不等式选讲大题及答案()

合集下载

全国通用2020_2022三年高考数学真题分项汇编专题20不等式选讲(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编专题20不等式选讲(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编:20 不等式选讲1.【2022年全国甲卷】已知a,b,c均为正数,且a2+b2+4c2=3,证明:(1)a+b+2c≤3;(2)若b=2c,则1a +1c≥3.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据a2+b2+4c2=a2+b2+(2c)2,利用柯西不等式即可得证;(2)由(1)结合已知可得0<a+4c≤3,即可得到1a+4c ≥13,再根据权方和不等式即可得证.(1)证明:由柯西不等式有[a2+b2+(2c)2](12+12+12)≥(a+b+2c)2,所以a+b+2c≤3,当且仅当a=b=2c=1时,取等号,所以a+b+2c≤3;(2)证明:因为b=2c,a>0,b>0,c>0,由(1)得a+b+2c=a+4c≤3,即0<a+4c≤3,所以1a+4c ≥13,由权方和不等式知1a +1c=12a+224c≥(1+2)2a+4c=9a+4c≥3,当且仅当1a =24c,即a=1,c=12时取等号,所以1a +1c≥3.2.【2022年全国乙卷】已知a,b,c都是正数,且a32+b32+c32=1,证明:(1)abc≤19;(2)ab+c +ba+c+ca+b≤2√abc;【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)利用三元均值不等式即可证明;(2)利用基本不等式及不等式的性质证明即可.(1)证明:因为a >0,b >0,c >0,则a 32>0,b 32>0,c 32>0, 所以a 32+b 32+c 323≥√a 32⋅b 32⋅c 323,即(abc )12≤13,所以abc ≤19,当且仅当a 32=b 32=c 32,即a =b =c =√193时取等号.(2)证明:因为a >0,b >0,c >0,所以b +c ≥2√bc ,a +c ≥2√ac ,a +b ≥2√ab , 所以a b+c≤2√bc=a 322√abc,b a+c≤2√ac=b 322√abc,ca+b≤2√ab =322√abc a b +c +b a +c +ca +b ≤a 322√abc +b 322√abc c 322√abc=a 32+b 32+c 322√abc=12√abc当且仅当a =b =c 时取等号.3.【2021年甲卷文科】已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像; (2)若()()f x a g x +≥,求a 的取值范围. 【答案】(1)图像见解析;(2)112a ≥ 【解析】 【分析】(1)分段去绝对值即可画出图像;(2)根据函数图像数形结和可得需将()y f x =向左平移可满足同角,求得()y f x a =+过1,42A ⎛⎫⎪⎝⎭时a 的值可求.【详解】(1)可得2,2()22,2x x f x x x x -<⎧=-=⎨-≥⎩,画出图像如下:34,231()232142,2214,2x g x x x x x x ⎧-<-⎪⎪⎪=+--=+-≤<⎨⎪⎪≥⎪⎩,画出函数图像如下:(2)()|2|f x a x a +=+-,如图,在同一个坐标系里画出()(),f x g x 图像,()y f x a =+是()y f x =平移了a 个单位得到,则要使()()f x a g x +≥,需将()y f x =向左平移,即0a >,当()y f x a =+过1,42A ⎛⎫⎪⎝⎭时,1|2|42a +-=,解得112a =或52-(舍去),则数形结合可得需至少将()y f x =向左平移112个单位,112a ∴≥.【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解. 4.【2021年乙卷文科】已知函数()3f x x a x =-++. (1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围. 【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭. 【解析】 【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围. 【详解】(1)[方法一]:绝对值的几何意义法当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和, 则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥,所以()6f x ≥的解集为(][),42,-∞-+∞.[方法二]【最优解】:零点分段求解法 当1a =时,()|1||3|f x x x =-++. 当3x ≤-时,(1)(3)6-+--≥x x ,解得4x ≤-; 当31x -<<时,(1)(3)6-++≥x x ,无解; 当1≥x 时,(1)(3)6-++≥x x ,解得2x ≥. 综上,|1||3|6-++≥x x 的解集为(,4][2,)-∞-+∞. (2)[方法一]:绝对值不等式的性质法求最小值 依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-.所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭.[方法二]【最优解】:绝对值的几何意义法求最小值由||x a -是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a =-++≥+,故|3|a a +>-,下同解法一. [方法三]:分类讨论+分段函数法 当3a ≤-时,23,,()3,3,23,3,x a x a f x a a x x a x -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩则min [()]3=--f x a ,此时3-->-a a ,无解. 当3a >-时,23,3,()3,3,23,,x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪-+>⎩则min [()]3=+f x a ,此时,由3a a +>-得,32a >-.综上,a 的取值范围为32a >-.[方法四]:函数图象法解不等式由方法一求得()min 3f x a =+后,构造两个函数|3|=+y a 和y a =-,即3,3,3,3a a y a a --<-⎧=⎨+≥-⎩和y a =-, 如图,两个函数的图像有且仅有一个交点33,22⎛⎫- ⎪⎝⎭M ,由图易知|3|a a +>-,则32a >-.【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法. 方法一采用几何意义方法,适用于绝对值部分的系数为1的情况, 方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得()3min f x a =+,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得()f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求()f x 最小值,要注意函数()f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数()f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.5.【2020年新课标1卷理科】已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集. 【答案】(1)详解解析;(2)7,6⎛⎫-∞- ⎪⎝⎭.【解析】 【分析】(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象; (2)作出函数()1f x +的图象,根据图象即可解出. 【详解】(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞- ⎪⎝⎭.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.6.【2020年新课标2卷理科】已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.【解析】 【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解; 当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x a x a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号), ()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型. 7.【2020年新课标3卷理科】设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }. 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)方法一:由()22222220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)方法一:不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0,a >0,b <0,c <()()a b c=-+-≥34,a ≥a【详解】(1)[方法一]【最优解】:通性通法()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. [方法二]:消元法由0a b c ++=得()b a c =-+,则()ab bc ca b a c ca ++=++()2a c ac =-++()22a ac c =-++223024c a c ⎛⎫=-+-≤ ⎪⎝⎭,当且仅当0a b c ===时取等号,又1abc =,所以0ab bc ca ++<. [方法三]:放缩法方式1:由题意知0,a ≠0,a b c ++=(),a c b =-+()222224a c b c b cb bc =+=++≥,又()ab bc ca a b c bc ++=++2a bc =-+224a a ≤-+2304a =-<,故结论得证.方式2:因为0a b c ++=,所以()22220222a b c a b c ab bc ca =++=+++++ ()()()22222212222a b b c c a ab bc ca ⎡⎤=++++++++⎣⎦()()122222232ab bc ca ab bc ca ab bc ca ≥+++++=++. 即0ab bc ca ++≤,当且仅当0a b c ===时取等号, 又1abc =,所以0ab bc ca ++<. [方法四]:因为0,1a b c abc ++==,所以a ,b ,c 必有两个负数和一个正数,不妨设0,a b c ≤<<则(),a b c =-+()20ab bc ca bc a c b bc a ∴++=++=-<.[方法五]:利用函数的性质方式1:()6b a c =-+,令()22f c ab bc ca c ac a =++=---,二次函数对应的图像开口向下,又1abc =,所以0a ≠, 判别式222Δ430a a a =-=-<,无根, 所以()0f c <,即0ab bc ca ++<.方式2:设()()()()()31f x x a x b x c x ab bc ca x =---=+++-,则()f x 有a ,b ,c 三个零点,若0ab bc ca ++≥,则()f x 为R 上的增函数,不可能有三个零点, 所以0ab bc ca ++<.(2)[方法一]【最优解】:通性通法不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0,a >0,b <0,c <()()a b c =-+-≥则34,a a ≥≥.故原不等式成立. [方法二]:不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0a >,且,1,b c a bc a +=-⎧⎪⎨=⎪⎩则关于x 的方程210x ax a++=有两根,其判别式24Δ0a a =-≥,即a故原不等式成立. [方法三]:不妨设{}max ,,a b c a =,则0,a >(),b a c =-+1,abc =()1,a c ac -+=2210ac a c ++=,关于c 的方程有解,判别式()22Δ40a a =-≥,则34,a a ≥≥.故原不等式成立. [方法四]:反证法假设{}max ,,a b c0a b ≤<<1ab c =>a b c --=1132a b ---≥=={}max ,,a b c ≥证. 【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出.(2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。

高三数学不等式选讲试题答案及解析

高三数学不等式选讲试题答案及解析

高三数学不等式选讲试题答案及解析1.不等式的解集是.【答案】【解析】由绝对值的几何意义,数轴上之间的距离为,结合图形,当落在数轴上外时.满足不等式,故答案为.【考点】不等式选讲.2.不等式的解集是【答案】【解析】原不等式可化为,解得.考点:绝对值不等式解法3.已知函数(Ⅰ)证明:;(Ⅱ)求不等式:的解集.【答案】(Ⅰ)祥见解析;(Ⅱ).【解析】(Ⅰ)通过对x的范围分类讨论将函数f(x)=|x-2|-|x-5|中的绝对值符号去掉,转化为分段函数,即可解决;(Ⅱ)结合(1)对x分x≤2,2<x<5与x≥5三种情况讨论解决即可.试题解析:(Ⅰ)当所以(Ⅱ)由(1)可知,当的解集为空集;当时,的解集为:;当时,的解集为:;综上,不等式的解集为:;【考点】绝对值不等式的解法.4.设函数=(1)证明:2;(2)若,求的取值范围.【答案】(2)【解析】本题第(1)问,可由绝对值不等式的几何意义得出,从而得出结论;对第(2)问,由去掉一个绝对值号,然后去掉另一个绝对值号,解出的取值范围.试题解析:(1)证明:由绝对值不等式的几何意义可知:,当且仅当时,取等号,所以.(2)因为,所以,解得:.【易错点】在应用均值不等式时,注意等号成立的条件:一正二定三相等.【考点】本小题主要考查不等式的证明、绝对值不等式的几何意义、绝对值不等式的解法、求参数范围等不等式知识,熟练基础知识是解答好本类题目的关键.5.(5分)(2011•陕西)(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若不等式|x+1|+|x﹣2|≥a对任意x∈R恒成立,则a的取值范围是.B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE= .C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1:(θ为参数)和曲线C2:p=1上,则|AB|的最小值为.【答案】(﹣∞,3] 2 1【解析】A.首先分析题目已知不等式|x+1|+|x﹣2|≥a恒成立,求a的取值范围,即需要a小于等于|x+1|+|x﹣2|的最小值即可.对于求|x+1|+|x﹣2|的最小值,可以分析它几何意义:在数轴上点x 到点﹣1的距离加上点x到点2的距离.分析得当x在﹣1和2之间的时候,取最小值,即可得到答案;B.先证明Rt△ABE∽Rt△ADC,然后根据相似建立等式关系,求出所求即可;C.先根据ρ2=x2+y2,sin2+cos2θ=1将极坐标方程和参数方程化成直角坐标方程,根据当两点连线经过两圆心时|AB|的最小,从而最小值为两圆心距离减去两半径.解:A.已知不等式|x+1|+|x﹣2|≥a恒成立,即需要a小于等于|x+1|+|x﹣2|的最小值即可.故设函数y=|x+1|+|x﹣2|.设﹣1、2、x在数轴上所对应的点分别是A、B、P.则函数y=|x+1|+|x﹣2|的含义是P到A的距离与P到B的距离的和.可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.即:y=|x+1|+|x﹣2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x﹣2|的最小值为3.即:k≤3.故答案为:(﹣∞,3].B.∵∠B=∠D,AE⊥BC,∠ACD=90°∴Rt△ABE∽Rt△ADC而AB=6,AC=4,AD=12,根据AD•AE=AB•AC解得:AE=2,故答案为:2C.消去参数θ得,(x﹣3)2+y2=1而p=1,则直角坐标方程为x2+y2=1,点A在圆(x﹣3)2+y2=1上,点B在圆x2+y2=1上则|AB|的最小值为1.故答案为:1点评:A题主要考查不等式恒成立的问题,其中涉及到绝对值不等式求最值的问题,对于y=|x﹣a|+|x﹣b|类型的函数可以用分析几何意义的方法求最值.本题还考查了三角形相似和圆的参数方程等有关知识,同时考查了转化与划归的思想,属于基础题.6.(2012•广东)不等式|x+2|﹣|x|≤1的解集为_________.【答案】【解析】∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为7.设函数,若,则实数的取值范围是()A.B.C.D.【答案】C【解析】由的图象,可知在处取得最小值,∵, ,即,或.∴实数的取值范围为,选C.8.已知不等式的解集与不等式的解集相同,则的值为()A.B.C.D.【答案】C【解析】解不等式得或,所以的两个根为和,由根与系数的关系知.故选.【考点】绝对值不等式的解法,一元二次不等式的解法.9.设函数,其中。

高三数学不等式选讲试题

高三数学不等式选讲试题

高三数学不等式选讲试题1.设函数(m>0)(1)证明:f(x)≥4;(2)若f(2)>5,求m的取值范围.【答案】(1)见解析;(2)(0,1)∪(,+∞)【解析】(1)利用绝对值基本性质:|x-a|+|x-b|≥|a-b|及基本不等式可得;(2)分类写出f(2)关于m的解析式,解相关分式不等式即可试题解析:(Ⅰ)由m>0,有f(x)=|x-|+|x+m|≥|-(x-)+x+m|=+m≥4,当且仅当=m,即m=2时取“=”.所以f(x)≥4. 4分(Ⅱ)f(2)=|2-|+|2+m|.当<2,即m>2时,f(2)=m-+4,由f(2)>5,得m>.当≥2,即0<m≤2时,f(2)=+m,由f(2)>5,0<m<1.综上,m的取值范围是(0,1)∪(,+∞). 10分考点:绝对值不等式2.设,且满足:,,求证:.【答案】详见解析【解析】根据题中所给条件:,,结合柯西不等式可得出:,由此可推出:,即可得出三者的关系:,问题即可求解.,,,又,,. 10分【考点】不等式的证明3.已知关于x的不等式(其中),若不等式有解,则实数a的取值范围是()A.B.C.D.【答案】C【解析】∵设故,即的最小值为,所以有解,则解得,即的取值范围是,选C.4.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是()A.[-2,+∞)B.(-∞,-2)C.[-2,2]D.[0,+∞)【答案】A【解析】由题意a|x|≥-x2-1,∴a≥=(x≠0).∵≤-2,∴a≥-2.当x=0时,a∈R,综上,a≥-2,选A5.设函数,其中。

(1)当时,求不等式的解集;(2)若不等式的解集为,求a的值。

【答案】(1)或(2)【解析】(1)当时,可化为。

由此可得或。

故不等式的解集为或。

(2)由得此不等式化为不等式组或即或因为,所以不等式组的解集为由题设可得= ,故6.不等式x2﹣4x+a<0存在小于1的实数解,则实数a的取值范围是()A.(﹣∞,4)B.(﹣∞,4]C.(﹣∞,3)D.(﹣∞,3]【答案】C【解析】不等式x2﹣4x+a<0可化为:x2﹣4x<﹣a,设y=x2﹣4x,y=﹣a,分别画出这两个函数的图象,如图,由图可知,不等式x2﹣4x+a<0存在小于1的实数解,则有:﹣a>﹣3.故a<3.故选C.7.已知,,,.求证.【答案】详见解析【解析】利用分析法或作差法证明不等式. 即,而显然成立,【证明】因为,,所以,所以要证,即证.即证, 5分即证,而显然成立,故. 10分【考点】不等式相关知识8.若不等式的解集为,则的取值范围为________;【答案】【解析】令,则;若不等式的解集为,则的取值范围为.【考点】绝对值不等式的解法、恒成立问题.9.已知,且,求的最小值.【答案】1.【解析】观察已知条件与所求式子,考虑到柯西不等式,可先将条件化为,此时,由柯西不等式得,即,当且仅当,即,或时,等号成立,从而可得的最小值为1.试题解析:, ,,,当且仅当,或时的最小值是1.【考点】柯西不等式.10.若a,b,c∈R,a>b,则下列不等式成立的是(填上正确的序号).①<;②a2>b2;③>;④a|c|>b|c|.【答案】③【解析】①,当a是正数,b是负数时,不等式<不成立,②当a=-1,b=-2时,a>b成立,a2>b2不成立;当a=1,b=-2时,a>b成立,a2>b2也不成立,当a,b是负数时,不等式a2>b2不成立.③在a>b两边同时除以c2+1,不等号的方向不变,故③正确,④当c=0时,不等式a|c|>b|c|不成立.综上可知③正确.11.已知-1<a+b<3,且2<a-b<4,求2a+3b的取值范围.【答案】-<2a+3b<【解析】设2a+3b=x(a+b)+y(a-b)=(x+y)a+(x-y)b.则解得所以2a+3b=(a+b)-(a-b).因为-1<a+b<3,2<a-b<4,所以-<(a+b)<,-2<-(a-b)<-1.所以--2<2a+3b<-1,即-<2a+3b<.12.设x,y∈R,且x+y=5,则3x+3y的最小值为()A.10B.6C.4D.18【答案】D【解析】选D.3x+3y≥2=2=2=18,当且仅当x=y=2.5时,等号成立.13.已知等比数列{an}的各项均为正数,公比q≠1,设P=,Q=,则P与Q的大小关系是()A.P>Q B.P<QC.P=Q D.无法确定【答案】A【解析】选A.由等比知识,得Q==,而P=,且a3>0,a9>0,q≠1,a 3≠a9,所以>,即P>Q.14.若a,b,c为正数,且a+b+c=1,则++的最小值为()A.9B.8C.3D.【答案】A【解析】选A.因为a,b,c为正数,且a+b+c=1,所以a+b+c≥3,所以0<abc≤,≥27,所以++≥3≥3=9.当且仅当a=b=c=时等号成立.15.已知x+2y+3z=6,则2x+4y+8z的最小值为()A.3B.2C.12D.12【答案】C【解析】选C.因为2x>0,4y>0,8z>0,所以2x+4y+8z=2x+22y+23z≥3=3=3×4=12.当且仅当2x=22y=23z,即x=2y=3z,即x=2,y=1,z=时取等号.16.当0≤x≤时,函数y=x2(1-5x)的最大值为()A.B.C.D.无最大值【答案】C【解析】选C.y=x2(1-5x)=x2=x·x·.因为0≤x≤,所以-2x≥0,所以y≤=,=.当且仅当x=-2x,即x=时,ymax17.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是()A.|a+b|+|a-b|>2B.|a+b|+|a-b|<2C.|a+b|+|a-b|=2D.不能比较大小【答案】B【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2,当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.18.若关于x的不等式|x-2|+|x+3|<a的解集为,则实数a的取值范围为()A.(-∞,1]B.(-∞,1)C.(-∞,5]D.(-∞,5)【答案】C【解析】选C.因为|x-2|+|x+3|≥|x-2-x-3|=5,又关于x的不等式|x-2|+|x+3|<a的解集为,所以a≤5.19.已知函数f(x)=x2-x+13,|x-a|<1.求证:|f(x)-f(a)|<2(|a|+1).【答案】见解析【解析】证明:|f(x)-f(a)|=|x2-x+13-(a2-a+13)|=|x2-a2-x+a|=|(x-a)(x+a-1)|=|x-a||x+a-1|<|x+a-1|=|x-a+2a-1|≤|x-a|+|2a-1|<1+|2a|+1=2(|a|+1),所以|f(x)-f(a)|<2(|a|+1).20.若关于实数x的不等式|x-5|+|x+3|<a无解,求实数a的取值范围.【答案】(-∞,8]【解析】因为不等式|x-5|+|x+3|的最小值为8,所以要使不等式|x-5|+|x+3|<a无解,则a≤8,即实数a的取值范围是(-∞,8].21.已知x,y,z∈R+,且x+y+z=1(1)若2x2+3y2+6z2=1,求x,y,z的值.(2)若2x2+3y2+tz2≥1恒成立,求正数t的取值范围.【答案】(1)x=,y=,z=(2)t≥6【解析】(1)∵(2x2+3y2+6z2)()≥(x+y+z)2=1,当且仅当时取“=”.∴2x=3y=6z,又∵x+y+z=1,∴x=,y=,z=.=.(2)∵(2x2+3y2+tz2)≥(x+y+z)2=1,∴(2x2+3y2+tz2)min∵2x2+3y2+tz2≥1恒成立,∴≥1.∴t≥6.22.若关于x的不等式的解集为(-1,4),则实数a的值为_________.【答案】【解析】由已知得,,,当时,不等式解集为,故,无解;当时,不等式解集为,故,解得.【考点】绝对值不等式解法.23.设a,b,c均为正数,证明:++≥a+b+c.【答案】见解析【解析】证明:方法一:+++a+b+c=(+b)+(+c)+(+a)≥2a+2b+2c,当且仅当a=b=c时等号成立.即得++≥a+b+c.方法二:利用柯西不等式的一般形式得|a1b1+a2b2+a3b3|≤.取a1=,a2=,a3=,b1=,b2=,b3=代入即证.24.已知正数x,y,z满足5x+4y+3z=10.(1)求证:++≥5.(2)求+的最小值.【答案】(1)见解析 (2) 18【解析】(1)根据柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)](++)≥(5x+4y+3z)2,当且仅当==,即x=,y=,z=时取等号.因为5x+4y+3z=10,所以++≥=5.(2)根据平均值不等式,得+≥2=2·,当且仅当x2=y2+z2时,等号成立.根据柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,即x2+y2+z2≥2,当且仅当==时,等号成立.综上,+≥2·32=18.当且仅当x=1,y=,z=时,等号成立.所以+的最小值为18.25.设n∈N*,求证:++…+<.【答案】见解析【解析】证明:由=<=(-)可知<(1-),<(-),…,<(-),从而得++…+<(1-)<.26.设0< a,b,c <1,求证:(1-a)b,(1-b)c,(1-c)a,不可能同时大于.【答案】见解析【解析】证明:假设(1-a)b >,(1-b)c >,(1-c)a>,则三式相乘:(1-a)b·(1-b)c·(1-c)a>①.又∵0< a,b,c <1,∴0<(1-a)a≤[]2=.同理:(1-b)b≤,(1-c)c≤,以上三式相乘:(1-a)a·(1-b)b·(1-c)c≤,与①矛盾,∴(1-a)b,(1-b)c,(1-c)a不可能同时大于.27.设函数f(x)=|x+1|+|x-a|(a>0).若不等式f(x)≥5的解集为(-∞,-2]∪(3,+∞),则a的值为________.【答案】a=2【解析】由题意知,f(-2)=f(3)=5,即1+|2+a|=4+|3-a|=5,解得a=2.28.已知函数f(x)=|2x-a|+a.若不等式f(x)≤6的解集为{x|-2≤x≤3},则实数a的值为________.【答案】a=1【解析】由|2x-a|+a≤6得,|2x-a|≤6-a,∴a-6≤2x-a≤6-a,即a-3≤x≤3,∴a-3=-2,∴a=1.29.若对任意的a∈R,不等式|x|+|x-1|≥|1+a|-|1-a|恒成立,则实数x的取值范围是________.【答案】x≤-或x≥【解析】由|1+a|-|1-a|≤2得|x|+|x-1|≥2,当x<0时,-x+1-x≥2,x≤-;当0≤x≤1时,x+1-x≥2,无解;当x>1时,x+x-1≥2,x≥.综上,x≤-或x≥30.已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为________.【答案】2【解析】由柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时“=”成立,得(am+bn)(bm+an)≥=mn(a+b)2=2.31.若正数x,y满足x+3y=5xy,则3x+4y的最小值是().A.B.C.5D.6【答案】C【解析】∵x>0,y>0,由x+3y=5xy,得=5.∴5(3x+4y)=(3x+4y) =13+≥13+2=25.因此3x+4y≥5,当且仅当x=2y时等号成立.∴当x=1,y=时,3x+4y的最小值为5.32.(Ⅰ)(坐标系与参数方程)直线与圆相交的弦长为.(Ⅱ)(不等式选讲)设函数>1),且的最小值为,若,则的取值范围【答案】(Ⅱ)【解析】解:将直线2ρcosθ=1化为普通方程为:2x=1.∵ρ=2cosθ,∴ρ2=2ρcosθ,化为普通方程为:x2+y2=2x,即(x-1)2+y2=1.∴直线与圆相交的弦长=解:∵函数f(x)=|x-4|+|x-a|≥|x-4+a-x|=|a-4|,∵f(x)的最小值为3,∴|a-4|=3,∴a=1或7,∵a>1,∴a=7,∴f(x)=|x-4|+|x-7|≤5,①若x≤4,f(x)=4-x+7-x=11-2x≤5,解得x≥3,故3≤x≤4;②若4<x<7,f(x)=x-4+7-x=3,恒成立,故4<x<7;③若x≥7,f(x)=x-4+x-7=2x-11≤5,解得x≤8,故7≤x≤8;综上3≤x≤8,故答案为:3≤x≤8.【考点】坐标系与参数方程,不等式选讲点评:主要是考查了不等式选讲以及坐标系与参数方程的运用,属于基础题。

2020年高考数学(文)母题题源解密23 不等式选讲(全国Ⅱ专版原卷版)

2020年高考数学(文)母题题源解密23 不等式选讲(全国Ⅱ专版原卷版)

专题23 不等式选讲【母题来源一】【2020年高考全国Ⅱ卷文数】已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ≥,求a 的取值范围. 【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果; (2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a aa a =-+-+≥---+=-+-=-,当且仅当221a x a -≤≤时取等号,()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型. 【母题来源二】【2019年高考全国Ⅱ卷文数】已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 【答案】(1)(,1)-∞;(2)[1,)+∞【解析】(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----. 所以,a 的取值范围是[1,)+∞.【名师点睛】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型. 【母题来源三】【2018年高考全国Ⅱ卷文数】设函数()5|||2|f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围.【答案】(1){|23}x x -≤≤;(2)(,6][2,)-∞-+∞.【解析】(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤. (2)()1f x ≤等价于|||2|4x a x ++-≥.而|||2||2|x a x a ++-≥+,且当2x =时等号成立. 故()1f x ≤等价于|2|4a +≥. 由|2|4a +≥可得6a ≤-或2a ≥, 所以a 的取值范围是(,6][2,)-∞-+∞.【命题意图】1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1)a b a b +≤+. (2) a b a c c b -≤-+-.(3)会利用绝对值的几何意义求解以下类型的不等式:; ; ax b c ax b c x a x b c +≤+≥-+-≥.2.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.3.主要考查逻辑推理能力、运算求解能力,考查分类讨论、数形结合思想方法,考查逻辑推理、数学运算等核心素养. 【命题规律】从近三年高考情况来看,此类知识点以解答题的形式出现,主要考查绝对值不等式的解法、不等式的证明、求最值问题等. 【方法总结】(一)解绝对值不等式的常用方法有:(1)公式法:对于形如|f (x )|>g (x )或|f (x )|<g (x ),利用公式|x|<a ⇔−a<x<a (a>0)和|x|>a ⇔x>a 或x<−a (a>0)直接求解不等式;(2)平方法:对于形如|f (x )|≥|g (x )|,利用不等式两边平方的技巧,去掉绝对值,需保证不等式两边同正或同负,即|f (x )|≥|g (x )|⇔f (x )2≥g 2(x );(3)零点分段法:对于形如|f (x )|±|g (x )|≥a ,|f (x )|±|g (x )|≤a ,利用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解;(4)几何法:对于形如|x±a|±|x±b|≤c ,|x±a|±|x±b|≥c ,利用绝对值三角不等式的性质求解,即 ①定理1:如果a ,b 是实数,则|a+b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.②定理2:如果a ,b ,c 是实数,那么|a−c|≤|a−b|+|b−c|,当且仅当(a−b )(b−c )≥0时,等号成立. ③推论1:||a|−|b||≤|a+b|. ④推论2:||a|−|b||≤|a−b|.(5)图象法:对于形如|f (x )|+|g (x )|≥a 可构造y=|f (x )|+|g (x )|−a 或y=|f (x )|+|g (x )|与y=a ,在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解或通过移项构造一个函数. (二)含绝对值不等式的恒成立问题的常见类型及其解法:(1)分享参数法运用“max min ()(),()()f x a f x a f x a f x a ≤⇔≤≥⇔≥”可解决恒成立中的参数范围问题.求最值的思路:利用基本不等式和不等式的相关性质解决;将函数解析式用分段函数形式表示,作出函数图象,求得最值;利用性质“||||||||||||a b a b a b -≤±≤+”求最值.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维和抽象思维各自的优势,可直接解决问题. (三)不等式的证明(1)比较法证明不等式最常用的是差值比较法,其基本步骤是:作差—变形—判断差的符号—下结论.其中“变形”是证明的关键,一般通过因式分解或配方将差式变形为几个因式的积或配成几个代数式平方和的形式,当差式是二次三项式时,有时也可用判别式来判断差值的符号.个别题目也可用柯西不等式来证明.(2)基本不等式:如果a ,b>0,那么2a b+≥,当且仅当a=b 时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.(3)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均数不小于它们的几何平均数,即12nn a a a n+++≥当且仅当a 1=a 2=…=a n 时,等号成立.1.(2020·山西省高三)已知函数()|1||2|f x x x a =++-. (1)若1a =,解不等式()4f x <;(2)对任意的实数m ,若总存在实数x ,使得224()m m f x -+=,求实数a 的取值范围.2.(2020·四川省泸县第二中学高三二模)已知函数()211f x x x =-++. (1)求不等式()2f x x ≤+的解集;(2)若函数()y f x =的最小值记为m ,设0a >,0b >,且有a b m +=.求1212a b +++的最小值. 3.(2020·深圳市宝安中学(集团)高三月考)已知定义在R 上的函数()|1||2|f x x x =++-的最小值为a .(1)求a 的值.(2)若p ,q ,r 为正实数,且p q r a ++=,求证:2223p q r ++≥.4.(2020·江西省高三)已知函数()221f x x x =-+-. (1)求不等式()6f x <的解集;(2)若函数()f x 的最小值为m ,且实数a ,b 满足222a b m +=,求34a b +的最大值. 5.(2020·山西省高三月考)已知函数()|1|2|2|)(R f x x x x =-+-∈,记()f x 得最小值为m . (1)解不等式()5f x ≤;(2)若2a b m +=,求22a b +的最小值.6.(2020·吉林省高三)已知函数()12f x x x =-+(1)在平面直角坐标系中作出函数()f x 的图象,并解不等式()2f x ≥; (2)若不等式()15f x x k +-≥-对任意的x ∈R 恒成立,求证:65k k+≥.7.(2020·山西省高三)已知函数()12f x x x a =++-. (1)若1a =,解不等式()4f x <;(2)对任意的实数m ,若总存在实数x ,使得()224m m f x -+=,求实数a 的取值范围.8.(2020·山西省太原五中高三月考)已知函数()1211f x x x =-+++ (1)求不等式()8f x <的解集;(2)若x R ∀∈,函数()2log f x a ≥恒成立,求实数a 的取值范围.9.(2020·全国高三)设函数()|2|f x x x =+-+,集合M 为不等式()0f x <的解集. (1)求集合M ;(2)当m ,n M ∈时,证明:3mn n ++.10.(2020·山西省高三)已知不等式23x x -<与不等式()20,x mx n m n R -+<∈的解集相同.(1)求m n -;(2)若(),,0,1a b c ∈,且ab bc ac m n ++=-,求222a b c ++的最小值. 11.(2020·重庆高三)已知函数f (x )=|2x ﹣1|﹣3|x +1|,设f (x )的最大值为M . (1)求M ;(2)若正数a ,b 满足3311a b +=Mab ,证明:a 4b +ab 443≥. 12.(2020·福建省高三)已知函数()1f x x a x =-+-. (1)当0a =时,求不等式()1f x ≤的解集A . (2)设()32f x x ≤-的解集为B ,若A B ⊆,求这数a 的值. 13.(2020·福建省高三)已知函数()12f x x x =-+-. (1)求不等式()3f x <的解集I ;(2)当a ,b ,c I ∈时,求证:11191111114333abb cc a++≤+++---.14.(2020·山西省高三)已知函数()2f x x =.(1)求不等式()1f x >的解集; (2)若正数,,a b c 满足24923a b c f ⎛⎫++=+⎪⎝⎭,求149a b c ++的最小值. 15.(2020·山西省太原五中高三月考)已知函数()()0, 0f x x a x b a b =-++>>. (1)当1a b ==时,解不等式()2f x x <+;(2)若()f x 的值域为[)3,+∞,证明:()224281a b b a b +++≥+.16.(2020·山西省高三)已知函数()()220f x x a x a a =-++>. (1)求不等式()3f x a ≥的解集;(2)若()f x 的最小值为()20b b ->17.(2020·陕西省西安中学高三)已知,,a b c R +∈,x R ∀∈,不等式|1||2|x x a b c ---≤++恒成立.(1)求证:22213a b c ++≥(2)求证 18.(2020·江苏省高三)已知x ,y ,z 均为正数,且11131112x y z ++≤+++,求证:4910x y z ++≥. 19.(2019·四川省高三月考)已知函数f (x )=|2x ﹣1|﹣|x +1|. (1)求不等式f (x )≤﹣1的解集M ;(2)结合(1),若m 是集合M 中最大的元素,且a +b =m (a >0,b >0),求+ 20.(2020·广东省高三月考) 已知函数()()20,0f x x a x b a b =-++>>. (1)当1a b ==时,解不等式()2f x x ≥-;(2)若函数()f x 的值域为[)2,+∞,求2242a b b a+的最小值. 21.(2020·宁夏回族自治区银川一中高三)已知()12f x x x =-+-. (1)求使得()2f x >的x 的取值集合M ;(2)求证:对任意实数a ,()0b a ≠,当R x C M ∈时,()a b a b a f x ++-≥恒成立. 22.(2020·河南省高三三模)已知是a ,b ,c 正实数,且21a b c ++=.()1求111abc++的最小值;()2求证:22216a b c ++≥. 23.(2020·江西省高三三模)已知()|||1|.f x k x x =+- (Ⅰ)若2k =,解不等式()5f x ≤.(Ⅱ)若关于x 的不等式()|1||22|f x x x ≤++-的充分条件是1,22x ⎡∈⎤⎢⎥⎣⎦,求k 的取值范围.24.(2020·河北省高三)已知a ,b ,c 为正实数,且a+b+c=1. (Ⅰ)证明:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭; (Ⅱ)证明:32a b c b c a c a b ++≥+++. 25.(2020·南昌市新建一中高三)已知函数()21f x x x =---,函数()421g x x x m =---+-. (1)当()0f x >时,求实数x 的取值范围;(2)当()g x 与()f x 的图象有公共点时,求实数m 的取值范围. 26.(2020·四川省高三三模)已知函数()||f x x a =-.(1)当1a =时,求不等式11()x f x +>的解集; (2)设不等式|21|()x f x x -+的解集为M ,若1,12M ⎡⎤⊆⎢⎥⎣⎦,求实数a 的取值范围. 27.(2020·福建省高三)已知函数()212f x x x =--+,()221g x x m x =-++. (1)求不等式()2f x <的解集;(2)若存在1x ,2x ∈R ,使得()()120f x g x +=,求m 的取值范围. 28.(2020·青海省高三)设函数()21|1|f x x x =---. (1)求不等式()3f x <的解集;(2)若方程2()f x x ax =+有两个不等实数根,求a 的取值范围. 29.(2020·贵州省高三)设函数()16f x x x a =++--. (1)当2a =时,求不等式()0f x ≤的解集; (2)若()23f x a ≥-,求a 的取值范围.30.(2020·重庆高三)已知函数()22f x x x =+-的最小值为m . (1)求m 的值;(2)若实数a ,b 满足22a b m +=,求221112a b+++的最小值. 31.(2020·广州市天河外国语学校高三月考)已知函数()123f x x x =--+. (1)求不等式()1f x <的解集;(2)若存在实数x ,使得不等式()230m m f x --<成立,求实数m 的取值范围. 32.(2020·广东省高三)已知函数()1=-f x x . (1)解不等式()(1)4f x f x ++≥;(2)当0x ≠,x ∈R 时,证明:1()()2f x f x-+≥.33.(2020·福建省高三)已知函数2()1,()|||21|,f x x g x x a x a R =+=---∈.(1)当12a =时,解不等式27()2g x <-;(2)对任意12,x x R ∈,若不等式12()()f x g x ≥恒成立,求实数a 的取值范围. 34.(2020·湖北省高三)已知函数()|4||24|f x x x =--+. (1)解不等式()3f x ;(2)若()f x 的最大值为m ,且2a b c m ++=,其中0a ,0b ,3c >,求(1)(1)(3)a b c ++-的最大值.35.(2020·辽宁省高三三模)已知a ,b ,c 均为正数,设函数f (x )=|x ﹣b |﹣|x +c |+a ,x ∈R . (1)若a =2b =2c =2,求不等式f (x )<3的解集; (2)若函数f (x )的最大值为1,证明:14936a b c++≥. 36.(2020·广西柳城县中学高三)设函数()133f x x x a a =-+-+,x ∈R . (1)当1a =时,求不等式()7f x >的解集; (2)对任意m R +∈,x ∈R 恒有()49f x m m≥--,求实数a 的取值范围. 37.(2020·安徽相山淮北一中高三月考)已知函数()|2|f x ax =-. (Ⅰ)当4a =时,求不等式()|42|8f x x ++≥的解集;(Ⅱ)若[2,4]x ∈时,不等式()|3|3f x x x +-≤+成立,求a 的取值范围. 38.(2020·河南高三月考)已知函数()21f x x x =--+.(1)解不等式()2f x <;(2)若正实数m ,n 满足3m n +=,试比较122m n +与()32f x -的大小,并说明理由. 39.(2020·湖南衡阳市八中高三)已知实数正数x ,y 满足1x y +=.(1)解关于x 的不等式522x y x y ++-≤; (2)证明:2211119x y ⎛⎫⎛⎫--≥ ⎪⎪⎝⎭⎝⎭. 40.(2020·湖南雨花雅礼中学高三)已知函数()33f x x a x =-++. (1)若3a =,解不等式()6f x ≤;(2)若不存在实数x ,使得()162f x a x ≤--+,求实数a 的取值范围. 41.(2020·湖北黄州黄冈中学高三)已知()3f x x x =+-. (1)求不等式()5xf x x>的解集; (2)若()f x 的最小值为M ,且22a b c M ++=(a ,b ,c ∈R ),求证:2221a b c ++≥. 42.(2020·湖北黄州黄冈中学高三)已知1()||f x x a x a=++-. (1)当1a =时,求不等式()6f x 的解集M ; (2)若a M ∈,求证:10()3f x . 43.(2020·河北桃城衡水中学高三三模)已知函数()11f x x a x =+--. (1)当2a =-时,解不等式()5f x >; (2)若()3f x a x ≤+,求a 的最小值.44.(2020·宁夏原州固原一中高三)已知函数()|3|2f x x =+-. (1)解不等式|()|4f x <;(2)若x R ∀∈,2()|1|41f x x t t ≤--+-恒成立,求实数t 的取值范围. 45.(2020·河南郑州一中高三)已知a ,b ,c 为正实数,且满足a +b +c =1.证明:(1)|a 12-|+|b +c ﹣1|12≥; (2)(a 3+b 3+c 3)(222111a b c ++)≥3. 46.(2020·贵州贵阳一中高三)已知函数()3f x x x a =--.(1)当0a =时,求解关于x 的不等式2()10f x x +->的解集;(2)当[]2,3x ∈时,该不等式()1f x ≥-恒成立,求a 的取值范围.47.(2020·云南红河高三)已知函数()|1||1|f x x x =++-.(Ⅰ)求不等式()8f x ≤的解集M ;(Ⅱ)若m 为M 中的最大元素,正数a ,b 满足.12m a b +=,证明2142a b ab ++≥.48.(2020·重庆九龙坡高三)已知函数()f x =(1)求()f x 的最大值;(2)若关于x 的不等式()|1|f x a -有解,求实数a 的取值范围.49(2019·河北辛集中学高三月考)已知函数()43f x x x =-++.(1)解不等式()9f x <;(2)若不等式()21f x a <-+在实数R 上的解集不是空集,求正数a 的取值范围.50.(2020·河南南阳高三二模)已知a ,b ,c 均为正实数,函数222111()4f x x x a b c =+-++的最小值为1.证明:(1)22249a b c ++≥;(2)111122ab bc ac++≤. 51.(2020·河南高三)已知函数()221f x x x =-++.(1)求不等式()4f x ≤的解集;(2)若函数()1y f x x =++的最小值为k ,求()220km m m+>的最小值. 52.(2020·安徽六安一中高三)已知()()2f x x m m m R =-+∈.(1)若不等式()2f x ≤的解集为13,22⎡⎤⎢⎥⎣⎦,求m 的值; (2)在(1)的条件下,若a ,b ,c +∈R ,且4a b c m ++=,求证:4436ac bc ab abc ++≥. 53.(2020·辽宁实验中学高三)设函数()|21|f x x =-.(1)设()(1)5f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b c a b c---⋅⋅≥. 54.(2020·安徽芜湖高三一模)设,,x y z ∈R ,且1x y z ++=.(1)证明:22213x y z ++≥; (2)求()()()222111x y z -++++的最小值.55.(2020·河南高三)已知函数()2f x x a x =-++.(1)当1a =时,求不等式()7f x ≤的解集;(2)若0x R ∃∈,()03f x a ≤-,求实数a 的取值范围.56.(2020·河南开封高三二模)已知函数()2231f x x x =+--.(1)求函数()f x 的最大值M ;(2)已知0a >,0b >,4a b M +=,求2221a b a b +++的最大值. 57.(2020·福建高三)已知函数()12f x x x =-+-.(1)求不等式()3f x <的解集I ;(2)当a ,b ,c I ∈时,求证:11191111114333a b b c c a ++≤+++---.58.(2020·湖南雅礼中学高三月考)已知不等式15|2|22x x -++≤的解集为M . (1)求集合M ; (2)设集合M 中元素的最大值为t .若0a >,0b >,0c >,满足111223t a b c ++=,求2993a b c ++的最小值.59.(2020·甘肃省静宁县第一中学高三)已知函数()211f x x x =++-. (1)解不等式()3f x ≥;(2)记函数()f x 的最小值为m ,若,,a b c 均为正实数,且122a b c m ++=,求222a b c ++的最小值. 60.(2020·广东东莞高三)已知函数1()|||3|2()2f x x k x k R =-++-∈. (1)当1k =时,解不等式()1f x ≤;(2)若()f x x 对于任意的实数x 恒成立,求实数k 的取值范围.。

高三数学不等式选讲试题

高三数学不等式选讲试题

高三数学不等式选讲试题1.设a、b、c为正数,a+b+9c2=1,则的最大值是,此时a+b+c= .【答案】【解析】由柯西不等式得,所以,当且仅当且,即,所以的最大值是,此时.【考点】柯西不等式.2.已知函数.(1)解不等式:;(2)当时,不等式恒成立,求实数的取值范围.【答案】(1);(2)【解析】(1)由函数,及解不等式,通过将x的区间分为3类可解得结论.(2)由当时,不等式恒成立,令函数.所以原题等价于,由.通过绝对值不等式的公式即可得到函数的最大值,再通过解绝对值不等式可得结论.(1)原不等式等价于:当时,,即.当时,,即当时,,即.综上所述,原不等式的解集为. 4分(2)当时,=所以 7分【考点】1.绝对值不等式.2.恒成立问题.3.分类的数学思想.3.若对任意正实数,不等式恒成立,则实数的最小值为.【答案】【解析】因为对任意正实数,不等式恒成立,所以,因此【考点】不等式恒成立4.设,则的最小值为。

【答案】9【解析】由柯西不等式可知。

5.设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤(2).【答案】(1)见解析;(2)见解析.【解析】(1)由得.由题设得,即.所以3(ab+bc+ca)≤1,即.(2)因为+b≥2a,+c≥2b,+a≥2c,故+(a+b+c)≥2(a+b+c),即≥a+b+c,所以.6.已知函数f(x)=|x-a|,其中a>1.(1)当a=2时,求不等式f(x)≥4-|x-4|的解集;(2)已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求a的值.【答案】(1){x|x≤1或x≥5}.(2)3【解析】(1)当a=2时, f(x)+|x-4|=当x≤2时,由f(x)≥4-|x-4|得-2x+6≥4,解得x≤1;当2<x<4时, f(x)≥4-|x-4|无解;当x≥4时,由f(x)≥4-|x-4|得2x-6≥4,解得x≥5;所以f(x)≥4-|x-4|的解集为{x|x≤1或x≥5}.(2)记h(x)=f(2x+a)-2f(x),则h(x)=由|h(x)|≤2,解得≤x≤又已知|h(x)|≤2的解集为{x|1≤x≤2}.所以=1且=2于是a=3.7.满足不等式的的取值范围是________.【答案】{或}【解析】不等式等价于,即,故的取值范围是.【考点】解不等式.8.不等式2x2﹣x﹣1>0的解集是()A.B.(1,+∞)C.(﹣∞,1)∪(2,+∞)D.∪(1,+∞)【答案】D【解析】原不等式同解于(2x+1)(x﹣1)>0∴x>1或x<故选:D9.如图,有一块锐角三角形的玻璃余料,欲加工成一个面积不小于cm2的内接矩形玻璃(阴影部分),则其边长(单位:cm)的取值范围是()A.B.C.D.【答案】D【解析】设矩形的另一边长为,由图,三角形相似可知,,解得,则矩形面积,解得,故选D.【考点】1.一元二次不等式的求解.10.下列不等式成立的是()A.log32<log25<log23B.log32<log23<log25C.log23<log32<log25D.log23<log25<log32【答案】B【解析】选B.因为log32<log33=1,log23>log22=1,所以log32<log23,又因为log23<log25,所以log32<log23<log25.11.设a,b∈R,若a-|b|>0,则下列不等式正确的是()A.b-a>0B.a3+b3<0C.a2-b2<0D.b+a>0【答案】D【解析】选D.因为a-|b|>0,所以a>|b|≥0.所以不论b正或b负均有a+b>0.12.已知a,b,c为三角形的三边长,则a2与ab+ac的大小关系是.【答案】a2<ab+ac【解析】因为a,b,c为三角形的三边长,所以a<b+c,又因为a>0,所以a2<a(b+c),即a2<ab+ac.13.实数x,y,z满足x2-2x+y=z-1且x+y2+1=0,试比较x,y,z的大小.【答案】z≥y>x【解析】x2-2x+y=z-1⇒z-y=(x-1)2≥0⇒z≥y;x+y2+1=0⇒y-x=y2+y+1=+>0⇒y>x,故z≥y>x.14.若正数a,b满足ab=a+b+3,则ab的取值范围是.【答案】[9,+∞)【解析】令=t(t>0),由ab=a+b+3≥2+3,则t2≥2t+3,所以t≥3或t≤-1(舍去),所以≥3,ab≥9,当a=b=3时取等号.15.若a,b,c为正数,且a+b+c=1,则++的最小值为()A.9B.8C.3D.【答案】A【解析】选A.因为a,b,c为正数,且a+b+c=1,所以a+b+c≥3,所以0<abc≤,≥27,所以++≥3≥3=9.当且仅当a=b=c=时等号成立.16.已知x+2y+3z=6,则2x+4y+8z的最小值为()A.3B.2C.12D.12【答案】C【解析】选C.因为2x>0,4y>0,8z>0,所以2x+4y+8z=2x+22y+23z≥3=3=3×4=12.当且仅当2x=22y=23z,即x=2y=3z,即x=2,y=1,z=时取等号.17.若记号“*”表示求两个实数a与b的算术平均的运算,即a*b=,则两边均含有运算“*”和“+”,且对任意3个实数a,b,c都能成立的一个等式可以是.【答案】a+(b*c)=(a+b)*(a+c)【解析】由题意知a+(b*c)=a+=,(a+b)*(a+c)==,所以a+(b*c)=(a+b)*(a+c).18.已知x,y均为正数,且x>y,求证:2x+≥2y+3.【答案】见解析【解析】【证明】因为x>0,y>0,x-y>0,2x+-2y=2(x-y)+=(x-y)+(x-y)+≥3=3,所以2x+≥2y+3.19.已知函数f(x)=|x-3|-2,g(x)=-|x+1|+4.若函数f(x)-g(x)≥m+1的解集为R,求m的取值范围.【答案】(-∞,-3]【解析】【解题指南】本题关键是转化题中的条件为求f(x)-g(x)的最小值,求解时结合绝对值三角不等式.f(x)-g(x)=|x-3|+|x+1|-6,解:因为x∈R,由绝对值三角不等式得f(x)-g(x)=|x-3|+|x+1|-6=|3-x|+|x+1|-6≥|(3-x)+(x+1)|-6=4-6=-2,于是有m+1≤-2,得m≤-3,即m的取值范围是(-∞,-3].20.已知函数f(x)=|x-a|.(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.【答案】(1)a=2(2){m|m≤5}【解析】(1)由f(x)≤3得|x-a|≤3,解得a-3≤x≤a+3.又已知不等式f(x)≤3的解集为{x|-1≤x≤5},所以解得a=2.(2)当a=2时,f(x)=|x-2|,设g(x)=f(x)+f(x+5),于是g(x)=|x-2|+|x+3|≥|(2-x)+(x+3)|=5,当且仅当(2-x)(x+3)≥0即当-3≤x≤2时等号成立.所以实数m的取值范围是{m|m≤5}.21.设a、b∈R+,试比较与的大小.【答案】≥【解析】∵()2-=≥0,∴≥22.若a、b、c∈R+,且a+b+c=1,求++的最大值.【答案】【解析】(1·+1·+1·)2≤(12+12+12)(a+b+c)=3,即++的最大值为23.若a、b∈R+,且a≠b,M=+,N=+,求M与N的大小关系.【答案】M>N【解析】∵a≠b,∴+>2,+>2,∴+++>2+2,即+>+,即M>N.24.已知a>0,求证:-≥a+-2.【答案】见解析【解析】要证-≥a+-2,只需证+2≥a++,只需证a2++4+4≥a2++2+2+2,即证2≥,只需证4≥2,即证a2+≥2,此式显然成立.∴原不等式成立.25.已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].(1)求m的值;(2)若a,b,c∈R,且=m,求证:a+2b+3c≥9.【答案】(1)m=1(2)见解析【解析】(1)∵f(x+2)=m-|x|≥0,∴|x|≤m,∴m≥0,-m≤x≤m,∴f(x+2)≥0的解集是[-1,1],故m=1.(2)由(1)知=1,a、b、c∈R,由柯西不等式得a+2b+3c=(a+2b+3c)≥(·+·+·)2=9.26.已知x,y,z∈R+,且x+y+z=1(1)若2x2+3y2+6z2=1,求x,y,z的值.(2)若2x2+3y2+tz2≥1恒成立,求正数t的取值范围.【答案】(1)x=,y=,z=(2)t≥6【解析】(1)∵(2x2+3y2+6z2)()≥(x+y+z)2=1,当且仅当时取“=”.∴2x=3y=6z,又∵x+y+z=1,∴x=,y=,z=.(2)∵(2x2+3y2+tz2)≥(x+y+z)2=1,∴(2x2+3y2+tz2)min=.∵2x2+3y2+tz2≥1恒成立,∴≥1.∴t≥6.27.设a,b,c均为正数,证明:++≥a+b+c.【答案】见解析【解析】证明:方法一:+++a+b+c=(+b)+(+c)+(+a)≥2a+2b+2c,当且仅当a=b=c时等号成立.即得++≥a+b+c.方法二:利用柯西不等式的一般形式得|a1b1+a2b2+a3b3|≤.取a1=,a2=,a3=,b1=,b2=,b3=代入即证.28.已知a,b,c∈(1,2),求证:++≥6.【答案】见解析【解析】证明:∵≥=,≥=,≥=.∴y=++≥++.又由柯西不等式可得[(a-b+1)+(b-c+1)+(c-a+1)](++)≥18,即++≥=6.∴y=6,当且仅当a=b=c=时取到最小值,min原不等式得证.29.“a<4”是“对任意的实数x,|2x-1|+|2x+3|≥a成立”的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分也非必要条件【答案】B【解析】因为|2x-1|+|2x+3|≥a,所以,根据不等式的几何意义可知,在数轴上点x到点和-的距离之和≥2,所以当a<4时,有<2,所以不等式成立,此时为充分条件要使|2x-1|+|2x+3|≥a恒成立,即恒成立,则有≤2,即a≤4综上,“a<4”是“|2x-1|+|2x+3|≥a成立”的充分不必要条件,故选B.30.已知函数f(x)=|2x-a|+a.若不等式f(x)≤6的解集为{x|-2≤x≤3},则实数a的值为________.【答案】a=1【解析】由|2x-a|+a≤6得,|2x-a|≤6-a,∴a-6≤2x-a≤6-a,即a-3≤x≤3,∴a-3=-2,∴a=1.31.已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)·(bm+an)的最小值为________.【答案】2.【解析】∵a,b,m,n∈R+,且a+b=1,mn=2,∴(am+bn)( bm+an)=abm2+a2mn+b2mn+abn2=ab(m2+n2)+2(a2+b2)≥2ab·mn+2(a2+b2) =4ab+2(a2+b2)=2(a2+b2+2ab)=2(a+b)2=2,当且仅当m=n=时,取“=”.∴所求最小值为2.32.设函数f(x)=|x-1|+|x-2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a-b|≥|a|f(x)( a≠0,a,b∈R)恒成立,求实数x的取值范围.【答案】(1)(2)≤x≤【解析】(1)f(x)=图象如图.(2)由|a+b|+|a-b|≥|a|f(x)得≥f(x).又因为≥=2.则有2≥f(x).解不等式2≥|x-1|+|x-2|得≤x≤. 即x的取值范围为≤x≤33. (1)设x≥1,y≥1,证明x+y+≤++xy;(2)1<a≤b≤c,证明loga b+logbc+logca≤logba+logcb+logac.【答案】(1)见解析(2)见解析【解析】(1)由于x≥1,y≥1,要证x+y+≤++xy,只需证xy(x+y)+1≤y+x+(xy)2.因为[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).由条件x≥1,y≥1,得(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.(2)设loga b=x,logbc=y,由对数的换底公式得logca=,logba=,logcb=,logac=xy.于是,所要证明的不等式即为x+y+≤++xy.其中x=loga b≥1,y=logbc≥1.故由(1)可知所要证明的不等式成立.34.若对任意的a∈R,不等式|x|+|x-1|≥|1+a|-|1-a|恒成立,则实数x的取值范围是________.【答案】x≤-或x≥【解析】由|1+a|-|1-a|≤2得|x|+|x-1|≥2,当x<0时,-x+1-x≥2,x≤-;当0≤x≤1时,x+1-x≥2,无解;当x>1时,x+x-1≥2,x≥.综上,x≤-或x≥35.在R上定义运算,若关于的不等式的解集是的子集,则实数a的取值范围是()A.B.C.或D.【答案】D【解析】,设A为关于的不等式的解集,当A为时,则即;当即时,,则即,所以;当即时,,则即,所以;综上可知.【考点】新定义、含参数不等式的解法.36.设实数均不小于1,且,则的最小值是.(是指四个数中最大的一个)【答案】9【解析】设,则,当时上式两等号都能取到,所以的最小值为9.【考点】多元函数最值的求法.37.[选修4 - 5:不等式选讲](本小题满分10分)设,实数满足,求证:.【答案】.【解析】,,又. 10分【考点】本题主要考查绝对值不等式的证明,绝对值不等式的性质。

高考数学各地模拟汇编--数学选修4-5不等式选讲(有答案)

高考数学各地模拟汇编--数学选修4-5不等式选讲(有答案)

高中数学选修4-5不等式选讲一.解答题(共30小题)1.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.2.(2014•安徽)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{a n}满足a1>,a n+1=a n+a n1﹣p.证明:a n>a n+1>.3.(2014•阜阳一模)已知α,β是方程4x2﹣4tx﹣1=0(t∈R)的两个不等实根,函数的定义域为[α,β].(Ⅰ)求g(t)=maxf(x)﹣minf(x);(Ⅱ)证明:对于,若sinu1+sinu2+sinu3=1,则++<.4.(2014•苏州一模)已知x,y,z均为正数.求证:.5.(2014•长春一模)(选做题)已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.(1)求M;(2)当a,b∈M时,证明:2|a+b|<|4+ab|.6.(2014•长安区三模)设函数f(x)=x﹣a(x+1)ln(x+1),(x>﹣1,a≥0)(Ⅰ)求f(x)的单调区间;(Ⅱ)当a=1时,若方程f(x)=t在上有两个实数解,求实数t的取值范围;(Ⅲ)证明:当m>n>0时,(1+m)n<(1+n)m.7.(2014•赤峰模拟)已知函数f(x)=m﹣|x﹣1|﹣|x﹣2|,m∈R,且f(x+1)≥0的解集为[0,1].(1)求m的值;(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求证:ax+by+cz≤1.8.(2014•濮阳二模)已知函数f(x)=|x﹣1|.(Ⅰ)解不等式f(x﹣1)+f(x+3)≥6;(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:.9.(2014•宁城县模拟)已知a,b,c均为正实数,且ab+bc+ca=1.求证:(Ⅰ)a+b+c≥;(Ⅱ)++≥(++).10.(2014•沈阳一模)已知函数f(x)=lnx,.(Ⅰ)若f(x)与g(x)在x=1处相切,试求g(x)的表达式;(Ⅱ)若在[1,+∞)上是减函数,求实数m的取值范围;(Ⅲ)证明不等式:.11.(2014•梅州一模)已知函数f(x)=ax2+ln(x+1).(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)当x∈[0,+∞)时,函数y=f(x)图象上的点都在所表示的平面区域内,求实数a的取值范围.(Ⅲ)求证:(其中n∈N*,e是自然对数的底数).12.(2014•遵义二模)(1)已知x、y都是正实数,求证:x3+y3≥x2y+xy2;(2)若不等式|a﹣1|≥++对满足x+y+z=1的一切正实数x,y,z恒成立,求实数a的取值范围.13.(2014•红河州模拟)函数f(x)=.(Ⅰ)若a=5,求函数f(x)的定义域A;(Ⅱ)设B={x|﹣1<x<2},当实数a,b∈B∩(∁R A)时,求证:<|1+|.14.(2014•河北模拟)设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,(1)证明:|a+b|<;(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.15.(2014•河北模拟)已知a,b>0,且a+b=1,求证:(Ⅰ)+≥8;(Ⅱ)++≥8.16.(2014•海南模拟)已知a,b均为正数,且a+b=1,证明:(1)(ax+by)2≤ax2+by2(2)(a+)2+(b+)2≥.17.(2013•临汾模拟)已知a2+b2=1,c2+d2=1.(Ⅰ)求证:ab+cd≤1.(Ⅱ)求a+b的取值范围.18.(2014•乌鲁木齐三模)已知a,b,c∈R*,证明:(1)(a+b+c)(a2+b2+c2)≤3(a3+b3+c3);(2)++≥.19.(2014•淮安模拟)已知a,b,c均为正数,证明:.20.(2014•南通一模)已知实数x,y满足:,求证:.21.(2014•南通三模)已知x>0,y>0,a∈R,b∈R.求证()2≤.22.(2014•南通模拟)设a,b,c,d∈R,求证:+≥,等号当且仅当ad=bc 时成立.23.(2014•昆明一模)已知a,b,c均为正数.(Ⅰ)求证:a2+b2+()2≥4;(Ⅱ)若a+4b+9c=1,求证:≥100.24.(2014•贵州二模)设不等式|x﹣2|<m(m∈N+)的解集为A,且∈A,∉A.(Ⅰ)求m的值;(Ⅱ)若a,b,c∈R+,且a+b+c=,求证:++≥9.25.(2014•盐城二模)已知x,y∈R,且|x+y|≤,|x﹣y|≤,求证:|x+5y|≤1.26.(2014•盐城一模)已知x1,x2,x3为正实数,若x1+x2+x3=1,求证:.27.(2014•福建模拟)已知f(x)=aln(x+1)++3x﹣1.(1)若x≥0时,f(x)≥0恒成立,求实数a的取值范围;(2)求证:ln(2n+1)对一切正整数n均成立.28.(2014•静安区一模)(理)(1)设x、y是不全为零的实数,试比较2x2+y2与x2+xy的大小;(2)设a,b,c为正数,且a2+b2+c2=1,求证:++﹣≥3.29.(2013•泰州三模)选修4﹣5:不等式选讲已知a>0,b>0,n∈N*.求证:.30.(2013•盐城二模)(选修4﹣5:不等式选讲)若,证明.参考答案与试题解析一.解答题(共30小题)1.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.解答:证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.点评:本题考查不等式的证明,正确运用均值不等式是关键.2.(2014•安徽)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{a n}满足a1>,a n+1=a n+a n1﹣p.证明:a n>a n+1>.考点:不等式的证明;数列与不等式的综合;分析法和综合法.专题:函数思想;点列、递归数列与数学归纳法.分析:第(Ⅰ)问中,可构造函数f(x)=(1+x)p﹣(1+px),求导数后利用函数的单调性求解;对第(Ⅱ)问,从a n+1着手,由a n+1=a n+a n1﹣p,将求证式进行等价转化后即可解决,用相同的方式将a n>a n+1进行转换,设法利用已证结论证明.解答:证明:(Ⅰ)令f(x)=(1+x)p﹣(1+px),则f′(x)=p(1+x)p﹣1﹣p=p[(1+x)p﹣1﹣1].①当﹣1<x<0时,0<1+x<1,由p>1知p﹣1>0,∴(1+x)p﹣1<(1+x)0=1,∴(1+x)p﹣1﹣1<0,即f′(x)<0,∴f(x)在(﹣1,0]上为减函数,∴f(x)>f(0)=(1+0)p﹣(1+p×0)=0,即(1+x)p﹣(1+px)>0,∴(1+x)p>1+px.②当x>0时,有1+x>1,得(1+x)p﹣1>(1+x)0=1,∴f′(x)>0,∴f(x)在[0,+∞)上为增函数,∴f(x)>f(0)=0,∴(1+x)p>1+px.综合①、②知,当x>﹣1且x≠0时,都有(1+x)p>1+px,得证.(Ⅱ)先证a n+1>.∵a n+1=a n+a n1﹣p,∴只需证a n+a n1﹣p>,将写成p﹣1个相加,上式左边=,当且仅当,即时,上式取“=”号,当n=1时,由题设知,∴上式“=”号不成立,∴a n +a n 1﹣p >,即a n+1>.再证a n >a n+1. 只需证a n >a n +a n 1﹣p ,化简、整理得a n p >c ,只需证a n >c.由前知a n+1>成立,即从数列{a n }的第2项开始成立,又n=1时,由题设知成立,∴对n ∈N *成立,∴a n >a n+1.综上知,a n >a n+1>,原不等式得证.点评: 本题是一道压轴题,考查的知识众多,涉及到函数、数列、不等式,利用的方法有分析法与综合法等,综合性很强,难度较大.3.(2014•阜阳一模)已知α,β是方程4x 2﹣4tx ﹣1=0(t ∈R )的两个不等实根,函数的定义域为[α,β].(Ⅰ)求g (t )=maxf (x )﹣minf (x ); (Ⅱ)证明:对于,若sinu 1+sinu 2+sinu 3=1,则++<.考点:不等式的证明;函数的最值及其几何意义. 专题:计算题;证明题. 分析: (Ⅰ)先设α≤x 1<x 2≤β,则4x 12﹣4tx 1﹣1≤0,4x 22﹣4tx 2﹣1≤0,利用单调函数的定义证明f (x )在区间[α,β]上是增函数.从而求得函数f (x )的最大值与最小值,最后写出g (t ) (Ⅱ)先证:从而利用均值不等式与柯西不等式即得:++<.解答: 解:(Ⅰ)设α≤x 1<x 2≤β,则4x 12﹣4tx 1﹣1≤0,4x 22﹣4tx 2﹣1≤0,∴则又故f (x )在区间[α,β]上是增函数.(3分) ∵,∴=(6分)(Ⅱ)证:(9分)∴(15分)∵,而均值不等式与柯西不等式中,等号不能同时成立,∴++<.(14分)点评: 本题主要考查了不等式的证明、函数的最值及其几何意义,解答关键是利用函数单调性求最值及均值不等式与柯西不等式的灵活运用.4.(2014•苏州一模)已知x ,y ,z 均为正数.求证:.考点: 不等式的证明.专题:常规题型;压轴题;综合法.分析:分别对,,进行化简分析,得出与的关系,然后三个式子左右分别相加除以2即可得到结论.解答:证明:因为x,y,z都是为正数,所以①同理可得②③当且仅当x=y=z时,以上三式等号都成立.将上述三个不等式两边分别相加,并除以2,得:点评:本题考查不等式的证明,涉及基本不等式的应用,属于中档题.5.(2014•长春一模)(选做题)已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.(1)求M;(2)当a,b∈M时,证明:2|a+b|<|4+ab|.考点:不等式的证明;带绝对值的函数.专题:综合题;压轴题.分析:(Ⅰ)将函数写成分段函数,再利用f(x)<4,即可求得M;(Ⅱ)利用作差法,证明4(a+b)2﹣(4+ab)2<0,即可得到结论.解答:(Ⅰ)解:f(x)=|x+1|+|x﹣1|=当x<﹣1时,由﹣2x<4,得﹣2<x<﹣1;当﹣1≤x≤1时,f(x)=2<4;当x>1时,由2x<4,得1<x<2.所以M=(﹣2,2).…(5分)(Ⅱ)证明:当a,b∈M,即﹣2<a,b<2,∵4(a+b)2﹣(4+ab)2=4(a2+2ab+b2)﹣(16+8ab+a2b2)=(a2﹣4)(4﹣b2)<0,∴4(a+b)2<(4+ab)2,∴2|a+b|<|4+ab|.…(10分)点评:本题考查绝对值函数,考查解不等式,考查不等式的证明,解题的关键是将不等式写成分段函数,利用作差法证明不等式.6.(2014•长安区三模)设函数f(x)=x﹣a(x+1)ln(x+1),(x>﹣1,a≥0)(Ⅰ)求f(x)的单调区间;(Ⅱ)当a=1时,若方程f(x)=t在上有两个实数解,求实数t的取值范围;(Ⅲ)证明:当m>n>0时,(1+m)n<(1+n)m.考点:不等式的证明;利用导数研究函数的单调性.专题:综合题;压轴题.分析:(Ⅰ)求导数,再利用导数大于0,求函数的单调区间;(Ⅱ)由(Ⅰ)知,f(x)在上单调递增,在[0,1]上单调递减可得解(Ⅲ)根据要证明的结论,利用分析法来证明本题,从结论入手,要证结论只要证明后面这个式子成立,两边取对数,构造函数,问题转化为只要证明函数在一个范围上成立,利用导数证明函数的性质.解答:解:(Ⅰ)f′(x)=1﹣aln(x+1)﹣a①a=0时,f′(x)>0∴f(x)在(﹣1,+∞)上是增函数…(1分)②当a>0时,f(x)在上递增,在单调递减.…(4分)(Ⅱ)由(Ⅰ)知,f(x)在上单调递增,在[0,1]上单调递减又∴∴当时,方程f(x)=t有两解…(8分)(Ⅲ)要证:(1+m)n<(1+n)m只需证nln(1+m)<mln(1+n),只需证:设,则…(10分)由(Ⅰ)知x﹣(1+x)ln(1+x),在(0,+∞)单调递减…(12分)∴x﹣(1+x)ln(1+x)<0,即g(x)是减函数,而m>n∴g(m)<g(n),故原不等式成立.…(14分)点评:考查不等式的证明,考查化归思想,考查构造函数,是一个综合题,题目难度中等,在证明不等式时,注意采用什么形式,选择一种合适的写法7.(2014•赤峰模拟)已知函数f(x)=m﹣|x﹣1|﹣|x﹣2|,m∈R,且f(x+1)≥0的解集为[0,1].(1)求m的值;(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求证:ax+by+cz≤1.考点:不等式的证明.专题:高考数学专题.分析:第(1)问中,分离m,由|x|+|x﹣1|≥1确定将m分“m<1”与“m≥1”进行讨论;(2)中,可利用重要不等式将x2+a2与ax联系,y2+b2与by联系,z2+c2与cz联系.解答:解:(1)由f(x+1)≥0得|x|+|x﹣1|≤m.若m<1,∵|x|+|x﹣1|≥1恒成立,∴不等式|x|+|x﹣1|≤m的解集为∅,不合题意.若m≥1,①当x<0时,得,∴;②当0≤x≤1时,得x+1﹣x≤m,即m≥1恒成立;③当x>1时,得,∴1,综上可知,不等式|x|+|x﹣1|≤m的解集为[,].由题意知,原不等式的解集为[0,1],∴解得m=1.(2)证明:∵x2+a2≥2xa,y2+b2≥2yb,z2+c2≥2zc,以上三式相加,得x2+y2+z2+a2+b2+c2≥2xa+2yb+2zc.由题设及(1),知x2+y2+z2=a2+b2+c2=m=1,∴2≥2(xa+yb+zc),即ax+by+cz≤1,得证.点评:本题难度与高考相当,第(1)问考查了分段讨论法解绝对值不等式,对参数的讨论是前提;第(2)问要求学生掌握不等式的基本性质,关键是联系第一问求解.8.(2014•濮阳二模)已知函数f(x)=|x﹣1|.(Ⅰ)解不等式f(x﹣1)+f(x+3)≥6;(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:.考点:不等式的证明;绝对值不等式;绝对值不等式的解法.专题:不等式选讲.分析:(Ⅰ)根据绝对值不等式的解法解不等式f(x﹣1)+f(x+3)≥6即可;(Ⅱ)利用分析法进行证明不等式.解答:解:(I)∵f(x)=|x﹣1|.∴不等式f(x﹣1)+f(x+3)≥6等价|x﹣2|+|x+2|≥6,若当x≥2时,不等式等价为x﹣2+x+2≥6,即2x≥6,解得x≥3.当﹣2<x<2时,不等式等价为2﹣x+x+2≥6,即4≥6,此时不成立.当x≤﹣2时,不等式等价为2﹣x﹣x﹣2≥6,即2x≤﹣6,即x≤﹣3.综上不等式的解集为(﹣∞,﹣3]∪[3,+∞).(II)要证,只需证|ab﹣1|>|b﹣a|,只需证(ab﹣1)2>(b﹣a)2而(ab﹣1)2﹣(b﹣a)2=a2b2﹣a2﹣b2+1=(a2﹣1)(b2﹣1)>0,∵|a|<1,|b|<1,∴a2<1,b2<1,即a2﹣1<0,b2﹣1<0,即(a2﹣1)(b2﹣1)>0,成立,从而原不等式成立.点评:本题主要考查绝对值不等式的解法,要注意进行分段讨论.9.(2014•宁城县模拟)已知a,b,c均为正实数,且ab+bc+ca=1.求证:(Ⅰ)a+b+c≥;(Ⅱ)++≥(++).考点:不等式的证明.专题:选作题;不等式选讲.分析:(Ⅰ)由题意可得,只需证(a+b+c)2≥3,只需证a2+b2+c2≥1,只需证a2+b2+c2﹣(ab+bc+ca)≥0,只需证(a﹣b)2+(b﹣c)2+(c﹣a)2≥0;(Ⅱ)由(Ⅰ)知,a+b+c≥,证明++≥(++),只需证明≥++,结合基本不等式,即可得证.解答:证明:(Ⅰ)要证原不等式成立,只需证(a+b+c)2≥3,即证a2+b2+c2+2(ab+bc+ca)≥3,又ab+bc+ca=1.所以,只需证:a2+b2+c2≥1,即a2+b2+c2﹣1≥0,因为ab+bc+ca=1.所以,只需证:a2+b2+c2﹣(ab+bc+ca)≥0,只需证:2a2+2b2+2c2﹣2(ab+bc+ca)≥0,即(a﹣b)2+(b﹣c)2+(c﹣a)2≥0,而(a﹣b)2+(b﹣c)2+(c﹣a)2≥0显然成立,故原不等式成立;(Ⅱ)∵++=,由(Ⅰ)知,a+b+c≥,∴证明++≥(++),只需证明≥++,即证明:+b+c≤ab+bc+ca,∵≤,b≤,c≤,∴+b+c≤ab+bc+ca,∴++≥(++).点评:本题考查用分析法证明不等式,寻找使不等式成立的充分条件,是解题的关键.10.(2014•沈阳一模)已知函数f(x)=lnx,.(Ⅰ)若f(x)与g(x)在x=1处相切,试求g(x)的表达式;(Ⅱ)若在[1,+∞)上是减函数,求实数m的取值范围;(Ⅲ)证明不等式:.考点:不等式的证明;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:不等式的解法及应用.分析:(Ⅰ)求导数,利用f(x)与g(x)在x=1处相切,可求g(x)的表达式;(Ⅱ)在[1,+∞)上是减函数,可得导函数小于等于0在[1,+∞)上恒成立,分离参数,利用基本不等式,可求实数m的取值范围;(Ⅲ)当x≥2时,证明,当x>1时,证明,利用叠加法,即可得到结论.解答:(Ⅰ)解:∵f(x)=lnx,∴,∴,得:a=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)又∵,∴b=﹣1,∴g(x)=x﹣1;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)(Ⅱ)解:∵=在[1,+∞)上是减函数,∴在[1,+∞)上恒成立.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)即x2﹣(2m﹣2)x+1≥0在[1,+∞)上恒成立,由,x∈[1,+∞),∵,∴2m﹣2≤2得m≤2;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(Ⅲ)证明:由(Ⅰ)可得:当x≥2时,,∴得:,∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)∴当x=2时,;当x=3时,;当x=4时,,…,当x=n+1时,,n∈N+,n≥2上述不等式相加得:即:①﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)由(Ⅱ)可得:当m=2时,ϕ(x)=在[1,+∞)上是减函数,∴当x>1时,ϕ(x)<ϕ(1)=0,即<0,所以,从而得到.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)当x=2时,;当x=3时,;当x=4时,,…,当x=n+1时,,n∈N+,n≥2上述不等式相加得:==即②综上:(n∈N+,n≥2)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)点评:本题考查不等式的证明,考查导数知识的运用,考查基本不等式的运用,考查叠加法,考查学生分析解决问题的能力,难度较大.11.(2014•梅州一模)已知函数f(x)=ax2+ln(x+1).(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)当x∈[0,+∞)时,函数y=f(x)图象上的点都在所表示的平面区域内,求实数a的取值范围.(Ⅲ)求证:(其中n∈N*,e是自然对数的底数).不等式的证明;利用导数研究函数的单调性.考点:专综合题.题:分(Ⅰ)把a=﹣代入函数f(x),再对其进行求导利用导数研究函数f(x)的单调区间;析:(Ⅱ)已知当x∈[0,+∞)时,函数y=f(x)图象上的点都在所表示的平面区域内,将问题转化为当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)﹣x≤0恒成立,只要求出ax2+ln(x+1)﹣x的最小值即可,令新的函数,利用导数研究其最值问题;(Ⅲ)由题设(Ⅱ)可知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立,利用此不等式对所要证明的不等式进行放缩,从而进行证明;解解:(Ⅰ)当时,(x>﹣1),答:(x>﹣1),由f'(x)>0解得﹣1<x<1,由f'(x)<0,解得x>1.故函数f(x)的单调递增区间为(﹣1,1),单调递减区间为(1,+∞).(4分)(Ⅱ)因函数f(x)图象上的点都在所表示的平面区域内,则当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)﹣x≤0恒成立,设g(x)=ax2+ln(x+1)﹣x(x≥0),只需g(x)max≤0即可.(5分)由=,(ⅰ)当a=0时,,当x>0时,g'(x)<0,函数g(x)在(0,+∞)上单调递减,故g(x)≤g(0)=0成立.(6分)(ⅱ)当a>0时,由,因x∈[0,+∞),所以,①若,即时,在区间(0,+∞)上,g'(x)>0,则函数g(x)在(0,+∞)上单调递增,g(x)在[0,+∞)上无最大值(或:当x→+∞时,g(x)→+∞),此时不满足条件;②若,即时,函数g(x)在上单调递减,在区间上单调递增,同样g(x)在[0,+∞)上无最大值,不满足条件.(8分)(ⅲ)当a<0时,由,∵x∈[0,+∞),∴2ax+(2a ﹣1)<0,∴g'(x )<0,故函数g (x )在[0,+∞)上单调递减, 故g (x )≤g (0)=0成立.综上所述,实数a 的取值范围是(﹣∞,0].(10分)(Ⅲ)据(Ⅱ)知当a=0时,ln (x+1)≤x 在[0,+∞)上恒成立 (或另证ln (x+1)≤x 在区间(﹣1,+∞)上恒成立),(11分) 又,∵===,∴.(14分)点评: 此题主要考查利用导数研究函数的单调区间和最值问题,解题过程中多次用到了转化的思想,第二题实质还是函数的恒成立问题,第三问不等式的证明仍然离不开前面两问所证明的不等式,利用它们进行放缩证明,本题难度比较大,是一道综合题; 12.(2014•遵义二模)(1)已知x 、y 都是正实数,求证:x 3+y 3≥x 2y+xy 2; (2)若不等式|a ﹣1|≥++对满足x+y+z=1的一切正实数x ,y ,z 恒成立,求实数a 的取值范围.考点: 不等式的证明.专题: 不等式的解法及应用.分析: (1)利用作差法,因式分解,即可得到结论;(2)根据柯西不等式证明++≤3,利用|a ﹣1|≥++对满足x+y+z=1的一切正实数x ,y ,z 恒成立,可得|a ﹣1|,从而可求实数a 的取值范围.解答: (1)证明:由x 3+y 3﹣x 2y ﹣xy 2=x 2(x ﹣y )+y 2(y ﹣x )=(x ﹣y )(x 2﹣y 2)=(x ﹣y )2(x+y )…(3分)又x 、y 都是正实数,∴(x ﹣y )2≥0,x+y >0, ∴x 3+y 3﹣x 2y ﹣xy 2>0, ∴x 3+y 3≥x 2y+xy 2;…(5分)(2)解:由题意,根据柯西不等式有(++)2≤(12+12+12)[()2+()2+()2]=3[3(x+y+z )+3]=3×6=18, ∴++≤3…(3分)又|a ﹣1|≥++对满足x+y+z=1的一切正实数x ,y ,z 恒成立, ∴|a ﹣1|,∴a +1或a ,∴a 的取值范围是(﹣]∪[1+3,+∞).…(5分)点评:本题考查不等式的证明,考查柯西不等式的运用,考查恒成立问题,考查学生分析解决问题的能力,正确运用柯西不等式是关键.13.(2014•红河州模拟)函数f(x)=.(Ⅰ)若a=5,求函数f(x)的定义域A;(Ⅱ)设B={x|﹣1<x<2},当实数a,b∈B∩(∁R A)时,求证:<|1+|.考点:不等式的证明;集合的包含关系判断及应用;函数的定义域及其求法.专题:函数的性质及应用;不等式的解法及应用;集合.分析:(Ⅰ)根据题意,得|x+1|+|x+2|﹣5≥0;求出x的取值范围,即是f(x)的定义域A;(Ⅱ)由A、B求出B∩C R A,即得a、b的取值范围,由此证明成立即可.解答:解:(Ⅰ)a=5时,函数f(x)=,∴|x+1|+|x+2|﹣5≥0;即|x+1|+|x+2|≥5,当x≥﹣1时,x+1+x+2≥5,∴x≥1;当﹣1>x>﹣2时,﹣x﹣1+x+2≥5,∴x∈∅;当x≤﹣2时,﹣x﹣1﹣x﹣2≥5,∴x≤﹣4;综上,f(x)的定义域是A={x|x≤﹣4或x≥1}.(Ⅱ)∵A={x|x≤﹣4或x≥1},B={x|﹣1<x<2},∴∁R A=(﹣4,1),∴B∩C R A=(﹣1,1);又∵,而;当a,b∈(﹣1,1)时,(b2﹣4)(4﹣a2)<0;∴4(a+b)2<(4+ab)2,即.点评:本题考查了求函数的定义域以及集合的运算和不等式的解法与证明问题,是综合题,解题时应把含绝对值的不等式分类讨论,不等式证明时常用作差法,是中档题.14.(2014•河北模拟)设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,(1)证明:|a+b|<;(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.考点:不等式的证明;绝对值不等式的解法.专题:不等式的解法及应用.分析:(1)利用绝对值不等式的解法求出集合M,利用绝对值三角不等式直接证明:|a+b|<;(2)利用(1)的结果,说明ab的范围,比较|1﹣4ab|与2|a﹣b|两个数的平方差的大小,即可得到结果.解答:解:(1)记f(x)=|x﹣1|﹣|x+2|=由﹣2<﹣2x﹣1<0解得﹣<x<,则M=(﹣,).…(3分)∵a、b∈M,∴,所以|a+b|≤|a|+|b|<×+×=.…(6分)(2)由(1)得a2<,b2<.因为|1﹣4ab|2﹣4|a﹣b|2=(1﹣8ab+16a2b2)﹣4(a2﹣2ab+b2)=(4a2﹣1)(4b2﹣1)>0,…(9分)所以|1﹣4ab|2>4|a﹣b|2,故|1﹣4ab|>2|a﹣b|.…(10分)点评:本题考查不等式的证明,绝对值不等式的解法,考查计算能力.15.(2014•河北模拟)已知a,b>0,且a+b=1,求证:(Ⅰ)+≥8;(Ⅱ)++≥8.考点:不等式的证明.专题:证明题;不等式选讲.分析:(Ⅰ)利用a+b=1,通过重要不等式以及基本不等式,推出,然后证明+≥8;(Ⅱ)利用a+b=1,利用1的代换,转化++为+,利用基本不等式即可求证结果.解答:证明:(Ⅰ)∵ab≤()2=,当且仅当a=b时等号成立,∵a+b=1,a=b=,∴.∵+≥≥8,当且仅当a=b=时等号成立,∴+≥8.(5分)(Ⅱ)∵++=++=+++=2(a+b)(+)=4+2()≥4+4=8,当且仅当a=b=时等号成立,∴++≥8.(10分)点评:利用基本不等式以及重要不等式以及“1”的代换,注意“正、定、等”的应用.16.(2014•海南模拟)已知a,b均为正数,且a+b=1,证明:(1)(ax+by)2≤ax2+by2(2)(a+)2+(b+)2≥.考点:不等式的证明.专题:证明题.分析:(1)将所证的关系式作差(ax+by)2﹣(ax2+by2)=a(a﹣1)x2+b(b﹣1)y2+2abxy利用a+b=1,整理,可得a(a﹣1)x2+b(b﹣1)y2+2abxy=﹣ab(x﹣y)2≤0,当且仅当x=y时等号成立;(2)将所证的不等式左端展开,转化为,进一步整理后,利用基本不等式即可证得结论成立.解答:证明:(1))(ax+by)2﹣(ax2+by2)=a(a﹣1)x2+b(b﹣1)y2+2abxy,因为a+b=1,所以a﹣1=﹣b,b﹣1=﹣a,又a,b均为正数,所以a(a﹣1)x2+b(b﹣1)y2+2abxy=﹣ab(x2+y2﹣2xy)=﹣ab(x﹣y)2≤0,当且仅当x=y时等号成立;(2)==.当且仅当a=b时等号成立.点评:本题考查不等式的证明,着重考查作差法的应用,突出考查等价转化思想与逻辑推理能力,属于难题.17.(2013•临汾模拟)已知a2+b2=1,c2+d2=1.(Ⅰ)求证:ab+cd≤1.(Ⅱ)求a+b的取值范围.考点:不等式的证明.专题:综合题;不等式的解法及应用.分析:(Ⅰ)利用综合法,结合基本不等式,即可得出结论;(Ⅱ)设=(a,b),=(1,),利用|⋅|≤||⋅||,可求a+b的取值范围.解答:(I)证明:∵a2+b2≥2ab,c2+d2≥2cd,∴a2+b2+c2+d2≥2(ab+cd),当且仅当a=b=c=d=时取“=”…(2分)又∵a2+b2=1,c2+d2=1∴2(ab+cd)≤2 …(4分)∴ab+cd≤1 …(5分)(Ⅱ)解:设=(a,b),=(1,),∵|⋅|≤||⋅||,…(8分)∴|a+b|≤2=2,∴﹣2≤a+b≤2∴a+b的取值范围为[﹣2,2].…(10分)点评:本题考查不等式的证明,考查求a+b的取值范围,正确运用基本不等式,合理构造向量是关键.18.(2014•乌鲁木齐三模)已知a,b,c∈R*,证明:(1)(a+b+c)(a2+b2+c2)≤3(a3+b3+c3);(2)++≥.考点:不等式的证明.专题:高考数学专题.分析:第(1)问考虑左边展开与右边可抵消一个a2+b2+c2,想到作差比较,项较多,可重新分组进行因式分解;第(2)可通过构造柯西不等式放缩,获取定值.解答:证明:(Ⅰ)右边﹣左边,得3(a3+b3+c3)﹣(a+b+c)(a2+b2+c2)=2(a3+b3+c3)﹣a(b2+c2)﹣b(a2+c2)﹣c(a2+b2).∵a,b∈R*,∴a3+b3﹣a2b﹣ab2=a2(a﹣b)+b2(b﹣a)=(a﹣b)2(a+b)≥0.∴a3+b3≥a2b+ab2,同理,b3+c3≥b2c+bc2,a3+c3≥a2c+ac2,以上三式相加得=2(a3+b3+c3)≥a2b+ab2+b2c+bc2+a2c+ac,∴2(a3+b3+c3)﹣a(b2+c2)﹣b(a2+c2)﹣c(a2+b2)≥0,∴(a+b+c)(a2+b2+c2)≤3(a3+b3+c3).(Ⅱ)∵a,b,c∈R*,∴a+b>0,b+c>0,c+a>0,由柯西不等式得)[(a+b)+(b+c)+(c+a)]≥2=9,即2(a+b+c)(++)≥9,∴2(++)≥3,故++≥,当且仅当a=b=c时,不等式取等号.点评:本题的两小问设置合理,主要考查了不等式的基本性质及变形技巧,作差比较法,柯西不等式等.19.(2014•淮安模拟)已知a,b,c均为正数,证明:.考点:不等式的证明.专题:不等式的解法及应用.分析:两次运用基本不等式即可证明结论.解答:证明:∵a,b,c均为正数,∴左边≥≥2=2=6,当且仅当a=b=c时取等号,∴.点评:本题考查基本不等式的运用,考查学生分析解决问题的能力,正确运用基本不等式是关键.20.(2014•南通一模)已知实数x,y满足:,求证:.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:首先由3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,再结合已知的不等式,即可证得结论.解答:证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,由题设,∴.∴.点评:本题考查不等式的证明,考查学生分析转化问题的能力,属于中档题.21.(2014•南通三模)已知x>0,y>0,a∈R,b∈R.求证()2≤.考点:不等式的证明.专题:不等式的解法及应用.分析:利用“分析法”和不等式的性质即可证明.解答:证明:∵x>0,y>0,∴x+y>0,∴要证,即证(ax+by)2≤(x+y)(a2x+b2y).即证xy(a2﹣2ab+b2)≥0,即证(a﹣b)2≥0,而(a﹣b)2≥0显然成立,故.点评:本题考查了“分析法”和不等式的性质证明不等式,属于基础题.22.(2014•南通模拟)设a,b,c,d∈R,求证:+≥,等号当且仅当ad=bc 时成立.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:运用分析法证明,要证原不等式成立,可考虑两边平方,化简整理,再由柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2,即可得证.解答:证明:要证+≥,即证(+)2≥()2,即为a2+b2+c2+d2+2≥(a+c)2+(b+d)2,化简后,即证≥ac+bd,由柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2,得|ac+bd|≥ac+bd.则原不等式得证.且有原不等式中等号当且仅当ad=bc时成立.点评:本题考查不等式的证明,考查柯西不等式的运用,以及不等式的性质的运用,考查推理能力,属于中档题.23.(2014•昆明一模)已知a,b,c均为正数.(Ⅰ)求证:a2+b2+()2≥4;(Ⅱ)若a+4b+9c=1,求证:≥100.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:利用基本不等式,即可证明结论.解答:证明:(Ⅰ)∵a,b均为正数,∴a2+b2≥2ab,≥,∴a2+b2+≥2ab+,∴a2+b2+()2≥2ab+≥4,当且仅当a=b=时,等号成立.(Ⅱ)∵a+4b+9c=1,∴=(a+4b+9c)()=9+16+9+++≥34+24+18+24=100,当且仅当a=3b=9c时等号成立.点评:本题考查不等式的证明,考查基本不等式的运用,掌握基本不等式的使用条件是关键.24.(2014•贵州二模)设不等式|x﹣2|<m(m∈N+)的解集为A,且∈A,∉A.(Ⅰ)求m的值;(Ⅱ)若a,b,c∈R+,且a+b+c=,求证:++≥9.考点:不等式的证明.专题:选作题;不等式的解法及应用.分析:(Ⅰ)根据∈A,∉A,求出m的范围,结合m∈N+,即可求m的值;(Ⅱ)利用“1”的代换,结合基本不等式,即可得出结论.解答:(Ⅰ)解:由.﹣﹣(4分)∵m∈N+,∴m=1.﹣﹣(5分)(Ⅱ)证明:由(Ⅰ)有:(a,b,c∈R+)又===≥9,∴++≥9﹣﹣(10分)点评:本题考查绝对值不等式的解法,考查不等式的证明,正确运用“1”的代换,基本不等式,是解题的关键.25.(2014•盐城二模)已知x,y∈R,且|x+y|≤,|x﹣y|≤,求证:|x+5y|≤1.考点:不等式的证明;绝对值不等式.专题:证明题.分析:利用x+5y=3(x+y)﹣2(x﹣y),利用绝对值不等式的性质即可证得结论.解答:证明:∵|x+y|≤,|x﹣y|≤,∴|x+5y|=|3(x+y)﹣2(x﹣y)|≤|3(x+y)|+|2(x﹣y)|=3|x+y|+2|x﹣y|≤3×+2×=1.即|x+5y|≤1.点评:本题考查绝对值不等式的性质,分析得到x+5y=3(x+y)﹣2(x﹣y)是应用绝对值不等式性质的关键,考查转化思想与推理论证能力,属于中档题.26.(2014•盐城一模)已知x1,x2,x3为正实数,若x1+x2+x3=1,求证:.考点:不等式的证明.专题:不等式的解法及应用.分析:由基本不等式,可得,,,三式相加,利用x1+x2+x3=1,可得结论.解答:证明:∵x1,x2,x3为正实数,∴,,,∴三式相加,可得+x 3≥2(x 1+x 2+x 3),∵若x 1+x 2+x 3=1,∴.点评: 本题考查基本不等式的运用,考查学生分析解决问题的能力,正确运用基本不等式是关键.27.(2014•福建模拟)已知f (x )=aln (x+1)++3x ﹣1.(1)若x ≥0时,f (x )≥0恒成立,求实数a 的取值范围; (2)求证:ln (2n+1)对一切正整数n 均成立.考点:不等式的证明. 专题:选作题;不等式选讲. 分析:(1)求导数,分类讨论,确定函数的单调性,即可求实数a 的取值范围; (2)由(1)知,x >0时,不等式恒成立,则x >0时,恒成立.令(k ∈N *),.令k=1,2,3,…,n ,叠加,即可证明结论.解答:(1)解:.若a ≥﹣2,则a+6>0,x >0时,f'(x )>0.此时,f (x )在区间[0,+∞)上为增函数. ∴x ≥0时,f (x )≥f (0)=0.a ≥﹣2符合要求.若a <﹣2,则方程3x 2+(a+6)x+a+2=0有两个异号的实根,设这两个实根为x 1,x 2,且x 1<0<x 2. ∴0<x <x 2时,f'(x )<0.f (x )在区间[0,x 2]上为减函数,f (x 2)<f (0)=0. ∴a <﹣2不符合要求.∴a 的取值范围为[﹣2,+∞). (2)证明:由(1)知,x >0时,不等式恒成立.∴x >0时,恒成立.令(k ∈N *),得, 整理得 .∴.令k=1,2,3,…,n ,得,,,…,.将上述n 个不等式的左右两边分别相加,得. ∴对一切正整数n 均成立.点评: 本题考查导数知识的运用,考查函数的单调性,考查不等式的证明,巧妙利用两小题之间的关系,是解题的关键. 28.(2014•静安区一模)(理)(1)设x 、y 是不全为零的实数,试比较2x 2+y 2与x 2+xy 的大小; (2)设a ,b ,c 为正数,且a 2+b 2+c 2=1,求证:++﹣≥3.考点: 不等式的证明;比较法.专题: 证明题;不等式的解法及应用.分析: (1)解法1:利用作差法;解法2:利用分类讨论思想,分xy <0与xy >0讨论即可证得结论;(2)利用作差法,通过通分、分组、配方等一系列转化,即可证得结论.解答: 证明:(1)证法1:∵x 、y 是不全为零的实数,∴2x 2+y 2﹣(x 2+xy ) =x 2+y 2﹣xy=+y 2>0,∴2x 2+y 2>x 2+xy .证法2:当xy <0时,x 2+xy <2x 2+y 2;当xy >0时,作差:x 2+y 2﹣xy ≥2xy ﹣xy=xy >0; 又因为x 、y 是不全为零的实数, ∴当xy=0时,2x 2+y 2>x 2+xy . 综上,2x 2+y 2>x 2+xy . (2)证明:∵++﹣﹣3=++﹣﹣3=a 2(+)+b 2(+)+c 2(+)﹣2(++)=a 2+b 2+c 2≥0(当且仅当a=b=c 时,取得等号),∴++﹣≥3.点评: 本题考查不等式的证明,着重考查作差法,考查通分、配方、分类讨论等方法,运用转化思想,推理证明,属于难题.29.(2013•泰州三模)选修4﹣5:不等式选讲已知a>0,b>0,n∈N*.求证:.考点:综合法与分析法(选修).专题:不等式的解法及应用.分析:先用分析法证明,再利用基本不等式,即可证得成立.解答:证明:先证,只要证2(a n+1+b n+1)≥(a+b)(a n+b n),即要证a n+1+b n+1﹣a n b﹣ab n≥0,即要证(a﹣b)(a n﹣b n)≥0,…(5分)若a≥b,则a﹣b≥0,a n﹣b n≥0,所以,(a﹣b)(a n﹣b n)≥0.若a<b,则a﹣b<0,a n﹣b n<0,所以(a﹣b)(a n﹣b n)>0,综上,可得(a﹣b)(a n﹣b n)≥0,从而.…(8分)因为,所以.…(10分)点评:本题主要考查用分析法证明不等式,基本不等式的应用,属于中档题.30.(2013•盐城二模)(选修4﹣5:不等式选讲)若,证明.考点:不等式的证明;柯西不等式的几何意义.专题:证明题.分析:直接构造18=6×3=[(1+2x)+(3+x)+(2﹣3x)](1+1+1),利用柯西不等式证明即可.解答:证明:因为18=6×3=[(1+2x)+(3+x)+(2﹣3x)](1+1+1),由柯西不等式可得:…(7分)又,所以.…(10分)点评:本题考查柯西不等式的证明方法的应用,构造柯西不等式是解题的关键.。

不等式A+B(有答案)

不等式A+B(有答案)

不等式选讲[基础训练A 组]一、选择题1.下列各式中,最小值等于2的是( )A .x y y x +B .4522++x x C .1tan tan θθ+ D .22x x-+2.若,x y R ∈且满足32x y +=,则3271xy++的最小值是( )A .B .1+C .6D .7 3.设0,0,1x y x y A x y +>>=++, 11x y B x y=+++,则,A B 的大小关系是( )A .AB = B .A B <C .A B ≤D .A B > 4.若,,x y a R +∈,且y x a y x +≤+恒成立,则a 的最小值是( )A .2B C .1 D .125.函数46y x x =-+-的最小值为( )A .2BC .4D .6 6.不等式3529x ≤-<的解集为( )A .[2,1)[4,7)-B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)-二、填空题1.若0a b >>,则1()a b a b +-的最小值是_____________。

2.若0,0,0a b m n >>>>,则b a , a b , m a m b ++, nb n a ++按由小到大的顺序排列为 3.已知,0x y >,且221x y +=,则x y +的最大值等于_____________。

4.设1010101111112212221A =++++++- ,则A 与1的大小关系是_____________。

5.函数212()3(0)f x x x x=+>的最小值为_____________。

三、解答题1.已知1a b c ++=,求证:22213a b c ++≥2.解不等式7340x x +--+>3.求证:221a b ab a b +≥++-4.证明:1)1...<++<不等式选讲 [基础训练A 组]一、选择题1.D20,20,222x x x x -->>∴+≥ 2.D3331117x y ++≥== 3.B 11111x y x y x y B A x y x y y x x y+=+>+==++++++++,即A B < 4.B,)22x y x y +≥+,≥,而y x a y x +≤+,1a ≥恒成立,得12a a ≤≥即5.A 46462y x x x x =-+-≥-+-=6.D 259925927253,2534,1253x x x x x x x x ⎧-<-<-<-<<⎧⎧⎪⇒⇒⎨⎨⎨-≥-≤-≥≤-≥⎩⎩⎪⎩或或,得(2,1][4,7)-二、填空题1.31()3()a b b b a b -++≥=-2.b b m a n a a a m b n b ++<<<++ 由糖水浓度不等式知1b b ma a m+<<+, 且1b b n a a n +<<+,得1a a n b b n +>>+,即1a n ab n b+<<+ 32x yx y +≤+≤=4.1A < 101010101110101010211111111122122212222A =++++<++++=++-个5.92212331212()3922x x f x x x x =+=++=三、解答题1.证明:2222()(222)a b c a b c ab bc ac ++=++-++2222()2()a b c a b c ≥++-++22223()()1a b c a b c ∴++≥++= 22213a b c ∴++≥另法一:22222221()33a b c a b c a b c ++++-=++-2222221(222222)31[()()()]03a b c ab bc ac a b b c a c =++---=-+-+-≥22213a b c ∴++≥另法二:2222222(111)()()1a b c a b c ++++≥++=即2223()1a b c ++≥,22213a b c ∴++≥2.解:原不等式化为73410x x +--+>当43x >时,原不等式为7(34)10x x +-->得5x <,即453x <<; 当473x -≤≤时,原不等式为7(34)10x x ++->得12x >-1423x -<≤; 当7x <-时,原不等式为7(34)10x x +-->得6x >,与7x <-矛盾;所以解为152x -<<3.证明:22()(1)a b ab a b +-++-2222222222211(222222)21[(2)(21)(21)]21[()(1)(1)]02a b ab a b a b ab a b a ab b a a b b a b a b =+---+=+---+=-++-++-+=-+-+-≥221a b ab a b ∴+≥++- 4.证明:<<∴<<1)1...∴<++<不等式选讲 [综合训练B 组]一、选择题1.C 24a c a c a b b c a b b c b c a ba b b c a b b c a b b c ---+--+---+=+=++≥------114a b b c a c ∴+≥---,而ca n cb b a -≥-+-11恒成立,得4n ≤2.C 2(1)1111222222(1)x x y x x x --=+=+≤-=----3.B =>>P R >;又>R Q >,所以P R Q >>4.B 222,()()a ab b a b a b a b ab ++=++-+=,而2()04a b ab +<<所以22()0()()4a b a b a b +<+-+<,得413a b <+<5.D ()()()(1)(1)(1)a b c a b c a b c b c a c a b M a b c abc+++++++++=---=8abc≥=6.A ,a b≠>>>>二、填空题1.3- 13333y x x =--≤-=-max 3y =-2.> 设36log 4,log 7a b ==,则34,67a b==,得7346423abbb⋅=⋅=⋅⋅即4237b a b-⋅=,显然1,22b b >>,则423107b a b a b a b -⋅=>⇒->⇒> 3. 214a 2222222(123)()(23)x yzx y z a ++++≥++=即222214()x y z a ++≥,222214a x y z ∴++≥4.3 1()4M a b c a b d a c d b c d ≥+++++++++++ 3()34a b c d =+++=,即min 3M =5.12 l g l gl g222l g ()1l g l g l g 1x y z x y zx y z⋅⋅≥⇒++≥ 而2222lg lg lg (lg lg lg )2(lg lg lg lg lg lg )x y z x y z x y y z z x ++=++-++2[lg()]2(lg lg lg lg lg lg )12(lg lg lg lg lg lg )1xyz x y y z z x x y y z z x =-++=-++≥即lg lg lg lg lg lg 0x y y z z x ++≤,而lg ,lg ,lg x y z 均不小于0 得lg lg lg lg lg lg 0x y y z z x ++=,此时lg lg 0x y ==,或lg lg 0y z ==,或lg lg 0z x ==, 得1,10x y z ===,或1,10y z x ===,或1,10x z y ===12x y z ++=三、解答题1.解:34(3)(4)1x x x x -+-≥---= min (34)1x x ∴-+-=当1a ≤时,34x x a -+-<解集显然为φ, 所以1a >2.证明:2222222(111)()()a b c a b c ++++≥++2222()39a b c a b c ++++∴≥3a b c++≥3.证明:12112(11)1...12(1)n n n n nn n n n n n C C C C C C n -=+=+++≥+++=+22(1)nn ∴≥+(本题也可以用数学归纳法)4.证明:2222()()1,2a b a b a b c ab c c +-++=-==- ,a b ∴是方程22(1)0x c x c c --+-=的两个不等实根, 则22(1)4()0c c c =---> ,得113c -<< 而2()()()0c a c b c a b c ab --=-++> 即22(1)0c c c c c --+->,得20,3c c <>或 所以103c -<<,即413a b <+<不等式选讲[综合训练B 组]一、选择题1.设,a b c n N >>∈,且ca nc b b a -≥-+-11恒成立,则n 的最大值是( ) A .2 B .3 C .4 D .62. 若(,1)x ∈-∞,则函数22222x x y x -+=-有( )A .最小值1B .最大值1C .最大值1-D .最小值1-3.设P =Q =R =,,P Q R 的大小顺序是( ) A .P Q R >> B .P R Q >> C .Q P R >> D .Q R P >>4.设不等的两个正数,a b 满足3322a b a b -=-,则a b +的取值范围是( ) A .(1,)+∞ B .4(1,)3C .4[1,]3D .(0,1)5.设,,a b c R +∈,且1a b c ++=,若111(1)(1)(1)M a b c=---,则必有( )A .108M ≤<B .118M ≤< C .18M ≤< D .8M ≥6.若,a b R +∈,且,a b M≠=N =M 与N 的大小关系是 A .M N > B .M N < C .M N ≥ D .M N ≤二、填空题1.设0x >,则函数133y x x=--的最大值是__________。

11.2不等式选讲(教师版)

11.2不等式选讲(教师版)

科 目数学 年级 高三 备课人 高三数学组 第 课时 11.2不等式选讲1.(2013 广东文科)不等式13x x +--≥0的解集是 .[1,)+∞. 13x x +--≥0 ⇒1x +≥3x -⇒2(1)x +≥2(3)x -⇒x ≥12.(2013 湖南理科10)设,x y R ∈,则222211()(4)x y y x ++的最小值为 。

答案:9解析:由柯西不等式可知2222211()(4)(12)9x y y x++≥+= 3.(2013 江西理科)(不等式选做题)对于实数y x ,,若11≤-x ,12≤-y ,则12+-y x 的最大值为 .(2)此题,看似很难,但其实不难,首先解出x 的范围,20≤≤x ,再解出y 的范围,31≤≤y ,最后综合解出x-2y+1的范围[]1,5-,那么绝对值最大,就取54(2013 江西文科)对于x R ∈,不等式1028x x +--≥的解集为_______答案:}0{≥x x 解析:两种方法,方法一:分三段,(1)当10-<x 时,不等式为8)2()10(≥----x x ,此时不等式无解;(2)当210≤≤-x 时,不等式为8)2()10(≥--+x x ,解得:20≤≤x(3)当2>x 时,不等式为8)2()10(≥--+x x ,解得:2>x综上:0≥x 方法二:用绝对值的几何意义,可以看成到两点10-和2的距离差大于等于8的所有点的集合,画出数轴线,找到0到10-的距离为=1d 10,到2的距离为=2d 2,821=-d d ,并当x 往右移动,距离差会大于8,所以满足条件的x 的范围是0≥x .5.(2013 山东理)不等式|5x -|+|3x +|10≥的解集为( )(A )[]5,7- (B) []4,6- (C) (][),57,-∞-+∞ (D) (][),46,-∞-+∞【解析】由绝对值的几何意义知, |5x -|+|3x +|表示数轴上的点x 与点5的距离和数轴上的点x 与点-3的距离之和,其距离之和的最小值为8,结合数轴,选D 。

不等式选讲(用基本不等式证明不等式)

不等式选讲(用基本不等式证明不等式)

不等式选讲(用基本不等式证明不等式)一、用基本不等式证明不等式1.(2014年1卷)若0,0a b >>,且11a b +=.证明: (1) 求33a b +的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由.【解析】(I11a b =+≥,得2ab ≥,且当a b == 故33a b+≥≥,且当a b ==时取等号.所以33a b +的最小值为(II )由(I)知,23a b +≥≥6>,从而不存在,a b , 使得236a b +=.2.(2013年2卷)设均为正数,且,证明:(1) (2) 【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得 222a b c ab bc ca ++≥++由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=. 所以()31ab bc ca ++≤,即13ab bc ca ++≤ (Ⅱ)∵2222,2,2a b c b a c b a c b c a+≥+≥+≥ ,,a b c 1a b c ++=13ab bc ca ++≤2221a b c b c a++≥∴222()2()a b c a b c a b c b c a+++++≥++ 即222a b c a b c b c a++≥++ ∴2221a b c b c a++≥3.(2019年1卷)已知a ,b ,c正数,且满足abc=1.证明: (1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.【解析】(1)1abc = 111111abc bc ac ab a b c a b c ⎛⎫∴++=++⋅=++ ⎪⎝⎭ ()()()()2222222222222a b c a b b c c a ab bc ac ++=+++++≥++当且仅当a b c ==时取等号, ()22211122a b c a b c ⎛⎫∴++≥++ ⎪⎝⎭,即:222111a b c a b c ++++≥ (1) ()()()()()()3333a b b c c a a b b c c a +++++≥+++,当且仅当a b c ==时取等号又a b +≥b c +≥a c +≥(当且仅当a b c ==时等号同时成立)()()()3333a b b c c a ∴+++++≥⨯=又1abc()()()33324a b b c c a ∴+++++≥4.已知正数x 、y 、z ,且1xyz =.(1)证明:222x y z y z x y++≥+; (2)证明:()()()22212x y y z z x +++++≥.【详解】(1)因为x 、y 、z 为正数,且1xyz =,所以222x y y z +≥==, 当且仅当32y zx =时等号成立,即4y x =时,等号成立;同理22y z z x +≥,22x z y x +≥22222x y z y z x z y ⎛⎛⎫++≥++ ⎪ ⎝⎭⎝⎭,即222x y z y z x z y++≥+,当且仅当1x y z ===时等号成立;(2)因为()()()222x y y z z x +++++≥由二元均值不等式得x y +≥y z +≥,z x +≥,当且仅当x y z ==时,等号同时成立,所以()24x y xy +≥,()24y z yz +≥,()24z x xz +≥, ()()()()22226464x y y z z x xyz ∴+++≥=,因此,()()()22212x y y z z x +++≥=++,当且仅当1x y z ===时,等号同时成立.【点睛】本题考查利用三元和二元均值不等式证明不等式,考查推理能力,属于中等题.5.(2020年3卷)设a ,b ,c ∈R ,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a ,b ,c}表示a ,b ,c 中的最大值,证明:max{a ,b ,c}.【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=. 当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .。

【高考数学】专题十五 不等式选讲第三十五讲不等式选讲(含答案)

【高考数学】专题十五  不等式选讲第三十五讲不等式选讲(含答案)

专题十五 不等式选讲 第三十五讲 不等式选讲2019年1.(2019全国II 文23)已知()|||2|().f x x a x x x a =−+−− (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈−∞时,()0f x <,求a 的取值范围.2.(2019全国1文23)已知a ,b ,c 为正数,且满足abc =1.证明: (1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.3.(2019全国III 文23)设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z −++++的最小值;(2)若2221(2)(1)()3x y z a −+−+−≥成立,证明:3a ≤−或1a ≥−.2010-2018年解答题1.(2018全国卷Ⅰ)[选修4–5:不等式选讲](10分)已知()|1||1|f x x ax =+−−.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围. 2.(2018全国卷Ⅱ) [选修4-5:不等式选讲](10分)设函数()5|||2|=−+−−f x x a x . (1)当1a =时,求不等式()0≥f x 的解集; (2)若()1≤f x ,求a 的取值范围.3.(2018全国卷Ⅲ) [选修4—5:不等式选讲](10分)设函数()|21||1|f x x x =++−. (1)画出()y f x =的图像;(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.4.(2018江苏)D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值. 5.(2017新课标Ⅰ)已知函数2()4f x x ax =−++,()|1||1|g x x x =++−.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[1,1]−,求a 的取值范围. 6.(2017新课标Ⅱ)已知0a >,0b >,332a b +=,证明:(1)55()()4a b a b ++≥; (2)2a b +≤.7.(2017新课标Ⅲ)已知函数()|1||2|f x x x =+−−.(1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m −+≥的解集非空,求m 的取值范围.8.(2017江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +≤.9.(2016年全国I 高考)已知函数()|1||23|f x x x =+−−.(I )在图中画出()y f x =的图像; (II )求不等式|()|1f x >的解集.10.(2016年全国II )已知函数()1122f x x x =−++,M 为不等式()2f x <的解集. (I )求M ;(II )证明:当a ,b M ∈时,1a b ab +<+. 11.(2016年全国III 高考)已知函数()|2|f x x a a =−+(Ⅰ)当a =2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =−,当x ∈R 时,()()3f x g x +≥,求a 的取值范围. 12.(2015新课标1)已知函数()|1|2||f x x x a =+−−,0a >.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围. 13.(2015新课标2)设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd a b c d >+a b c d >||||a b c d −<− 的充要条件.14.(2014新课标1)若0,0a b >>,且11ab a b+=.(Ⅰ) 求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由. 15.(2014新课标2)设函数()f x =1(0)x x a a a++−>(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.16.(2013新课标1)已知函数()f x =|21||2|x x a −++,()g x =3x +.(Ⅰ)当a =-2时,求不等式()f x <()g x 的解集; (Ⅱ)设a >-1,且当x ∈[2a −,12)时,()f x ≤()g x ,求a 的取值范围. 17.(2013新课标2)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤(Ⅱ)2221a b c b c a++≥18.(2012新课标)已知函数|2|||)(−++=x a x x f .(Ⅰ)当|3−=a 时,求不等式()3f x …的解集;(Ⅱ)若()|4|f x x −…的解集包含]2,1[,求a 的取值范围. 19.(2011新课标)设函数()3f x x a x =−+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集; (Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤− ,求a 的值.专题十五 不等式选讲 第三十五讲 不等式选讲答案部分 2019年1.解:(1)当a =1时,()=|1| +|2|(1)f x x x x x −−−. 当1x <时,2()2(1)0f x x =−−<;当1x ≥时,()0f x ≥. 所以,不等式()0f x <的解集为(,1)−∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈−∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x −−−−−. 所以,a 的取值范围是[1,)+∞.2.解析 (1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c++++≥++==++.所以222111a b c a b c++≤++. (2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c a c3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥. 3.解析(1)由于2[(1)(1)(1)]x y z −++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =−+++++−++++++−2223(1)(1)(1)x y z ⎡⎤≤−++++⎣⎦,故由已知得2224(1)(1)(1)3x y z −++++≥,当且仅当x =53,y =–13,13z =−时等号成立. 所以222(1)(1)(1)x y z −++++的最小值为43.(2)由于2[(2)(1)()]x y z a −+−+−222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =−+−+−+−−+−−+−−2223(2)(1)()x y z a ⎡⎤−+−+−⎣⎦…,故由已知2222(2)(2)(1)()3a x y z a +−+−+−…,当且仅当43a x −=,13a y −=,223a z −=时等号成立. 因此222(2)(1)()x y z a −+−+−的最小值为2(2)3a +.由题设知2(2)133a +…,解得3a −…或1a −….2010-2018年1.【解析】(1)当1a =时,()|1||1|f x x x =+−−,即2,1,()2,11,2, 1.−−⎧⎪=−<<⎨⎪⎩≤≥x f x x x x故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +−−>成立等价于当(0,1)x ∈时|1|1ax −<成立. 若0≤a ,则当(0,1)x ∈时|1|1−≥ax ; 若0a >,|1|1ax −<的解集为20x a <<,所以21≥a,故02<≤a . 综上,a 的取值范围为(0,2].2.【解析】(1)当1=a 时,24,1,()2,12,26, 2.+−⎧⎪=−<⎨⎪−+>⎩≤≤x x f x x x x可得()0≥f x 的解集为{|23}−≤≤x x . (2)()1≤f x 等价于|||2|4++−≥x a x .而|||2||2|++−+≥x a x a ,且当2=x 时等号成立.故()1≤f x 等价于|2|4+≥a . 由|2|4+≥a 可得6−≤a 或2≥a ,所以a 的取值范围是(,6][2,)−∞−+∞U . 3.【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧−<−⎪⎪⎪=+−<⎨⎪⎪⎪⎩≤≥()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b +≤在[0,)+∞成立,因此a b +的最小值为5.4.D .【证明】由柯西不等式,得2222222()(122)(22)x y z x y z ++++++≥.因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.5.【解析】(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x −+++−−≤.①当1x <−时,①式化为2340x x −−≤,无解;当11x −≤≤时,①式化为220x x −−≤,从而11x −≤≤;当1x >时,①式化为240x x +−≤,从而112x −<≤. 所以()()f x g x ≥的解集为1{|1}2x x −−<≤. (2)当[1,1]x ∈−时,()2g x =.所以()()f x g x ≥的解集包含[1,1]−,等价于当[1,1]x ∈−时()2f x ≥. 又()f x 在[1,1]−的最小值必为(1)f −与(1)f 之一, 所以(1)2f −≥且(1)2f ≥,得11a −≤≤. 所以a 的取值范围为[1,1]−.6.【解析】(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+−++ 2224()ab a b =+− 4≥(2)∵33223()33a b a a b ab b +=+++23()ab a b =++23()2()4a b a b +++≤33()24a b +=+, 所以3()8a b +≤,因此2a b +≤.7.【解析】(1)3,1()21,123,2x f x x x x −<−⎧⎪=−−⎨⎪>⎩≤≤,当1x <−时,()f x 1≥无解;当x −12≤≤时,由()f x 1≥得,x −211≥,解得x 12≤≤ 当>2x 时,由()f x 1≥解得>2x . 所以()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m −+2≥得mx x x x +−−−+212≤,而x x x x x x x x +−−−+−−+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤且当32x =时,2512=4x x x x +−−−+. 故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.8.【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +++≤,因为22224,16,a b c d +=+= 所以2()64ac bd +≤, 因此8ac bd +≤. 9.【解析】(1)如图所示:(2)()4133212342x x f x x x x x ⎧⎪−−⎪⎪=−−<<⎨⎪⎪−⎪⎩,≤,,≥,()1f x >.当1x −≤,41x −>,解得5x >或3x <,1x −∴≤. 当312x −<<,321x −>,解得1x >或13x <, 113x −<<∴或312x <<,当32x ≥,41x −>,解得5x >或3x <,332x <∴≤或5x >,综上,13x <或13x <<或5x >, ()1f x >∴,解集为()()11353⎛⎫−∞+∞ ⎪⎝⎭U U ,,,. 10.【解析】(I )当12x <−时,()11222f x x x x =−−−=−,若112x −<<−;当1122x −≤≤时,()111222f x x x =−++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =−<<.(Ⅱ)当()11a b ∈−,,时,有()()22110a b −−>, 即22221a b a b +>+,则2222212a b ab a ab b +++>++, 则()()221ab a b +>+, 即1a b ab +<+,证毕.11.【解析】(Ⅰ)当2a =时,()|22|2f x x =−+.解不等式|22|26x −+…,得13x −剟.因此,()6f x ≤的解集为{|13}x x−剟.(Ⅱ)当x R ∈时,()()|2||12|f x g x x a a x +=−++−|212|x a x a −+−+…|1|a a =−+,当12x =时等号成立,所以当x R ∈时,()()3f x g x +…等价于|1|3a a −+…. ①当1a …时,①等价于13a a −+…,无解.当1a >时,①等价于13a a −+…,解得2a ….所以a 的取值范围是[2,)+∞.12.【解析】(Ⅰ)当1a =时,不等式()1f x >化为|1|2|1|10x x +−−−>,当1x −≤时,不等式化为40x −>,无解;当11x −<<时,不等式化为320x −>,解得213x <<; 当1x ≥时,不等式化为20x −+>,解得12x <≤.所以()1f x >的解集为2{|2}3x x <<. (Ⅱ)有题设可得,12,1()312,112,x a x f x x a x a x a x a −−<−⎧⎪=+−−⎨⎪−++>⎩≤≤,所以函数()f x 图象与x 轴围成的三角形的三个顶点分别为21(,0),(21,0),(,1)3a A B a C a a −++,ABC ∆的面积为22(1)3a +.有题设得22(1)63a +>,故2a >.所以a 的取值范围为(2,)+∞. 13.【解析】(Ⅰ)∵2a b =++2c d =++由题设a b c d +=+,ab cd >得22>.>(Ⅱ)(ⅰ)若||||a b c d −<−,则22()()a b c d −<−,即22()4()4a b ab c d cd +−<+−.因为a b c d +=+,所以ab cd >>>则22>,即a b c d ++>++因为a b c d +=+,所以ab cd >,于是2222()()4()4()a b a b ab c d cd c d −=+−<+−=−.因此||||a b c d −<−,>||||a b c d −<−的充要条件.14.【解析】(I11a b =+≥,得2ab ≥,且当a b ==时取等号. 故33a b+≥≥,且当a b ==时取等号.所以33a b +的最小值为.(II )由(I)知,23a b +≥≥.由于6>,从而不存在,a b , 使得236a b +=.15.【解析】(I )由0a >,有()f x 111()2x x a x x a a a a a =++−≥+−−=+≥. 所以()f x ≥2. (Ⅱ)1(3)33f a a=++−. 当时a >3时,(3)f =1a a +,由(3)f <5得3<a<52. 当0<a ≤3时,(3)f =16a a −+,由(3)f <5得12<a ≤3. 综上,a的取值范围是(12+,52). 16.【解析】(Ⅰ)当a =−2时,不等式()f x <()g x 化为|21||22|30x x x −+−−−<,设函数y =|21||22|3x x x −+−−−,y =15, 212, 1236, 1x x x x x x ⎧−<⎪⎪⎪−−≤≤⎨⎪−>⎪⎪⎩, 其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a −,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x ++≤, ∴2x a −≥对x ∈[2a −,12)都成立,故2a −≥2a −,即a ≤43, ∴a 的取值范围为(−1,43]. 17.【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得 222a b c ab bc ca ++≥++由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=. 所以()31ab bc ca ++≤,即13ab bc ca ++≤ (Ⅱ)∵2222,2,2a b c b a c b a c b c a+≥+≥+≥ ∴222()2()a b c a b c a b c b c a+++++≥++ 即222a b c a b c b c a ++≥++ ∴2221a b c b c a++≥ 18.【解析】(1)当3a =−时,()3323f x x x ⇔−+−厖2323x x x ⎧⇔⎨−+−⎩……或23323x x x <<⎧⇔⎨−+−⎩…或3323x x x ⎧⇔⎨−+−⎩…… 1x ⇔…或4x ….(2)原命题()4f x x ⇔−…在[1,2]上恒成立24x a x x ⇔++−−…在[1,2]上恒成立22x ax ⇔−−−剟在[1,2]上恒成立 30a ⇔−剟.19.【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x −≥.由此可得 3x ≥或1x ≤−.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤−. ( Ⅱ) 由()0f x ≤ 得30x a x −+≤,此不等式化为不等式组30x a x a x ≥⎧⎨−+≤⎩ 或30x a a x x ≤⎧⎨−+≤⎩, 即4x a a x ⎧⎪⎨⎪⎩≥≤或2x a a x ⎧⎪⎨−⎪⎩≤≤, 因为0a >,所以不等式组的解集为{}|2a x x ≤−, 由题设可得2a −=1−,故2a =.。

高三数学绝对值不等式试题答案及解析

高三数学绝对值不等式试题答案及解析

高三数学绝对值不等式试题答案及解析1.(不等式选讲题)对于任意实数和不等式恒成立,则实数x的取值范围是_________.【答案】【解析】依题意可得恒成立,等价于小于或等于的最小值.因为.所以.【考点】1绝对值不等式的性质.2.恒成立问题.3.最值问题.2.关于x的不等式|x-3|+|x-4|<a的解集不是空集,求a的取值范围.【答案】(1,+∞)【解析】∵|x-3|+|x-4|≥|(x-3)-(x-4)|=1,∴a>1.即a的取值范围是(1,+∞).3.设函数f(x)=|2x-1|+|2x-3|,x∈R.(1)求关于x的不等式f(x)≤5的解集.(2)若g(x)=的定义域为R,求实数m的取值范围.【答案】(1) x∈[-,] (2) m>-2【解析】(1)或或不等式的解集为x∈[-,].(2)若g(x)=的定义域为R.则f(x)+m≠0恒成立,即f(x)+m=0在R上无解,又f(x)=|2x-1|+|2x-3|≥|2x-1-2x+3|=2,f(x)的最小值为2,所以m>-2.4.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是________.【答案】[-2,4]【解析】|x-a|+|x-1|≥|a-1|,则只需要|a-1|≤3,解得-2≤a≤4.5.若关于实数x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是________.【答案】(-∞,8]【解析】因为|x-5|+|x+3|表示数轴上的动点x到数轴上的点-3,5的距离之和,而(|x-5|+|x+=8,∴当a≤8时,|x-5|+|x+3|<a无解,3|)min故实数a的取值范围为(-∞,8].6.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈时,f(x)≤g(x),求a的取值范围.【答案】(1){x|0<x<2}(2)【解析】(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.设函数y=|2x-1|+|2x-2|-x-3,则y=其图象如图所示,由图象可知,当且仅当x∈(0,2)时,y<0.所以原不等式的解集是{x|0<x<2}.(2)当x∈时,f(x)=1+a,不等式f(x)≤g(x)化为1+a≤x+3,所以x≥a-2对x∈都成立,应有-≥a-2,则a≤,从而实数a的取值范围是.7.若不等式的解集为,则实数的取值范围是____.【答案】【解析】不等式的解集为,所以.,所以,.【考点】不等式8.设函数.(Ⅰ)当时,解不等式;(Ⅱ)当时,不等式的解集为,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)原不等式的解集等价于不等式组或的解集的并集;(Ⅱ)当时,不等式的解集为,恒成立问题,对分类讨论,①,②.试题解析:(Ⅰ)当时,,或或,∴不等式的解集是. 5分[(Ⅱ)不等式可化为,∴,由题意,时恒成立,当时,可化为,,,,综上,实数的取值范围是. 10分【考点】绝对值不等式,恒成立问题.9.(本题满分10分)《选修4-5:不等式选讲》已知函数(1)证明:(2)求不等式:的解集【答案】(1);(2)【解析】(1)对于x进行分三类讨论,得到关于x的分段函数,进而分别求解得到解集取其并集得到。

数学不等式选讲试题答案及解析

数学不等式选讲试题答案及解析

数学不等式选讲试题答案及解析1.(本题满分10分)选修4-5:不等式选讲已知,.(1)求的最小值;(2)证明:.【答案】(1)3(2)见解析【解析】(Ⅰ)因为,,所以,即,当且仅当时,取最小值3. 5分(Ⅱ).又,所以. 10分2.(本小题满分10分)选修4-5:不等式选讲设函数.(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围。

【答案】(1)或(2)或【解析】(1)当时,不等式为,所以或或,解得或. 4分故不等式的解集为或. 5分.(2)因为(当时等号成立), 8分所以.由题意得,解得或. 10分【命题意图】本题考查绝对值不等式的解法、绝对值三角不等式等基础知识,意在考查基本运算求解能力.3.已知a,b,c均为正数,证明:a2+b2+c2+2≥6,并确定a、b、c为何值时,等号成立.【答案】a=b=c=3时,原不等式等号成立.【解析】因为a,b,c均为正数,由基本不等式得a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,(2分)所以a2+b2+c2≥ab+bc+ac,①同理++≥++,②(4分)故a2+b2+c2+2≥ab+bc+ac+3+3+3≥6.③所以原不等式成立.(8分)当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.即当且仅当a=b=c=3时,原不等式等号成立.(10分)4.已知实数x、y、z满足x2+4y2+9z2=a(a>0),且x+y+z的最大值是1,求a的值.【答案】【解析】由柯西不等式知:[x2+(2y)2+(3z)2][12+()2+()2]≥(x+×2y+×3z)2(当且仅当x=4y=9z时取等号).因为x2+4y2+9z2=a(a>0),所以a≥(x+y+z)2,即-≤x+y+z≤.因为x+y+z的最大值是1,所以=1,a=,所以当x=,y=,z=时,x+y+z取最大值1,所以a的值为.点评:用柯西不等式证明或求值时要注意两点,一是所给不等式的形式是否和柯西不等式的形式一致,若不一致,需要将所给式子变形;二要注意等号成立的条件.5.在实数范围内,不等式的解集为___________.【答案】【解析】因此解集为.【考点】本题主要考查绝对值不等式的解法,考查运用能力.6.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是________.【答案】-2≤a≤4【解析】本题考查了不等式解法的相关知识,解题的突破口是理解不等式的几何意义.|x-a|+|x-1|≤3表示的几何意义是在数轴上一点x到1的距离与到a的距离之和小于或等于3个单位长度,此时我们可以以1为原点找离此点小于或等于3个单位长度的点即为a的取值范围,不难发现-2≤a≤4.7.不等式|2x+1|-2|x-1|>0的解集为________.【答案】【解析】考查解含绝对值不等式,此题的关键是转化为|2x+1|>2|x-1|,再两边平方,轻松求解.不等式转化为|2x+1|>2|x-1|,两边平方得(2x+1)2>4(x-1)2,化简得4x>1,解得x> ,故解集为.8.设函数(1)当时,求不等式的解集;(2)如果不等式的解集为,求的值。

高中数学高考总复习不等式选讲习题及详解

高中数学高考总复习不等式选讲习题及详解

高中数学高考总复习不等式选讲习题及详解一、选择题1.对任意x ∈R ,|2-x |+|3+x |≥a 2-4a 恒成立,则a 的取值范围是( ) A .-1≤a ≤5 B .-1<a ≤5 C .-1≤a <5 D .-1<a <5 [答案] A[解析] 因为|2-x |+|3+x |≥5,要使|2-x |+|3+x |≥a 2-4a 恒成立,即5≥a 2-4a ,解得-1≤a ≤5.2.(2010·山师大附中模考)已知a >0,b >0且1a +3b =1,则a +2b 的最小值为( )A .7+2 6B .2 3C .7+2 3D .14 [答案] A[解析] a +2b =(a +2b )⎝⎛⎭⎫1a +3b =7+2b a +3a b ≥7+26,等号在b =62a 时成立. 3.已知0<a <1b ,且M =11+a +11+b ,N =a 1+a +b1+b ,则M 、N 的大小关系是( )A .M <NB .M >NC .M =ND .不确定 [答案] B[解析] ∵0<a <1b ,∴ab <1,a >0,b >0,∴M -N =1-a 1+a +1-b1+b=(1-a )(1+b )+(1+a )(1-b )(1+a )(1+b )=2(1-ab )(1+a )(1+b )>0,∴M >N . 4.下列结论:①(1+x )n >1+nx (x ∈R ,n ∈N *)②(1+x )n >1+nx (x >-1,n ∈R ) ③(1+x )n >1+nx (x >-1,0<n <1) ④(1+x )n ≤1+nx (x >-1,0<n <1) ⑤(1+x )n ≥1+nx (x >-1,n <0) 其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个 [答案] B[解析] 根据贝努利不等式可知,(1+x )n >1+nx 的条件为x >-1(n ∈N *,n >1); (1+x )n ≥1+nx 的条件为x >-1,n >1或n <0; (1+x )n ≤1+nx 的条件为x >-1,0<n <1. 故④⑤正确, ①②③都错.5.f (x )=2x +31-x 的最大值为( ) A .5 B.121313C.13D.522[答案] C[解析] (2x +31-x )2≤(22+32)[(x )2+(1-x )2]=13, ∴2x +31-x ≤13,等号在x2=1-x 3, 即x =413时成立.6.(2010·江苏泰州)若对任意x ∈A ,y ∈B ,(A ⊆R ,B ⊆R )有唯一确定的f (x ,y )与之对应,则称f (x ,y )为关于x ,y 的二元函数.满足下列性质的二元函数f (x ,y )称为关于实数x ,y 的广义“距离”:(1)非负性:f (x ,y )≥0,当且仅当x =y 时取等号; (2)对称性:f (x ,y )=f (y ,x );(3)三角形不等式:f (x ,y )≤f (x ,z )+f (z ,y )对任意的实数z 均成立.今给出三个二元函数:①f (x ,y )=|x -y |;②f (x ,y )=(x -y )2;③f (x ,y )=x -y . 其中能够成为关于x ,y 的广义“距离”的二元函数的序号是( )A .①B .①②C .②③D .①②③ [答案] A[解析] 对函数f (x ,y )=|x -y |,∵f (x ,y )≥0,当且仅当x =y 时取等号,满足非负性; f (y ,x )=|y -x |=|x -y |=f (x ,y ),满足对称性;由|a +b |≤|a |+|b |得|x -y |=|(x -z )+(z -y )|≤|x -z |+|z -y |对任意的实数z 均成立. 即f (x ,y )≤f (x ,z )+f (z ,y ),满足三角形不等式.故①满足广义“距离”. 对函数f (x ,y )=(x -y )2,显然满足非负性和对称性.∵当z =0时,f (x ,y )-[f (x,0)+f (0,y )]=-2xy ,显然不恒小于等于零,故不满足三角形不等式,故②不满足广义“距离”.对函数f (x ,y )=x -y ,显然不满足对称性.故③不满足广义“距离”.故选A. 7.已知x 、y 、z ∈R +,且x +y +z =1,则x 2+y 2+z 2的最小值是( ) A .1 B.13 C.12 D .3 [答案] B[解析] x 2+y 2+z 2=(12+12+12)(x 2+y 2+z 2)×13≥(1×x +1×y +1×z )2×13=13.8.已知a 、b 、c 、d ∈R +且S =a a +b +c +b b +c +d +c c +d +a +da +b +d ,则下列判断中正确的是( )A .0<S <1B .1<S <2C .2<S <3D .3<S <4 [答案] B [解析]a a +b +c +d <a a +b +c <aa +c;b a +b +c +d <b b +c +d <bd +b;c a +b +c +d <c c +d +a <cc +a ;c a +b +c +d <d d +a +b <dd +b .以上四个不等式相加得,1<S <2. 二、填空题9.(2010·陕西宝鸡)若不等式|x +1x |≥|a -2|+1对一切非零实数x 均成立,则实数a 的最大值是________.[答案] 3[解析] 令f (x )=|x +1x |,∵f (x )=|x +1x |=|x |+|1x |≥2,∴|a -2|+1≤2,解得1≤a ≤3,故a 的最大值是3.10.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________.[答案] 32[解析] 2x +2x -a =2(x -a )+2x -a +2a≥22(x -a )×2x -a+2a =2a +4≥7,∴a ≥32.故a 的最小值为32.11.(2010·南京调研)设函数f (x )=|x -1|+|x -2|,则不等式f (x )>3的解集为________. [答案] (-∞,0)∪(3,+∞)[解析] 当x <1时,有f (x )=1-x +2-x =3-2x . 由f (x )>3得3-2x >3,解得x <0; 当1≤x ≤2时,有f (x )=x -1+2-x =1. 此时,不等式f (x )>3无解;当x >2时,有f (x )=x -1+x -2=2x -3. 由f (x )>3得2x -3>3,解得x >3.故不等式f (x )>3的解集为(-∞,0)∪(3,+∞).[点评] 可画出数轴如图,∵|AB |=1,∴|PB |>1,|QA |>1,故由图可得x >3或x <0. 12.(2010·江苏无锡市调研)已知c 是椭圆x 2a 2+y 2b 2=1(a >b >0)的半焦距,则b +c a 的取值范围是________.[答案] (1,2][解析] ⎝⎛⎭⎫b +c a 2=b 2+c 2+2bca 2=b 2+c 2+2bc b 2+c 2=1+2bcb 2+c 2, ∵b ,c >0,∴1<⎝⎛⎫b +c a 2≤2,∴1<b +c a≤ 213.(2010·福建南平一中)若函数f (x )=2|x+7|-|3x -4|的最小值为2,则自变量x 的取值范围是________.[答案] [-12,5][解析] 依题意知,2|x+7|-|3x -4|≥2,∴|x +7|-|3x -4|≥1,当x >43时,不等式化为x +7-(3x -4)≥1.解得x ≤5,即43<x ≤5;当-7≤x ≤43时,不等式化为x +7+(3x -4)≥1,解得x ≥-12,即-12≤x ≤43;当x <-7时,不等式化为-x -7+(3x -4)≥1, 解得x ≥6,与x <-7矛盾. ∴自变量x 的取值范围为-12≤x ≤5.14.(2010·重庆中学)抛物线y 2=4x 的顶点为O ,点A 的坐标为(5,0),倾斜角为π4的直线l 与线段OA 相交(l 不过点O 和点A )且交抛物线于M 、N 两点,则△AMN 的最大面积为________.[答案] 8 2[解析] 设直线l 与x 轴交于点B (t,0),则由题意知0<t <5,直线l :y =x -t ,代入y 2=4x 中消去x 得,y 2-4y -4t =0.设M (x 1,y 1),N (x 2,y 2),则y 1+y 2=4,y 1y 2=-4t , ∴|y 1-y 2|=(y 1+y 2)2-4y 1y 2=41+t ,∴S △AMN =12|AB |·|y 1-y 2|=21+t ·(5-t )=2(1+t )(5-t )2 =2(2+2t )(5-t )(5-t )2≤212⎣⎡⎦⎤(2+2t )+(5-t )+(5-t )33=8 2.等号在t =1时成立. 三、解答题15.(2010·福建理)已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围. [解析] 解法一:(1)由f (x )≤3得|x -a |≤3,解得a -3≤x ≤a +3. 又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2.(2)当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3;5,-3≤x ≤2;2x +1,x >2.所以当x <-3时,g (x )>5;当-3≤x ≤2时,g (x )=5;当x >2时,g (x )>5. 综上可得,g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].解法二: (1)同解法一.(2)当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5).由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立)得,g (x )的最小值为5.从而,若f (x )+f (x +5)≥m 即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].16.(2010·福建龙岩市质检)已知a ,b ,c ∈(0,+∞),且1a +2b +3c =2,求a +2b +3c 的最小值及取得最小值时a ,b ,c 的值.[解析] ⎝⎛⎭⎫1a +2b +3c (a +2b +3c )=⎝⎛⎭⎫1a 2+⎝⎛⎭⎫2b 2+⎝⎛⎭⎫3c 2[(a )2+(2b )2+(3c )2] ≥⎝⎛⎭⎫1a ·a +2b ·2b +3c ·3c 2=36. 又1a +2b +3c=2,∴a +2b +3c ≥18, 当且仅当1a a =2b 2b =3c 3c, 即a =b =c =3时等号成立.∴当a =b =c =3时,a +2b +3c 取得最小值18.17.(2010·苏北四市模考)已知函数f (x )=(x -a )2+(x -b )2+(x -c )2+(a +b +c )23(a ,b ,c为实数)的最小值为m ,若a -b +2c =3,求m 的最小值.[解析] ∵f (x )=(x -a )2+(x -b )2+(x -c )2+(a +b +c )23=3x 2-2(a +b +c )x +a 2+b 2+c 2+(a +b +c )23=3⎝⎛⎭⎫x -a +b +c 32+a 2+b 2+c 2,∴x =a +b +c3时,f (x )取最小值a 2+b 2+c 2,即m =a 2+b 2+c 2.∵a -b +2c =3,由柯西不等式得 [12+(-1)2+22]·(a 2+b 2+c 2) ≥(a -b +2c )2=9, ∴m =a 2+b 2+c 2≥96=32,当且仅当a 1=b -1=c2,即a =34,b =-34,c =32时等号成立,所以m 的最小值为32.。

高考数学压轴专题最新备战高考《不等式选讲》真题汇编含答案解析

高考数学压轴专题最新备战高考《不等式选讲》真题汇编含答案解析

【高中数学】数学高考《不等式选讲》试题含答案一、141.设0x >,则()2142f x x x=--的最大值为( ) A .24-B .42-C .不存在D .52【答案】D 【解析】 【分析】化简得到()214222x xf x x ⎛⎫=-++ ⎪⎝⎭,再利用均值不等式计算得到答案. 【详解】()32221115444322222222x x x x f x x x x x ⎛⎫=--=-++≤-⋅⋅= ⎪⎝⎭当21222x x x ==即1x =时等号成立 故选:D 【点睛】本题考查了利用均值不等式求函数最值,意在考查学生对于均值不等式的灵活运用.2.已知,,则使不等式一定成立的条件是A .B .C .D .【答案】D 【解析】因为若,则,已知不等式不成立,所以,应选答案D 。

3.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是 ( ) A .|a+b|+|a-b|>2 B .|a+b|+|a-b|<2 C .|a+b|+|a-b|=2 D .不能比较大小【答案】B 【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2, 当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.4.2018年9月24日, 英国数学家M.F 阿蒂亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动. 黎曼猜想来源于一些特殊数列求和, 记2221111.........,23S n 则()=+++++A .413S << B .4332S << C .322S << D .2S > 【答案】C 【解析】 【分析】由题意利用不等式放缩后裂项确定S 的范围即可. 【详解】由题意可知:222111123S n =+++++L L()111123341n n >+++++⨯⨯+L L 111111123341n n ⎛⎫⎛⎫⎛⎫=+-+-++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭L L 13122>+=,且222111123S n =+++++L L()111112231n n <+++++⨯⨯-⨯L L 11111112231n n L L ⎛⎫⎛⎫⎛⎫=+-+-++-+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭122n L =-+<,综上可得:322S <<. 本题选择C 选项. 【点睛】本题的核心是考查裂项求和的方法,使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.5.已知a ,b 均为正数,且20ab a b --=,则22214a b a b-+-的最小值为( )A .6B .7C .8D .9 【答案】B 【解析】 【分析】a ,b 均为正数,且ab ﹣a ﹣2b =0,可得21a b+=1,根据柯西不等式求出代数式的最小值即可. 【详解】∵a ,b 均为正数,且ab ﹣a ﹣2b =0, ∴21a b+=1. 则22214a b a b-+- 24a =+b 2﹣1, 又因为2a +b =(21a b +)(2a +b )22b a a b=++2≥2+2=4,当且仅当a =4,b =2时取等号.∴(24a +b 2)(1+1)≥(2a +b )2≥16,当且仅当a =4,b =2时取等号.∴24a +b 2≥8, ∴224a a-+b 2214a b -=+b 2﹣1≥7.故选:B . 【点睛】本题考查“乘1法”、基本不等式的性质、柯西不等式,考查了推理能力与计算能力,属于中档题.6.设n *∈N) A>BC=D .不能确定【答案】B 【解析】 【分析】把两个代数式进行分子有理化,比较分母的大小可以比较出大小关系. 【详解】22-===.22-===.*n N ∈ 42,31n n n n +>++>+>>><<成立,因此本题选B . 【点睛】对于二次根式的加減运算,分母有理化是常见的运算要求,但是有时分子有理化会起到意想不到的作用,尤其是在比较二个二次根式减法算式之间的大小关系时,经常会用到分子有理化这个方法.当然不等式的性质也是很重要的.7.已知2(3)f x x x =+,若1x a -≤,则下列不等式一定成立的是( ) A .33()()f x f a a -≤+ B .24()()f x f a a -≤+ C .()()5f x f a a -≤+ D .2|()()2|(1)f x f a a -≤+【答案】B 【解析】 【分析】先令a=0,排除A ,C,D,再利用绝对值三角不等式证明选项B 成立 【详解】令a=0,则1x ≤,即-1≤x≤1,()()()()()0?f x f a f x f f x -=-=≤4,此时A,C,D 不成立,下面证明选项B 成立()()22 33f x f a x x a a -=+--=()() 3x a x a -++≤()()3x a x a -++≤()3x a ++=23x a a -++≤23x a a -++≤24a +故选:B . 【点睛】本题考查了绝对值三角不等式的应用,特值法,结合二次函数最值分析问题,准确推理计算是关键,是基础题.8.若关于x 的不等式43x x a -++<有实数解,则实数a 的取值范围是( ) A .(7,)+∞ B .[)7,+∞C .(1,)+∞D .(1,7)【答案】A 【解析】 【分析】利用绝对值的意义可求得43x x -++的最小值为7,由此可得实数a 的取值范围,得到答案. 【详解】由题意43x x -++表示数轴上的x 对应点到4和3-对应点的距离之和,其最小值为7,再由关于x 的不等式43x x a -++<有实数解,可得7a >, 即实数x 的取值范围是(7,)+∞,故选A. 【点睛】本题主要考查了绝对值的意义,以及函数绝对值不等式的有解问题,其中根据绝对值的意义,求得43x x -++的最小值为7是解得关键,着重考查了推理与运算能力,属于中档试题.9.已知函数()f x 是定义在[1,2]a a -上的偶函数,且当0x >时,()f x 单调递增,则关于x 的不等式(1)()f x f a ->的解集为 ( ) A .45[,)33B .2112(,][,)3333--⋃ C .12[,)33⋃45(,]33D .随a 的值而变化【答案】C 【解析】试题分析:∵函数()f x 是定义在[1,2]a a -上的偶函数,∴1-a=2a ,∴a=13,故函数()f x 的定义的定义域为22[,]33-,又当203x <≤时,()f x 单调递增,∴11113(1)()(1)(){23313x f x f f x f x ->->⇔->⇔-≤,解得1233x ≤<或4533x <≤,所以不等式(1)()f x f a ->的解集为12[,)33⋃45(,]33,故选C考点:本题考查了抽象函数的运用点评:此类问题往往利用偶函数的性质()()f x f x =避免了讨论,要注意灵活运用10.已知集合{|||2}A x x =≥,2{|30}B x x x =->,则A B =I ( ) A .∅B .{|3x x >或2}x ?C .{|3x x >或0}x <D .{|3x x >或0}x <【答案】B 【解析】 【分析】可以求出集合A ,B ,然后进行交集的运算即可.【详解】∵A ={x |x ≤﹣2,或x ≥2},B ={x |x <0,或x >3}, ∴A ∩B ={x |x ≤﹣2,或x >3}. 故选:B . 【点睛】考查描述法的定义,绝对值不等式和一元二次不等式的解法,以及交集的运算.11.已知x+3y+5z=6,则x 2+y 2+z 2的最小值为( ) A .65B .6 35C .36 35D .6【答案】C 【解析】 【分析】由题意结合柯西不等式的结论求解x 2+y 2+z 2的最小值即可. 【详解】 由柯西不等式,得:x 2+y 2+z 2=(12+32+52)(x 2+y 2+z 22221)135++≥(1×x+3×y+5×z )2135⨯=26136.3535⨯= 当且仅当x 6186,,35357y z ===时等号成立. 即x 2+y 2+z 2的最小值为3635. 本题选择C 选项. 【点睛】根据题目特征,想到利用向量方法或利用柯西不等式想法比较自然.利用柯西不等式代数形式及其向量形式解题的方法是一致的.选择哪种方法进行解题,可能会因解题者的知识解构、思维特征及对问题与方法的熟悉程度做出选择.12.设不等式3412xx a +->-对所有的[1,2]x ∈均成立,则实数a 的取值范围是( )A .15a <-或47a >B .15a <-C .47a >或01a <<D .15a <-或1064a <<【答案】A 【解析】 【分析】根据不等式3412xx a +->-对所有的[1,2]x ∈均成立,取2x =时,可得2431a ->,解得15a <-或47a >,利用换元法把不等式换为281t a t ->-,分47a >和15a <-两种情况讨论2()81h t t t =+-的最大值即可求得实数a 的取值范围.【详解】解:因为不等式3412x x a +->-对所有的[1,2]x ∈均成立,当2x =时,312x +-有最大值31,不等式显然要成立,即2431a ->,解得15a <-或47a >, 当[1,2]x ∈时,令2[2,4]x t =∈, 则24[4,16]xt =∈,328[16,32]x t +=∈,所以3412x x a +->-等价于281t a t ->-,①当47a >时,即281a t t ->-在[2,4]t ∈恒成立, 即281()a t t h t >+-=,即求2()81h t t t =+-的最大值,max ()(4)47h t h ==,所以47a >;②当15a <-时,281t a t ->-在[2,4]t ∈恒成立, 即281()a t t f t <-+=,即求2()81f t t t =-+的最小值,min ()(4)15f t f ==-;综上:15a <-或47a >. 故选:A 【点睛】本题考查利用二次函数的最值求绝对值不等式中的参数问题,利用换元法是关键,属于中档题.13.对任意x ∈R ,不等式22|sin ||sin |x x a a +-≥恒成立,则实数a 的取值范围是( ) A .01a ≤≤ B .11a -≤≤ C .12a -≤≤ D .22a -≤≤【答案】B 【解析】 【分析】解法一:(换元法)设sin t x =,则原不等式可化为22||||t t a a +-≥.求函数()||||||f t t t t a =++-的最小值,从而不等式2||a a ≥可得11a -≤≤.解法二:(特殊值法)代入2a =, 1a =-,排除错误选项即可. 【详解】解:解法一:(换元法)设sin t x =,则原不等式可化为22||||t t a a +-≥.令()||||||f t t t t a =++-,则min [()](0)||f t f a ==, 从而解不等式2||a a ≥可得11a -≤≤.故选B .解法二:(特殊值法)当2a =时,因为2|sin ||sin 2|2sin 2|sin |2|sin |2x x x x x +-=-+≥+≥, 当且仅当sin 0x =时,等号成立. 此时2|sin ||sin 2|4x x +-≥不恒成立, 所以2a =不合题意,可以排除C 、D .当1a =-时,因为2|sin ||sin 1|1sin 2|sin |1|sin |1x x x x x ++=++≥+≥, 当且仅当sin 0x =时,等号成立. 此时2|sin ||sin 1|1x x ++≥恒成立, 所以1a =-符合题意,可以排除A. 故选:B 【点睛】本题考查绝对值不等式的参数问题,属于中档题,利用函数求最值的方法或者特殊值排除法都可以解题.14.函数()f x 的定义域为A ,若存在非零实数t ,使得对于任意()x C C A ∈⊆有,x t A +∈且()()f x t f x +≤,则称()f x 为C 上的t 度低调函数.已知定义域为[)0+∞,的函数()=3f x mx --,且()f x 为[)0+∞,上的6度低调函数,那么实数m 的取值范围是( )A .[]0,1B .[)1+∞,C .(],0-∞D .][(),01,-∞⋃+∞ 【答案】D【解析】试题分析:由题意得, ()()6633f x f x mx m mx +≤⇒+-≥-对任意0x ≥都成立.当0m ≤时, 633633|m mx m mx -≤-⇒+-≥-恒成立;当0m >时,结合图象可知,要633mx m mx +-≥-对任意0x ≥都成立,只需0x =时633mx m mx +-≥-成立即可,即6331m m -≥-⇒≥.选D.考点:1、新定义函数;2、绝对值不等式.15.设x,y,z 是互不相等的正数,则下列不等式中不恒成立的是( ) A .2211x x x x++≥B C .12x y x y-+≥- D .x y x z y z -≤-+- 【答案】C【解析】 【分析】 【详解】试题分析:x y x z z y x z z y x z y z -=-+-≤-+-=-+-,故D 恒成立; 由于函数()1f x x x=+,在(]0,1单调递减;在[)1,+∞单调递增, 当1x >时, ()()221,x x f x f x >>>即2211x x x x+>+,当01x <<,()()2201,x x f x f x <<即2211x x x x++≥正确,即A 正确;=<=,故B 恒成立,若1x y -=-,不等式12x y x y-+≥-不成立, 故C 不恒成立,故选C . 考点:1、基本不等式证明不等式;2、单调性证明不等式及放缩法证明不等式.16.已知函数()1()02f x x a a a =-+≠.当12a <时,函数()()21g x f x x =+-有零点,则实数a 的取值范围是( )A .1,02⎡⎫-⎪⎢⎣⎭B .10,2⎡⎤⎢⎥⎣⎦C .8,03⎡⎤-⎢⎥⎣⎦D .4,03⎡⎤-⎢⎥⎣⎦【答案】A 【解析】 【分析】将函数的零点问题转化为方程的根问题,再构造函数1(2)g x x a x =+--求得函数的值域,可得关于a 的不等式,解不等式即可得到答案. 【详解】Q 函数()()21g x f x x =+-有零点,∴方程2112x ax a -=+--有根, 令1(2)g x x a x =+--,则31,,1()1,,2131,,2x a x a g x x a a x x a x ⎧⎪-+-≤⎪⎪=--+<≤⎨⎪⎪-->⎪⎩∴1()[,)2g x a ∈--+∞,∴11,221,2a a a ⎧-≥--⎪⎪⎨⎪<⎪⎩,解得:1,02a ⎡⎫∈-⎪⎢⎣⎭.故选:A. 【点睛】本题考查已知函数存在零点求参数的取值范围,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将函数的零点转化为方程的根.17.集合{}|12A x x =-<,1393x B x ⎧⎫=<<⎨⎬⎩⎭,则A B I 为( ) A .()1,2 B .()1,2-C .()1,3D .()1,3-【答案】B 【解析】 【分析】计算得到{}13A x x =-<<,{}12B x x =-<<,再计算A B I 得到答案. 【详解】18{}13x x =-<<,{}139123x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭, 故()1,2A B =-I . 故选:B . 【点睛】本题考查了集合的交集运算,意在考查学生的计算能力.18.已知函数()222,2log 1,2x x x f x x x ⎧-+≤=⎨->⎩,设12116n x x x ≤<<<≤L ,若()()()()()()12231n n f x f x f x f x f x f x M --+-++-≤L ,则M 的最小值为( )A .3B .4C .5D .6【答案】B 【解析】 【分析】作出函数的图象,由已知分段函数求得f (1)1=,f (2)0=,(16)3f =,等价于12231max [|()()||()()||()()|]n n M f x f x f x f x f x f x -∴≥-+-+⋯+-,再求出不等式右边的最大值即可得M 的最小值. 【详解】由222,2()log 1,2x x x f x x x ⎧-+=⎨->⎩„,得f (1)1=,f (2)0=,(16)3f =. 12116n x x x <<⋯<Q 剟,12231|()()||()()||()()|n n M f x f x f x f x f x f x -∴-+-+⋯+-…12231max[|()()||()()||()()|]n n M f x f x f x f x f x f x -∴≥-+-+⋯+-12231|()()||()()||()()||(1)(2)||(2)(16)=|10||30|4n n f x f x f x f x f x f x f f f f --+-+⋯+-≤-+--+-=∴4M ≥.则M 的最小值为4.故选:B .【点睛】本题考查分段函数及其应用,考查三角绝对值不等式的应用,意在考查学生对这些知识的理解掌握水平.19.设x ∈R ,则“|1|1x -<”是“220x x --<”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】 1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.20.设0x 为函数()sin f x x π=的零点,且满足001()112x f x ++<,则这样的零点有( )A .18个B .19个C .20个D .21个 【答案】D【解析】从题设可得00()x k x k k Z ππ=⇒=∈,又001()sin()sin()(1)222k f x x k ππππ+=+=+=-,故(1)11k k +-<,当k 取奇数时,12k <,则1,3,5,7,9,11k =±±±±±±,共12个数;当k 取偶数时,10k <,则0,2,4,6,8k =±±±±,共9个数,所以这样的零点的个数共有21个,应选答案D 。

《选修4-5--不等式选讲》知识点详解+例题+习题(含详细答案)

《选修4-5--不等式选讲》知识点详解+例题+习题(含详细答案)

选修4-5 不等式选讲最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a+b|≤|a|+|b|(a,b∈R).(2)|a-b|≤|a-c|+|c-b|(a,b∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c,|ax+b|≥c,|x-c|+|x-b|≥a.3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法.1.含有绝对值的不等式的解法(1)|f(x)|>a(a>0)⇔f(x)>a或f(x)<-a;(2)|f(x)|<a(a>0)⇔-a<f(x)<a;(3)对形如|x-a|+|x-b|≤c,|x-a|+|x-b|≥c的不等式,可利用绝对值不等式的几何意义求解.2.含有绝对值的不等式的性质|a|-|b|≤|a±b|≤|a|+|b|.问题探究:不等式|a|-|b|≤|a±b|≤|a|+|b|中,“=”成立的条件分别是什么?提示:不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.3.基本不等式定理1:设a,b∈R,则a2+b2≥2ab.当且仅当a=b时,等号成立.定理2:如果a、b为正数,则错误!未定义书签。

≥错误!未定义书签。

,当且仅当a=b时,等号成立.定理3:如果a、b、c为正数,则错误!未定义书签。

≥3,abc,当且仅当a =b =c 时,等号成立. 定理4:(一般形式的算术—几何平均值不等式)如果a 1、a2、…、a n为n 个正数,则a 1+a 2+…+a n n≥错误!,当且仅当a 1=a 2=…=a n时,等号成立. 4.柯西不等式(1)柯西不等式的代数形式:设a,b ,c,d为实数,则(a 2+b 2)·(c 2+d2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)若ai ,b i(i∈N *)为实数,则(错误!错误!)(错误!未定义书签。

不等式选讲绝对值不等式

不等式选讲绝对值不等式

6、设函数f(x)=|x-a|+3x,其中a>0. (1)当a=1时,求不等式f(x)≥3x+2的解集; (2)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.
解 (1)当a=1时,f(x)≥3x+2可化为|x-1|≥2. 由此可得x≥3或x≤-1. 故不等式f(x)≥3x+2的解集为{x|x≥3,或x≤-1}.
1.绝对值三角不等式 (1)定理1:如果a,b是实数,则|a+b| ≤ |a|+|b|,当且仅当 ab≥0 时,等号成立; (2)定理2:如果a,b,c是实数,则|a-c|≤ |a-b|+|b-c,| 当且 仅当 (a-b)(b-c)≥时0 ,等号成立. (3)性质:_|_a_|-__|_b_| _≤|a±b|≤____|a_|_+__|b;|
考点二 含参数的绝对值不等式问题
[典例] 2、已知不等式|x+1|-|x-3|>a.分别求出下列情形中 a的取值范围:
(1)不等式有解; (2)不等式的解集为R; (3)不等式的解集为∅.
解:法一:因为|x+1|-|x-3|表示数轴上的点P(x)与两定点 A(-1),B(3)距离的差,即|x+1|-|x-3|=PA-PB.
【针对训练】:
1.不等式|x-5|+|x+3|≥10 的解集是( )
A.[-5,7]
B.[-4,6]
C.(-∞,-5]∪[7,+∞)
D.(-∞,-4]∪[6,+∞)
2、资料选修 4 系列 P16[练一练]:1
解析:解法一:当 x≤-3 时,5-x+(-x-3)≥10,∴x≤-4; 当-3<x<5 时,5-x+x+3≥10,8≥10 无解,舍去; 当 x≥5 时,x-5+x+3≥10,∴x≥6. 综上 x∈(-∞,-4]∪[6,+∞). 选 D. 解法二:用特殊值检验,取 x=5 不符合题意,排除 A、B,

高考真题:选修4-5不等式选讲

高考真题:选修4-5不等式选讲

选修4-5不等式选讲一、填空题1.[2015•重庆卷,16]若函数f(x)=|x+1|+2|x-a|的最小值为5,则实数a=________.2.[2014•陕西卷,15A]设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则m2+n2的最小值为________3. [2013•陕西卷,15(2)]在实数范围内,不等式||x-2|-1|≤1的解集为________.4. [2013•重庆卷,16]若关于实数x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是________.5. [2013•陕西卷,15A]已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为________.二.解答题1.[2018•全国Ⅰ,23]已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.2.[2018•全国Ⅱ,23]设函数f(x)=5-|x+a|-|x-2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.3.[2018•全国Ⅲ,23]设函数f(x)=|2x+1|+|x-1|.(1)画出y=f(x)的图象;(2)当x∈[0,+∞),f(x)≤ax+b,求a+b的最小值.4.[2017•全国Ⅰ,23]已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.5.[2017•全国Ⅱ,23]已知a>0,b>0,a3+b3=2.证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.6.[2017•全国Ⅲ,23]已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.7.[2017•江苏卷,21D]已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明:ac+bd≤8.8.[2016•全国Ⅰ,23]已知函数f(x)=|x+1|-|2x-3|.(1)画出y=f(x)的图象;(2)求不等式|f(x)|>1的解集.9.[2016•全国Ⅲ,24]已知函数f(x)=|2x-a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥3,求a的取值范围.10.[2016•江苏卷,21D]设a>0,|x-1|<a3,|y-2|<a3,求证:|2x+y-4|<a.11.[2015•全国Ⅰ,24]已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.12. [2015•陕西卷,24]已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值; (2)求at +12+bt 的最大值.13. [2014•全国Ⅰ,24]若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.14. [2014•全国Ⅱ,24]设函数f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |(a >0).(1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.15. [2013•福建卷,21(3)]设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12A .(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值.16.[2013•全国Ⅰ,24]已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈[-a 2,12)时,f (x )≤g (x ),求a 的取值范围.17. [2013•辽宁卷,24]已知函数f (x )=|x -a |,其中a >1.(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值.18.[2013•全国Ⅱ,24]设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ca ≤13;(2)a 2b +b 2c +c 2a ≥1.19.[2016•全国Ⅱ,24]已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.20.[2015•全国Ⅱ,24]设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.选修4-5 不等式选讲答案1.答案 -6或4解析 当a ≤-1时, f (x )=⎩⎪⎨⎪⎧-3x +2a -1(x ≤a ),x -2a -1(a <x ≤-1),3x -2a +1(x >-1),∴f (x )min =-a -1,∴-a -1=5,∴a =-6. 当a >-1时,f (x )=⎩⎪⎨⎪⎧-3x +2a -1(x ≤-1),-x +2a +1(-1<x ≤a ),3x -2a +1(x >a ),∴f (x )min =a +1,∴a +1=5,∴a =4.综上,a =-6或a =4.2.解析 A .运用柯西不等式求解.根据柯西不等式(ma +nb )2≤(a 2+b 2)(m 2+n 2),得25≤5(m 2+n 2),m 2+n 2≥5, m 2+n 2的最小值为 5.3.答案 [0,4]解析 原不等式可转化为-1≤|x -2|-1≤1,故0≤|x -2|≤2,解得0≤x ≤4,故所求不等式的解集为[0,4].4.答案 (-∞,8]解析 由绝对值的几何意义得|x -5|+|x +3|的最小值为8,若|x -5|+|x +3|<a 无解,应有a ≤8.故a 的取值范围是(-∞,8].5.答案 2解析 (am +bn )(bm +an )=ab (m 2+n 2)+mn (a 2+b 2)≥2mnab +mn (a 2+b 2)=mn (a +b )2=mn =2,当且仅当m =n =2时等号成立.一、解答题1.解 (1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为(2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,|ax -1|<1的解集为0<x <2a ,所以2a≥1,故0<a ≤2.综上,a 的取值范围为(0,2].2.解 (1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x +4,x ≤-1,2,-1<x ≤2,-2x +6,x >2.可得f (x )≥0的解集为{x |-2≤x ≤3}.(2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立.故f (x )≤1等价于|a +2|≥4.由|a +2|≥4可得a ≤-6或a ≥2,所以a 的取值范围是(-∞,-6]∪[2,+∞).3.解 (1)f (x )=⎩⎪⎨⎪⎧-3x ,x <-12,x +2,-12≤x <1,3x ,x ≥1.y =f (x )的图象如图所示.(2)由(1)知,y =f (x )的图象与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a ≥3且b ≥2时,f (x )≤ax +b 在x ∈[0,+∞)上成立,因此a +b 的最小值为5.4.解 (1)当a =1时,不等式f (x )≥g (x )等价于 x 2-x +|x +1|+|x -1|-4≤0.①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1; 当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172.所以f (x )≥g (x )的解集为x -1≤x ≤-1+172.(2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时,f (x )≥2. 又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一, 所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1].5.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 2-b 2)2≥4. (2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b ) ≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2. 6.解 (1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2; 当x >2时,由f (x )≥1,解得x >2. 所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54, 且当x =32时,|x +1|-|x -2|-x 2+x =54,故m 的取值范围为⎝⎛⎦⎤-∞,54. 7.证明 由柯西不等式,得(ac +bd )2≤(a 2+b 2)(c 2+d 2).因为a 2+b 2=4,c 2+d 2=16, 所以(ac +bd )2≤64, 因此ac +bd ≤8.8.解 (1)f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,y =f (x )的图象如图所示.(2)由f (x )的表达式及图象,当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5,故f (x )>1的解集为{x |1<x <3};f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或1<x <3或x >5. 9.解 (1)当a =2时,f (x )=|2x -2|+2.解不等式|2x -2|+2≤6得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}. (2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a ,当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.①当a ≤1时,①等价于1-a +a ≥3,无解. 当a >1时,①等价于a -1+a ≥3,解得a ≥2. 所以a 的取值范围是[2,+∞). 10.证明 因为|x -1|<a 3,|y -2|<a3,所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<2×a 3+a3=a .11.解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪23<x <2. (2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A 2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞). 12.解 (1)由|x +a |<b ,得 -b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得a =-3,b =1. (2)-3t +12+t =34-t +t ≤[(3)2+12][(4-t )2+(t )2] =24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t )max =4. 13.解 (1)由ab =1a +1b≥2ab,得ab ≥2,且当a =b =2时等号成立. 故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.14.解 (1)证明:由a >0,得f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪⎪⎪x +1a -(x -a )=1a +a ≥2.所以f (x )≥2.(2)f (3)=⎪⎪⎪⎪⎪⎪3+1a +|3-a |. 当a >3时,f (3)=a +1a , 由f (3)<5得3<a <5+212. 当0<a ≤3时,f (3)=6-a +1a , 由f (3)<5得1+52<a ≤3.综上,a 的取值范围是⎝ ⎛⎭⎪⎫1+52,5+212.15.解 (1)因为32∈A ,且12A ,所以⎪⎪⎪⎪32-2<a ,且⎪⎪⎪⎪12-2≥a ,解得12<a ≤32.又因为a ∈N *,所以a =1. (2)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当(x +1)(x -2)≤0,即-1≤x ≤2时取到等号,所以f (x )的最小值为3. 16.解 (1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0.设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧ -5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.其图象如图所示.从图象可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈[-a 2,12)时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈[-a 2,12)都成立. 故-a 2≥a -2,即a ≤43. 从而a 的取值范围是(-1,43]. 17.解 (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧ -2x +6, x ≤2,2, 2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|得-2x +6≥4,解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|得2x -6≥4,解得x ≥5;所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}.(2)记h (x )=f (2x +a )-2f (x ),则h (x )=⎩⎪⎨⎪⎧ -2a , x ≤0,4x -2a ,0<x <a ,2a , x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12. 又已知|h (x )|≤2的解集为{x |1≤x ≤2}.所以⎩⎨⎧ a -12=1,a +12=2,于是a =3.18.解 证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c , 故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a≥a +b +c . 所以a 2b +b 2c +c 2a≥1. 19.解 (1)f (x )=⎩⎪⎨⎪⎧ -2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2, 解得x >-1;当-12<x <12时,f (x )<2; 当x ≥12时,由f (x )<2得2x <2,解得x <1. 所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0.因此|a +b |<|1+ab |.20.证明 (1)因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1)得a +b >c +d . ②若a +b >c +d ,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.。

高三数学不等式试题答案及解析

高三数学不等式试题答案及解析

高三数学不等式试题答案及解析1.已知实数满足,则的取值范围是( )A.B.C.D.【答案】C【解析】即,由,,,所以,即,当且仅当时取等号,综上所述,的取值范围是.故答案选【考点】基本不等式.2.(本小题满分10分)(选修4—5,:不等式选讲)(Ⅰ)证明柯西不等式:;(Ⅱ)若且,用柯西不等式求+的最大值.【答案】(Ⅰ)详见解析;(Ⅱ)【解析】(Ⅰ)利用做差法,即可证明结果;(Ⅱ)由柯西不等式可得,又即可求出结果.试题解析:解:(Ⅰ)证明:∴(Ⅱ)由柯西不等式可得∵∴∴【考点】1.不等式的性质;2.柯西不等式.3.(本小题满分10分)选修4-5:不等式选讲设实数,满足.(1)若,求的取值范围;(2)求最小值.【答案】(1);(2)【解析】第一问根据题中的等量关系式,不等式可以化为,从而求得的取值范围是,第二问将代入上式,得到利用三角不等式求得其最小值为.试题解析:(1)由得,即,所以可化为,即,解得,所以的取值范围是(2)代入,当且仅当,时,等号成立(或)的最小值为【考点】解绝对值不等式,三角不等式求最值.4.设实数满足则的最大值为.【答案】4【解析】不等式组表示的平面区域如图三角形及其内部,且A(4,0).目标函数可看作直线在y轴上的截距的-2倍,显然当截距越小时,z越大.易知,当直线过点A时,z最大,且最大值为4-2×0=4.【考点】线性规划求最值.5.(本小题满分10分)选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若,且,求证:.【答案】(Ⅰ);(Ⅱ)证明见解析.(Ⅱ)【解析】(Ⅰ)这是含绝对值的不等式工,解法是由绝对值的定义对变量的范围进行分类讨论以去掉绝对值符号,化为普通的不等式(不含绝对值);(Ⅱ)不等式为,可两边平方去掉绝对值符号,再作差可证.试题解析:(Ⅰ)由题意,原不等式等价为,令 3分不等式的解集是 5分(Ⅱ)要证,只需证,只需证而,从而原不等式成立. 10分【考点】含绝对值不等式的解法,绝对值不等式的证明,分析法.6.下列结论:①函数有最大值;②函数有最大值10;③若,则.正确的序号是A.①B.①③C.②③D.①②③【答案】B【解析】对于①;对于②因为,所以;对于③因为,所以.故应选.【考点】1、基本不等式的应用.【方法点睛】本题主要考查了运用基本不等式求其最值,属中档题.其解题的一般方法有两大类:其一是针对和为定值,求其积的最大值问题,如选项①;其二是针对积为定值,和有最小值问题,如选项②、③.在运用基本不等式求最值的过程中,应注意其适用的条件:一正二定三相等,特别应注意等号成立的条件,并检验其是否能够取得到,尤其针对多次运算基本不等式时应验证等号是否能够同时取得.7.选修4-5:不等式选讲.设函数;(Ⅰ)当a=1时,解不等式.(Ⅱ)证明:.【答案】(Ⅰ)当a=1时,不等式的解集为;(Ⅱ)证明过程详见解析.【解析】(Ⅰ)解绝对值不等式的思路是运用零点分段法去绝对值,然后求解每一种情况的解集,最后对几种情况的解集求并集即可;(Ⅱ)求得,,然后利用绝对值不等式缩小为,最后运用均值不等式即可证明.试题解析:(Ⅰ)解:当a=1时,由,得,当时,得,解得,∴;当时,得2≥4不成立,∴不等式无解;当时,由,解得,∴.综上所述,当a=1时,不等式的解集为.(Ⅱ)证明:∵∴.【考点】①解绝对值不等式;②证明不等式.8.选修4-5:不等式选讲已知函数(1)解不等式;(2)若函数的图象恒在函数的图象的上方,求实数的取值范围.【答案】(1);(2)【解析】(1)运用分类讨论的思想方法,去绝对值,即可得到不等式组,即可得到所求解集;(2)由题意可得不等式恒成立,由绝对值不等式的性质,可得右边函数的最大值,进而得到的范围.试题解析:(1)不等式化为,所以不等式的解集为(2)由于函数的图象恒在函数的图象的上方即不等式恒成立令由,得所以实数的取值范围【考点】1.函数的性质及应用;2.绝对值不等式的解法及应用.9.设x,y满足约束条件,若z=x+3y的最大值与最小值的差为7,则实数m=()A.B.C.D.【答案】C【解析】由约束条件作出可行域如图,联立,解得A(1,2),联立,解得B(m﹣1,m),化z=x+3y,得.由图可知,当直线过A时,z有最大值为7,当直线过B时,z有最大值为4m﹣1,由题意,7﹣(4m﹣1)=7,解得:m=.故选:C.【考点】简单线性规划.10.已知函数,不等式的解集为.(Ⅰ)求实数的值;(Ⅱ)若关于的不等式恒成立,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)或【解析】(Ⅰ)问题转化为,从而得到且,基础即可;(Ⅱ)问题转化为恒成立,根据绝对值的意义解出的范围即可.试题解析:解:(1)∵,∴不等式,即,∴,而不等式的解集为,∴且,解得:;(2)关于的不等式恒成立关于的不等式恒成立恒成立恒成立,由或,解得:或.【考点】1.绝对值不等式的解法;2.分段函数的应用.11.设满足则()A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值【答案】B【解析】在平面直角坐标系中作出不等式组所表示的平面区域,利用线性规划知识可得,在处,无最大值.【考点】线性规划.12.设变量满足约束条件,则目标函数的最小值为______.【答案】【解析】画出变量满足的约束条件所表示的可行域,如图所示,可求得可行域内点,则目标函数经过点是取得最小值,此时最小值为.【考点】线性规划求最值.13.已知函数.(1)求不等式的解集;(2)若关于x的不等式恒成立,求实数a的取值范围.【答案】(1);(2).【解析】(1)通过讨论的取值范围,即可求出每个不等式的解集,取并集即可;(2)不等式等价于,转化为绝对值三角不等式求解出函数的最小值,列出关于的不等式组,即可求解的取值范围.试题解析:(1)原不等式等价于:解得,不等式的解集为.(2)不等式因为,所以的最小值为4.于是,所以【考点】绝对值不等式的求解;函数的恒成立问题.14.设对任意恒成立,其中是整数,则的取值的集合为________.【答案】【解析】当时,直线单调递增且过定点,而抛物线的开口向上,不等式在不恒成立,故,此时,否则不合题设,所以欲使不等式在恒成立(当且仅当,即时才能满足),注意到是整数,所以当或时,成立,故或,答案应填:.【考点】1、一次函数、二次函数的图象和性质;2、不等式恒成立的转化与化归;3、分类整合的思想、推理证明的思想和意识.【易错点晴】本题借助不等式恒成立考查的是分类整合的数学思想和函数的图象与性质,属于较难的问题.解题时一定要充分借助一次函数、二次函数的图象,并对参数进行合理的分类,从而将问题进行分析和转化.解题过程中还运用了题设中为整数这一条件,并以此为基点建立关于的等式求出了参数的值.解本题的关键是如何理解题设中“对任意不等式恒成立”,并能建立与此等价的关于的等式.15.若变量满足约束条件,则的最小值是()A.3B.1C.-3D.不存在【答案】B【解析】作出不等式组对应的平面区域如图(阴影部分),由得,平移直线,由图象可知当直线,过点时,直线的截距最大,此时最小,由,解得,即,代入目标函数,得,即目标函数的最小值为,故选B.【考点】简单的线性规划.16.设函数.(1)求不等式的解集;(2)若恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)分,及三段讨论去掉绝对值符号,分别求出的解,求并集即得不等式的解集;(2)若恒成立,则求出函数的最小值解得关于的一元二次不等式从而求得实数的取值范围.试题解析:(1)当当当,综上所述(2)易得,若恒成立,则只需综上所述.【考点】绝对值不等式、一元二次不等式的解法及分区间讨论、转化的数学思想.17.设函数.(1)求不等式的解集;(2)若恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)分,及三段讨论去掉绝对值符号,分别求出的解,求并集即得不等式的解集;(2)若恒成立,则求出函数的最小值解得关于的一元二次不等式从而求得实数的取值范围.试题解析:(1)当当当,综上所述(2)易得,若恒成立,则只需综上所述.【考点】绝对值不等式、一元二次不等式的解法及分区间讨论、转化的数学思想.18.设均为正数,且,则的最小值为()A.16B.15C.10D.9【答案】D【解析】因为均为正数,且,所以,整理可得:,由基本不等式可得,整理可得,解得或(舍去),所以,当且仅当时取等号,故的最小值为,故选D.【考点】基本不等式.【方法点睛】本题主要考查了利用基本不等式求最值,属于中档题.本题解答的关键是根据条件中整理得到,根据基本不等式,把上述关系转化为关于的一元二次不等式,通过解不等式得到的范围,再利用不等式的性质变形得到的范围,得其最小值.19.选修4-5:不等式选讲已知为非零实数,且,.(1)求证:;(2)求实数的取值范围.【答案】(1)证明见解析;(2).【解析】(1)根据柯西不等式可证得,整理即得所证的不等式;(2)根据(1)的结论可得,解不等式求得或,再根据已知条件和不等式的性质可得,取交集即得实数的取值范围.试题解析:(1)证明:由柯西不等式得,即,所以.(2)解:由已知得:,.所以,即,解得或.又,,所以,即实数的取值范围是.【考点】不等式的证明与解法.20.设函数.(1)当时,求函数的定义域;(2)当时,证明:.【答案】(1);(2)【解析】(1)当时,,由;原不等式等价于或或,即可解除不等式的解;(2)当时,即,所以,所以,即可证明结果.试题解析:解:(1)当时,,由原不等式等价于或或则不等式的解集为(2)当时,即,所以,所以,即.【考点】1.绝对值不等式;2.不等式证明.21.已知满足约束条件,若目标函数的最大值为1,则m的值是()A.B.1C.2D. 5【答案】B.【解析】如下图所示,画出不等式组所表示的区域,作直线:,,则可知当,时,,故选B.【考点】本题主要考查线性规划.22.已知函数.(I)解关于的不等式;(II)若关于的不等式恒成立,求实数的取值范围.【答案】(I)或;(II)或.【解析】(I)化简可得,根据绝对值不等式解的基本模型可得或,由不等式的性质即可求得的范围;(II)要使不等式恒成立,则,按照,分别讨论得到,构造关于的不等式,即可求得实数的取值范围.试题解析:(I),或(II)当时,作出图象可知的最小值为,则此时;当时,,作出图象可知的最小值为,则此时综上:或【考点】绝对值不等式的解法与分段和函数的最值和恒成立问题.23.选修4-5: 不等式选讲设函数.(1)求不等式的解集;(2)求函数的最小值.【答案】(1);(2).【解析】(1)根据绝对值的代数意义,去掉函数中的绝对值符号,求解不等式;(2)画出函数函数的图象,根据图象求得函数的最小值.试题解析:(1)①由解得;②解得;③解得;综上可知不等式的解集为(2)可知则【考点】绝对值的代数意义;分类讨论思想.24.已知x、y满足,那么z=3x+2y的最大值为 .【答案】【解析】由题意得,作出不等式组表示平面区域,如图所示,可得平面区域为一个三角形,当目标函数经过点时,目标函数取得最大值,此时最大值为.【考点】简单的线性规划.25.已知实数满足,且最大值是最小值的倍,则.【答案】【解析】由数形结合得,直线经过点时,有最小值,经过点时,有最大值,所以.【考点】线性规划.26.在直角坐标系中,曲线的参数方程为为参数.以点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(Ⅰ)将曲线和直线化为直角坐标方程;(Ⅱ)设点是曲线上的一个动点,求它到直线的距离的最大值.【答案】(Ⅰ) ,;(Ⅱ) .【解析】(Ⅰ)利用同角三角基本关系关系消参可得的直角坐标方程;利用两角和的正弦公式和极坐标与直角坐标的转化公式可得的直角坐标方程;(Ⅱ)用参数法设出点的坐标,代入点到直线的距离公式,可得距离的最大值.试题解析:(Ⅰ)解:由得,∴曲线的直角坐标方程为.由,得化简得,,∴∴直线的直角坐标方程为.(Ⅱ)解:由于点是曲线上的点,则可设点的坐标为,点到直线的距离为当时,.∴点到直线的距离的最大值为.【考点】极坐标与普通方程的转化;参数方程与普通方程的转化;点到直线的距离.27.若变量满足约束条件,则的最大值是()A.B.0C.D.【答案】C【解析】作出不等式组满足的平面区域,如图所示,由图知,当目标函数经过点时取得最大值,即,故选C.【考点】简单的线性规划问题.28.选修4-5:不等式选讲已知,不等式的解集为。

高一数学不等式选讲试题答案及解析

高一数学不等式选讲试题答案及解析

高一数学不等式选讲试题答案及解析1.关于的不等式对任意恒成立,则实数的取值范围是_______.【答案】.【解析】在上为减函数,且不等式对任意恒成立,则只需,即.【考点】二次不等式恒成立问题.2.已知,则使得都成立的的取值范围是()A.B.C.D.【答案】B【解析】由不等式得,解得,由于不等式恒成立,的最小值,的最小值为,因此得.【考点】不等式和恒成立问题.3.解关于的不等式.【答案】当时,解集;当时,解集;当时,解集,当时,解集.【解析】(1)解决与之相关的问题时,可利用函数与方程的思想、化归的思想将问题转化,结合二次函数的图象来解决;(2)解含参数的一元二次不等式分类讨论的依据:一是二次项中若含有参数应讨论是小于0,等于0,还是大于0,然后将不等式转化为二次项系数为正的形式,二是当不等式对应的方程的根个数不确定时,讨论判别式与0的关系,三是确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集;(3)讨论时注意找临界条件讨论.试题解析:解:原不等式当时,解集为当时,解集为当时,解集为当时,解集为.【考点】含参数的一元二次不等式的解法.4.不等式的解集是,则()A.B.C.D.【答案】A【解析】由不等式与方程的关系;可知,解得,所以,故选A.【考点】不等式的解与方程根的关系.5.不等式的解集是()A.B.C.D.【答案】B【解析】.故选B.【考点】解含参量不等式.6.已知不等式的解集是.(1)若,求的取值范围;(2)若,求不等式的解集.【答案】(1);(2)【解析】(1)由得,,即可解得的取值范围;(2)由知,且的两根分别为和2,根据韦达定理即可求的,将代入不等式,将其转化为不含参数的不等式试题解析:(1)∵,∴,∴ 4份(2)∵,∴是方程的两个根,∴由韦达定理得解得 8分∴不等式即为:其解集为. 12分【考点】一二次不等式解法;运算求解能力7.若关于的不等式的解集为,则不等式的解集为.【答案】.【解析】∵关于的不等式的解集为,∴方程的两根为,∴,∴,即不等式的解集为.【考点】一元二次不等式.8.已知.当时,解不等式;(2)若,解关于的不等式.【答案】(1);(2)当时,不等式的解集为;当时,不等式的解集为;当时,等式的解集为.【解析】(1)当,,令,则,则由一元二次不等式与二次函数及一元二次方程三者之间的关系可知,不等式的解集为;(2)一元二次方程的两根为,根据一元二次不等式与一元二次方程之间的关系可知,需对与的大小关系分以下三种情况讨论:当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.试题解析:(1)当时,有不等式, 2分∴,∴不等式的解集为; 4分(2)∵不等式,一元二次方程,两根为,∴当时,有,∴不等式的解集为; 7分当时,有,∴不等式的解集为; 10分当时,有,∴不等式的解集为. 12分【考点】1.一元二次不等式、二次函数、一元二次方程三个二次之间的关系;2.分类讨论的数学思想.9.已知关于的不等式的解集为,且中共含有个整数,则当最小时,实数的值为.【答案】.【解析】由题意可知,若要使尽可能的小,则需,∴,而,当且仅当时,等号成立,又令,综上所述,当时,有最小值为.【考点】一元二次不等式综合.10.已知:,当时,;当时,。

数学(理)知识清单-专题21 不等式选讲(原卷+解析版)

数学(理)知识清单-专题21 不等式选讲(原卷+解析版)

1+1 b
=1a+1b+a1b+1,
由(1)知1a+1b+a1b≥8.
1+1 ∴a
1+1 b
≥9.
7.已知关于 x 的不等式 m-|x-2|≥1,其解集为[0,4].
(1)求 m 的值;
(2)若 a,b 均为正实数,且满足 a+b=m,求 a2+b2 的最小值.
【解析】(1)不等式 m-|x-2|≥1 可化为|x-2|≤m-1,
b+a ab

b2+a2 a2 b2
≥4+(a+b)2+2+4+2=25.
2
2
当且仅当 a=b 时等号成立.
9.已知二次函数 f(x)=x2+ax+b(a,b∈R)的定义域为[-1,1],且|f(x)|的最大值为 M.
(1)证明:|1+b|≤M; (2)证明:M≥1.
故当 x∈[-2,2]时,若 0≤-a≤4,则函数 g(x)的图象在函数 f(x)的图象的下方,g(x)≤f(x)在 x∈[-2,2]
上恒成立,
求得-4≤a≤0,故所求的实数 a 的取值范围为[-4,0].
6.已知 a>0,b>0,a+b=1,求证:
(1)1a+1b+a1b≥8;
(2)
1+1 a
1+1 b
(1)求 k 的值; (2)若 a,b,c 是正实数,且k1a+21kb+31kc=1. 求证:a+2b+3c≥9.
13.已知函数 f(x)=|x+a|+|x-2|.
(1)当 a=-3 时,求不等式 f(x)≥3 的解集;
(2)若 f(x)≤|x-4|的解集包含[1,2],求 a 的取值范围.
14.已知正实 数 a,b 满足:a2+b2=2 ab. (1)求1a+1b的最小值 m;
1-2x+2-x≤3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修4-5:不等式选讲
不等式选讲考点问题解答题:利用基本不等式等主要不等式和绝对值不等式定理,求解或证明有关不等式,包括求已知不等式的解集;根据已知条件列出并求解有关参数的不等式;通过证明有关不等式,解决与不等式有关的问题。

1.(2013全国I 24.)已知函数()|21||2|f x x x a =-++,()3g x x =+。

(Ⅰ)当2a =-时,求不等式()()f x g x <的解集;
(Ⅱ)设1a >-,且当1[,)22
a x ∈-时,()()f x g x ≤,求a 的取值范围。

2.(2014全国I 24)若,0,0>>b a 且ab b a =+11
(I )求33b a +的最小值;
(II )是否存在b a ,,使得632=+b a ?并说明理由.
3.(2015全国I 2
4. )已知函数()12,0f x x x a a =+--> .
(I )当1a = 时求不等式()1f x > 的解集;
(II )若()f x 图像与x 轴围成的三角形面积大于6,求a 的取值范围.
4.(2013全国II 24.)设,,a b c 均为正数,且1a b c ++=, 证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)222
1a b c b c a
++≥. 5.(2014全国II 24.)设函数1()||||(0)f x x x a a a =++-> (1)证明:()2f x ≥;
(2)若(3)5f <,求a 的取值范围.
6.(2015全国II 24. )设,,,a b c d 均为正数,且a b c d +=+.
证明:(I )若ab cd > ,>
(II )>a b c d -<-的充要条件.
选修4-5:不等式选讲答案1.
1.解:(I )当2()a f x =-时,不等式<g(x)化为21223x x x -+---<0.
设函数y=21223x x x -+---,则15,212,1,236, 1.x x y x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩
其图像如图所示
从图像可知,当且仅当x (0,2)∈时,y <0,所以原不等式的解集是{}02x x <<;
(II )当)1
,,()1.22a x f x a ⎡∈-=+⎢⎣ 不等式()f x ≤g(x)化为1+a ≤x+3.
所以x ≥a-2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立,故22a a -≥-,即4
3a ≤,所以a 的范围 41,3⎛⎤- ⎥⎝⎦. 2.解:(I
11a b =+≥,得2ab ≥
,且当a b ==.
故33a b +≥≥
,且当a b ==.
所以33a b +
的最小值为……5分
(II )由(I
)知,23a b +≥≥

于36>,从而不存在,a b ,使得236a b +=. ……10分 3. (Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩

所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为
21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以△ABC 的面积为22(1)3
a +
.
由题设得22(1)3a +>6,解得2a >. 所以a 的取值范围为(2,+∞)……10分
4.
5.解:(I )()f x 111()2x x a x x a a a a a =+
+-≥+--=+≥.所以()f x ≥2. (Ⅱ)1(3)33f a a
=++-.
当时a >3时,(3)f =1a a
+,由(3)f <5得3<a 。

当0<a ≤3时,(3)f =16a a
-+,由(3)f <5<a ≤3.
综上,a ).
6.解:(I )因为
22a b c d =++=++。

相关文档
最新文档