初中数学九年级下册复习资料
北师大版初中数学九年级下册知识讲解,巩固练习(教学资料,补习资料):第19讲《圆》全章复习与巩固(提高)
![北师大版初中数学九年级下册知识讲解,巩固练习(教学资料,补习资料):第19讲《圆》全章复习与巩固(提高)](https://img.taocdn.com/s3/m/7121de0783d049649b6658b7.png)
《圆》全章复习与巩固—知识讲解(提高)【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系;探索并了解点与圆、直线与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积;【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的所有点组成的图形.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有 点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A L 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为. (1)直线和⊙O 没有公共点直线和圆相离. (2)直线和⊙O 有唯一公共点直线和⊙O 相切.(3)直线和⊙O 有两个公共点直线和⊙O 相交. 4.切线的判定、性质 (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线. (2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:(1)OA=OB=OC定在三角形内部(1)(2)OABAC心在三角形内部2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的有关概念及性质1. 如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,∠AOB=45°,点在数轴上运动,若过点P 且与OA 平行(或重合)的直线与⊙O 有公共点, 设OP=x ,则的取值范围是( ).A .-1≤≤1B .≤≤C .0≤≤ D .>【思路点拨】关键是通过平移,确定直线与圆相切的情况,求出此时OP 的值. 【答案】C ;【解析】如图,平移过P 点的直线到P′,使其与⊙O 相切,设切点为Q ,连接OQ ,P x x x 2x 2x 2由切线的性质,得∠OQP′=90°,∵OA∥P′Q,∴∠OP′Q=∠AOB=45°,∴△OQP′为等腰直角三角形,在Rt△OQP′中,OQ=1,OP′=2,∴当过点P且与OB平行的直线与⊙O有公共点时,0≤OP≤,当点P在x轴负半轴即点P向左侧移动时,结果相同.故答案为:0≤OP≤2.【总结升华】本题考查了直线与圆的位置关系问题.举一反三:【变式】如图,已知⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若2.如图所示,已知在⊙O 中,AB 是⊙O 的直径,弦CG⊥AB 于D ,F 是⊙O 上的点,且,BF 交CG 于点E ,求证:CE =BE .【思路点拨】主要用垂径定理及其推论进行证明. 【答案与解析】证法一:如图(1),连接BC ,∵ AB 是⊙O 的直径,弦CG ⊥AB ,∴ . ∵ ,∴ .∴ ∠C =∠CBE .∴ CE =BE .证法二:如图(2),作ON ⊥BF ,垂足为N ,连接OE .∵ AB 是⊙O 的直径,且AB ⊥CG ,∴ . ∵ ,∴ .∴ BF =CG ,ON =OD . »»CFCB =»»CBGB =»»CFBC =»»CF GB =»»CBBG =»»CBCF =»»»CF BC BG ==∵ ∠ONE =∠ODE =90°,OE =OE ,ON =OD , ∴ △ONE ≌△ODE ,∴ NE =DE . ∵ ,, ∴ BN =CD ,∴ BN-EN =CD-ED ,∴ BE =CE .证法三:如图(3),连接OC 交BF 于点N .∵ ,∴ OC ⊥BF . ∵ AB 是⊙O 的直径,CG ⊥AB ,∵ ,.∴ ,. ∵ OC =OB ,∴ OC-ON =OB-OD ,即CN =BD . 又∠CNE =∠BDE =90°,∠CEN =∠BED , ∴ △CNE ≌△BDE ,∴ CE =BE .【总结升华】在平时多进行一题多解、一题多证、一题多变的练习,这样不但能提高分析问题的能力,而且还是沟通知识体系、学习知识,使用知识的好方法.举一反三:【变式】如图所示,在⊙O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( )A .19B .16C .18D .20【答案】如图,延长AO 交BC 于点D,过O 作OE ⊥BC 于E.则三角形ABD 为等边三角形,DA=AB=BD=12,OD=AD-AO=4在Rt △ODE 中,∠ODE=60°,∠DOE=30°,则DE=OD=2,BE=BD-DE=10 OE 垂直平分BC ,BC=2BE=20. 故选D类型三、与圆有关的位置关系12BN BF =12CD CG =»»CFBC =»»BGBC =»»»CF BG BC ==»»BF CG =ON OD=123.一个长方体的香烟盒里,装满大小均匀的20支香烟.打开烟盒的顶盖后,二十支香烟排列成三行,如图(1)所示.经测量,一支香烟的直径约为0.75cm ,长约为8.4cm. (1)试计算烟盒顶盖ABCD 的面积(本小题计算结果不取近似值);(2)制作这样一个烟盒至少需要多少面积的纸张(不计重叠粘合的部分,计算结果精确到,取)0.1cm 3173..【答案与解析】 (1)如图(2),作O 1E ⊥O 2O 3()332844AB cm ∴=⨯+=∴四边形ABCD 的面积是:(2)制作一个烟盒至少需要纸张:.【总结升华】四边形ABCD中,AD长为7支香烟的直径之和,易求;求AB长,只要计算出如图(2)中的O1E长即可.类型四、圆中有关的计算4.(2019•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.【答案与解析】解:如图,连接OD,⊙CD是⊙O切线,⊙OD⊙CD,⊙OA=CD=2,OA=OD,⊙OD=CD=2,⊙⊙OCD为等腰直角三角形,⊙⊙DOC=⊙C=45°,⊙S阴影=S⊙OCD﹣S扇OBD=﹣=4﹣π;(2)证明:如图,连接AD,⊙AB是⊙O直径,⊙⊙ADB=⊙ADM=90°,又⊙=,⊙ED=BD,⊙MAD=⊙BAD,在⊙AMD和⊙ABD中,,⊙⊙AMD⊙⊙ABD,⊙DM=BD,⊙DE=DM.【点评】本题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法.举一反三:【变式】(2019•贵阳)如图,⊙O是⊙ABC的外接圆,AB是⊙O的直径,FO⊙AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,⊙B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【答案】解:(1)⊙OF⊙AB,⊙⊙BOF=90°,⊙⊙B=30°,FO=2,⊙OB=6,AB=2OB=12,又⊙AB为⊙O的直径,⊙⊙ACB=90°,⊙AC=AB=6;(2)⊙由(1)可知,AB=12,⊙AO=6,即AC=AO,在Rt⊙ACF和Rt⊙AOF中,⊙Rt⊙ACF⊙Rt⊙AOF,⊙⊙FAO=⊙FAC=30°,⊙⊙DOB=60°,过点D作DG⊙AB于点G,⊙OD=6,⊙DG=3,⊙S⊙ACF+S⊙OFD=S⊙AOD=×6×3=9,即阴影部分的面积是9.类型五、圆与其他知识的综合运用5.»ABC D BC DB DC DA+=如图,△是等边三角形,是上任一点,求证:.【思路点拨】由已知条件,等边△ABC可得60°角,根据圆的性质,可得∠ADB=60°,利用截长补短的方法可得一个新的等边三角形,再证两个三角形全等,从而转移线段DC.【答案与解析】延长DB至点E,使BE=DC,连结AE∵△ABC是等边三角形∴∠ACB=∠ABC=60°,AB=AC∴∠ADB=∠ACB=60°∵四边形ABDC是圆内接四边形∴∠ABE=∠ACD在△AEB和△ADC中,∴△AEB≌△ADC∴AE=AD∵∠ADB=60°∴△AED是等边三角形∴AD=DE=DB+BE∵BE=DC∴DB+DC=DA.【总结升华】本例也可以用其他方法证明.如:(1)延长DC至F,使CF=BD,连结AF,再证△ACF≌△ABD,得出AD=DF,从而DB+CD=DA.(2)在DA上截取DG=DC,连结CG,再证△BDC≌△AGC,得出BD=AG,从而DB+CD=DA.6.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是().A. 3πB. 6πC. 5πD. 4π【答案】B;【解析】阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:=6π故选B.【总结升华】根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.即可求解.举一反三:【变式】某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为( ).A. B.72 C.36 D.72【答案】本题解法很多,如两个小半圆面积和减去两个弓形面积等.但经过认真观察等腰直角三角形其对称性可知,阴影部分的面积由两个小半圆面积与三角形面积的和减去大半圆面积便可求得,所以由已知得直角边为,小半圆半径为(cm),因此阴影部分面积为.故选C.《圆》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.如图所示,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于( ).A.70° B.64° C.62° D.51°2.已知⊙O半径为3,M为直线AB上一点,若MO=3,则直线AB与⊙O的位置关系为()A.相切 B.相交 C.相切或相离 D.相切或相交3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm24.如图,四边形ABCD是⊙O的内接四边形,若∠B=110°,则∠ADE的度数为()A.55° B.70° C.90° D.110°5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸 B.13寸 C.25寸D.26寸6.在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线(和两圆都相切的直线)有( )A.1条B.2条C.3条D.4条7.(2019•贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.38.如图所示,AB、AC与⊙O分别相切于B、C两点,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是( ).A.65° B.115° C.65°或115° D.130°或50°二、填空题9.如图,在⊙O中,半径OA垂直弦于点D.若∠ACB=33°,则∠OBC的大小为度.10.如图所示,EB、EC是⊙O是两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A的度数是________________.11.在Rt△ABC中,∠BAC=30°,斜边AB=2,动点P在AB边上,动点Q在AC边上,且∠CPQ=90°,则线段CQ长的最小值= .12.(2019•巴彦淖尔)如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是.13.两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______ ________.14.已知正方形ABCD,截去四个角成一正八边形,则这个正八边形EFGHIJLK的边长为____ ____,面积为_____ ___.15.如图(1)(2)…(m)是边长均大于2的三角形、四边形、……、凸n边形,分别以它们的各顶点为圆心,以l为半径画弧与两邻边相交,得到3条弧,4条弧,……(1)图(1)中3条弧的弧长的和为___ _____,图(2)中4条弧的弧长的和为_____ ___;(2)求图(m)中n条弧的弧长的和为____ ____(用n表示).16.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.三、解答题17. 如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD.18.(2019•南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.【答案与解析】一、选择题1.【答案】B;【解析】由AB为⊙O的切线,则AB⊥OD.又BD=OB,则AB垂直平分OD,AO=AD,∠DAB=∠BAO.由AB、AC为⊙O的切线,则∠CAO=∠BAO=∠DAB.所以,∠DAB=13∠DAC=26°.∠ADO=90°-26°=64°.本题涉及切线性质定理、切线长定理、垂直平分线的性质、等腰三角形的性质等.2.【答案】D;3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.∵矩形ABCD中,AB=2BC,AB=8cm,∴ AD=BC=4cm,∠DAF=90°,,,又AF=AD=4cm,∴,∴.4.【答案】D;【解析】∵四边形ABCD是⊙O的内接四边形,∴∠ADC+∠B=180°,∵∠ADC+∠ADE=180°,∴∠ADE=∠B.∵∠B=110°,∴∠ADE=110°.5.【答案】D;【解析】因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,知(寸),在Rt△AOE中,,即,解得OA=13,进而求得CD=26(寸).6.【答案】C.【解析】本题借助图形来解答比较直观.要判断两圆公切线的条数,则必须先确定两圆的位置关系,因此必须求出两圆的圆心距,根据题中条件,在Rt△AOB中,OA=4,OB=3,所以AB=5,而两圆半径为和,且,即两圆的圆心距等于两圆的半径之和,所以两圆相外切,共有3条公切线.7.【答案】B.【解析】设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选B.8.【答案】C;【解析】连接OC、OB,则∠BOC=360°-90°-90°-50°=130°.点P在优弧上时,∠BPC =∠BOC=65°;点P在劣弧上时,∠BPC=180°-65°=115°.主要应用了切线的性质定理、圆周角定理和多边形内角和定理.二、填空题9.【答案】24.10.【答案】99°;【解析】由EB=EC,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°,在⊙O中,∠BCD与∠A互补,所以∠A=180°-81°=99°.11.【答案】83.12【解析】以CQ 为直径作⊙O,当⊙O 与AB 边相切动点P 时,CQ 最短,∴OP⊥AB,∵∠B=90°,∠A=30°,∴∠POA=60°,∵OP=OQ,∴△POQ 为等边三角形,∴∠POQ=60°,∴∠APQ=30°,∴设PQ=OQ=AP=OC=r ,3r=AC=ABsin 30︒=4,∴CQ=83,∴CQ 的最小值为83.12.【答案】①②④;【解析】连接AD ,AB 是直径,则AD⊥BC,又∵△ABC 是等腰三角形,故点D 是BC 的中点,即BD=CD ,故②正确; ∵AD 是∠BAC 的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC﹣∠BAD=45°=2∠CAD,故④正确; ∵∠EBC=22.5°,2EC≠BE,AE=BE ,∴AE≠2CE,③不正确; ∵AE=BE,BE 是直角边,BC 是斜边,肯定不等,故⑤错误. 综上所述,正确的结论是:①②④.13.【答案】7或3;【解析】两圆有三种位置关系:相交、相切(外切、内切)和相离(外离、内含).两圆内切时,圆心距,题中一圆半径为5,而d=2,所以有,解得r=7或r=3,即另一圆半径为7或3.14.【答案】; ;【解析】正方形ABCD 外接圆的直径就是它的对角线,由此求得正方形边长为a .如图所示,设正八边形的边长为x .在Rt △AEL 中,LE =x ,AE =AL,∴ ,,即正八边形的边长为..1)a 22)a 2x 22x x a ⨯+=1)x a =1)a 2222241)]2)AEL S S S a x a a a =-=-=-=△正方形正八边形15.【答案】(1)π; 2π; (2)(n-2)π;【解析】∵ n 边形内角和为(n-2)180°,前n 条弧的弧长的和为个以某定点为圆心,以1为半径的圆周长,∴ n 条弧的弧长的和为. 本题还有其他解法,比如:设各个扇形的圆心角依次为,,…,, 则,∴ n 条弧长的和为.16.【答案】4.【解析】解:过点O 作OC⊥AB 于C ,交⊙O 于D 、E 两点,连结OA 、OB 、DA 、DB 、EA 、EB ,如图, ∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB 为等腰直角三角形,∴AB=OA=2,∵S 四边形MANB =S △MAB +S △NAB ,∴当M 点到AB 的距离最大,△MAB 的面积最大;当N 点到AB 的距离最大时,△NAB 的面积最大,即M 点运动到D 点,N 点运动到E 点,此时四边形MANB 面积的最大值=S 四边形DAEB =S △DAB +S △EAB =AB•CD+AB•CE=AB (CD+CE )=AB•DE=×2×4=4.(2)1801(2)3602n n -=-121(2)(2)2n n ππ⨯⨯-=-1α2αn α12(2)180n n ααα+++=-…°1212111()180180180180n n απαπαππααα⨯+⨯++⨯=+++……(2)180(2)180n n ππ=-⨯=-三、解答题17.【答案与解析】(1)连结OF∵FH 是⊙O 的切线 ∴OF⊥FH ∵FH∥BC ,∴OF 垂直平分BC∴ ∴AF 平分∠BAC .(2)由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2 ∴∠1+∠4=∠2+∠3 ∴∠1+∠4=∠5+∠3 ∠FDB =∠FBD ∴BF =FD.18.【答案与解析】 证明:(1)∵四边形ABCD 是⊙O 的内接四边形, ∴∠A+∠BCD=180°, ∵∠DCE+∠BCD=180°, ∴∠A=∠DCE, ∵DC=DE,∴∠DCE=∠AEB, ∴∠A=∠AEB;(2)∵∠A=∠AEB, ∴△ABE 是等腰三角形, ∵EO⊥CD, ∴CF=DF,∴EO 是CD 的垂直平分线, ∴ED=EC, ∵DC=DE, ∴DC=DE=EC,∴△DCE 是等边三角形,»»BFFC∴∠AEB=60°,∴△ABE 是等边三角形.19.【答案与解析】解:∵公共弦AB =120r R a 6624222212060603=-⎛⎝ ⎫⎭⎪=-=.20. 【答案与解析】 (1)如选命题①. 证明:在图(1)中,∵ ∠BON =60°,∴ ∠1+∠2=60°. ∵ ∠3+∠2=60°,∴ ∠1=∠3. 又∵ BC =CA ,∠BCM =∠CAN =60°, ∴ △BCM ≌△CAN ,∴ BM =CM . 如选命题②.证明:在图(2)中,∵ ∠BON =90°,∴ ∠1+∠2=90°. ∵ ∠3+∠2=90°,∴ ∠1=∠3. 又∵ BC =CD ,∠BCM =∠CDN =90°, ∴ △BCM ≌△CDN ,∴ BM =CN . 如选命题③.证明:在图(3)中,∵ ∠BON =108°,∴ ∠1+∠2=108°. ∵ ∠2+∠3=108°,∴ ∠1=∠3.又∵ BC =CD ,∠BCM =∠CDN =108°, ∴ △BCM ≌△CDN ,∴ BM =CN . (2)①答:当∠BON =时结论BM =CN 成立.②答:当∠BON =108°时.BM =CN 还成立. 证明:如图(4),连接BD 、CE 在△BCD 和△CDE 中,∵ BC =CD ,∠BCD =∠CDE =108°,CD =DE , ∴ △BCD ≌△CDE .∴ BD =CE ,∠BDC =∠CED ,∠DBC =∠ECD . ∵ ∠CDE =∠DEN =108°, ∴ ∠BDM =∠CEM .∵ ∠OBC+∠OCB =108°,∠OCB+∠OCD =108°. ∴ ∠MBC =∠NCD .又∵ ∠DBC =∠ECD =36°, ∴ ∠DBM =∠ECM . ∴ △BDM ≌△CEN , ∴ BM =CN .(2)180n n°。
九年级下数学所有知识点
![九年级下数学所有知识点](https://img.taocdn.com/s3/m/3fb49b9fb04e852458fb770bf78a6529647d35e3.png)
九年级下数学所有知识点一、代数与函数1. 整式与分式整式的定义与性质分式的定义与性质2. 一次函数与二次函数一次函数的概念及性质二次函数的概念及性质一次函数与二次函数的图像特征3. 指数与对数指数的概念与性质对数的概念与性质指数函数与对数函数的关系4. 平面直角坐标系与直线平面直角坐标系的引入直线的斜率与方程二、几何1. 四边形与圆四边形的性质与分类圆的概念与性质2. 相似与全等三角形相似三角形的定义与性质全等三角形的定义与性质3. 空间几何体立体几何体的概念与性质立体几何体的计算4. 平行线与比例平行线的性质与判定比例的概念与性质三、概率与统计1. 事件与概率事件的基本概念概率的计算与性质2. 数据的收集与整理数据的统计方式与方法数据的分析与解读3. 统计的图表与分布条形图、折线图、饼图的绘制与解读频率分布表的制作与分析4. 抽样与推断随机抽样的概念与方法样本与总体的关系与推断四、数与量1. 数集与数的性质数集的分类与表示奇偶性、整除与因数2. 分数与小数分数的四则运算与性质小数的运算与应用3. 数量关系与变化比例与比例关系速度与密度的计算4. 三角函数与图形正弦、余弦、正切的概念与性质图形的平移、旋转、翻折与对称以上是九年级下数学的所有知识点的简要概述,涵盖了代数与函数、几何、概率与统计以及数与量等方面的内容。
通过学习这些知识,同学们将能够熟练掌握数学中的基本概念、性质和应用技巧,为进一步的学习做好铺垫,并培养良好的数学思维能力和解决问题的能力。
希望同学们在学习过程中勤加练习,加强对知识的理解与应用,做到理论联系实际,努力提高数学水平。
九年级下册数学复习资料大全
![九年级下册数学复习资料大全](https://img.taocdn.com/s3/m/ddb34918ba68a98271fe910ef12d2af90242a833.png)
让学生回顾因式分解的概念及分解的方法。
教学建议
一、回顾旧知识时可先让学生回忆曾经学过的方法,再讲解。 二、与学生一起复习下列知识点: 1、 因式分解的概念
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多
项式分解因式。
这里要向学生明确两点:一是积的形式;二是把多项式化成几个
给出一条一元二次方程,要先确定是用什么方法解,或用什么方
法会更容易 公式中的未知数是x,在实际计算中未必用x来表示未知数,这点
要向学生说明
第十二课 《分式方程及其解法》 教学目标
复习巩固分式方程及其解法。
教学建议 1、 分式方程的定义 2、 解分式方程的步骤::去分母、去括号、移项、合并同类项、系数 化成1、检验
如: 32a 和 x3ab 2 的最简公分母是6a2b ax 2 和 b2(x 2) 2 的最简公分母2(x 2)2
向学生明确异分母分式加减法的运算方法 如1x 3
1x 3
1 (x 3)(x 3)(x 3)
1 (x 3)(x 3)(x 3)
(x 3) (x 3)(x 3)(x 3)
6 第九课 《二次根式的运算》 教学目标 让学生回顾二次根式的运算方法。 教学建议 1、 (a)2 a (a 0) 如:(2)2 2 2、 a2 |a| 如:( 2)2 2 3、 (a)3 a 如:( 2)3 2 4、 a 3 x9 2
让学生回忆代数式的有关概念,
教学建议 一、讲解前可先让学生回忆所学的代数式的有关知识 二、与学生一起复习下列知识点: 1、 代数式 如:a2、x y
区分开哪些是代数式,哪些不是代数式 2、 代数式的值
代入时要特别注意代入对应的字母 3、 整式包括单项式和多项式
初中数学教材知识梳理-九年级下册
![初中数学教材知识梳理-九年级下册](https://img.taocdn.com/s3/m/3a307c895acfa1c7ab00cc71.png)
初中数学教材知识梳理·系统复习北师大版本初中数学九年级下册第一章直角三角形的边角关系知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA3313知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.例:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.4.解直角三角形的常用关系(1)三边之间的关系:a2+b2=c2;(2)锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:sin A==cosB=ac,cos A=sinB=bc,tan A=ab.知识点三:解直角三角形的应用5.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα. (如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;第二章二次函数实际问题中求最值①分析问题中的数量关系,列出函数关系式;②研究自变量的取值范围;③确定所得的函数;④检验x的值是否在自变量的取值范围内,并求相关的值;⑤解决提出的实际问题.解决最值应用题要注意两点:①设未知数,在“当某某为何值时,什么最大(最小)”的设问中,“某某”要设为自变量,“什么”要设为函数;②求解最值时,一定要考虑顶点(横、纵坐标)的取值是否在自变量的取值范围内.结合几何图形①根据几何图形的性质,探求图形中的关系式;②根据几何图形的关系式确定二次函数解析式;③利用配方法等确定二次函数的最值,解决问题由于面积等于两条边的乘积,所以几何问题的面积的最值问题通常会通过二次函数来解决.同样需注意自变量的取值范围.第三章圆第1讲圆的基本性质知识点一:圆的有关概念关键点拨与对应举例1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.如图所示的圆记做⊙O.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.知识点二:垂径定理及其推论2.垂径定理及其推论定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.延伸根据圆的对称性,如图所示,在以下五条结论中:①弧AC=弧BC;②弧AD=弧BD;③AE=BE;④AB⊥CD;⑤CD是直径.只要满足其中两个,另外三个结论一定成立,即推二知三.知识点三:圆心角、弧、弦的关系3.圆心角、弧、弦的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.知识点四:圆周角定理及其推论O4.圆周角定理及其推论(1)定理:一条弧所对的圆周角等于它所对的圆心角的一半. 如图a,∠A=1/2∠O.图a 图b 图c( 2 )推论:①在同圆或等圆中,同弧或等弧所对的圆周角相等.如图b,∠A=∠C.②直径所对的圆周角是直角.如图c,∠C=90°.③圆内接四边形的对角互补.如图a,∠A+∠C=180°,∠ABC+∠ADC=180°.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.例:如图,AB是⊙O的直径,C,D是⊙O上两点,∠BAC=40°,则∠D的度数为130°.第2讲与圆有关的位置关系知识点一:与圆有关的位置关系关键点拨及对应举例1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.例:已知:⊙O的半径为2,圆心到直线l的距离为1,将直线l沿垂直于l的方向平移,使l与⊙O相切,则平移的距离是1或3.图形公共点个数0个1个2个数量关系d>r d=r d<r知识点二:切线的性质与判定3.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.4.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.*5.切线长(1)定义:从圆外一点作圆的切线,这点与切点之间的线段长叫做这点到圆的切线长.(2)切线长定理:从圆外一点可以引圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.例:如图,AB、AC、DB是⊙O的切线,P、C、D为切点,如果AB=5,AC=3,则BD的长为2.知识点四:三角形与圆5.三角形的外接圆图形相关概念圆心的确定内、外心的性质内切圆半径与三角形边的关系:(1)任意三角形的内切圆(如图a),设三角形的周长为C,则S△ABC=1/2Cr.(2)直角三角形的内切圆(如图b)①若从切线长定理推导,可得r=1/2(a+b+c);若从面积推导,则可得r=.这两种结论可在做选择题和填空题时直接应用.例:已知△ABC的三边长a=3,b=4,c=5,则它的外切圆半径是2.5.经过三角形各定点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形三角形三条垂直平分线的交点到三角形的三个顶点的距离相等6.三角形的内切圆与三角形各边都相切的圆叫三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫圆的外切三角形到三角形三条角平分线的交点到三角形的三条边的距离相等第3讲与圆有关的计算知识点一:正多边形与圆关键点拨与对应举例1.正多边形与圆(1)正多边形的有关概念:边长(a)、中心(O)、中心角(∠AOB)、半径(R))、边心距(r),如图所示①.(2)特殊正多边形中各中心角、长度比:中心角=120°中心角=90°中心角=60°,△BOC为等边△a:r:R=2:1:2 a:r:R=2::2 a:r:R=2:2例:(1) 如果一个正多边形的中心角为72°,那么这个正多边形的边数是5.(2)半径为6的正四边形的边心距为32,中心角等于90°,面积为72.知识点二:与圆有关的计算公式2.弧长和扇形面积的计算扇形的弧长l=180n rπ;扇形的面积S=2360n rπ=12lr例:已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为3π.3.圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)计算公式:lrrlππ=•=221S圆锥侧2S rlrππ+=全在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.例:如图,已知一扇形的半径为3,圆心角为60°,则图中阴影部分的面积为。
九年级数学下册圆的知识点整理
![九年级数学下册圆的知识点整理](https://img.taocdn.com/s3/m/784100dc7fd5360cbb1adb8b.png)
九年级数学下册圆的知识点整理圆的应用在数学领域中非常的广泛且常见,下面是小编给大家带来的九年级数学下册《圆》知识点整理,希望能够帮助到大家!九年级数学下册《圆》知识点整理第十章圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.三点定圆定理4.垂径定理及其推论5.等对等定理及其推论5. 与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.三种位置及判定与性质:初中数学复习提纲2.切线的性质(重点)3.切线的判定定理(重点)。
圆的切线的判定有⑴⑵4.切线长定理三、圆换圆的位置关系初中数学复习提纲1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段初中数学复习提纲1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相关元素, 初中数学复习提纲、初中数学复习提纲等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式初中数学复习提纲4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算七、点的轨迹六条基本轨迹八、有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、基本图形十、重要辅助线1.作半径2.见弦往往作弦心距3.见直径往往作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦。
九年级数学下册知识点总结(最新最全)
![九年级数学下册知识点总结(最新最全)](https://img.taocdn.com/s3/m/c1597d32b5daa58da0116c175f0e7cd1842518c6.png)
九年级数学下册知识点总结(最新最全)九年级下册知识点第一章直角三角形边的关系1、正切:定义:在Rt△ABC中,锐角∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA=∠A的对边/∠A的邻边。
①tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”;②tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;③tanA不表示“tan”乘以“A”;④tanA的值越大,梯子越陡,∠A越大;∠A越大,梯子越陡,tanA的值越大。
(P1-6,11、P3-6、P4-12)2、正弦:定义:在Rt△ABC中,锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=∠A的对边/斜边;3、余弦:定义:在Rt△ABC中,锐角∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA=∠A的邻边/斜边;4、余切:定义:在Rt△ABC中,锐角∠A的邻边与对边的比叫做∠A的余切,记作cotA,即cotA=∠A的邻边/∠A的对边;5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。
(通常我们称正弦、余弦互为余函数。
同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A为锐角,则①sinA=cos(90°?∠A)等等。
6、记住特殊角的三角函数值表0°,30°,45°,60°,90°。
(P4-13、P5-15,16、P10-11、P12-3)7、当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。
0≤sinα≤1,0≤cosα≤1。
同角的三角函数间的关系:tαnα·cotα=1,tanα=sinα/cosα,cotα=cosα/sinα,sin2α+cos2α=18、在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,则有:(1)三边之间的关系:a2+b2=c2;(2)两锐角的关系:∠A+∠B=90°;(3)边与角之间的关系:sinα等;(4)面积公式;(5)直角三角形△ABC内接圆⊙O的半径为(a+b-c)/2;(6)直角三角形△ABC外接圆⊙O的半径为c/2。
(必考题)初中九年级数学下册第二十六章《反比例函数》复习题(答案解析)
![(必考题)初中九年级数学下册第二十六章《反比例函数》复习题(答案解析)](https://img.taocdn.com/s3/m/9e6e8eb6767f5acfa0c7cd74.png)
一、选择题1.如图,过反比例函数()0k y x x =>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S =△,则k 的值为( )A .2B .3C .4D .5 2.已知函数()0k y k x=≠中,在每个象限内,y 的值随x 的值增大而增大,那么它和函数()0y kx k =-≠在同一直角坐标平面内的大致图像是( ).A .B .C .D .3.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为()1,1-,点B 在x 轴正半轴上,点D 在第三象限的双曲线8y x=上,过点C 作//CE x 轴交双曲线于点E ,则CE 的长为( )A .85B .235C .2.3D .54.一次函数y kx b =+和反比例函数x b y k =的部分图象在同一坐标系中可能为( ) A . B . C . D . 5.函数y a x a =+与(0)a y a x=≠在同一直角坐标系中的图像可能是( ) A . B . C .D .6.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36- 7.反比例函数y=kb x的图象如图所示,则一次函数y=kx+b (k≠0)的图象的图象大致是( )A .B .C .D .8.下列函数中图象不经过第三象限的是( )A .y =﹣3x ﹣2B .y =2xC .y =﹣2x +1D .y =3x +29.已知反比例函数y=21k x+的图上象有三个点(2,1y ), (3, 2y ),(1-, 3y ),则1y ,2y ,3y 的大小关系是( )A .1y >2y >3yB .2y >1y >3yC .3y >1y >2yD .3y >2y >1y 10.如图,函数k y x=与2(0)y kx k =-+≠在同一平面直角坐标系中的图像大致( ) A . B .C .D .11.如图,在平面直角坐标系中,平行四边形OABC 的顶点A 在反比例函数1k y x =(x>0) 的图像上,顶点B 在反比例函数2k y x=(x>0)的图像上,点C 在x 轴的正半轴上.若平行四边形OABC 的面积为8,则k 2-k 1的值为( )A .4B .8C .12D .1612.若点()()()1231,,1,,3,A y B y C y -在反比例函数6y x =的图像上,则123,,y y y 的大小关系是( )A .123y y y <<B .132y y y <<C .321y y y <<D .213y y y << 13.如图,点A 是反比例函数2(0)y x x =>的图象上任意一点,AB x 轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD ,其中C 、D 在x 轴上,则ABCD S 为( )A .2.5B .3.5C .4D .514.在平面直角坐标系中,对于不在坐标轴上的任意一点P (x ,y ),我们把的P '(1x,1y )称为点P 的“倒影点”.直线y =﹣2x +1上有两点A 、B ,它们的倒影点A '、B '均在反比例函数y k x=的图象上,若AB 5=,则k 的值为( )A .83- B .43- C .5 D .1015.函数y =x +m 与m y x=(m ≠0)在同一坐标系内的图象可以是( ) A . B .C .D .二、填空题16.已知函数3(2)m y m x -=-是反比例函数,则m =_________.17.如图,反比例函数y =k x(x >0)经过A ,B 两点,过点A 作AC ⊥y 轴于点C ,过点B 作BD ⊥y 轴于点D ,过点B 作轴BE ⊥x 于点E ,连接AD ,已知AC =2,BE =2,S 矩形BEOD =16,则S △ACD =_____.18.如图,平面直角坐标系中,矩形ABCD 的顶点B 在x 轴负半轴上,边CD 与x 轴交于点E ,连接AE ,//AE y 轴,反比例函数()0k y x x=>的图象经过点A ,及AD 边上一点F ,4AF FD =,若,2DA DE OB ==,则k 的值为________.19.如图,在平面直角坐标系中,函数y kx =与2y x =-的图像交于A 、B 两点,过点A 作y 轴的垂线,交函数1y x=的图像于点C ,连接BC ,则ABC ∆的面积为 _________.20.如图,点P ,Q 在反比例函数y=k x (k>0)的图像上,过点P 作PA ⊥x 轴于点A ,过点Q 作QB ⊥y 轴于点B .若△POA 与△QOB 的面积之和为4,则k 的值为_________. 21.函数y =||12m m x--是y 关于x 的反比例函数,那么m 的值是_____. 22.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =k x (k ≠0)的图象经过其中两点,则m 的值为_____. 23.反比例函数16y x =与2k y x=()0k <的图像如图所示,点P 是x 正半轴上一点,过点P 作x 轴的垂线,分别交反比例函数16y x =与2k y x =()0k <的图像于点A ,B ,若4AB PB =,则k 的值为_______.24.已知反比例函数3y x=-,当1x >时,y 的取值范围是____ 25.点A(a ,b)是一次函数y=2x-3与反比例函数9y x =的交点,则2a 2b-ab 2=_____. 26.如图,直线y =34-x +6与反比例函数y =k x(k >0)的图象交于点M 、N ,与x 轴、y轴分别交于点B 、A ,作ME ⊥x 轴于点E ,NF ⊥x 轴于点F ,过点E 、F 分别作EG ∥AB ,FH ∥AB ,分别交y 轴于点G 、H ,ME 交HF 于点K ,若四边形MKFN 和四边形HGEK 的面积和为12,则k 的值为_____.三、解答题27.如图,一次函数3y x =-+的图像与反比例函数(0)k y k x=≠在第一象限的图像交于()1,A a 和B 两点,与x 轴交于点C .(1)求反比例函数的解析式;(2)求出另一个交点B 的坐标,并直接写出当0x >时,不等式3k x x -+<的解集; (3)若点P 在x 轴上,且APC △的面积为5,求点P 的坐标.28.一次函数y = x + b 和反比例函数2y x=(k≠0)交于点A (a ,1)和点B . (1)求一次函数的解析式;(2)求△AOB 的面积;29.如图,在直角坐标系中,双曲线k y x=与直线y ax b =+相交于()2,3,6,)(A B n -两点,(1)求双曲线和直线的函数解析式;(2)点P 在x 负半轴上,APB △的面积为14,求点P 的坐标;(3)根据图象,直接写出不等式组0k ax b x ax b⎧+⎪⎨⎪+⎩﹤﹥的解集.30.如图,A B 、两点的坐标分别为()()2,0,0,3-,将线段AB 绕点B 逆时针旋转90°得到线段BC ,过点C 作CD OB ⊥,垂足为D ,反比例函数k y x=的图象经过点C .(1)直接写出点C 的坐标,并求反比例函数的解析式;(2)点P 在反比例函数k y x =的图象上,当PCD 的面积为3时,求点P 的坐标.。
苏科版初中九年级下册数学:第5章 二次函数
![苏科版初中九年级下册数学:第5章 二次函数](https://img.taocdn.com/s3/m/2080cbe33186bceb19e8bb7f.png)
8、已知抛物线y=
线段OA,OB的长度之和是 2√3 。
9.某商场将进价40元一个的某种商品按50元一个售出时,能卖 出500个,已知这种商品每个涨价1元,销量减少10个,设每 个涨价x元,销售价可以表示为 (50+x)元 ,一个商品所获利 润可以表示为 (50+x-40)元 ,销售量可以表示为 _(5_0_0_-1_0_x)_个_, 利润可以为 (50+x-40)(500-10x) ,因此,定价是 70 元时, 最大利润是 9000 元。
一、选择题
1.在二次函数y=ax2+bx+c中,ac >0,则它的图像
与x轴的关系是( B )
A. 没有交点
ቤተ መጻሕፍቲ ባይዱ
B. 有两个交点
C. 有一个交点
D. 不能确定
2.已知抛物线y=x2+px+q经过点(5,0),(-5,0),则 p+q=( C )
A. 0 B. 25 C. -25 D. 5
3.若二次函数 y=ax2 +bx+c 的图象如下,与x轴的一个
x2-2x-8=0 解方程得:x1=4, x2=-2
P
∴AB=4-(-2)=6 而P点坐标是(1,-9) ∴S△ABC=27
6、抛物线 y=-2x2+4x+6 顶点为A,与x轴交于B、C y 两点,与y轴交于D点,求四边形ABCD的面积。 D A
y=-2x2+4x+6=-2(x-1)2+8,图像如图
增大而增大。
而减小。
4、二次函数 y=ax2+bx+c 的图象和x轴交点的三种 情况与一元二次方程根的关系:
二次函数 y=ax2+bx+c的 图象和x轴交点
九年级数学下册知识点
![九年级数学下册知识点](https://img.taocdn.com/s3/m/3a7116703a3567ec102de2bd960590c69ec3d839.png)
九年级数学下册知识点九年级下册数学知识点归纳圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论6.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.切线的性质(重点)2.切线的判定定理(重点)3.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算初三下册数学知识点总结一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)它们的各项都是正整数幂的幂函数,其中c0,c1,c2,.....及a 都是常数,这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。
九年级下册数学全部知识点
![九年级下册数学全部知识点](https://img.taocdn.com/s3/m/9f9ef1a5f9c75fbfc77da26925c52cc58bd6909f.png)
九年级下册数学全部知识点一、有理数和小数1. 有理数的概念和分类2. 有理数的加法、减法、乘法和除法操作3. 小数的概念和表示方法4. 有限小数和循环小数的转换和运算5. 乘方和开方的计算二、代数式和方程式1. 代数式的概念和基本性质2. 一元一次方程的解法和实际应用3. 一元二次方程的解法和实际应用4. 不等式的解集和图像表示5. 平方差公式和完全平方公式的应用三、函数和图像1. 函数的定义和性质2. 一次函数的表达式、图像和性质3. 二次函数的表达式、图像和性质4. 绝对值函数的表达式、图像和性质5. 渐近线和奇偶性的判断四、几何图形与变换1. 平行线和垂直线的性质及判定2. 三角形的分类、性质和判定3. 四边形的分类、性质和判定4. 圆的性质和常见定理5. 平移、旋转、翻转和投影变换五、统计与概率1. 统计图表的制作和分析2. 中心、离散和形状的度量3. 概率的基本概念和计算方法4. 事件的独立性和互斥性以上列举了九年级下册数学的全部知识点,从有理数和小数的基础概念,到代数式和方程式的解法,再到函数和图像的性质和变换,以及几何图形和统计概率的应用,包含了数学学科的主要内容。
在学习这些知识点时,需要掌握基本的计算方法和推理能力,以及运用数学知识解决实际问题的能力。
数学作为一门学科,不仅有自己严谨的逻辑和推理规律,还有广泛的应用领域。
通过学习九年级下册数学知识,不仅可以提高我们的数学素养,还能培养我们的分析问题和解决问题的能力。
希望同学们能够认真学习,掌握这些知识,为将来更高层次的数学学习打下坚实的基础。
九年级下册数学知识点汇总(人教版)
![九年级下册数学知识点汇总(人教版)](https://img.taocdn.com/s3/m/d1504a91c67da26925c52cc58bd63186bceb9294.png)
九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。
(完整版)北师大版九年级数学下册知识点归纳复习提纲
![(完整版)北师大版九年级数学下册知识点归纳复习提纲](https://img.taocdn.com/s3/m/16cb708f6bd97f192379e952.png)
图1 新北师大版九年级数学下册知识点总结第一章 直角三角形边的关系一.锐角三角函数 1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。
2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ; 锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。
二.特殊角的三角函数值30 º45 º 60 º sin α21 22 23 h i=h:lBC三.三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。
(2)0≤sin α≤1,0≤cos α≤1。
4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。
用字母i 表示,即A lhi tan ==5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。
人教版本初中九年级数学下册--中考复习(概率与统计)PPT课件精选全文
![人教版本初中九年级数学下册--中考复习(概率与统计)PPT课件精选全文](https://img.taocdn.com/s3/m/6f14854e5e0e7cd184254b35eefdc8d376ee140e.png)
12.数据的分布情况(绘制频数分布表
和频数分布直方图)
1.计算极差:这组数据的最小数是:141cm,最大的数是:172cm,它们的差(极差)
是:172-141=31(cm) ;
2.确定分点:半开半闭区间法;
3.定组距,分组:根据极差分成七组(经验法则:100个数据以内分5-12组);
4.用唱票的方法绘制频数分布表;
命中环数
5
甲命中环的次数 1
乙命中环的次数 1
6 7 8 9 10 42111
24210
平均数 众数 方差
7
6 2.2
7 7 1.2
三、概率 (一).随机事件发生的概率
(二).概率的相关概念
1.概率 事件发生的可能性,也称为事件发生的 概率.概率也叫几率或然率. 2.频数,频率 在考察中,每个对象出现的次数 称为频数,而每个对象出现的次数与总次数的比值 称为频率.当试验次数很大时,一个事件发生的频 率稳定在相应的概率附近.因此,我们可以通过多 次试验,用一个事件发生的频率来估计这一事件发 生的概率. 3.利用树状图或表格可以清晰地表示出某个事 件发生的所有可能出现的结果;从而较方便地求出 某些事件发生的概率.用树状图和列表的方法求概 率时应注意各种结果出现的可能性务必相同.
解:
x 甲=71(76 90 84 86 81 87 86) 84.29 xs甲乙==71(82 84 85 89 80 94 76) 84.29
1 ( 822 842 892 802 942 76 2 ) 7 84.292 4.15
7 s 乙=
1 ( 822 842 85 2 892 802 942 76 2 ) 7 84.292 5.40
14 人.如果只用这40名学生这一天
初三(九年级)下册数学知识点归纳
![初三(九年级)下册数学知识点归纳](https://img.taocdn.com/s3/m/9b3b1a2926fff705cd170a14.png)
初三(九年级)下册数学知识点归纳九年级下册知识点归纳包括二次函数、相似、锐角三角形、投影与视图共四章内容,主要总结了这几个单元的重点和难点的内容,是初三同学们和中考考生的必备资料!第二十六章二次函数26.1 二次函数及其图像二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。
二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。
其图像是一条主轴平行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:一般式y=ax+bx+c(a0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b2)/4a) ;顶点式y=a(x+m)2+k(a0,a、m、k为常数)或y=a(x-h)2+k(a0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;重要概念:a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。
a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3)) /((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。
由此可引导出交点式的系数a=y1/(x1*x2) (y1为截距)求根公式二次函数表达式的右边通常为二次三项式。
求根公式x是自变量,y是x的二次函数x1,x2=[-b((b^2-4ac))]/2a(即一元二次方程求根公式)(如右图)求根的方法还有因式分解法和配方法在平面直角坐标系中作出二次函数y=2x的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。
2024年初三数学下册知识点总结(二篇)
![2024年初三数学下册知识点总结(二篇)](https://img.taocdn.com/s3/m/5b790c0249d7c1c708a1284ac850ad02de8007d0.png)
2024年初三数学下册知识点总结一、平面图形的认识1. 点、线、面的基本概念2. 角的概念及角的分类3. 直线的分类及直线的性质4. 平行线的判定方法及平行线的性质5. 三角形的分类及三角形的性质6. 等腰三角形、等边三角形的性质7. 直角三角形、等腰直角三角形的性质8. 平行四边形、菱形、矩形、正方形的性质二、数据处理1. 平均数的概念及计算2. 中位数的概念及计算3. 众数的概念及计算4. 极差的概念及计算5. 百分数及其应用6. 棒形图、折线图、饼图的绘制及解读7. 统计调查设计三、方程式与不等式1. 一元一次方程的解法及应用2. 一元一次方程的解集及解集图的绘制3. 度量图形的方程式4. 解一元一次方程的应用题5. 一元一次不等式的认识及解法6. 一元一次不等式的应用题7. 二元一次方程组的解法及应用四、几何变换与成分比例1. 平移的性质及计算2. 旋转的性质及计算3. 对称的性质及计算4. 两个全等图形之间的性质及计算5. 两个相似三角形之间的性质及计算6. 成分比例的概念及计算7. 成分比例在几何形体中的应用五、平面向量1. 向量的概念及表示法2. 平面向量的加减法及性质3. 向量的数量积与性质4. 平面向量的数量积的性质及应用5. 平面向量的夹角和垂直的判定与计算6. 向量、点及直线的共线关系及应用7. 用平面向量解决平面几何问题六、三角函数1. 角度制与弧度制的相互转换2. 弧度的概念及性质3. 任意角与标准角的关系4. 正弦定理及应用5. 余弦定理及应用6. 正切定理及应用7. 三角函数基本关系式及应用8. 三角函数在直角三角形中的定值七、概率与统计1. 随机事件、样本空间及基本事件的认识2. 频率、概率的概念及计算3. 事件的复合及事件的计算4. 独立事件及概率的计算5. 试验次数的期望及概率模型6. 渐近性及概率的计算7. 初步了解贝叶斯公式及应用以上是初三数学下册的知识点总结,每个知识点都应掌握其概念、性质、计算方法及应用。
九年级复习资料
![九年级复习资料](https://img.taocdn.com/s3/m/4d84dc752bf90242a8956bec0975f46527d3a7b2.png)
九年级复习资料数学实数与代数- 理解实数的概念,包括有理数和无理数。
- 掌握代数基本运算,如加减乘除和乘方。
- 学习代数表达式的简化和求解。
几何与图形- 理解几何图形的基本性质,如点、线、面。
- 掌握平面图形的面积和周长计算。
- 学习立体图形的体积和表面积计算。
函数与方程- 理解函数的概念,包括自变量和因变量。
- 掌握一次函数、二次函数的图像和性质。
- 学习方程的解法,包括一元一次方程和一元二次方程。
概率与统计- 理解概率的基本概念,如事件的独立性和互斥性。
- 学习统计数据的收集和处理方法。
- 掌握概率的计算方法。
语文现代文阅读- 理解文章的主旨,把握作者的观点和情感。
- 分析文章的结构和语言特点。
- 学习如何通过阅读获取信息和知识。
古诗文阅读- 理解古诗文的意境和韵律。
- 学习古诗文的翻译和鉴赏。
- 掌握古诗文的背诵和默写。
写作技巧- 掌握记叙文、议论文、说明文等不同文体的写作方法。
- 学习如何组织文章结构,使文章条理清晰。
- 掌握如何使用恰当的修辞手法,增强文章的表现力。
文学常识- 了解中国古典文学和现代文学的基本知识。
- 学习中外文学名著的作者和作品特点。
- 掌握文学流派和文学批评的基本概念。
英语词汇与语法- 掌握常用词汇的拼写、发音和用法。
- 学习英语基本语法规则,如时态、语态、名词复数等。
- 理解词性变化和词组搭配。
阅读理解- 理解文章的主旨大意和细节信息。
- 分析文章的结构和作者的写作意图。
- 学习如何快速获取关键信息。
写作能力- 掌握英语写作的基本格式和结构。
- 学习如何组织段落,使文章逻辑清晰。
- 掌握如何使用恰当的词汇和句式,提高写作的准确性和流畅性。
听说能力- 训练听力理解能力,提高对不同口音和语速的适应性。
- 学习英语口语表达的技巧,提高语言的流利度和自然度。
- 掌握基本的交际用语和日常会话。
物理力学- 理解力的概念,包括重力、摩擦力等。
- 学习牛顿运动定律和力的平衡条件。
九年级数学下册重要知识点总结
![九年级数学下册重要知识点总结](https://img.taocdn.com/s3/m/5667b10ef8c75fbfc67db259.png)
初三数学下册重要知识点总结第 25章概率1、必然事件、不可能事件、随机事件的区别2、概率注意:( 1)概率是随机事件发生的可能性的大小的数量反映.( 2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.3、求概率的方法(1)用列举法求概率(列表法、画树形图法)(2)用频率估计概率:一方面,可用大量重复试验中事件发生频率来估计事件发生的概率. 另一方面 , 大量重复试验中事件发生的频率稳定在某个常数 ( 事件发生的概率 ) 附近,说明概率是个定值 , 而频率随不同试验次数而有所不同 , 是概率的近似值 , 二者不能简单地等同 .第 26 章二次函数1.二次函数的一般形式:y=ax2+bx+c.(a ≠ 0)4.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c ,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c 的值 ,从而求出解析式 -------待定系数法.5.二次函数的顶点式:y=a(x-h)2+k(a≠ 0) ;由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程x=h和函数的最值y最值= k.6.求二次函数的解析式:已知二次函数的顶点坐标(h,k)和图象上的另一点的坐标,可设2解析式为y=a(x -h) + k ,再代入另一点的坐标求a,从而求出解析式.8.二次函数 y=ax 2+bx+c (a ≠ 0) 的图象及几个重要点的公式:9. 二次函数y=ax 2+bx+c (a ≠ 0) 中, a、b、 c 与的符号与图象的关系:(1)a> 0<=>抛物线开口向上; a < 0 <=>抛物线开口向下;(2)c> 0<=>抛物线从原点上方通过;c=0 <=> 抛物线从原点通过;c< 0<=>抛物线从原点下方通过;(3)a, b异号 <=> 对称轴在 y 轴的右侧; a, b 同号 <=> 对称轴在 y 轴的左侧;b=0 <=>对称轴是 y 轴;(4)b2- 4ac > 0<=> 抛物线与 x 轴有两个交点;b2- 4ac =0 <=>抛物线与x轴有一个交点(即相切); b 2-4ac < 0 <=>抛物线与 x 轴无交点 .10.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上.第 27章相似形1“平行出比例”定理及逆定理:几何表达式举例:( 1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段(1) ∵DE∥BC ∴ADAE成比例;DB EC AD E(2) ∵DE∥BC∴AD AEDE( 1)( 3)A(2)AC AB ∵ AD AEB C(3)∴DE∥BCB C DB EC2.比例的基本性质:a:b=c:d a c;ad=bcb d3.定理:“平行”出相似平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.4.定理:“ AA”出相似如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.5.定理:“ SAS”出相似如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似 .AE几何表达式举例:DADE∽ ABC∵ DE∥BC∴DAEB CCB A几何表达式举例:E∵∠ A=∠A又∵∠ AED=∠ACB∴Δ ADE∽ABCDB C几何表达式举例:AE∵AD AB又∵∠ A=∠ADAE AC∴Δ ADE∽ABCB C6.“双垂”出相似及射影定理:几何表达式举例:( 1)直角三角形被斜边上的高分成的两个直角三角A(1) ∵AC⊥CB形和原三角形相似;D又∵ CD⊥AB ∴ACD∽Δ CBD∽Δ ABC( 2)双垂图形中,两条直角边是它在斜边上的射影(2)2∵AC⊥CB CD⊥AB ∴ AC=AD· AB和斜边的比例中项,斜边上的高是它分斜边所成BBC2 =BD· BA DC2 =DA·DB 两条线段的比例中项 .C7.相似三角形性质:A( 1)相似三角形对应角相等,对应边成比例;E ( 2)相似三角形对应高的比,对应中线的比,对应角平分线、周长的比都等于相似比;( 3)相似三角形面积的比,等于相似比的平方.B DC FHG(1) ∵ ABC∽ΔEFG(2) ∵Δ ABC∽ EFG S∴AB BC AC又∵ AD、EH是对应中线(3) ∵Δ ABC∽ EFG ∴∠BAC=∠FEG S2ABCABEFGEFEF FG EG∴AD ABEH EF四、位似1、利用位似,可以将一个图形放大或缩小.作图时要注意: ①首先确定位似中心,位似中心的位置可随意选择; ②确定原图形的关键点, 如四边形有四个关键点, 即它的四个顶点;③确定位似比, 根据位似比的取值, 可以判断是将一个图形放大还是缩小; ④符合要求的图形不惟一, 因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形.第 28 章解三角形1. 三角函数的定义:在 Rt ABC 中 , 如∠ C=90°,那么sinA=对a;cosA=对 b; tanA=对a;cotA=邻b .斜c斜c邻b对aBac2.余角三角函数关系 ------“正余互化公式”如∠ A+∠ B=90° , 那么: sinA=cosB ; cosA=sinB;tanA=cotB;cotA=tanB.3. 同角三角函数关系:22;tanA ·co tA =1. tanA=sin Asin A+cos A =1 cos A4. 函数的增减性:在锐角的条件下,正弦,正切函数随角的增大,函数值增大;余弦,余CbA切函数随角的增大,函数值反而减小.Ak, 它可以推出特殊5.特殊角的三角函数值:如图:这是两个特殊的直角三角形,通过设角的直角三角函数值,要熟练记忆它们.60 °2KK∠ A30°45°60°30°sinA1 2 3 C3KB22 2AcosA3 2 12K22 2 KtanA3 1345 °3 CK BcotA31336. 解直角三角形:对于直角三角形中的五个元素,可以“知二可求三”,但“知二”中至少应该有一个是边 .7.坡度: i = 1:m = h/l = tanα ; 坡角 : α .8. 方位角:h北偏西30i=1:m北a东 l南偏东709.仰角与俯角:铅垂线仰角俯角水平线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三下册数学知识点总结第一章 直角三角形边的关系※一. 正切:定义:在Rt △ABC 中,如果锐角∠A 确定,那么∠A 的对边与邻边的比便随之确定,这个比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;※⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。
※二.余切: 定义:在Rt △ABC 中,锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ∠∠=cot ;※一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。
图 1(通常我们称正弦、余弦互为余函数。
同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A 为锐角,则①)90cos(sin A A ∠-︒=;)90sin(cos A A ∠-︒=②)90cot(tan A A ∠-︒=;)90tan(cot A A ∠-︒=※当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..※当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..※利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。
(2)0≤sin α≤1,0≤cos α≤1。
※同角的三角函数间的关系:倒数关系:tg α·ctg α=1。
※在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。
由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。
◎在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则有 (1)三边之间的关系:a 2+b 2=c 2;(2)两锐角的关系:∠A +∠B=90°; (3)边与角之间的关系:;cot ,tan ,cos ,sin a bA b aA c bA c aA ====;cot ,tan ,cos ,sin baB abB caB cbB ====(4)面积公式:c ch ab 2121S ==∆(h c 为C 边上的高); (5)直角三角形的内切圆半径2cb a r -+=(6)直角三角形的外接圆半径c R 21=◎解直角三角形的几种基本类型列表如下:sin α 0 21 22 23 1 cos α 1 23 22 21 0 tan α 0 33 1 3— cot α—3133 0图 3 图4◎解直角三角形的几种基本类型列表如下:※ 如图2,坡面与水平面的夹角叫做坡角.. (或叫做坡比..)。
用字母i 表示,即A lhi tan ==◎从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。
如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。
◎指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角...。
如图4,OA 、OB 、OC 、OD 的方向角分别是;北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。
第二章 二次函数※二次函数的概念:形如c bx ax y ++=2(a 、b 、c 是常数,a ≠0)的函数,叫做x 的二次..函数..。
自变量的取值范围是全体实数。
)0(2≠=a ax y 是二次函数的特例,此时常数b=c=0.※在写二次函数的关系式时,一定要寻找两个变量之间的等量关系,列出相应的函数关系式,并确定自变量的取值范围........。
※二次函数y =ax 2的图象是一条顶点在原点关于y 轴对称的曲线,这条曲线叫做抛物线...。
描述抛物线常从开口方向、对称性、y 随x 的变化情况、抛物线的最高(或最低)点、抛物线与x 轴的交点等方面来描述。
①函数的取值范围是全体实数;②抛物线的顶点在(0,0),对称轴是y 轴(或称直线x =0)。
图2h i=h:lB③当a >0时,抛物线开口向上,并且向上方无限伸展。
当a <0时,抛物线开口向下,并且向下方无限伸展。
④函数的增减性:A 、当a >0时⎩⎨⎧≥≤.,0;,0增大而增大随时增大而减小随时x y x x y xB 、当a <0时⎩⎨⎧≥≤.,0;,0增大而减小随时增大而增大随时x y x x y x⑤当|a |越大,抛物线开口越小;当|a |越小,抛物线的开口越大。
⑥最大值或最小值:当a >0,且x =0时函数有最小值,最小值是0;当a <0,且x =0时函数有最大值,最大值是0。
※二次函数c ax y +=2的图象是一条顶点在y 轴上且与y 轴对称的抛物线※二次函数c bx ax y ++=2的图象是以abx 2-=为对称轴,顶点在 (ab2-,a b ac 442-)的抛物线。
(开口方向和大小由a 来决定)※|a|的越大,抛物线的开口程度越小,越靠近对称轴y 轴,y 随x 增长(或下降)速度越快;|a|的越小,抛物线的开口程度越大,越远离对称轴y 轴,y 随x 增长(或下降)速度越慢。
※二次函数c ax y +=2的图象中,a 的符号决定抛物线的开口方向,|a|决定抛物线的开口程度大小,c 决定抛物线的顶点位置,即抛物线位置的高低。
※二次函数c bx ax y ++=2的图象与y =ax 2的图象的关系:c bx ax y ++=2的图象可以由y =ax 2的图象平移得到,其步骤如下: ① 将c bx ax y ++=2配方成k h x a y +-=2)(的形式;(其中h=ab2-,k=a b ac 442-);②把抛物线2ax y =向右(h>0)或向左(h<0)平移|h|个单位,得到y=a(x-h)2的图象;③再把抛物线2)(h x a y -=向上(k>0)或向下(k<0)平移| k|个单位,便得到k h x a y +-=2)(的图象。
※二次函数c bx ax y ++=2的性质:③增减性:若a>0,则当x<ab2-时,y 随x 的增大而减小.....; 当x>ab2-时,y 随x 的增大而增大。
...... 若a<0,则当x<ab2-时,y 随x 的增大而增大.....; 当x>ab2-时,y 随x 的增大而减小。
...... ④最值:若a>0,则当x=ab2-时,a b ac y 442-=最小;若a<0,则当x=ab2-时,a b ac y 442-=最大※画二次函数c bx ax y ++=2的图象:我们可以利用它与函数2ax y =的关系,平移抛物线而得到,但往往我们采用简化了的描点法----五点法来画二次函数来画二次函数的图象,其步骤如下:①先找出顶点(ab 2-,a b ac 442-),画出对称轴x=a b 2-; ②找出图象上关于直线x=ab2-对称的四个点(如与坐标的交点等); ③把上述五点连成光滑的曲线。
¤二次函数的最大值或最小值可以通过将解析式配成y=a(x-h)2+k 的形式求得,也可以借助图象观察。
¤解决最大(小)值问题的基本思路是:①理解问题;②分析问题中的变量和常量,以及它们之间的关系; ③用数学的方式表示它们之间的关系;④做数学求解;⑤检验结果的合理性、拓展性等。
※二次函数c bx ax y ++=2的图象(抛物线)与x 轴的交点的横坐标x 1,x 2是对应一元二次方程02=++c bx ax 的两个实数根※抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ac b 42->0 <===> 抛物线与x 轴有2个交点; ac b 42-=0 <===> 抛物线与x 轴有1个交点;ac b 42-<0 <===> 抛物线与x 轴有0个交点(无交点);※当ac b 42->0时,设抛物线与x 轴的两个交点为A 、B ,则这两个点之间的距离:2122121224)()(||||1x x x x x x x x AB -+=-=+=化简后即为:)04(||4||22>--=ac b a ac b AB ------ 这就是抛物线与x 轴的两交点之间的距离公式。
第三章 圆一. 车轮为什么做成圆形 ※1. 圆的定义:描述性定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的圆形叫做圆.;固定的端点O 叫做圆心..;线段OA 叫做半径..;以点O 为圆心的圆,记作⊙O ,读作“圆O ”。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
能够重合的两个圆叫做等圆,在同圆活等圆中,能够互相重合的弧叫做等弧。
集合性定义:圆是平面内到定点距离等于定长的点的集合。
其中定点叫做圆.心.,定长叫做圆的半径....,圆心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆..。
对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)。
※2. 点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则①点在圆上 <===> d=r;②点在圆内 <===> d<r;③点在圆外 <===> d>r.其中点在圆上的数量特征是重点,它可用来证明若干个点共圆,方法就是证明这几个点与一个定点、的距离相等。
二.圆的对称性:三※1. 与圆相关的概念:①弦和直径:弦:连接圆上任意两点的线段叫做弦.。
直径:经过圆心的弦叫做直径..。
②弧、半圆、优弧、劣弧:弧:圆上任意两点间的部分叫做圆弧..,简称弧.,用符号“⌒”表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。
半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..。
优弧:大于半圆的弧叫做优弧..。
劣弧:小于半圆的弧叫做劣弧..。
(为了区别优弧和劣弧,优弧用三个字母表示。
)③弓形:弦及所对的弧组成的图形叫做弓形..。
④同心圆:圆心相同,半径不等的两个圆叫做同心圆...。
⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧..。