加热炉温度串级控制系统说明书
锅炉温度串级控制系统的设计说明书
1 前言 (1)2 控制系统的总体方案 (2)2.1 概述 (2)2.2 控制方式的确定 (2)2.3检测元件和执行机构的选择 (3)2.4微型计算机的选择 (4)2.5输入输出通道及外围设备的选择 (6)2.6系统的原理框图 (6)3 控制算法的选择和参数计算 (8)3.1 控制算法的选择 (8)3.2 参数的计算 (8)4系统硬件设计 (16)4.1概述 (16)4.2 系统的硬件设计 (16)4.3系统电气原理图 (33)4.4 元器件明细表 (34)5 软件程序的编制 (35)5.1概述 (35)5.2程序流程图 (35)5.3 地址分配 (40)5.4程序设计 (40)6 控制系统的调试与实验 (42)6.1单元电路调试 (42)6.2 程序调试 (42)6.3 系统调试 (43)6.4 系统实验和结果分析 (43)7 设计总结 (44)7.1 系统具备的主要功能 (44)7.2 系统的测量精度 (44)7.3 存在的问题及改进措施 (44)参考文献 (46)致谢 (47)1 前言随着我国国民经济的快速发展,锅炉的使用范围越来越广泛。
而锅炉温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常必要的。
而锅炉系统是一个具有时变和时滞的比较复杂的系统,因此,对锅炉温度进行控制是工业过程控制中一个重要而且困难的问题。
由于串级控制具有有效改善过程的动态特性、提高工作频率、减小等效过程时间常数和加快响应速度等特点,所以在克服被控系统的时滞方面能够取得较好的效果[1]。
由于PLC具有高可靠性、易于实现等优点,在工业控制领域中得到了广泛的应用。
进入21世纪以来,PLC已经由原来的逻辑控制器发展成具有较强的数据处理能力、通讯能力的标准工控设备,用其进行各种算法的实现是工控领域的发展趋势。
本设计以锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛内水温为副被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度串级控制系统;采用PID 算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自动控制[2]。
实验四 串级控制系统
实验四 加热炉温度串级控制系统(实验地点:程控实验室,崇实楼407)一、实验目的1、熟悉串级控制系统的结构与特点。
2、掌握串级控制系统临界比例度参数整定方法。
3、研究一次、二次阶跃扰动对系统被控量的影响。
二、实验设备1、MATLAB 软件,2、PC 机 三、实验原理工业加热炉温度串级控制系统如图4-1所示,以加热炉出口温度为主控参数,以炉膛温度为副参数构成串级控制系统。
图4-1 加热炉温度串级控制系统工艺流程图图4-1中,主、副对象,即加热炉出口温度和炉膛温度特性传递函数分别为主对象:;)130)(130()(18001++=-s s e s G s 副对象:21802)1)(110()(++=-s s e s G s主控制器的传递函数为PI 或PID ,副控制器的传递函数为P 。
对PI 控制器有 221111)(),/(,111)(c c I c I I c I c c K s G T K K s K K s T K s G ==+=⎪⎪⎭⎫ ⎝⎛+=采用串级控制设计主、副PID 控制器参数,并给出整定后系统的阶跃响应曲线和阶跃扰动响应曲线,说明不同控制方案控制效果的区别。
四、实验过程串级控制系统的设计需要反复调整调节器参数进行实验,利用MATLAB 中的Simulink 进行仿真,可以方便、快捷地确定出调节器的参数。
1.建立加热炉温度串级控制系统的Simulink 模型 (图4-2)在MATLAB 环境中建立Simulink 模型如下:)(01s G 为主被控对象,)(02s G 为副被控对象,Step 为系统的输入,c 为系统的输出,q1为一次阶跃扰动,q2为二次阶跃扰动,可以用示波器观察输出波形。
PID1为主控制器,双击PID 控制器可设置参数:(PID 模块在MATLAB/Simulink Library Browser/Simulink Extras ),Step 为阶跃信号,参数起始时间应设置为0。
加热炉出口温度与燃料油压力串级控制系统
项目三 串级控制系统
串级控制系统
内容提要
本项目讲述以提高系统控制质量为目的的串 级控制系统。主要介绍了串级控制系统的组成原 理与结构,系统特点,应用范围、串级控制方案 的设计原则,最后介绍了串级控制系统的投运步 骤和参数整定方法。
项目三 串级控制系统
在简单反馈回路中增加了计算环节、控制环 节或其他环节的控制系统统称为复杂控制系统。 复杂控制系统的种类较多,按其所满足的控制要 求可分为两大类:
从上述分析中可以看出,在串级控制系统中,由于引入了一 个副回路,因而能及早克服从副回路进入的二次扰动对主变量的 影响,又能保证主变量在其他扰动(一次扰动)作用下能及时加 以控制,因此能大大提高系统的控制质量,以满足生产的要求。
项目三 串级控制系统
3.2 串级控制系统的特点
从总体来看,串级控制系统仍然是一个定值控制系统。 但是和简单控制系统相比,串级控制系统在结构上增加了一 个与之相连的副回路,因此具有很多特点,如下所述。
图3.3 加热炉温度串级控制系统方框图
项目三 串级控制系统
3.1.2 串级控制系统的结构
1.方框图 串级控制系统是一种常用的复杂控制系统,它是根据系统
结构命名的。串级控制系统由两个控制器串联连接组成,其中一 个控制器的输出作为另一个控制器的设定值。 如图3.4所示,为串级控制系统的通用原理方框图。由该图 可以看出,串级控制系统在结构上具有以下特征: (1)将原被控对象分解为两个串联的被控对象; (2)中间变量为副被控变量,称为副控制系统; (3)以原对象的输出信号为主被控变量,构成一个主控制系 统,称为主控制系统、主回路或主环; (4)主控制系统中控制器的输出信号作为副控制系统控制器 的设定值; (5)主回路是定值控制系统,副回路是随动控制系统。
加热炉前馈--串级控制系统资料
1.1 概述在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的。
例如在砂浆工艺中,使浆液的温度保持恒定值,对保持浆液粘度和浓度不变,进行均匀上浆是十分重要的,这就需要对加热介质的温度进行连续的测量和控制;另外,由于砂浆机中蒸气压力和卷绕速度的变化使烘干温度变化很大,因此,测量和控制烘筒的温度非常重要。
加热炉是炼油、化工生产中的重要装置之一,它的任务是把原料油加热到一定温度,以保证下道工序的顺利进行。
在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。
为此,可靠的温度的监控在工业中是十分必要的。
加热炉是钢铁企业热轧生产过程的关键设备之一,其性能直接影响到加热炉的能耗和最终钢材产品质量钢坯成材率、轧机设备寿命以及整个主轧线的有效作业率.加热炉控制系统对加热炉的控制系统来讲占有很重要的地位,它对于坯料加热温度的均匀,温度控制的准确,合理进行燃烧,节约燃料,减少有害气体对环境的污染都有重要意义单回路控制系统解决了大量的定值控制问题。
随着现代工业生产规模越来越大,复杂程度越来越高,产品质量要求也越来越高,简单控制系统已经不能满足这些要求。
前馈—串级控制系统是工业生产中很常见的一种系统,它将前馈控制和反馈控制结合起来,组成前馈—反馈复合控制系统。
这样既发挥了前馈控制即使克服主要干扰被控参数影响的优点,又保持了反馈控制能抑制各种干扰的优势,同时也降低了对前馈控制器的要求,便于工程上的实现。
172.1方案选定2.1.1 简单控制系统加热炉是炼油、化工生产中的重要装置之一,它的任务是把原料油加热到一定温度,以保证下道工序的顺利进行。
因此,常选原料油出口温度()11θ为被控参数、燃料流量为控制变量,构成如图2.1所示的温度控制系统。
影响原料油出口温度()11θ的干扰有原料油流量1()f t 、原料油入口温度2()f t 、燃料压力3()f t 、燃料压力4()f t 等。
管式加热炉温度温度串级控制系统的设计说明
管式加热炉温度温度串级控制系统的设计说明一、引言二、系统结构温度串级控制系统主要由上位机、温度传感器、控制器、执行机构等组成。
1.上位机:负责启动和监控系统运行,提供温度设定值和参考模型,按照系统控制算法生成控制指令发送给下位控制器。
2.温度传感器:负责实时采集管式加热炉内的温度数据,并将其传输给控制器进行处理。
3.控制器:根据上位机提供的设定值和参考模型,根据传感器采集到的温度数据进行处理,生成控制指令并发送给执行机构。
4.执行机构:根据控制器发送的控制指令,调节管式加热炉内的加热功率或其他参数,以实现温度控制。
三、温度控制策略1.温度设定值的调整:上位机会根据需要设定管式加热炉内的目标温度,并将其发送给控制器。
控制器会根据设定值和参考模型,生成合适的控制指令来调节温度。
2.温度比例控制:控制器会根据当前温度和设定值之间的差异,生成一个控制量来调节加热功率,使加热炉内的温度趋近于设定值。
3.温度积分控制:为了消除静态误差,控制器会根据温度偏差的积分值生成一定的控制量,以提高系统的稳定性。
4.温度微分控制:为了快速响应温度变化,控制器还会根据温度变化的速率生成相应的控制量。
四、系统性能指标1.温度响应时间:系统需要具备较快的响应时间,即加热炉内的温度能够尽快达到设定值。
2.温度稳定度:系统应当保持较好的温度稳定度,即经过一定时间后,温度偏差应尽可能小。
3.抗干扰能力:系统需要具备较好的抗干扰能力,对于外界干扰因素的影响应尽可能小。
五、系统设计优化1.选择合适的温度传感器:合适的温度传感器能够提供准确的温度数据,为控制系统提供可靠的输入信号。
2.高性能控制器的选择:通过选用性能较好的控制器,能够提高控制系统的稳定性和响应速度。
3.优化控制策略:通过合理选择温度比例、积分和微分参数,能够提高控制系统的性能。
4.加入滤波器和抗干扰装置:通过加入合适的滤波器和抗干扰装置,能够降低系统对外界干扰的敏感度,提高系统的抗干扰能力。
课程设计--加热炉温度串级控制系统(设计部分)
加热炉温度串级控制系统设计摘要:生产自动控制过程中 ,随着工艺要求 ,安全、经济生产不断提高的情况下 ,简单、常规的控制已不能适应现代化生产。
传统的单回路控制系统很难使系统完全抗干扰。
串级控制系统具备较好的抗干扰能力、快速性、适应性和控制质量,因此在复杂的过程控制工业中得到了广泛的应用.对串级控制系统的特点和主副回路设计进行了详述,设计了加热炉串级控制系统,并将基于MATLAB的增量式PID算法应用在控制系统中.结合基于计算机控制的PID参数整定方法实现串级控制,控制结果表明系统具有优良的控制精度和稳定性.关键词:串级控制干扰主回路副回路Abstract:Automatic control of production process, with the technical requirements, security, economic production rising cases, simple, conventional control can not meet the modern production. The traditional single-loop control system is difficult to make the system completely anti-interference. Cascade control system with good anti-jamming capability, rapidity, flexibility and quality control, and therefore a complex process control industry has been widely used. Cascade co ntrol system of the characteristics and the main and sub-loop design was elaborate, designed cascade control system, furnace, and MATLA B-based incremental PID algorithm is applied in the control system. Combination of computer-based control method to achieve PID parameter tuning cascade control, control results show that the system has excellent control accuracy and stabilityKeywords:Cascade control, interference, the main circuit, the Deputy loop目录1.前言 (2)2、整体方案设计 (3)2.1方案比较 (3)2.2方案论证 (5)2.3方案选择 (5)3、串级控制系统的特点 (6)4. 温度控制系统的分析与设计 (7)4.1控制对象的特性 (7)4.2主回路的设计 (8)4.3副回路的选择 (8)4.4主、副调节器规律的选择 (8)4.5主、副调节器正反作用方式的确定 (8)5、控制器参数的工程整定 (10)6 、MATLAB系统仿真 (10)6.1系统仿真图 (11)6.2副回路的整定 (12)6.3主回路的整定 (14)7.设计总结 (16)【参考文献】 (16)1.前言加热炉是炼油、化工生产中的重要装置之一。
加热炉出口温度与炉膛温度串级控制系统设计培训资料
加热炉出口温度与炉膛温度串级控制系统设计第一章系统分析与控制方案的确立1.系统分析图1.1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。
加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。
在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。
被加热物料图1.1加热炉出口温度系统由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。
2.串级控制系统的设计加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。
在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。
由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,以加热炉出口温度为主变量,选择滞后较小的炉膛温度为副变量,构成炉出口温度与炉膛温度的串级控制系统有效地提高控制质量,以满足工业生产的要求,系统的串级控制结构图如图1.2所示。
图1.2加热炉出口温度串级控制系统结构图串级控制系统的工作过程,就是指在扰动作用下,引起主、副变量偏离设定值,由主、副调节器通过控制作用克服扰动,使系统恢复到新的稳定状态的过渡过程。
由加热炉出口温度串级控制系统结构图可绘制出其结构方框图,如图1.3所示。
图1.3 加热炉出口温度串级控制系统结构方框图(1) 主被控参数的选择主控制器副控制器调节阀炉膛出口温度主检测、变送仪副检测、变送仪表应选择被控过程中能直接反映生产过程中的产品产量和质量,又易于测量的参数。
加热炉串级控制(参数整定)
目录1 前言 (1)2总体方案设计 (2)2.1 方案比较 (2)2.2 方案论证 (4)2.3 任务与设计要求 (5)3串级控制系统的参数整定 (6)3.1 参数整定方法 (6)3.2 参数整定 (6)3.3 两步法的整定步骤 (7)4 MATLAB仿真 (8)4.1 副回路的整定 (8)4.2.2 主回路的整定 (9)4.2.3 整体参数整定 (9)5 结论 (13)6总结与体会 (14)7参考文献 (15)1 前言随着我国国民经济的快速发展,加热炉的使用范围越来越广泛。
而加热炉温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量和产量。
现代加热炉的生产过程可以实现高度的机械化,这就为加热炉的自动化提供了有利条件。
加热炉自动化是提高锅炉安全性和经济性的重要措施。
目前,加热炉的自动化主要包括自动检测、自动调节、程序控制、自动保护和控制计算五个方面。
实现加热炉自动化能够提高加热炉运行的安全性、经济性和劳动生产率,改善劳动条件,减少运行人员。
加热炉是将物料或工件加热的设备。
按热源划分有燃料加热炉、电阻加热炉、感应加热炉、微波加热炉等。
应用遍及石油、化工、冶金、机械、热处理、表面处理、建材、电子、材料、轻工、日化、制药等诸多行业领域。
在生产过程控制中,一些复杂环节,往往需要进行串级控制。
即把两个控制器串联起来,第一个控制器的设定值是控制目标,它的输出传给第二个控制器,作为它的设定值,第二个控制器的输出作为串级控制系统的输出,送到被控系统,作为它的控制“动作”。
控制系统的这种串级形式对于复杂对象的控制往往比单回路控制的效果更好。
串级控制对克服被控系统的时滞之所以能收到好的效果,是因为当用两个控制器进行串级控制时,每个控制器克服时滞的负担相对减小,这就使得整个控制系统克服时滞的能力得到加强。
2总体方案设计2.1 方案比较开环控制是指控制装置与被控对象之间只有按顺序工作,没有反向联系的控制过程,按这种方式组成的系统称为开环控制系统,其特点是系统的输出量不会对系统的控制作用发生影响,没有自动修正或补偿的能力。
加热炉出口温度与炉膛温度串级控制系统设计
加热炉出口温度与炉膛温度串级控制系统设计一、引言加热炉是一种常用于工业生产中的设备,其作用是通过燃烧燃料加热空气或其他介质,使其达到所需温度。
加热炉的出口温度和炉膛温度是评估加热炉性能的关键指标。
为了提高加热炉的控制精度和稳定性,需要设计出一个合理的加热炉出口温度与炉膛温度串级控制系统。
二、串级控制系统的基本原理串级控制系统是一种将两个或以上的控制回路串接在一起,将一个控制器的输出作为另一个控制器的输入,通过不同层次的控制,实现对被控对象的精确控制。
在加热炉出口温度与炉膛温度串级控制系统中,可以将炉膛温度作为外环控制,将加热炉出口温度作为内环控制。
三、串级控制系统的设计步骤1.确定控制目标:在此串级控制系统中,控制目标是将加热炉出口温度控制在一定范围内,并同时保持炉膛温度稳定。
2.确定输入变量和输出变量:输入变量为控制器输出信号,输出变量为加热炉出口温度。
3.系统的数学模型:确定加热炉出口温度与炉膛温度之间的动态关系,建立数学模型。
可以采用传统的PID控制器或者现代控制理论中的模型预测控制等方法。
4.设计外环控制器:外环控制器根据炉膛温度的反馈信号调整燃料供给,以控制炉膛温度的稳定性。
5.设计内环控制器:内环控制器根据外环控制器的输出信号和加热炉出口温度的反馈信号调整燃料供给,以控制加热炉出口温度。
6.仿真与优化:使用仿真软件对设计的串级控制系统进行仿真,观察系统的响应特性,并根据实际需求进行调整和优化。
7.实际系统应用:将优化后的串级控制系统应用到实际加热炉中,并进行调试和验证。
四、串级控制系统的优势1.提高控制精度:串级控制系统将控制精度分为两个层次进行控制,可以快速响应外环控制器的调整,从而提高系统的控制精度。
2.提高稳定性:串级控制系统通过多层次的控制,减少了外界扰动对系统稳定性的影响。
3.提高动态响应速度:串级控制系统可以根据内环的控制效果对外环的控制进行调整,从而实现更快的动态响应。
加热炉出口温度与炉膛温度串级控制系统设计
第一章系统分析与控制方案的确立1.系统分析图1.1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。
加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。
在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。
被加热物料图1.1加热炉出口温度系统由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。
2.串级控制系统的设计加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。
在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。
由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,以加热炉出口温度为主变量,选择滞后较小的炉膛温度为副变量,构成炉出口温度与炉膛温度的串级控制系统有效地提高控制质量,以满足工业生产的要求,系统的串级控制结构图如图1.2所示。
图1.2加热炉出口温度串级控制系统结构图串级控制系统的工作过程,就是指在扰动作用下,引起主、副变量偏离设定值,由主、副调节器通过控制作用克服扰动,使系统恢复到新的稳定状态的过渡过程。
由加热炉出口温度串级控制系统结构图可绘制出其结构方框图,如图1.3所示。
(1) 主被控参数的选择应选择被控过程中能直接反映生产过程中的产品产量和质量,又易于测量的参数。
在加热炉出口温度与炉膛温度的串级控制系统中加热炉出口温度为系统的主被控参数,因为加热炉出口温度是整个控制作用的关键,要求出口物料温度维持在某给定值上下。
加热炉温度串级控制系统说明书
设计说明书1加热炉的简介1.1加热炉的基本构成与组成加热炉是一种直接受热加热设备主要用于加热气体或液体,所用燃料通常有燃料油和燃料气。
加热炉的传热方式以辐射传热为主。
加热炉一般由辐射室、余热回收系统、对流室、燃烧器和通风系统等五部分组成。
(1)辐射室:通过火焰或高温烟气进行辐射传热的部分。
这部分直接受火焰冲刷,温度很高(600-1600℃),是热交换的主要场所(约占热负荷的70-80%)。
(2)余热回收系统:用以回收加热炉的排烟余热。
有空气预热方式和废热锅炉方式两种方法。
(3)对流室:靠辐射室出来的烟气进行以对流传热为主的换热部分。
(4)燃烧器:是使燃料雾化并混合空气,使之燃烧的产热设备,燃烧器可分为燃料油燃烧器,燃料气燃烧器和油一气联合燃烧器。
(5)通风系统:将燃烧用空气引入燃烧器,并将烟气引出炉子,可分为自然通风方式和强制通风方式。
其结构通常包括:钢结构、炉管、炉墙(内衬)、燃烧器、孔类配件等。
1.2加热炉温度控制系统工作原理加热炉温度控制系统原理图控制原理图如上所示,加热炉的主要任务是把物料加热到一定温度,以保证下一道工序的顺利进行。
燃料油经过蒸汽雾化后在炉膛中燃烧,物料流过炉膛四周的排管中,就被加热到出口温度。
在燃料油管道上装设一个调节阀,物用它来控制燃油量以达到所需出口温度T1的目的。
1.3加热炉出口温度控制系统设计目的及意义加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于加热炉具有强耦合、大滞后等特性,控制起来非常复杂。
同时,近年来能源的节约、回收和合理利用日益受到关注。
加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。
因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。
另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。
1.4加热炉温度控系统工艺流程及控制要求加热炉的主要任务是把原制油或重油加热到一定温度,以保证下一道工序(分馏或裂解)的顺利进行。
加热炉串级控制系统课程设计
串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。
前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。
整个系统包括两个控制回路,主回路和副回路。
副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。
一次扰动:作用在主被控过程上的,而不包括在副回路范围内的扰动。
二次扰动:作用在副被控过程上的,即包括在副回路范围内的扰动。
关键词:串级控制主调节器 PID控制反馈1 串级控制系统的优点及如何设计 (1)1.1 串级控制系统原理图、结构框图 (1)1.2 串级控制系统的工作过程 (2)2 管式加热炉的设计 (3)2.1 系统设计与对比 (3)2.1.1 两种单回路控制系统 (3)2.1.2 串级控制管式加热炉整体设计 (4)2.1.3 管式加热炉出口温度串级控制系统的方框图 (5)2.2 副回路的设计与副参数的选择 (5)2.3 主、副调节器调节规律的选择 (5)2.4 主、副调节器正反作用方式选择 (6)2.4主、副调节器选用 (6)2.5 主、副电路检测变送器的确定 (7)2.5.1 温度检测元件 (7)2.5.2 温度变送器 (8)2.6 调节阀的确定 (9)3 系统参数整定 (9)4 串级控制系统的控制效果 (10)4.1 迅速克服进入副回路的二次干扰 (10)4.2 提高了系统的工作频率 (11)4.3 对负荷剧烈变化的适应能力 (12)小结与体会 (13)参考文献 (14)管式加热炉温度串级控制系统设计1 串级控制系统的优点及如何设计1.1 串级控制系统原理图、结构框图图1-1系统原理图串级控制系统与简单控制系统的主要区别是,串级控制系统在结构上增加了一个测量变速器和一个调节器,形成了两个闭合回路,其中一个称为副回路,一个称为主回路。
加热炉温度串级控制系统设计
加热炉温度串级控制系统设计引言:加热炉是工业生产中常用的设备之一,用于加热物体到目标温度。
为了确保加热炉的温度能够稳定地达到所需温度并且尽量减小温度误差,本文将就一种串级控制系统的设计进行阐述。
串式控制系统使用了两组控制器,一个主控制器 (Master Controller) 和一个从控制器 (Slave Controller),通过对系统的不同层次进行控制,实现了温度的快速、准确地调节。
本文将针对主控制器和从控制器的设计进行详细说明。
一、主控制器设计:主控制器的作用是通过对从控制器的输出进行调节,以实现加热炉温度的稳定。
主控制器采用PID控制算法,其中P代表比例控制,I代表积分控制,D代表微分控制。
PID控制算法充分考虑了温度调节系统的动态和静态特性,并能够在不同的工作条件下自动调整参数,以保证系统的稳定性和快速响应。
在主控制器设计中,首先需要确定温度传感器的位置,将温度传感器安装在加热炉的合适位置,以获取准确的温度信息。
接下来,需要对主控制器的参数进行设置。
主控制器的参数设置对系统的稳定性和响应时间有着重要影响。
在设置主控制器的参数时,可以采用经验法或者试探法。
经验法是根据历史数据和经验对主控制器参数进行初始化,然后通过不断实际运行和调节参数,直到系统达到理想状态。
试探法则是在实际运行过程中,逐步调节参数,观察系统响应并作出相应调整。
两种方法都可以达到主控制器参数的最优化,但试探法的调试过程可能会相对较长。
二、从控制器设计:从控制器的作用是根据主控制器的输出对加热炉的加热功率进行调节。
从控制器也采用PID控制算法来实现。
从控制器的设计需要考虑如下因素:1.从控制器对主控制器的输出进行调节,以实现稳定的加热功率控制。
根据实际需要和经验,设置从控制器的参数,使得从控制器能够快速、准确地响应主控制器的输出。
2. 考虑到加热炉的动态特性,可以利用先进的控制算法,如模型预测控制 (Model Predictive Control)等,将从控制器的参数调整为非线性和时变的。
串级控制系统
系统工作频率提高分析
GC1(s)
GC2(s) GV (s) Gm1 (s)
Y2 (s) Y1(s)
G0 2 (s)
G01(s)
由上图求出闭环系统的 特征方程: 1 GC1(s)GC2 (s)Gm1(s)GV (s)G02(s)G01(s) 0
串级控制系统工作频率
假设G01(s)
K01 T01s
T02s
K02
1 K02KC2Km2KV K02 ,
1
T02
s T02s 1
1 K02KC2Km2KV
K 02
K 02 1 KC 2 KV T02 KC 2 KV K 02 K m2
可见:K02 K02 ,T02 T02
随着K
(1)被加热物料的流量和初温f 1(t); (2)燃料热值的变化、压力波动、 流量的变化f 2(t);
(3)烟窗挡板位置的改变、抽力的 变化f 3(t).
方案1的分析
系统的框图如下:
r(t)
f2 (t) f3(t) f1(t) y(t)
调节器 调节阀 炉膛 管壁 物料
测量变送器
方案1的分析
• 所有的扰动都包含在环内 ,理论上都 可以由温度控制器予以克服;
1
,
GC1
(s)
KC1
GV (s) KV ,Gm1(s) Km1,则
T01T02s2 (T01 T02)s 1 KC1KC2 Km1KV K02K01 0
串级控制系统工作频率
与二阶标准形式对比, 得:
2 0
T01 T02 T01T02
系统工作频率 与自然频率 0的关系为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计说明书1加热炉的简介1.1加热炉的基本构成与组成加热炉是一种直接受热加热设备主要用于加热气体或液体,所用燃料通常有燃料油和燃料气。
加热炉的传热方式以辐射传热为主。
加热炉一般由辐射室、余热回收系统、对流室、燃烧器和通风系统等五部分组成。
(1)辐射室:通过火焰或高温烟气进行辐射传热的部分。
这部分直接受火焰冲刷,温度很高(600-1600℃),是热交换的主要场所(约占热负荷的70-80%)。
(2)余热回收系统:用以回收加热炉的排烟余热。
有空气预热方式和废热锅炉方式两种方法。
(3)对流室:靠辐射室出来的烟气进行以对流传热为主的换热部分。
(4)燃烧器:是使燃料雾化并混合空气,使之燃烧的产热设备,燃烧器可分为燃料油燃烧器,燃料气燃烧器和油一气联合燃烧器。
(5)通风系统:将燃烧用空气引入燃烧器,并将烟气引出炉子,可分为自然通风方式和强制通风方式。
其结构通常包括:钢结构、炉管、炉墙(内衬)、燃烧器、孔类配件等。
1.2加热炉温度控制系统工作原理加热炉温度控制系统原理图控制原理图如上所示,加热炉的主要任务是把物料加热到一定温度,以保证下一道工序的顺利进行。
燃料油经过蒸汽雾化后在炉膛中燃烧,物料流过炉膛四周的排管中,就被加热到出口温度。
在燃料油管道上装设一个调节阀,物用它来控制燃油量以达到所需出口温度T1的目的。
1.3加热炉出口温度控制系统设计目的及意义加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于加热炉具有强耦合、大滞后等特性,控制起来非常复杂。
同时,近年来能源的节约、回收和合理利用日益受到关注。
加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。
因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。
另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。
1.4加热炉温度控系统工艺流程及控制要求加热炉的主要任务是把原制油或重油加热到一定温度,以保证下一道工序(分馏或裂解)的顺利进行。
加热炉的工艺流程图如图2.1所示。
燃料油经过蒸汽雾化后在炉膛中燃烧,被加热油料流过炉膛四周的排管中,就被加热到出口温度θ1。
在燃料油管道上装设一个调节阀,用它来控制燃油量以达到调节温度θ1的目的。
图2.1 加热炉工艺流程图引起温度θ1改变的扰动因素很多,主要有:(1)燃料油方面(它的组分和调节阀前的油压)的扰动D2;(2)喷油用的过热蒸汽压力波动D4;(3)被加热油料方面(它的流量和入口温度)的扰动D1;(4)配风、炉膛漏风和大气温度方面的扰动D3;其中燃料油压力和过热蒸汽压力都可以用专门的调节器保持其稳定,以便把扰动因素减小到最低限度。
从调节阀动作到温度θ1改变,这中间需要相继通过炉膛、管壁和被加热油料所代表的热容积,因而反应很缓慢。
工艺上对出口温度θ1要求不高,一般希望波动范围不超过±1~2%。
2加热炉出口温度影响因素的扰动分析由于从燃料油调节阀开始作用到出口温度T1的改变,整个控制通道的容量滞后大,时间常数大,这就会导致控制系统的控制作用不及时,反应迟钝、最大偏差大、过渡时间长、抗干扰能力差,控制精度降低。
除D1外,D2、D3的变化进入系统的位置,都是首先影响炉膛温度T2,而后经过加热管管壁的影响被加热油料的温度T1。
而炉膛的惯性小,而炉膛的惯性小,其温度变化很快就可以反映出来,则控制通道的容量滞后大大减小,对干扰D2、D3能够及时克服,减小它们对出口温度的影响。
所以单独用单回路的出口温度或炉膛温度控制系统各有优缺点,为了同时发挥它们的优点,考虑选用出口温度—炉膛温度的串级控制系统。
3控制系统设计1 方案选择在串级控制系统中,由于引进了副回路,不仅能迅速克服作用于副回路内的干扰,也能加速克服主回路的干扰。
副回路具有先调、初调、快调的特点;主回路具有后调、细调、慢调的特点,对副回路没有完全克服干扰的影响能彻底加以消除。
由于主副回路相互配合,使控制质量显著提高。
与单回路控制系统相比,串级控制系统多用了一个测量变送器与一个控制器(调节器),增加的投资并不多(对计算机控制系统来说,仅增加了一个测量变送器),但控制效果却有显著的提高。
其原因是在串级控制系统中增加了一个包含二次扰动的副回路,使系统①改善了被控过程的动态特性,提高了系统的工作频率;②对二次扰动有很强的克服能力;③提高了对一次扰动的克服能力和对回路参数变化的自适应能力。
综上所述,本设计选择串级控制系统。
2控制系统的设计串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。
中间被控变量:炉膛温度;操纵变量:燃料流量。
炉膛温度变化时,TC可以及时动作,克服干扰。
1主回路设计加热炉温度串级控制系统是以原料油出口温度为主要被控参数的控制系统。
其他被控参数有炉膛温度,膛壁温度,燃料流量,原料油流量。
温度调节器对被控参数θ1精确控制与温度调节器对来自燃料干扰的及时控制相结合,先根据炉膛温度θ2的变化,改变燃料量,快速消除来自燃料的干扰、对炉膛温度的影响;然后再根据原料油出口温度θ1与设定值的偏差,改变炉膛温度调节器的设定值,进一步调节燃料量,使原料油出口温度恒定,达到温度控制的目的。
2 副回路选择副回路的选择也就是确定副回路的被控参数。
燃料由于其成分和流量变化,对控制过程产生极大干扰。
所以,我们选择炉膛温度为串级控制系统的辅助被控参数。
串级系统中,通过调整副参数炉膛温度θ2能够有效地影响主参数原料油出口温度θ1,提高了主参数的控制效果。
加热炉温度禅机控制系统框图和控制工艺流程图如下加热炉温度串级控制系统框图图3.3加热炉温度串级控制系统3 主、副调节器规律选择在串级控制系统中,主、副调节器所起的作用不同。
主调节器起定值控制作用,副调节器起随动控制作用,这是选择调节器规律的基本出发点。
在加热炉温度串级控制系统中,我们选择原料油出口温度为主要被控参数,原料油温度影响产品生产质量,工艺要求严格,又因为加热炉串级控制系统有较大容量滞后,所以,选择PID调节作为住调节器的调节规律。
控制副参数是为了保证和提高主参数的控制质量,对副参数的要求一般不严格,可以在一定范围内变化,允许有残差,所以我们的负调节器调节规律选择P控制。
4 主、副调节器正反作用方式确定由生产工艺安全考虑,燃料调节阀应选气开方式,这样保证系统出现故障时调节阀处于全关状态,防止燃料进入加热炉,确保设备安全,调节阀的Kv﹥0。
主调节器作用方式确定:炉膛温度升高,物料出口温度也升高,主被控过程Ko1﹥0。
为保证主回路为负反馈,各环节放大系数成绩必须为正,所以负调节器的放大系数K1﹥0,主调节器作用方式为反作用。
又为保证副回路是负反馈,各环节放大系数乘积必须为正,所以负调节器大于0,负调节器作用方式为反作用方式。
5 控制器参数工程整定串级控制系统主、副控制器的参数整定方法主要有三种:两步整定法、一步整定法和逐步逼近法。
1、按照串级控制系统主、副回路的情况,先整定副控制器,后整定主控制器的方法叫做两步整定法。
2、一步整定法,就是根据经验先将副控制器一次放好,不再变动,然后按照一般单回路孔控制系统的整定方法直接整定主控制器参数。
3、逐步逼近法是一种依次整定主回路、副回路,然后循环进行,逐步接近主、副回路最佳整定的一种方法。
我们选择两步整定法来整定串级控制系统的参数。
4各仪表的选取及元器件清单1 控制系统中温度检测元件的选型由于加热炉炉膛温度不能太高,炉膛温度一般控制在850℃以下,温度高有利于辐射传热,但太高会导致炉管结焦和烧坏,所以设此控制系统中的炉膛温度要求为700℃左右,而管式加热炉出口温度假设为石油分馏的温度300℃。
由产品执行标准IEC584、GB/T16839-1997、JB/T5518-1991、GB3836热电偶标准,在1000℃以下一般用K型热电偶和N型热电偶,热电偶是工业上最常用的温度检测元件之一。
其优点是:(1)量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
(2)测量范围广。
常用的热电偶从-50~+1600℃均可边续测量。
(3)构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便如下表所示:所以物料出口处选择WRN型分度号K,允差等级为Ⅰ的热电偶。
表1如下表所示:炉膛温度的检测热电偶选择WRK型分度号E,惰性级别为Ⅰ的热电偶。
表2使用热电偶时,由于冷端暴露在空气中,受周围环境温度波动的影响,且距热源较近,其温度波动也较大,给测量带来误差,为了降低这一影响,通常用补偿导线作为热电偶的连接导线。
补偿导线的作用就是将热电偶的冷端延长到距离热源较远、温度较稳定的地方。
2 控制系统中变送器的选型SBWR、SBWZ系列热电偶、热电阻温度变送器是DDZ系列仪表中的现场安装式温度变送器单元,与工业热电偶、热电阻配套使用,它采用二线制传输方式(两根导线作为电源输入和信号输出的公用传输线)。
按国家防爆规程进行设计的,而且增加了安全栅,实现了控制室与危险场所之间的能量限制于隔离,使仪表能在危险的场所中使用。
将工业热电偶、热电阻信号转换成与输入信号或与温度信号成线性的4-20mA、0-10mA的输出信号。
技术指标为:1、输入信号:K型热电偶、E型热电偶、S型热电偶、B型等热电偶信号输入2、供电电压:10-30VDC、负载电阻:0-500Ω3、输出信号:二线制4-20mA,最大30mA4、热电偶温度变送器精度:0.5%FS5、回路保护:带反向连接保护(防止电源正负极)表3由表3知物料出口温度处选择SBW-R-70型变送器,炉膛温度选择SBW-R-10型变送器。
3 控制系统中执行器(调节阀)的选型由于调节阀用于燃料油量调节选择气动调节阀,燃料油粘度比较大,为了减弱腐蚀防止堵塞,由于角形阀的阀体受流体的冲击小,体内不易结污,对粘度高的流体尤为适用,并且调节稳定性较好。
所以选用角形阀。
从安全角度出发,一旦调节阀损坏,保证控制阀处于全关状态,切断燃料进入加热炉,确保设备安全,所以要选择气开调节阀。
综上选择ZMAS型气动薄膜角形单座调节阀,阀体为直角形,阀芯不单导向结构,阀的流路简单,便于自净和清洗。
阻力小,适用于高粘度,含有悬浮物和颗粒状物质的流体的调节,可避免结焦、粘结、堵塞。
由ZMAS型气动薄膜角型调节阀型号编制说明知,选择ZMAS-320K型的调节阀。
含义为,ZMA:气动薄膜正作用式,K:气开式;320:PN320MPa。
EPC1000系列电气转换器是在引进国外先进技术的基础上开发的新一代电气转换器产品,它可将不同输入电流信号转换成相对应输出的气动信号。