海信液晶电视机5104电源板电路原理图_D

合集下载

液晶电视电源板组成原理及检修方法

液晶电视电源板组成原理及检修方法

液晶电视电源板组成原理及检修方法液晶电视的电源板在整机上故障率是相当高的,也是我们修理液晶电视的重点和难点之一,容易给人以迷惑。

他的相当一部分能量供给灯板驱动电路(根据发光源不同分为高压板和LED灯板两类)和主板上,一旦电视出现不开机、黑屏、纹波干扰、不定时关机等现象时,我们往往搞不清楚故障是出在电源板、主板、灯管(条)还是灯驱动板上,给维修造成很多弯路。

下面以TCL-PWL37C电源电路图纸为例,简单介绍一下液晶电视电源的工作原理(修过CRT彩电电源的师傅应该都知道,液晶电视的电源跟CRT大部分地方都是差不多的,仅仅多了个PFC电路而已)。

1:待机电路。

接通电源后,电源输出插座P3的③、④脚就应有+5V电压输出,给主板CPU电路供电。

另外,在热地一侧,副开关电源变压器T2的④-⑤绕组还会输出一组电压,整流滤波后输出+20V,供给主电源的PFC振荡电路和PWM振荡电路。

(见图2)如果输出电压不稳定,则检查以IC9(TL431)为中心组成的稳压控制电路。

正常工作时,TL431的①脚电压为2.5V,如果该脚电压异常,则说明 TL431损坏或其外围元件有问题。

故障现象1:无+5V电压输出。

分析检修:检查待机电源电路,发现IC1的⑤-⑧脚电压为0V,经查限流电阻RB 13端头焊接部分已脱焊。

建议将RB1、RB2、RB13这3只限流电阻换成功率为1W或2W的同阻值电阻,以免再次损坏。

故障现象2:+5V电压在3V左右波动。

分析检修:空载试机,+5V电压仍较低,这说明故障在待机电源部分。

检测输出电压电路中的稳压二极管DB4(6.8V)和DB5 (20V ),发现DB5击穿,换新后故障排除。

另外,该电路中稳压二极管DB5(20V)、DB10(33V)、DB8(10V )易损坏,其故障现象多表现为+5V电压在+4V左右波动。

故障现象3: +5V输出电压只有+4V。

分析检修:空载试机,+5V电压仍较低,这说明故障在待机电源部分。

液晶电视主板电路原理图

液晶电视主板电路原理图

AVDD_AU
Pin64,Pin69
30mA
C452 0.1uF
+3.3VSB
Pin96, Pin166, Pin186, C429 Pin195, Pin202, Pin222, 0.1uF
Pin236,
+3.3AVDD
VDDP
C434 C435 C439 C440 C443
料C428 10uF
0.1uF 0.1uF 0.1uF 0.1uF 0.1uF
XS5 1
HOLL
CON14
+12V
L6 NC/3216
TO Inverter Board
XP14
1 2 3 4 5 6 7 8 9 10 11 12 13
CON13
L5 FB/3216 +12V
VCC-A
+5V
+12V
CA18 100uF/25V
+5V
5VS
CA22 100uF/16V
CA19 100uF/16V
1
150 R297
2
Z3 3.9V/NC
2
3
Power for Panel
+12V +5V
L71 FB/3216 L73 NC/3216
R411 10K
C415 0.1uF
10K R409
C414 1uF/16V/0603
N59
1 2 3 4
S1 S2 S3 G2
VCC-Panel
AO4459
D1 D2 D3 D4
VDDP VDDP VDDP VDDP VDDP VDDP
VDDC VDDC VDDC VDDC VDDC

LED显示屏5V40A200W专用开关电源设计

LED显示屏5V40A200W专用开关电源设计

LED显示屏5V 40A专用开关电源设计1 参数:输入电源:220V输出电源:5V 40A2开关电源的组成开关电源大致由输入电路、变换器、控制电路、输出电路四个主体组成。

如果细致划分,它包括:输入滤波、输入整流、开关电路、采样、基准电源、比较放大、震荡器、V/F 转换、基极驱动、输出整流、输出滤波电路等。

实际的开关电源还要有保护电路、功率因数校正电路、同步整流驱动电路及其它一些辅助电路等。

图1是开关电源原理框图:图1 开关电源原理框图2.1 输入电路包括线性滤波电路、浪涌电流抑制电路、整流电路三部分。

作用:把输入电网交流电源转化为符合要求的开关电源直流输入电源。

典型电路如图2所示:图2 输入电路该电路包含滤波电路、浪涌电流抑制电路及全波整流电路。

输入电路各电容C11、C12、C13 用于滤波,滤除高频噪声;电抗器L11 用于浪涌抑制;电容C14、C15、C18 用于去耦。

输入220VAC 电压经过全波整流,产生变换器所需要的直流电压,及提供控制电路必须的工作电源。

J21 为短路线,TH 为过流电阻,当发生过流时,器件熔断。

2.2 功率电路基本原理市电220V的交流电经输入电路整流滤波后,已变为直流电(带脉动),从该直流电到输出之间的电路可简单等效为一个单管隔离降压变换器。

如图3所示:图3 功率电路基本原理为防止变压器T磁饱及快速恢复,原边使用了简单的R1C1释放电路。

副边VD1 整流,VD2 续流,C2去耦,L、C4滤波,R3C3、R4为辅助泄放通路。

当然实际电路比这个要复杂的多,复杂的原因主要是因为加入了保护电路、反馈电路、控制电路等。

下面具体讲述实际应用的电路。

2.3 变压器及控制部分供电电路变压器周边电路以及给控制电路供电的电路如图4所示:图4 变压器及控制部分供电电路本电路中的变压器T11就是图3中的变压器T,其中1-3绕组为原边主绕组(即图3中的N1绕组),6-7绕组为副边输出绕组(即图3中的N2绕组),4-5绕组为原边辅助绕组,主要给控制电路提供电源。

海信电视电路图(海信LED液晶电视电源电路分析与维修)

海信电视电路图(海信LED液晶电视电源电路分析与维修)

海信电视电路图(海信LED液晶电视电源电路分析与维修)RSAG7.820.2264板正面图RSAG7.820.2264板背面图图1、电源整体方框图示一、电源输入、滤波、整流部分电路:220V电压经过保险管F802,压敏电阻RV801过压保护,进入由L807、C802、C803、C804、L806等组成的进线抗干扰电路.滤除高频干扰信号后的交流电压通过VB801、C807、C808整流滤波后,得到一个300V左右的脉动直流电压.图2、进线抗干扰、整流滤波部分图示图3、电源输入、滤波、整流电路部分原理图示二、待机5VS电路:图4、5VS电压形成部分方框图示表一 N831 STR-A6059H引脚功能1、待机5VS的形成原理:本机5V待机电压由N831和外围元器件组成,PFC端电压通过开关变压器T901的初级绕组1-3端加到N831的第7脚和第8脚(MOS 管的D极.启动电流输入端)N831开始工作.T901各个绕组产生感应电压.4端和5端绕组感应电压经过R837限流VD832整流C835滤波后,为N831第5脚提供20V直流工作电压.20V电压另外经过待机控制信号PS-ON控制三极管V832控制光耦和V916控制后为PFC电路N810的第8脚供电.2、5V的稳压电路:T901次级绕组经过VD833整流,C838、L831、C839组成的T型滤波器滤波后,形成5VS电压.5V稳压电路由取样电阻R843、R842、R841及N903,光耦N832组成.当5V电压升高时,分压后的电压加到N903的R端,经内部放大后使K端电压降低,光耦N832导通增强,N831的第4脚反馈控制端电压降低,经内部电路处理后,控制内部MOS管激励脉冲变窄,使5VS降到正常值.3、5V的欠压和过流保护电路:N831的第1脚是内电路MOS管源极通过外接电阻R831接地,也是内电路的过流检测端,电流大时起到保护作用.N831的第2脚是掉电欠压检测输入端,电阻R897、R899、R823、R901组成市电电压检测电路,电阻R900和R901组成20V电压掉电检测,当负载加重或者其他原因引起20V电压下降时,电阻R900和R901的分压也随之下降,当降到电路设计的阈值时,电路保护,停止工作.图5、稳压取样回路部分图示图6、市电检测及20V掉电检测部分图示图7、5V待机部分电路原理图示三、待机控制、功率因数校正PFC电路:图8、功率因数校正PFC部分图示表二 N810 NCP33262引脚功能1、PFC的形成:本机的PFC电路由储能电感L811,PFC整流管VD812,N810(NCP33262)及其外围元件组成.当主机发出开机信号后VCC经过R815限流VZ812稳压,C814、C816滤除杂波加到N801的第8脚后,经内部电路给软启动脚第2脚外接电容充电,电平升高后PFC 电路进入工作状态,将整流后的300V电压变换为整机所需380V的PFC 电压.2、PFC详细工作过程:N810的第7脚输出斩波激励脉冲经过灌流电路加到斩波管V811、V810的G极,在激励信号的正半周激励脉冲分别经过R895、VD816、R820、VD815加到两只MOS管的G极,使V811、V810导通.在激励信号的负半周,脉冲经过R836和R821加到V805、V806的B极,V805、V806导通,MOS管的G极电压快速释放,斩波管截止.VZ814和VZ811是斩波管G极过压保护二极管.R1034、R902两只电阻的作用是在关机时泄放掉MOS管G-S间的电压.经过电阻R811、R812、R813、R814分压得到正弦波取样电压进入到N810第3脚,用于校正第7脚输出脉冲波形.由于此电源工作在DCM状态,储能电感L811次级绕组11-13端感应的电压经R816和R868分压后为N810第5脚提供过零检测信号,控制PFC电路内部斩波信号的开启和关断.2、PFC电压的稳压:电阻R826、R827、R828、R805、R829、R830组成PFC电压取样反馈电路,分压后的取样电压送到N810的第1脚,经内部误差放大电路比较后,调整第7脚激励脉冲的输出占空比,控制斩波管的导通时间,以达到稳定PFC电压的目的.3、PFC的过流保护:电阻R849、RR825为PFC电路过流检测电阻.如果出现电源负载异常过重时,MOS管过大的电流流经R825、R849、R825、R849上的压降就会升高,升高的电压经过R823加到N810的第4脚,N810停止工作,起到保护作用.4、PFC市电欠压保护:N810的第2脚是软启动端,该脚外接三极管V804接市电欠压保护电路,当市电电压过低时,由R1028、R1032、R1026、R1030组成的市电电压分压取样电压ER电压为低电平,V804导通,4脚电平为低电平芯片停止工作.图9、待机控制电路部分图示图10、PFC取样反馈电路部分图示图11、市电输入检测部分图示图12、PFC电路部分电原理图示四、100V直流形成电路:图13、NCP1396部分图示图14、100V、12V直流形成部分图示220V交流经过整流滤波,进行功率因数校正后得到400V左右的直流电压送入由N802(NCP1396)组成的DC-DC变换电路.PFC电压经过R874、R875、R876、R877分压后送入N802第5脚进行欠压检测,经运算放大输出跨导电流.开机同时第12脚得到VCC1供电,软启动电路工作,内部控制器对频率、驱动定时等设置进行检测,正常后输出振荡频率.第4脚外接定时电阻R880;第2脚外接频率钳位电阻R878,电阻大小可以改变频率范围;第7脚为死区时间控制,可以从150ns到1us之间改变.第1脚外接软启动电容C855;第6脚为稳压反馈取样输入;第8脚和第9脚分别为故障检测脚.当N802的第12脚得到供电,第5脚的欠压检测信号也正常时,N802开始正常工作.VCC1加在N802第12脚的同时,VCC1经过VD839,R885供给倍压脚第16脚,C864为倍压电容,经过倍压后的电压为195V左右.从第11输出的低端驱动脉冲通过拉电流电阻R860送入V840的G级,VD837、R859为灌电流电路.第15脚输出的高端驱动脉冲通过拉电流电阻R857送入V839的G级,VD836、R856为灌电流电路.当V839导通时,400V的VB电压流过V839的D-S级及T902绕组、C865形成回路,在T902绕组形成下正上负的电动势,次级绕组得到的感应电压,经过VD853、C848整流滤波后得到100V直流电压,为LED驱动电路提供工作电压.次级另一路绕组经过R835、VD838、VD854、C854、C860、整流滤波后得到12V电压给主板伴音部分提供工作电压.次级另一绕组经过VD852、C851、C852、C853整流滤波后得到12V电压.同理,当V840导通,V839截止时,在T902初级绕组形成上正下负的感应电动势耦合给次级.由R863、R864、R865、R832、R869、N842组成的取样反馈电路通过光耦N840控制N802第6脚,使其次级输出的各路电压得到稳定,由C866、R867组成取样补偿电路。

液晶电视基本电路

液晶电视基本电路

C820 180pF/NC R815 39K C802 3.3nF
R810 R814 5.6K_1% 10K_1%
220uF
10uF
VCC- 1.2V
2
1
L821 600_Ohm_1.5A
AOZ1010输入电压范围为4.5V-16V,输出电压范围
为0.8V-Vin最大输出电流2A,pin6为使能脚高有
C834 10nF
U802
MP1410ES
1 BS
6 COMP
2 IN
FB 5
3 SW 4 GND
N.C 8 EN 7
R805 56K
C878 NC/180pF
R808 390K
C806 3.3nF
R807 R806 NC 18K
MP1410和 MP1430 VD834
FM5820
pin to pin
C509 0.1uF C510 0.01uF
SIDE1- Li n1 SIDE1- Li n1 AUL1_IN
SIDE1- Rin1 SIDE2- Rin1 AUR1_IN AUR1_IN
R544 47K R545 47K R546 47K R547 47K R559 47K R560 47K
R553 100 AU- SW0 AU- SW0
3.3V
+3.3Vstb (30mA)
AMS1117 3.3V
BA25 2.5V
AOZ1010
3% REG
1.0V CORE
AOZ1017
3% REG 1.8V
AOZ1017
3% REG
TFA9810T AOZ1017
5.0V
5.0V
(80mA)

液晶电视机电源电路图大全(四款液晶电视机电源电路原理图详解)

液晶电视机电源电路图大全(四款液晶电视机电源电路原理图详解)

液晶电视机电源电路图大全(四款液晶电视机电源电路原理图详解)液晶电视机电源电路图(一)液晶彩电的开关电源主要由交流抗干扰电路、整流滤波电路、功率因数校正电路(多数机型有此电路)、启动电路、开关电源控制电路、稳压电路、保护电路等几部分构成。

1.交流抗干扰电路开关电源两根交流进线上存在共模干扰(两根交流进线上接收到的干扰信号,相对参考点大小相等、方向相同,如电磁感应)和差模干扰(两根交流进线上接收到的干扰信号相对参考点大小相等、方向相反,如电网电压瞬时波动),两种干扰以不同比例同时存在。

开关电源中,整流电路、开关管的电流电压快速上升或下降,电感、电容的电流也迅速变化。

这些都构成电磁干扰源。

为了减少干扰信号通过电网影响其他电子设备的正常工作,也为了减少干扰信号对本机音视频信号的影响,需要在交流进线侧加装线路滤波器,即交流抗干扰电路。

常用交流抗干扰电路如下图所示。

图中,LF1、LF2是共模扼流圈,在一个闭合高导磁率铁心上,绕制两个绕向相同的线圈。

共模电流以相同方向同时流过两个线圈时,两线圈产生的磁通是相同方向的,有相互加强的作用,使每一线圈的共模阻抗提高,共模电流大大减弱,对共模干扰有强的抑制作用;在差模干扰信号作用下,干扰电流产生方向相反的磁通,在铁心中相互抵消,使线圈电感几乎为零,对差模信号没有抑制作用。

LF1、LF2与电容CY1、CY2构成共模干扰抑制网络。

Ll是差模扼流圈,在高导磁率铁心上独立绕线构成,对高频率差模电流和浪涌电流有极高的阻抗,对低频(工频)电流的阻抗极小。

电容Cxl、CX2滤去差模电流,与Ll构成差模干扰抑制网络。

Rl是Cx,、CX2的放电电阻(安全电阻),用于防止电源线拔插时电源线插头长时间带电。

安全标准规定,当正在工作中的电气设备电源线被拔掉时,在2s内,电源线插头两端带电的电压(或对地电位)必须小于原电压的30%。

需要特别提出,电容Cx、CY为安全电容,必须经过安全检测部门认证并标有安全认证标志。

LED显示屏5V40A200W专用开关电源设计

LED显示屏5V40A200W专用开关电源设计

LED显示屏5V 40A专用开关电源设计1 参数:输入电源:220V输出电源:5V 40A2开关电源的组成开关电源大致由输入电路、变换器、控制电路、输出电路四个主体组成。

如果细致划分,它包括:输入滤波、输入整流、开关电路、采样、基准电源、比较放大、震荡器、V/F 转换、基极驱动、输出整流、输出滤波电路等。

实际的开关电源还要有保护电路、功率因数校正电路、同步整流驱动电路及其它一些辅助电路等。

图1是开关电源原理框图:图1 开关电源原理框图2.1 输入电路包括线性滤波电路、浪涌电流抑制电路、整流电路三部分。

作用:把输入电网交流电源转化为符合要求的开关电源直流输入电源。

典型电路如图2所示:图2 输入电路该电路包含滤波电路、浪涌电流抑制电路及全波整流电路。

输入电路各电容C11、C12、C13 用于滤波,滤除高频噪声;电抗器L11 用于浪涌抑制;电容C14、C15、C18 用于去耦。

输入220VAC 电压经过全波整流,产生变换器所需要的直流电压,及提供控制电路必须的工作电源。

J21 为短路线,TH 为过流电阻,当发生过流时,器件熔断。

2.2 功率电路基本原理市电220V的交流电经输入电路整流滤波后,已变为直流电(带脉动),从该直流电到输出之间的电路可简单等效为一个单管隔离降压变换器。

如图3所示:图3 功率电路基本原理为防止变压器T磁饱及快速恢复,原边使用了简单的R1C1释放电路。

副边VD1 整流,VD2 续流,C2去耦,L、C4滤波,R3C3、R4为辅助泄放通路。

当然实际电路比这个要复杂的多,复杂的原因主要是因为加入了保护电路、反馈电路、控制电路等。

下面具体讲述实际应用的电路。

2.3 变压器及控制部分供电电路变压器周边电路以及给控制电路供电的电路如图4所示:图4 变压器及控制部分供电电路本电路中的变压器T11就是图3中的变压器T,其中1-3绕组为原边主绕组(即图3中的N1绕组),6-7绕组为副边输出绕组(即图3中的N2绕组),4-5绕组为原边辅助绕组,主要给控制电路提供电源。

液晶显示器开关电源电路原理与维修-PPT课件

液晶显示器开关电源电路原理与维修-PPT课件

常见的SG6841有8脚DIP和SO两种封装,其各引脚功能分别如下所示: GND:接地。 FB:反馈电压输入端。用于提供PWM调节信息,PWM占空比就是由它控制。 Vin:启动电流输入端。SG6841开始工作必须在该端要提供一个启动电压。 RI:参考设置端。通过连接一个电阻接地来为SG6841提供一个恒定的电流,改变电阻阻值 将改变PWM的频率。 RT:温度保护端。该端输出一个恒定的电流。在该端接一NTCR接地来传感温度,当该端电 压下降到一定值时会启动过温保护。在本设计中,该功能被用于高压保护。 Sense:电流传感端。当该端电压达到一个阈值时芯片会停止输出,从而实现过流保护。 VDD:电源供电端。 Gate:PWM脉冲输出端。图腾柱(即推拉输出电路)输出极驱动功率开关管。
藉由PWM IC控制开关管的导通与否,配合次级侧的二极管和电容, 即可得到稳定DC电压的输出。Ui为含有一定交流成份的直流电压,由 开关功率管斩波和高频变压器降压,将储存于在变压器的能量传递给 次级侧,转换成所需电压值的方波,最后再将这个方波电压经整流滤 波变为所需要的直流电压。此外改变变压器初、次级的圈数,就可以 得到想要的DC电源。PWM控制电路是这类开关电源的核心,它通过 取样反馈闭环回路,调整高频开关元件的开关时间比例即占空比,以 达到稳定输出电压的目的。
图1-1 反激式开关电源典型电路结构
由于高频变压器的磁芯仅工作在磁滞回线的一侧,并且只有一个输出端,而MOS开关功率管导通 时,次级整流二极管截止,电能就储存在高频变压器的初级电感线圈中;当MOS功率管关断时整流 二极管导通,初级线圈上的电能传输给次极绕组,并经过次级整流二极管输出,故称之为单端反激式。
其中,VFB为FB端电压,1.0V为在两个二极管上的压降,1/3为经两个电阻后的分压比。 当电源输出过载或者如果输出电压取样丢失时,异常的工作条件将出现。在这些条件下,电流取 样比较器门限将被内部箝位至0.85V。因此最大峰值开关电流为:Ipk(max)=0.85V / Rs当输入 电压很大时,取样电流将非常小,这时可通过高压补偿回路来调节。在电路中,通过R904与 R905(均为1MΩ来提高Sense端电平,实现高压补偿。 当负载短路或其它原因引起功率管电流增加,并使取样电阻Rs上的电压升高。当Sense端的 电压达到0.85V时,RS触发器的R端输入为低电平,从而Q非输出低电平,SG6841即停止脉冲输 出,可以有效的保护功率管不受损坏,从而实现过流保护。由此可得Ipk(max)=0.85V/Rs,改 变Rs值即可改变其最大的输出功率。在本设计中取Rs=0.3Ω,可得Ipk(max)=2.83A。 在SG6841的Sense端产生的噪声会引起PWM输出脉冲的不稳定。在芯片内部Sense端经过一 个斜率补偿电路后,才接至比较器同相输入端,这能有效地降低噪声的影响。良好的PCB布线和 避免元件管脚太长也有利于减少噪声。而在UC3841的应用电路中则需要在Sense端增加一个RC 滤波器来解决同样的问题,可见SG6841的功能更强,外围电路更简单。 当SG6841正常工作时,其内部振荡器产生振荡信号,此信号一路直接加到图腾柱电路的输入 端,另一路加到PWM脉宽调制RS触发器的S端,RS型PWM脉宽调制器的R端接电流检测比较器 输出端。当峰值电感电流未达到FB反馈端电平时,比较器输出低电平,此时R端为低电平,Q非 端输出低电平;当峰值电感电流达到FB反馈端电平时,比较器输出高电平,此时R端为高电平, Q非端输出高电平。可见,FB端电压越高,Q非端脉冲越窄,同时Gate端输出脉宽也越窄(占空 比减小);FB端电压越低,Q非端脉冲越宽,同时Gate端输出脉宽也越宽(占空比增大),从而 实现PWM控制,使输出电压稳定。 2.3 SG6841的启动与供电 SG6841需要在启动时给Pin3 Vin 提供一30μA的启动电流以使芯片进行有效的自举。在电路 中,将Pin3 通过两个1MΩ的电阻接至PFC级的DC输出端,便可在AC输入90V~264V的范围内 实现SG6841的有效启动。 在SG6841正常工作后,其Pin7 VDD端必须提供10V~30V电压为芯片供电。

海信液晶电源板检修经验总结和维修实例(图)

海信液晶电源板检修经验总结和维修实例(图)

海信液晶电源板检修经验总结和维修实例(图)对于海信液晶带有SMA—E1017的电源想来大家都非常熟悉,我不想多说,只是想介绍一下关于此类电源的一些典型故障的维修及其认识。

电源板炸件的问题:对于炸件的机器,大家都比较敏感,特别是看到SMA—E1017炸掉,FQA24N50击穿,在我们的心中就比较紧张,恐怕下次再开机时,还会出现这些原件再次炸掉的危险,甚至不知如何下手,才能将机器修好。

关于此类故障应该怎样维修,我想以下一些地方入手:首先要分析一下元器件炸裂的原因,首先是PFC电路的场效应管为何击穿,究其原因无非两点:1.场效应管过流。

2.场应管过压。

我们知道场应管过流会损坏,为什么呢?因为在过流时,两个PN结会击穿,而更多的原因是由于Ton周期过长,场效应管在截止时反压过高而损坏。

为什么呢?在硬开关中电路中,在开关管的集电极加上吸收回路来降低开关管截止时形成的高压。

其电压的大小与电流的变化率成正比(正比于di/dt),也就是当开关管截止时,开关管的反压最高。

对于软开关的电源又是如何呢,所谓软开关就是将开关管开关时的功耗降低趋向于0。

{我们知道mosfet管的开关时呈阻性,在其饱和导通时呈低阻特性。

在平板维修时我们会发现IRF7314,mosfet管的d、s两端的压降用我们的万用表是量不出来的,而普通三极管的饱和压降为0.3V。

对于使用场效应管的开关电源,开关管之所以热,其原因就是因为其开关损耗严重。

软开关是指ZCS(zero current switching 零电流开关)和ZVS(zero voltage switching零电压开关)。

}由上可知,开关管在截止时若使用软开关只能使用ZCS,在使用软开关时,开关在截止期间仍然有高压存在,而这个高压,只有零电流时出现。

因为在谐振电路中,只有零电流时,电容和电感两端的电压达到最高。

由此,我们可以知道当电流超过正常值时,开关管截止时的电压比正常时会高。

当这个电压超过其极限值时就会击穿。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档