速度方向:速度为v 0的匀速直线运动.(2)垂直v 0的方向:初速度为零的匀加速直线运动.2.运动规律:(1)t =l v 0,a =qU md ,偏移距离y =12at 2=qUl 22m v 02d. (2)v y =at =qUl m v 0d ,tan θ=v y v 0=qUl md v 02. 三、带电粒子的分类及受力特点(1)电子、质子、α粒子、离子等粒子,一般都不考虑重力,但不能忽略质量.(2)质量较大的微粒,如带电小球、带电油滴、带电颗粒等,除有说明或有明确的暗示外,处理问题时一般都不能忽略重力.(3)受力分析仍按力学中受力分析的方法分析,切勿漏掉静电力.四、求带电粒子的速度的两种方法(1)从动力学角度出发,用牛顿第二定律和运动学知识求解.(适用于匀强电场)由牛顿第二定律可知,带电粒子运动的加速度的大小a =F m =qE m =qU md.若一个带正电荷的粒子,在静电力作用下由静止开始从正极板向负极板做匀加速直线运动,两极板间的距离为d ,则由v 2-v 02=2ad 可求得带电粒子到达负极板时的速度v =2ad =2qU m.(2)从功能关系角度出发,用动能定理求解.(可以是匀强电场,也可以是非匀强电场)带电粒子在运动过程中,只受静电力作用,静电力做的功W =qU ,根据动能定理,当初速度为零时,W =12m v 2-0,解得v =2qU m ;当初速度不为零时,W =12m v 2-12m v 02,解得v =2qU m +v 02. 五、带电粒子在电场中的偏转的几个常用推论(1)粒子从偏转电场中射出时,其速度方向的反向延长线与初速度方向的延长线交于一点,此点为粒子沿初速度方向位移的中点.(2)位移方向与初速度方向间夹角α的正切值为速度偏转角θ正切值的12,即tan α=12tan θ. (3)不同的带电粒子(电性相同,初速度为零),经过同一电场加速后,又进入同一偏转电场,则它们的运动轨迹必定重合.注意:分析粒子的偏转问题也可以利用动能定理,即qEy =ΔE k ,其中y 为粒子在偏转电场中沿静电力方向的偏移量.。

带电粒子在电场重力场中运动

带电粒子在电场重力场中运动

带电粒子在复合场中运动模型例析教学目标:带电粒子的运动问题是高考的一个考查热点,本节课主要是复习带电粒子在复合场中的运动,通过例题的讲解和习题的训练,要求学生能将力学中的研究方法,灵活地迁移到复合场中,分析解决力、电综合问题.教学重点:要用力和运动的观点来分析带电体的运动模型,同时也要体会用功和能的观点列式求解的简捷.复合场是指电场、磁场和重力场并存,或其中某两场并存,或其中某两场并存,或分区域存在。

带电粒子在复合场中运动,物理情景比较复杂,是每年高考命题的热点;这部分内容从本质上讲是一个力学问题,应根据力学问题的研究思路和运用力学的基本规律求解。

笔者对带电粒子在复合场中运动的基本类型和解法归纳如下,供同学们学习时参考。

一:求解带电粒子在复合场中运动的基本思路1:带电粒子在电场中的运动问题,实质是力学问题,其解题的一般步骤仍然为: 2:确定研究对象;3:进行受力分析(注意重力是否能忽略);4:根据粒子的运动情况,运用牛顿运动定律结合运动学公式、动能定理或能量关系列方程式求解. 二:带电粒子在复合场中运动的受力特点(1)重力的大小为,方向竖直向下.重力做功与路径无关,其数值除与带电粒子的质量有关外,还与始末位置的高度差有关。

(2)电场力的大小为,方向与电场强度E 及带电粒子所带电荷的性质有关,电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与始末位置的电势差有关。

重力、电场力可能做功而引起带电粒子能量的转化。

三:带电粒子在复合场中运动的物理模型类型一:带电粒子在复合场中的直线运动1、当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2、当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动 例1例2:18、安徽省利辛二中2010届高三上学期第四次月考如图,一带负电的()()2202202sin c 12os cos cos tan sin tan 2,2sin co ,os s c qE mg mgE q d l U mgl q gl v Ed qE ma a g A D l v v ax x v αααααααααα-粒子在两板间运动时受到电场力和重力的作用,粒子在竖直方向平衡有=得=由图中几何关系=则两板间的电压==水平方向有=得=从到过程中微粒做匀减速直线运动有-=-其中==解得解析:xV 。

2.4带电粒子在匀强电场中运动(等效重力场)

2.4带电粒子在匀强电场中运动(等效重力场)
例1题图
等效直线运动:
在等效重力场中,从斜面上某点由静止释放的物体,当等效重力与水平 方向的夹角大于等于斜面倾角时物体可静止于斜面上或沿面运动;
当等效重力与水平方向的夹角小于斜面倾角时物体将沿等效重力方向做
类自由落体的匀加速直线运动.
• 例2.如图所示`,一条长为L的细线上端固定在O点,下端系一个质量为m的小 球,将它置于一个很大的匀强电场中,电场强度为E,方向水平向右,已知小 球在B点时平衡,细线与竖直线的夹角为。求:当悬线与竖直线的夹角为多大 时,才能使小球由静止释放后,细线到竖直位置时,小球速度恰好为零?
• ③在等效最低点物体的速率最大、动能最大、绳中张力(或与轨道间的压力最大),物体 的"等效重力势能"最小,绳在此处最易断裂.
• ④物体在圆周上关于过圆心沿等效重力方向对称的位置上,物体的速率、动能、绳上的张 力等数值相等
答案:(1)A 点速度最小
gl cos θ
(2)
5gl cos θ
• 等效圆周运动:
• ①等效最低点与等效最高点的确定:过圆心沿等效重力的方向作一直线与圆周相交于两点, 沿等效重力的方向上侧点为等效最高点、下侧点为等效最低点.
• ②在等效最高点物体的速率最小、动能最小、绳中张力(或与轨道间的压力)最小,物体 的"等效重力势能"最大,物体在此处最易脱离轨道.绳系着的物体(或沿圆形轨道内侧 运动的物体)在等效重力场中做完整的圆周运动的条件是在等效最高点处的速度(式中g'为 等效重力加速度)
等效重力场
模型界定
• 物体在运动过程中所受的外力包含有恒定的场力作用,如匀强电 场中的电场力、匀强磁场中恒定电流与磁场间方向关系不变时所 受的安培力等,可将其与重力的合力作为一个"等效重力",然 后利用重力场中的相关结论来解决的一类问题.

带电粒子在重力场和电场中的运动

带电粒子在重力场和电场中的运动
A.小球所受电场力的大小为mgtanθ
B.小球到B点的速度最大
C.小球可能能够到达A点,且到A点时的速度不为零
D.小球运动到A点时所受绳的拉力最大
3、“竖直上抛运动”
在竖直向下的匀强电场中,以V0初速度竖直向上发射一个质量为 m带电量为q的带正电小球,求上升的最大高度。
4、竖直平面内的圆周运动 【知识回顾】
如图3-1所示,绝缘光滑轨道AB部分为倾角为30°的斜 面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆 轨道相切。整个装置处于场强为E、方向水平向右的匀 强电场中。现有一质量为m的带正电,电量为q 3mg
3E
小球,要使小球能安全通过圆轨道,在O点的初速度应 为多大?
E O R
5、类平抛运动 水平放置带电的两平行金属板,相距d,质量为m的微粒 由板中间以某一初速平行于板的方向进入,若微粒不带 电,因重力作用在离开电场时,向下偏转d/4,若微粒 带正电,电量为q,仍以相同的初速度进入电场,微粒 恰好不再射出电场,则两板的电势差应为多少?并说明 上下板间带电性?
用长为R的细线栓一个质量为m的小球,刚好能在 竖直平面内做圆周运动。求: (1)小球在什么位置速度最小,为多少,此时绳 的拉力为多大? (2)小球在什么位置速度最大,为多少,此时A绳 的拉力为多大?
特点: 最低点: (B点) 物体自由时可以平衡的位置 最高点: (A点) 最低点关于圆心对称的位置
TR B
重力环境对比: 小球在A—B—C之间往复运动,则α 、β的关系为: A.α = β B.α > β C.α < β D.无法比较
如图所示,在水平方向的匀强电场中的O点,用长为l的轻、软绝 缘细线悬挂一质量为m的带电小球,当小球位于B点时处于静止状 态,此时细线与竖直方向(即OA方向)成θ角.现将小球拉至细 线与竖直方向成2θ角的C点,由静止将小球释放.若重力加速度为 g ,则对于此后小球的受力和运动情况,下列判断中正确的是

浅析带电粒子在重力场与匀强电场中的圆周运动问题

浅析带电粒子在重力场与匀强电场中的圆周运动问题

浅析带电粒子在重力场与匀强电场中的圆周运动问题近些年来,随着物理研究的深入发展,物理学家们对于带电粒子在重力场和匀强电场中的圆周运动问题有了更加深入的研究。

本文将从电磁属性的角度,浅析带电粒子在重力场和匀强电场中的圆周运动问题。

首先,我们要谈带电粒子在重力场中的运动。

在重力场中,由于地心引力,一个带电粒子会受到重力场的影响而向心画圆。

根据力学原理,一个带电粒子受到地心引力的影响时,其圆周运动的速度会按其与圆心的远近而变化,由近及远经历的运动速度也会逐渐减小,直到近似于零时,当粒子到达最远点时会改变运动方向,从而形成一个定律性的圆周运动。

其次,我们要谈带电粒子在匀强电场中的运动。

由于强电场的影响,带电粒子会以恒定的速度直线运动。

但是,当电场强度够大时,带电粒子会发生弯折,并呈现出一定的圆周运动。

对于这种情况,物理学家通过对粒子改变电荷或量子状态的实验,表明当粒子弯折时,其末端的动能会转化为动能的比例,其中的因素也有可能被引力作用改变,从而产生一定的圆周运动。

最后,我们要谈带电粒子在重力场和匀强电场中的相互作用。

在重力场和匀强电场的相互作用中,由于强电场的存在,可以使带电粒子的行为受到重力场的影响,同时也受到匀强电场的影响,从而产生一定的圆柱运动。

这种圆柱运动会被引力约束,从而调整带电粒子的运动方向,并伴随一定的电磁力,从而形成一种圆周运动。

综上所述,带电粒子在重力场和匀强电场中的圆周运动由复杂的力学原理控制,它们会受到重力场和匀强电场的双重影响,从而发生圆周运动,从而产生出有趣的物理现象。

未来研究的重点也许会放在其可能的实验效应上,以构建出更加精确的数学模型,帮助我们更深入地理解带电粒子在重力场和匀强电场中的圆周运动问题。

[重力场,电场,粒子]浅析带电粒子在重力场与匀强电场中的圆周运动问题

[重力场,电场,粒子]浅析带电粒子在重力场与匀强电场中的圆周运动问题

浅析带电粒子在重力场与匀强电场中的圆周运动问题当带电粒子在电场中受到静电力、重力以及其他的外力作用且有力做功时,粒子的动能将发生改变,粒子将做非匀速圆周运动,此时粒子的向心力将由这些力在圆周半径方向上的合力提供,通常利用牛顿第二定律和功能关系解决相关问题。

一、考虑重力作用,利用牛顿第二定律和功能关系求解带电粒子在匀强电场中的圆周运动带电粒子在匀强电场和重力场共同作用的场中做圆周运动的问题,是一类重要而典型的题型。

在考虑重力作用的情况下,对于带电粒子在匀强电场中的圆周运动的处理通常是利用牛顿第二定律与功能关系。

与不考虑重力的情况相比,主要是注意重力对解题的影响。

例1(1)要使小滑块能运动到半圆形轨道的最高点L,小滑块应在水平轨道上离N点多远处释放?(2)这样释放的小滑块通过P点时对轨道的压力是多大?(P为半圆形轨道的中点)解析:(1)小滑块刚能通过轨道最高点的条件是,解得。

小滑块由释放点到最高点的过程中,由动能定理得,解得(2)小滑块在从P点到最高点的过程中,由动能定理得,小滑块运动到P点时,由牛顿第二定律得,解得N=l.5N。

二、考虑重力作用,带电粒子在匀强电场中做圆周运动的等效处理(一)带电粒子在竖直面内的圆周运动带电粒子在匀强电场和重力场共同作用的场中做圆周运动时,分析在竖直面内的运动时常常会涉及一些能否会做完整的圆周运动问题,对于这类问题,若采用常规方法求解,过程复杂,运算量大,若采用“等效法”求解,则能避开复杂的运算,过程比较简洁。

“等效法”的具体内容是先求出重力与静电力的合力,将这个合力视为一个“等效重力”,将视为“等效重力加速度”。

再将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解即可。

1.静电力与重力方向垂直,处理等效最高点问题。

例2 如图2所示,绝缘光滑轨道AB部分为倾角θ=30。

的斜面,AC部分为竖直平面内半径为R的圆弧轨道,斜面与圆弧图2轨道相切,整个装置处于场强为E、方向水平向右的匀强电场中。

带电粒子在电场和重力场复合场中的运动

带电粒子在电场和重力场复合场中的运动
计算公式
$E_{p} = qvarphi$,其中$q$为带电粒子的电荷量,$varphi$为 电势。
影响因素
与带电粒子的电荷量和电场强度有关。
动能
01
02
03
定义
带电粒子在运动过程中所 具有的能量。
计算公式
$E_{k}
=
frac{1}{2}mv^{2}$,其中
$m$为带电粒子的质量,
$v$为速度。
带电粒子在电场和重力场复合场中 的运动
目录
• 带电粒子在电场和重力场复合场中的 受力分析
• 带电粒子在复合场中的运动形式 • 带电粒子在复合场中的能量分析
目录
• 带电粒子在复合场中的运动轨迹分析 • 带电粒子在复合场中的动力学方程 • 带电粒子在复合场中的实验验证
01 带电粒子在电场和重力场 复合场中的受力分析
详细描述
当带电粒子受到的电场力和重力相互抵消时,粒子受到的合外力为零,因此粒子将做匀速圆周运动。 此时,粒子受到的电场力充当向心力,使粒子沿着圆形轨迹运动。粒子的速度大小不变,方向时刻改 变,其运动轨迹为一个闭合的圆。
03 带电粒子在复合场中的能 量分析
电势能
定义
带电粒子在电场中由于电场力作用而具有的势能。
详细描述
当带电粒子受到的电场力和重力方向不一致时,粒子将受到一个与初速度方向垂直的合外力,这个力使粒子做曲 线运动。根据牛顿第二定律,合外力与加速度方向一致,因此粒子加速度方向时刻改变,导致速度方向也时刻改 变,从而形成曲线轨迹。
匀速圆周运动
总结词
当带电粒子受到的电场力和重力相互抵消时,粒子将在匀强电场中做匀速圆周运动。
牛顿第二定律的应用
牛顿第二定律是动力学的基础,在复合场中,带电粒子受到 电场力和重力的作用,因此,牛顿第二定律的应用是推导动 力学方程的关键。

带电粒子在电场中运动的综合应用

带电粒子在电场中运动的综合应用

带电粒子在电场中运动的综合应用:1、带电粒子在电场中的平衡问题:带电粒子在电场中处于静止或匀速直线运动状态时,则粒子在电场中处于平衡状态。

假设匀强电场的两极板间的电压为U,板间的距离为d,则:mg=qE=,有q=。

2、带电粒子在电场中的加速问题:带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子动能的增量。

3、带电粒子在电场中的偏转问题:带电粒子以垂直匀强电场的场强方向进入电场后,做类平抛运动。

垂直于场强方向做匀速直线运动:V x=V0,L=V0t;平行于场强方向做初速为零的匀加速直线运动:,,,偏转角:。

4、粒子在交变电场中的往复运动当电场强度发生变化时,由于带电粒子在电场中的受力将发生变化,从而使粒子的运动状态发生相应的变化,粒子表现出来的运动形式可能是单向变速直线运动,也可能是变速往复运动。

带电粒子是做单向变速直线运动,还是做变速往复运动主要由粒子的初始状态与电场的变化规律(受力特点)的形式有关。

①若粒子(不计重力)的初速度为零,静止在两极板间,再在两极板间加上甲图的电压,粒子做单向变速直线运动;若加上乙图的电压,粒子则做往复变速运动。

②若粒子以初速度为v0从B板射入两极板之间,并且电场力能在半个周期内使之速度减小到零,则甲图的电压能使粒子做单向变速直线运动;则乙图的电压也不能粒子做往复运动。

所以这类问题要结合粒子的初始状态、电压变化的特点及规律、再运用牛顿第二定律和运动学知识综合分析。

注:是否考虑带电粒子的重力要根据具体情况而定,一般说来:①基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量);②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力。

电场中无约束情况下的匀速圆周运动:1.物体做匀速圆周运动的条件从力与运动的关系来看,物体要做匀速圆周运动,所受合外力必须始终垂直于物体运动的方向,而且大小要恒等于物体所需的向心力。

带电粒子在电场和重力场复合场中的运动课件

带电粒子在电场和重力场复合场中的运动课件

α
L
T
Emຫໍສະໝຸດ ● F电GF例3:如图,一条长为L的细线,上端固定,下端栓一质量 为m的带电小球,将它置于方向水平的匀强电场E中。当细 线离开竖直位置的偏角为α时,小球处于平衡。求: (1)小球带何种电荷? 小球的电量? (2)若将细线剪短,则小球做什么运动?T时间后小球的
位移是多少?
αL
E
m●
解:
(1)小球受三个力平衡: T
可得:小球带正电
qE
qE/mg=tgα
α
q=mg tgα/E
mg
(2)小球做初速度为0的匀加速直线运动
mg/F合=cosα
F合=mg/cosα=ma
X=at2/2=gt2/2cosα
例3:如图,一条长为L的细线,上端固定,下端栓一质量 为m的带电小球,将它置于方向水平的匀强电场E中。当细 线离开竖直位置的偏角为α时,小球处于平衡。求: (3)如果使细线与竖直方向的偏角由α增大到θ,然后 将小球由静止释放,则θ为多大时,可使小球到达竖直位
作业:
1.此小球摆动过程中的振动周期为多少?(摆角 小于50)
2. 若将原题中电场E突然反向,求细线偏离 竖直方向的最大偏角?(α小于45o)
3. 原题中至少给小球多大的初速 度,才能使小球做圆周运动?
[拓展1]此小球摆动过程中的振动周期为多少? (摆角小于50)
解:由单摆周期公式T周=2π l / g '
设此题中等效重力加速度为 g′ 由题意可知等效重力mg′=mg/cosα
将g′代入周期公式得: T周=2π l cos a/g
[拓展2] 若将原题中电场E突然反向,求细线 偏离竖直方向的最大偏角?(α小于45o)
解:电场E反向,由受力可知摆动的等效最 低点在竖直偏左α角处,等效摆的摆角为2 α,再由对称性可知,小球偏离竖直方向的 最大夹角为3 α。

2019届高三物理二轮复习带电粒子在重力、电场力作用下的运动题型归纳

2019届高三物理二轮复习带电粒子在重力、电场力作用下的运动题型归纳

2019届高三物理二轮复习带电粒子在重力、电场力作用下的运动题型归纳类型一、带电物体在静电场和重力场的复合场中运动时的能量守恒(1)带电物体只受重力和静电场力作用时,电势能、重力势能以及动能相互转化,总能 量守恒,即 +PG K P E E E +=电恒定值(2)带电物体除受重力和静电场力作用外,如果还受到其它力的作用时,电势能、重力 势能以及动能之和发生变化,此变化量等于其它力的功,这类问题通常用动能定理来解决。

例1、如图所示,实线为电场线,虚线为等势面,且相邻两等势面的电势差相等,一个正电荷在等势面U 3上时具有动能4210J -⨯,它运动到等势面U 1时,速度为零,令U 2=0,那么该点电荷的电势能为5410J -⨯时,其动能大小是多少?(设整个运动过程中只有电场力做功)【思路点拨】(1)确定每两个等势面之间的电势能的差值,(2)根据零势面,确定电势能零点,这是同一个等势面;(3)根据有一个已知量的等势面(零势面)确定总能量,(4)所求任意点的某能量就等于总能量减去这点的一个已知能量。

【答案】5610J -⨯【解析】在静电场中运动的电荷,它的机械能和电势能之和保持不变,即能量守恒,由此出发分析问题时比较方便。

由于每两个等势面之间的电势差相等,则电势能的差值也相等,又因为“一个正电荷在等势面U 3上时具有动能4210J -⨯,它运动到等势面U 1时,速度为零”,说明每两个等势面之间的电势能的差值为4110J -⨯,(也可以根据电场力做功来理解),令U 2=0,即设等势面U 2的电势能为零,则等势面U 1的电势能为4110J -⨯,等势面U 3的电势能为4110J --⨯,总的能量为444333210(110)110K P E E E E J J J ---==+=⨯+-⨯=⨯,则任意点M 的动能大小为 4553110410610KM PM E E E J ---=-=⨯-⨯=⨯。

【总结升华】本题各等势面的能量关系:等势面U 1的动能为0,电势能为4110J -⨯,总能量为4110J -⨯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为74mg.
【即学即练】如图所示,绳长为L,一端固定在O点 ,另一端拴一个带电荷量+q的小球,已知qE=3mg ,要使球能在竖直面内做圆周运动,则球在A点最 小速度为多少?
解析 球受重力mg,静电力qE,其 合力为2mg,方向向上,用此合力代替重 力场中的重力,B点相当于圆周运动的最 高点,在“最高点”B有2mg=mv2Bmin/L( 此时TB=0).
qE=mg·tan 37°=43mg,把小球在电
场中的运动速度分解为水平和竖直
分速度 vx、vy.小球在水平方向上做 初速度为零的匀加速运动,在竖直方向上做匀变速运动. 所以 vx=qmE·t=34gt,vy=v0-gt.
任意时刻小球的速度为
v= vx 2+vy 2=
2156g2t2-2v0gt+v0 2.
E=Ud=10000.1V/m=104 V/m 则其加速度大小为:a水平 =qEm=10−7×1040.02×10−3m/s2=50m/s2,则 t=2vAa=2×350s=0.12s 在竖直方向上:sAB=12gt2 联立以上四式求解得:sAB=7.2×10-2 m.
知识回顾 Knowledge Review
带电粒子在匀强电场和重力场组成的复合场中 做圆周运动的问题是高中物理教学中一类重要而典 型的题型.对于这类问题,若采用常规方法求解, 过程复杂,运算量大.若采用“等效法”求解,则能 避开复杂的运算,过程比较简捷.先求出重力与电 场力的合力,将这个合力视为一个“等效重力”,将 a=Fm合视为“等效重力加速度”.再将物体在重力场中 做圆周运动的规律迁移到等效重力场中分析求解即 可.下面通过实例分析说明“等效法”在此类问题中 的应用.
解析 微粒受电场力和重力共同作用,根据力的独 立作用原理,在电场力作用下微粒在水平方向将做 初速度为零的匀加速直线运动,在重力作用下微粒 在竖直方向将做自由落体运动,微粒在电场中的运 动便可以看做是这两个分运动的合运动.电场力和 重力均为恒力,所以其合力也是恒定不变的力,又 因为微粒的初速度为零,根据运动条件可判定,微 粒在电场中运动的轨迹应为直线.

t=1265vg0时,v
有最小值,且
3 vmin=5v0.
答案
35v0
【例4】将带电平行板电容器竖直安放,如图所示, 两板间距d=0.1m,电势差U=1000V.现从平行板 上A处以vA=3m/s的速度水平向左射入一带正电小 球(已知小球的带电荷量q=10-7C、质量 m=0.02g),经一段时间后发现小球打在A点正下 方的B处, (1)小球在极板间做什么运动?试画出轨迹图. (2)该运动可分解为水平方向的什么运动和竖直 方向的什么运动?
从“最高点”B到“最低点”A用动能定理 : qE•2L-mg•2L=mv2A/2-mv2Bmin/2
vA=√10gL,即要想让小球在竖直面内做圆周运动,小 球在A点的速度满足vA≥√10gL.
二、正交分解法处理带电体的复杂运动问题
【例 2】 如图所示,在真空中, 竖直放着一个平行板电容器,在 它的两极板间有一个带正电的微 粒,质量为 m=8×10-5 kg,电荷 量 q=6×10-8 C.这个微粒在电场力和重力共同作用下,从 距负极板 0.4 m 处,由静止开始运动,经 0.4 s 抵达负极 板.则: (1)如果两极板相距 d=0.6 m,则板间电压是多少? (2)微粒在极板间运动的轨迹是什么形式?微粒通过的路程 是多少? (3)在整个过程中,电场力和重力各做了多少功?(g 取 10 m/s2)
【例 1】 如图 12 所示的装置 是在竖直平面内放置的光滑 绝缘轨道,处于水平向右的 匀强电场中,带负电荷的小 球从高 h 的 A 处由静止开始 下滑,沿轨道 ABC 运动并进入圆环内做圆周运动.已 知小球所受电场力是其重力的34,圆环半径为 R,斜面 倾角 θ=60°,BC 段长为 2R.若使小球在圆环内能做完 整的圆周运动,h 至少为多少?
qErsin θ-mgr(1-cos θ)=Ek
解得 B 点动能即最大动能 Ek=14mgr
(2)设珠子在 B 点受圆环弹力为 FN,有 FN-F 合=mrv2, 即 FN=F 合+mrv2= (mg)2+(qE)2+12mg=54mg+21mg
=74mg.由牛顿第三定律得,珠子对圆环的最大压力也
J.
答案 (1)4×103 V (2)运动轨迹为直线 0.89 m (3)1.6×10-4 J 6.4×10-4 J
答题技巧 正交分解法处理带电粒子的复杂运动问题
用正交分解法处理带电粒子的复杂运动,它区别于类平 抛运动的带电粒子的偏转,它的轨迹常是更复杂的曲线, 但处理这种运动的基本思想与处理偏转运动相类似,也 就是说,可以将复杂运动分解为两个相互正交的比较简 单的直线运动,而这两个直线运动的规律我们是可以掌 握的,然后再按运动合成的观点求解相关的物理量.解 这种综合题时重要的是分析清楚题目的物理过程,才能 找出相应的物理规律.研究两个分运动的合运动是否是 直线运动,一般根据运动条件去判断.物体所受合外力 方向和初速度方向在一条直线上,物体做直线运动;合 外力方向和初速度方向成某一角度,物体将做曲线运动.
解析 珠子在运动过程中,受重力和电场力的大
小、方向都不发生变化,则重力和电场力的合力大小、 方向也不变,这样就可以用合力来代替重力和电场 力,当珠子沿合力方向位移最大时,合力做功最多, 动能最大. (1) qE=34mg,所以 qE、mg 的 合力 F 合与竖直方向夹角的正切 tan θ=mqEg=34,即 θ=37°,则珠 子由 A 点静止释放后从 A 到 B 过 程中做加速运动,如右图所示,B 点动能最大,由动能定理得

由动能定理:
mg(h-R-Rcos37°)-34mg(hcot θ+2R+Rsin37°)
=12mvD2

联立①②两式求得 h≈7.7R
即学即练 半径为 r 的绝缘光
滑圆环固定在竖直平面内,环上 套有一质量为 m,带正电荷的珠 子,空间存在水平向右的匀强电 场,如图所示,珠子所受静电 力是其重力的34倍,将珠子从环上 最低位置 A 点由静止释放,则: (1)珠子所能获得的最大动能是多大? (2)珠子对环的最大压力是多大?
(3)求A、B间的距离SAB.(g取10m/s2)
解:(1)小球m在A处以vA水平射入匀强电场后,受到重力和 电场力,合力一定,而且合力与初速度不在同一直线上,则小 球做匀变速曲线运动.其运动轨迹如图所示
(2)把小球的曲线运动沿水平和竖直方向进行分解.在水平方 向上,小球有初速度vA,受恒定的电场力qE作用,做匀变速直 线运动,且由qU>12mvA2知,小球不会到达左极板处.在竖 直方向上,小球做自由落体运动.两个分运动的运动时间相等, 设为t,则 在水平方向上:
(1)依题意,微粒在水平方向是经 0.4 s 加速运动
了 0.4 m 而抵达负极板.
x=12at2

a=qmE

由①②得 E=2qmt2x,
U=Ed=2mqtx2 d =2×68××1100--85××(00..44×)2 0.6 V =4×103 V
(2)微粒在电场中做初速度为 零的匀加速直线运动,其轨迹 为直线.由图可看出
l= x2+h2 x=0.4 m h=12gt2=12×10×(0.4)2 m=0.8 m
所以 l= 0.42+0.82 m≈0.89 m
(3) 电 场 力 所 做 的 功
W


qU′

q(
x d
U)

6×10


0.4 0.6
×4×103 J=1.6×10-4 J
重力所做的功 W 重=mgh=8×10-5×10×0.8 J=6.4×10-4
带电粒子在复合场(电场、重力场)中的运动
一、利用“等效思想”巧解复合场中 的圆周运动问题
等效思维方法就是将一个复杂的物理问题,等 效为一个熟知的物理模型或问题的方法.例如我们 学习过的等效电阻、分力与合力、合运动与分运动 等都体现了等效思维方法.常见的等效法有“分解”、 “合成”、“等效类比”、“等效替换”、“等效变换”、 “等效简化”等,从而化繁为简,化难为易.
湖南长郡卫星远程学校
制作电场力
都为恒力,故可将两力等效为一 个力 F,如图所示,可知 F= 1.25mg,方向与竖直方向成 37°.由 图可知,小球能否做完整的圆周运 动的临界点是 D 点,设小球恰好能 通过 D 点,即达到 D 点时小球与圆环的弹力恰好为 零.
由圆周运动知 F=mvRD2,
即 1.25mg=mvRD2
[例 3].在足够大的真空空间中,存在水 平向右方向的匀强电场,若用绝缘 细线将质量为 m 的带正电小球悬挂 在电场中,静止时细线与竖直方向 夹角为 θ=37°.若将小球从电场中的某点竖直向上抛出, 抛出的初速度大小为 v0,如图所示.求小球在电场内运动 过程中的最小速度.
解析 如图所示,由小球平衡可知
相关文档
最新文档