高考物理 动量守恒定律单元综合练习(1)

合集下载

高三2024年11月10日高中物理作业 动量守恒定律

高三2024年11月10日高中物理作业 动量守恒定律
其中
联立解得
2.(1)C
(2)D
(3)见解析
(4)①见解析;②见解析;③
【详解】(1)当蹦床压力为零时,运动员在空中,当再次出现压力时,说明运动员再次落回蹦床,根据图像可知运动员在空中的最长时间为
运动员做竖直上抛运动,跃起的最大高度为
故选C。
(2)小孩处于平衡状态,则
所以
故选D。
(3)实际蹦床运动的开始阶段,运动员在一次次的向下和弹起中,空中到达的最大高度越来越高,这是因为运动员在接触蹦床的过程中,腿部用力蹬,对自身做了功,把他自身体内的化学能转化为自身的机械能,所以在空中到达的最大高度越来越高了。
(4)①小球从A到B做自由落体运动,从B到C小球先做加速度逐渐减小的加速运动,后做加速度逐渐增大的减速运动,小球下落过程的v-t图像如图所示
②小球在C点时,速度为零,设此时弹簧被压缩的长度为x,从A到C过程根据动能定理可得
由于弹簧是被压缩,解得
当小球向上的加速度为g时,设此时弹簧压缩长度为x1,根据牛顿第二定律可得
2024年11月10日高中物理作业
1.如图所示,两根轻绳连接质量为m的小球P,右侧绳一端固定于A点,左侧绳通过光滑定滑轮B连接一物块Q,质量相等的物块Q、N通过一轻弹簧连接,整个系统处于静止状态时,小球P位于图示位置,PA、PB两绳与水平方向的夹角分别为53°和37°,此时物块N与地面的压力恰好为零。现将小球P托至与A、B两点等高的水平线上,两绳均拉直且恰好无弹力,由静止释放小球P。已知PA绳长为L, , ,重力加速度为g,求:
解得
由于
因此
故小李同学观点不正确;
③当小球受到的重力与弹簧弹力大小相等时,小球的速度最大,此时动能最大,设此时弹簧压缩量为x2,则

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题 (含答案)一、高考物理精讲专题动量守恒定律的应用1.竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径R=1m 的半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度 E=4X 10/m .小球a 、b 、c 的半径略小于管道内径, b 、c 球用长L 2m 的绝缘细轻杆连接,开始时c 静止于管道水平部分右端P 点处,在M 点处的a 球在水平推力F 的作用下由静止向右运动,当 F 减到零时恰好与b 发生了弹性碰撞,F-t 的变化图像如图乙所示,且满足F 2 t 2 —.已知三个小球均可看做质点且 m a =0.25kg , m b =0.2kg , m c =0.05kg ,小球 (1) 小球a 与b 发生碰撞时的速度 v o ; (2) 小球c 运动到Q 点时的速度v ;(3) 从小球c 开始运动到速度减为零的过程中,小球 c 电势能的增加量.【答案】(1) V 4m/s (2) v=2m/s (3) E p 3.2J 【解析】【分析】对小球 a ,由动量定理可得小球 a 与b 发生碰撞时的速度;小球a 与小球b 、c 组 成的系统发生弹性碰撞由动量守恒和机械能守恒可列式,小球c 运动到Q 点时,小球b 恰好运动到P 点,由动能定理可得小球 c 运动到Q 点时的速度;由于b 、c 两球转动的角速 度和半径都相同,故两球的线速度大小始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得; 解:⑴对小球a ,由动量定理可得I m a V 。

0 由题意可知,F-图像所围的图形为四分之一圆弧 ,面积为拉力F 的冲量,由圆方程可知S 1m 2 代入数据可得:v 0 4m/s(2)小球a 与小球b 、c 组成的系统发生弹性碰撞 , 由动量守恒可得 m a V 0 m a V | (m b m c )v 21 2 1 2 12由机械能守恒可得 m a v 0m a v 1 (m b m c )v 222 2解得 V 1 0, V 2 4m/ sA E阳1r c 带q=5 x 1'0)C 的正电荷,其他小球不带电,不计一切摩擦, g=10m/s 2,求小球c运动到Q点时,小球b恰好运动到P点,由动能定理1 2 1 2 m c gR qER ㊁血 mjv ㊁血 mjv ?代入数据可得v 2m/ s⑶由于b 、c 两球转动的角速度和半径都相同,故两球的线速度大小始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直方向的夹角为 从c 球运动到Q 点到减速到零的过程列能量守恒可得:1 2(m b m c )v qERsin 22.如图所示,小明参加户外竞技活动,站在平台边缘抓住轻绳一端,轻绳另一端固定在 '点,绳子刚好被拉直且偏离竖直方向的角度0 =60.小明从A 点由静止往下摆,达到 O 点正下方B 点突然松手,顺利落到静止在水平平台的平板车上,然后随平板车一起向右运 动•到达C 点,小明跳离平板车(近似认为水平跳离),安全落到漂浮在水池中的圆形浮漂 上•绳长L=1.6m ,浮漂圆心与 C 点的水平距离x=2.7m 、竖直高度y=1.8m ,浮漂半径 R=0.3m 、不计厚度,小明的质量m=60kg ,平板车的质量 m=20kg ,人与平板车均可视为质点,不计平板车与平台之间的摩擦.重力加速度g=10m/s 2,求:_*』吩(1) 轻绳能承受最大拉力不得小于多少? (2) 小明跳离平板车时的速度在什么范围?(3) 若小明跳离平板车后恰好落到浮漂最右端,他在跳离过程中做了多少功 ?【答案】(1) 1200N (2) 4m/s Wv< 5m/s( 3) 480J 【解析】 【分析】(1)首先根据机械能守恒可以计算到达B 点的速度,再根据圆周运动知识计算拉力大小.(2)由平抛运动规律,按照位移大小可以计算速度范围( 3)由动量守恒和能量守恒规律计算即可. 【详解】解(I)从A 到B .由功能关系可得1 2 mgL(1 cos ) mv ①2代人数据求得v=4 m/s ②m b gR(1cos ) m c gRsin 解得sin0637因此小球c 电势能的增加量: E p qER(1 sin ) 3.2J2在最低点B处,T mg mv③联立①②解得,轻绳能承受最大拉力不得小于T=1200N(2) 小明离开滑板后可认为做平抛运动1 2竖直位移y gt1 2 3④2离C点水平位移最小位移x R v min t⑤离C点水平位移最大为X R V min t⑥联立④⑤⑥解得小明跳离滑板时的速度 4 m/s Wvw 5 m/s(3) 小明落上滑板时,动量守恒mv (m m0)V| ⑦代人数据求得V i=3 m/s⑧离开滑板时,动量守恒(m m0)v| mv C m o V2⑨将⑧代人⑨得V2=-3 m/s由功能关系可得1 2 1 2 1 2 W ( — mv C m0v2) m m0 v1⑩.2 2 2解得W=480 J3. 某种弹射装置的示意图如图所示,光滑的水平导轨MN右端N处于倾斜传送带理想连接,传送带长度L=15.0m,皮带以恒定速率v=5m/s顺时针转动,三个质量均为m=1.0kg的滑块A、B C置于水平导轨上, B C之间有一段轻弹簧刚好处于原长,滑块B与轻弹簧连接,C未连接弹簧,B C处于静止状态且离N点足够远,现让滑块A以初速度V0=6m/s 沿B、C 连线方向向B运动,A与B碰撞后粘合在一起•碰撞时间极短,滑块C脱离弹簧后滑上倾角0 =37的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C与传送带之间的动摩擦因数卩=0.8重力加速度g=10m/s2, sin37=0.6, cos37°0.8.1滑块A、B碰撞时损失的机械能;2滑块C在传送带上因摩擦产生的热量Q;3若每次实验开始时滑块A的初速度V。

高考物理动量守恒定律及其解题技巧及练习题(含答案)含解析

高考物理动量守恒定律及其解题技巧及练习题(含答案)含解析

高考物理动量守恒定律及其解题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b点:对Q,由牛顿第二定律得:2222NvF m g mR-=解得:24.610NNF-=⨯(2)设Q在c点的速度为c v,在b到c点,由机械能守恒定律:22222211(1cos)22cm gR m v m vθ-+=解得:2m/scv=进入磁场后:Q所受电场力22310NF qE m g-==⨯=,Q在磁场做匀速率圆周运动由牛顿第二定律得:2211ccm vqv Br=Q刚好不从gh边穿出磁场,由几何关系:1 1.6mr d==解得:1 1.25TB=(3)当所加磁场22TB=,2221mcm vrqB==要让Q从gh边穿出磁场且在磁场中运动的时间最长,则Q在磁场中运动轨迹对应的圆心角最大,则当gh边或ef边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d rrα-︒-=解得:127α=︒运动周期:222mTqBπ=则Q在磁场中运动的最长时间:222127127•s360360360mt TqBπαπ===︒此时对应的β角:190β=︒和2143β=︒2.如图所示,质量M=1kg的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef两个光滑半圆形导轨,c与e端由导线连接,一质量m=lkg的导体棒自ce端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。

第一章动量守恒定律单元综合练习-高二下学期物理人教版选择性必修第一册

第一章动量守恒定律单元综合练习-高二下学期物理人教版选择性必修第一册

动量守恒定律单元综合练习一、单选题1.将质量为0.5 kg的小球以20 m/s的初速度竖直向上抛出,不计空气阻力,g取10m/s2,以下判断正确的是()A.小球从被抛出至到达最高点受到的冲量大小为10 N·sB.小球从被抛出至落回出发点动量的变化量大小为零C.小球从被抛出至落回出发点受到的冲量大小为10 N·sD.小球从被抛出至落回出发点动量的变化量大小为10 N·s2.关于物体的动量,下列说法中正确的是()A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向B.物体的加速度不变,其动量一定不变C.动量越大的物体,其速度一定越大D.动量越大的物体,其质量一定越大3.如图所示为冲击摆实验装置,一飞行子弹射入沙箱后与沙箱合为一体,共同摆起一定的高度,则下面有关能量的转化的说法中正确的是()A.子弹的动能转变成沙箱和子弹的内能B.子弹的动能转变成了沙箱和子弹的热能C.子弹的动能转变成了沙箱和子弹的动能D.子弹的动能一部分转变成沙箱和子弹的内能,另一部分转变成沙箱和子弹的机械能4.如图所示,质量为m的子弹以某一速度水平射入放在光滑水平地面上静止的木块后不再穿出,此时木块动能增加了 5.5J,木块质量为M,那么此过程产生的内能可能为()A .1JB .5 JC .3JD .7J5.如图1所示,在水平地面上有甲、乙两物块(均可视为质点)相向运动,运动一段时间后发生碰撞,碰撞后两物块继续运动直到均停止在地面上。

整个过程中甲、乙两物块运动的速度-时间图象如图2所示,0=t 时刻甲、乙间距为1x ,均停止后间距为2x ,已知重力加速度10g =m/s 2。

下列说法正确的是( )A .两物块与地面间的动摩擦因数相同B .两物块的质量之比为12m m =甲乙 C .两物块间的碰撞为弹性碰撞D .乙在整个过程中的位移大小312x x x =-6.如图所示,在光滑水平面上,有一质量为m 的静止小球A 与墙之间用轻弹簧连接,并处于静止状态。

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。

【物理】 高考物理动量守恒定律专项训练100(附答案)

【物理】 高考物理动量守恒定律专项训练100(附答案)

【物理】 高考物理动量守恒定律专项训练100(附答案)一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.(16分)如图,水平桌面固定着光滑斜槽,光滑斜槽的末端和一水平木板平滑连接,设物块通过衔接处时速率没有改变。

选修1高中物理 《动量守恒定律》单元测试题(含答案)(1)

选修1高中物理 《动量守恒定律》单元测试题(含答案)(1)

选修1高中物理 《动量守恒定律》单元测试题(含答案)(1)一、动量守恒定律 选择题1.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,忽略空气阻力,则( )A .过程Ⅰ中钢珠动量的改变量小于重力的冲量B .过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C .过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D .过程Ⅱ中钢珠的动量改变量等于阻力的冲量2.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg ,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J3.如图所示,A 、B 、C 三个半径相同的小球穿在两根平行且光滑的足够长的杆上,三个球的质量分别为m A =2kg,m B =3kg,m C =1kg,初状态三个小球均静止,BC 球之间连着一根轻质弹簧,弹簣处于原长状态.现给A 一个向左的初速度v 0=10m/s,A 、B 碰后A 球的速度变为向右,大小为2m/s ,下列说法正确的是A .球A 和B 碰撞是弹性碰撞B .球A 和B 碰后,球B 的最小速度可为0C .球A 和B 碰后,弹簧的最大弹性势能可以达到96JD .球A 和B 碰后,弹簧恢复原长时球C 的速度可能为12m/s4.3个质量分别为m 1、m 2、m 3的小球,半径相同,并排悬挂在长度相同的3根竖直绳上,彼此恰好相互接触.现把质量为m 1的小球拉开一些,如图中虚线所示,然后释放,经球1与球2、球2与球3相碰之后,3个球的动量相等.若各球间碰撞时均为弹性碰撞,且碰撞时间极短,不计空气阻力,则m 1:m 2:m 3为( )A.6:3:1 B.2:3:1 C.2:1:1 D.3:2:15.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a自由下落到b,再从b开始以恒力制动竖直下落到c停下.已知跳楼机和游客的总质量为m,ab 高度差为2h,bc高度差为h,重力加速度为g.则A.从a到b与从b到c的运动时间之比为2:1B.从a到b,跳楼机座椅对游客的作用力与游客的重力大小相等C.从a到b,跳楼机和游客总重力的冲量大小为m ghD.从b到c,跳楼机受到制动力的大小等于2mg6.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4kg·m/s,则()A.左方是A球,碰撞后A、B两球速度大小之比为2:5B.左方是A球,碰撞后A、B两球速度大小之比为1:10C.右方是A球,碰撞后A、B两球速度大小之比为2:5D.右方是A球,碰撞后A、B两球速度大小之比为1:107.如图,表面光滑的固定斜面顶端安装一定滑轮,小物块A.B用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A、B处于同一高度并恰好处于静止状态.剪断轻绳后A下落、B沿斜面下滑,则从剪断轻绳到物块着地,两物块A.落地时的速率相同B.重力的冲量相同C.重力势能的变化量相同D .重力做功的平均功率相同8.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg ,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J9.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L ,宽轨间距为2L 。

(完整版)动量守恒定律综合练习(附答案)

(完整版)动量守恒定律综合练习(附答案)

动量守恒定律综合练习1、质量为M 的木块在光滑的水平面上以速度1v 向右运动,质量为m 的子弹以速度2v 水平方向迎面向左射击过来,并嵌在其中,要使木块停下来,必须发射多少发子弹。

2、质量kg 100的小船静止在水面上,船两端载着kg m 401=和kg m 602=的游泳者,同在一水平线上,以相对于岸的相同速率s m /3向前和向后跃入水中,求船的速度大小与方向。

3、质量为M ,长度为L 的车厢,静止于光滑的水平面上,车厢内在一质量为m 的物体以初速度0v 向右运动,与车厢壁来回碰撞了n 次后静止在车厢中,这时车厢的速度有多大?4、用长为L 的细线悬挂质量为M 的木块处于静止,现有一质量为m 的子弹自左向右水平射穿此木块,穿透前后子弹的速度分别为0v 和v ,求:(1)子弹穿过后,木块的速度大小;(2)子弹穿过后瞬间,细线所受拉力的大小。

5、如图,在高为m h 10=的平台上,放一质量为kg M 9.9=的木块,它与平台边缘的距离m L 1=。

今有一质量kg m 1.0=的子弹,以水平向右的速度0v 射入木块(时间极短)并留在木块中,木块向右滑行并冲出平台,最后落到离平边缘水平距离m x 24=处,已知木块与平台间的动摩擦因数209=μ,g 取2/10s m 。

求(1)木块离开平台边缘时的速度;(2)子弹射入木块时的初速度。

6、手榴弹在离地高h 处的速度方向恰好沿水平方向向左,速度大小为0v ,此时,手榴弹炸成质量相等的两块,设消耗的火药质量不计,爆炸后前半块的速度速度方向仍沿水平向左,速度大小为v 3。

那么,两块弹片落地点之间的水平距离多大?7、有一光滑的水平轨道与光滑的竖直的半圆形(半径为m R 5.2=)轨道相连,在水平轨道上放置一质量为kg M 9.4=的木块,今有一质量为kg m 1.0=、速度为s m v /25000=的子弹自左水平射入木块且留在木块中。

求:(1)木块能否到达轨道的最高点,如能,在最高点对轨道的压力是多大。

高考物理最新力学知识点之动量单元汇编及答案(1)

高考物理最新力学知识点之动量单元汇编及答案(1)

高考物理最新力学知识点之动量单元汇编及答案(1)一、选择题1.从同一高度的平台上,抛出三个完全相同的小球,甲球竖直上抛,乙球竖直下抛,丙球平抛,三球落地时的速率相同,若不计空气阻力,则( ) A .抛出时三球动量不都相同,甲、乙动量相同,并均小于丙的动量 B .落地时三球的动量相同C .从抛出到落地过程,三球受到的冲量均不相同D .从抛出到落地过程,三球受到的冲量均相同2.如图所示,光滑的四分之一圆弧轨道M 静止在光滑水平面上,一个物块m 在水平地面上以大小为v 0的初速度向右运动并无能量损失地滑上圆弧轨道,当物块运动到圆弧轨道上某一位置时,物块向上的速度为零,此时物块与圆弧轨道的动能之比为1:2,则此时物块的动能与重力势能之比为(以地面为零势能面)A .1:2B .1:3C .1:6D .1:93.质量为1.0kg 的小球从高20m 处自由下落到软垫上,反弹后上升的最大高度为5.0m .小球与软垫接触的时间为1.0s ,在接触时间内小球受到合力的冲量大小为(空气阻力不计,g 取10m/s 2)A .10N·s B .20N·s C .30N·s D .40N·s 4.如图所示,A 、B 是位于水平桌面上两个质量相等的小滑块,离墙壁的距离分别为L 和2L,与桌面之间的动摩擦因数分别为A μ和B μ,现给滑块A 某一初速度,使之从桌面右端开始向左滑动,设AB 之间、B 与墙壁之间的碰撞时间都很短,且碰撞中没有能量损失,若要使滑块A 最终不从桌面上掉下来,滑块A 的初速度的最大值为( )A ()AB gL μμ+B ()2A B gL μμ+C .()2A B gL μμ+D ()12A B gL μμ+5.如图所示,光滑绝缘水平轨道上带正电的甲球,以某一水平速度射向静止在轨道上带正电的乙球,当它们相距最近时,甲球的速度变为原来的15.已知两球始终未接触,则甲、乙两球的质量之比是A.1:1B.1:2C.1:3D.1:46.如图所示,一个质量为M的滑块放置在光滑水平面上,滑块的一侧是一个四分之一圆弧EF,圆弧半径为R=1m.E点切线水平.另有一个质量为m的小球以初速度v0从E点冲上滑块,若小球刚好没跃出圆弧的上端,已知M=4m,g取10m/s2,不计摩擦.则小球的初速度v0的大小为()A.v0=4m/s B.v0=6m/s C.v0=5m/s D.v0=7m/s7.将充足气后质量为0.5kg的篮球从1.6m高处自由落下,篮球接触地面的时间为0.5s,竖直弹起的最大高度为0.9m。

高考物理动量守恒定律(一)解题方法和技巧及练习题含解析

高考物理动量守恒定律(一)解题方法和技巧及练习题含解析

高考物理动量守恒定律(一)解题方法和技巧及练习题含解析一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图,质量分别为m 1=1.0kg 和m 2=2.0kg 的弹性小球a 、b ,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v 0=0.10m/s 沿光滑水平面向右做直线运动.某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t =5.0s 后,测得两球相距s =4.5m ,则刚分离时,a 球、b 球的速度大小分别为_____________、______________;两球分开过程中释放的弹性势能为_____________.【答案】①0.7m/s, -0.2m/s ②0.27J 【解析】试题分析:①根据已知,由动量守恒定律得联立得②由能量守恒得代入数据得考点:考查了动量守恒,能量守恒定律的应用【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒定律与能量守恒定律分析解题3.如图,质量分别为、的两个小球A 、B 静止在地面上方,B 球距地面的高度h=0.8m ,A 球在B 球的正上方. 先将B 球释放,经过一段时间后再将A 球释放. 当A 球下落t=0.3s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零.已知,重力加速度大小为,忽略空气阻力及碰撞中的动能损失.(i )B 球第一次到达地面时的速度; (ii )P 点距离地面的高度. 【答案】4/B v m s =0.75p h m = 【解析】试题分析:(i )B 球总地面上方静止释放后只有重力做功,根据动能定理有212B B B m gh m v =可得B 球第一次到达地面时的速度24/B v gh m s ==(ii )A 球下落过程,根据自由落体运动可得A 球的速度3/A v gt m s == 设B 球的速度为'B v , 则有碰撞过程动量守恒'''A A B B B B m v m v m v +=碰撞过程没有动能损失则有222111'''222A AB B B B m v m v m v += 解得'1/B v m s =,''2/B v m s =小球B 与地面碰撞后根据没有动能损失所以B 离开地面上抛时速度04/B v v m s ==所以P 点的高度220'0.752B p v v h m g-== 考点:动量守恒定律 能量守恒4.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.5.牛顿的《自然哲学的数学原理》中记载,A 、B 两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B 对A 的速度,接近速度是指碰撞前A 对B 的速度.若上述过程是质量为2m 的玻璃球A 以速度v 0碰撞质量为m 的静止玻璃球B ,且为对心碰撞,求碰撞后A 、B 的速度大小. 【答案】v 0v 0【解析】设A 、B 球碰撞后速度分别为v 1和v 2 由动量守恒定律得2mv 0=2mv 1+mv 2 且由题意知=解得v 1=v 0,v 2=v 0视频6.一轻质弹簧一端连着静止的物体B ,放在光滑的水平面上,静止的物体A 被水平速度为v 0的子弹射中并且嵌入其中,随后一起向右运动压缩弹簧,已知物体A 的质量是物体B 的质量的34,子弹的质量是物体B 的质量的14,求:(1)物体A 被击中后的速度大小; (2)弹簧压缩到最短时B 的速度大小。

选修1高中物理 《动量守恒定律》单元测试题含答案

选修1高中物理 《动量守恒定律》单元测试题含答案

选修1高中物理 《动量守恒定律》单元测试题含答案一、动量守恒定律 选择题1.如图所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m =2M 的小物块.现使木箱瞬间获得一个水平向左、大小为v 0的初速度,下列说法正确的是A .最终小物块和木箱都将静止B .最终小物块和木箱组成的系统损失机械能为203Mv C .木箱速度水平向左、大小为02v 时,小物块的速度大小为04v D .木箱速度水平向右、大小为03v . 时,小物块的速度大小为023v 2.如图所示,两滑块A 、B 位于光滑水平面上,已知A 的质量M A =1k g ,B 的质量M B =4k g .滑块B 的左端连有轻质弹簧,弹簧开始处于自由伸长状态.现使滑块A 以v =5m/s 速度水平向右运动,通过弹簧与静止的滑块B 相互作用(整个过程弹簧没有超过弹性限度),直至分开.则( )A .物块A 的加速度一直在减小,物块B 的加速度一直在增大B .作用过程中弹簧的最大弹性势能2J p E =C .滑块A 的最小动能为 4.5J KA E =,滑块B 的最大动能为8J KB E =D .若滑块A 的质量4kg A M =,B 的质量1kg B M =,滑块A 的最小动能为18J KAE =,滑块B 的最大动能为32J KB E =3.平静水面上停着一只小船,船头站立着一个人,船的质量是人的质量的8倍.从某时刻起,人向船尾走去,走到船中部时他突然停止走动.不计水对船的阻力,下列说法正确的是( )A .人在船上走动过程中,人的动能是船的动能的8倍B .人在船上走动过程中,人的位移是船的位移的9倍C .人走动时,它相对水面的速度大于小船相对水面的速度D .人突然停止走动后,船由于惯性还会继续运动一小段时间4.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( )A .在A 离开竖直墙前,A 、B 与弹簧组成的系统机械能守恒,之后不守恒B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒C .在A 离开竖直墙后,A 、B 速度相等时的速度是223E m D .在A 离开竖直墙后,弹簧的弹性势能最大值为3E 5.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次由A 到最低点B 的运动过程中,槽的支持力对小球做负功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰C .小球第一次在半圆槽的最低点B 时对槽的压力为133mg D .物块最终的动能为15mgR 6.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )A .1木块相对静止前,木板是静止的B .1木块的最小速度是023v C .2木块的最小速度是056v D .木块3从开始运动到相对静止时位移是204v gμ 7.如图,固定的光滑斜面倾角θ=30°,一质量1kg 的小滑块静止在底端A 点.在恒力F 作用下从沿斜面向上作匀加速运动,经过时间t =2s ,运动到B 点,此时速度大小为v 1,到B 点时撤去F 再经过2s 的时间,物体运动到AB 的中点C ,此时速度大小为v 2,则以下正确的是A .v 2=2v 1B .B 点到C 点的过程中,物体动量改变量为2kg·m/sC .F =7ND .运动过程中F 对小滑块做功28J8.水上飞行运动使用的是一种叫“喷射式悬浮飞行器”的装置,也称为“喷水飞行背包”,它通过向下喷射高压水柱的方式将操控者托举在水面 上空,利用脚上喷水装置产生的反冲动力,让你可以在水面之上腾空而起,另外配备有手动控 制的喷嘴,用于稳定空中飞行姿态.如图所示运动员在水上做飞行运动表演.他操控喷射式悬浮飞行器将水带竖直送上来的水反转180°后向下喷出,令自己悬停在空中.已知运动员与装备的总质量为100 kg ,两个圆管喷嘴的直径均为10cm ,已知重力加速度大小g =10m/s 2,水的密度ρ=1.0×103kg/cm 3,则喷嘴处喷水的速度大约为A .3.0 m/sB .5.4 m/sC .8.0 m/sD .10.2 m/s9.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为m 的小球以平行斜面向上的初速度1v ,当小球回到出发点时速率为2v 。

人教版高中物理选择性必修第一册第一章动量守恒定律1-1动量练习含答案

人教版高中物理选择性必修第一册第一章动量守恒定律1-1动量练习含答案

第一章动量守恒定律1 动量基础过关练题组一寻求碰撞中的不变量1.(经典题)(2024四川成都期末)气垫导轨是常用的一种实验仪器,它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦。

现用带竖直挡板C、D的气垫导轨和滑块A、B探究碰撞中的不变量,实验装置如图所示。

采用的实验步骤如下:a.用天平分别测出A、B的质量m A、m B;b.调整气垫导轨,使导轨处于水平;c.在A和B间放入一个被压缩的轻弹簧,用电动卡销锁定,静止放置在气垫导轨上;d.用刻度尺测出A的左端至挡板C的距离L1;e.按下电钮放开卡销,同时分别记录A、B运动时间的计时器开始工作,当A、B分别碰撞C、D时计时结束,记下A、B分别到达C、D的运动时间t1和t2。

(1)实验中还应测量的物理量及其符号是;(2)规定水平向左为正方向,作用前A、B质量与速度乘积之和为;作用后A、B质量与速度乘积之和为(用测量的物理量符号表示即可)。

2.(2023湖北襄阳四中月考)利用气垫导轨通过闪光照相进行“探究碰撞中的不变量”这一实验,如图所示,A、B两滑块质量比是1∶3,某次实验时碰撞前B滑块静止,A滑块匀速向B滑块运动并发生碰撞,利用闪光照相的方法连续4次拍摄得到的闪光照片如图所示。

已知相邻两次闪光的时间间隔为0.2 s,在这4次闪光的过程中,A、B 两滑块均在0~80 cm范围内,且第1次闪光时,滑块A恰好位于x=10 cm处。

若A、B两滑块的碰撞时间及闪光持续的时间极短,均可忽略不计。

如从第1次闪光开始计时,则可知经过时间t=s两滑块在x=cm处发生碰撞,两滑块碰撞前后质量与速度的乘积的矢量和。

题组二动量3.(2024河北唐山联考)关于动量,以下说法正确的是()A.做匀速圆周运动的物体,其动量保持不变B.悬线拉着的摆球在竖直面内摆动时,每次经过最低点时的动量均相等C.动量相同的物体,其速度一定相等D.动量相同的物体,其速度方向一定相同4.(多选题)(2024江苏徐州期中)如图所示,飞机在平直跑道上启动阶段的运动可看作初速度为零的匀加速直线运动,在启动阶段,飞机的动量()A.与它的位移成正比B.与它的速度成正比C.与它的动能成正比D.与它所经历的时间成正比5.(经典题)如图甲,长木板的一端垫有小木块,可以微调木板的倾斜程度,以平衡摩擦力,使小车能在木板上做匀速直线运动。

高中物理选择性必修一第一章 动量守恒定律 单元测试(含答案)

高中物理选择性必修一第一章  动量守恒定律 单元测试(含答案)

高中物理选择性必修一第一章一、选择题(1-7单选题,8-10多选题)1.2024年春天,中国航天科技集团研制的50kW级双环嵌套式霍尔推力器,成功实现点火并稳定运行,标志着我国已跻身全球嵌套式霍尔电推进技术领先行列。

嵌套式霍尔推力器不用传统的化学推进剂,而是使用等离子体推进剂,它的一个显著优点是“比冲”高。

比冲是航天学家为了衡量火箭引擎燃料利用效率引入的一个物理量,英文缩写为I sp,是单位质量的推进剂产生的冲量,比冲这个物理量的单位应该是( )A.m/s B.kg⋅m/s2C.m/s2D.N⋅s2.物理在生活和生产中有广泛应用,以下实例没有利用反冲现象的是( )A.乌贼喷水前行B.电风扇吹风C.火箭喷气升空D.飞机喷气加速3.如图所示,小车与木箱紧挨着静止在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱。

关于上述过程,下列说法中正确的是( )A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量大小不相等4.人从高处跳到较硬的水平地面时,为了安全,一般都是让脚尖先触地且着地时要弯曲双腿,这是为了( )A.减小地面对人的冲量B.减小人的动量的变化C.增加人对地面的冲击时间D.增大人对地面的压强5.在光滑的水平面上,质量为m1的小球以速率v0向右运动。

在小球的前方有一质量为m2的小球处于静止状态,如图所示,两球碰撞后粘合在一起,两球继续向右运动,则两球碰撞后的速度变为( )A.仍为v0B.m1v0(m1+m2)C.m2v0(m1+m2)D.v0(m1+m2)6.重量为mg的物体静止在水平地面上,物体与地面之间的最大静摩擦力为F m,从0时刻开始,物体受到水平拉力F的作用,F与时间t的关系如图a所示,为了定性地表达该物体的运动情况,在图b所示的图象中,纵轴y应为该物体的()A.动量大小P B.加速度大小a C.位移大小xD.动能大小E k7.一质量为0.1kg的小球自t=0时刻从水平地面上方某处自由下落,小球与地面碰后反向弹回,不计空气阻力,也不计小球与地面弹性碰撞的时间,小球距地面的高度h与运动时间t关系如图所示,取g=10m/s2.则()A .小球第一次与地面弹性碰撞后的最大速度为10m /sB .小球与地面弹性碰撞前后动量守恒C .小球第一次与地面弹性碰撞时机械能损失了19JD .小球将在t =6s 时与地面发生第四次弹性碰撞8.如图所示,质量为M 的带有四分之一光滑圆弧轨道的小车静止置于光滑水平面上,圆弧的半径为R(未知),一质量为m 的小球以速度v 0水平冲上小车,恰好达到圆弧的顶端,此时M 向前走了0.25R ,接着小球又返回小车的左端。

完整版动量守恒定律综合专题练习与解答

完整版动量守恒定律综合专题练习与解答

动量守恒定律综合专题练习与解答,一2m1.如图所示,光滑水平面上有一带半径为R的1/4光滑圆弧轨道的滑块,其质量为质量为m沿水平面滑上轨道,并从轨道上端飞出,求的小球以速度v0是多少?⑴小球上升的到离水平面的最大高度H是多少?⑵小球离开轨道的瞬间,轨道的加速度大小a解答:⑴小球到达最高点时,球与轨道在水平方向有相同的速度,设。

由于小球和滑块组成的系统在水平方向不受外力作用,故系统在水平方向动量守恒,v为vm)?(m?2mv由根据动量守恒定律有0111222mghv???2mvm?mv?由机械能守恒有02222v?h0联立上述方程可得g3小球相对于轨道圆心在竖直方向轨道的圆心没有竖直方向的速度,⑵小球离开轨道的瞬间,v。

水平方向的速度和轨道速度相同。

的速度大小为小球的竖直分速度,设为竖)?R2g(hv?由运动的可逆性知道竖在轨道最高点,弹力提供做向心力,则有2v2mv2m竖mgg?m??2(h?R)??2N0RRR3由运动定律可得,小球对轨道的水平弹力大小为2mv2mgN'??20R32vN'g?a??0由运动定律得轨道的加速度为R32m 相切的、位于竖直平面内的2.如图所示,abc是光滑的轨道,其中ab是水平的,bc为与ab,速m0.60kg M==0.20kg的小球A静止在轨道上,另一质量半圆,半径R=0.30m,质量落到轨道上经过半圆的最高点c与小球BA正碰。

已知相碰后小球A度v=5.5m/s的小球02R42 b距点为L,求==10m/s处,重力加速度g 和B的速度大小。

A⑴碰撞结束时,小球是否能沿着半圆轨道到达c点。

⑵试论证小球B?t?v42R??A C解答:设A球过点时的速度为v,平抛后的飞行时间为t解得,则?1A2gtR?2?2?6m/s2v?22gR?A上滑的过程中机械能守恒,由机v A 和v。

小球、设碰撞结束后,小球AB的速度分别为21械能守恒定律有1122R2?mv?mvmg?A122页5 共页1 第6m/s2gRv解得1两小球碰撞过程中动量守恒,由动量守恒定律可得5m/s.v?3Mv?mv?Mv解得2102点,由此时有B刚好能够到达轨道上的c⑵设小球2v3m/s?v?gRMMgR?解得B B R,由机械能守恒定律有B球在最低点的最小速度为v设min1122R2Mg?Mv?Mv?Bmin2287m/s.?3?5gR?15m/sv解得min c B不可能到达最高点v<v,所以小球由于min22kg静止在光滑的水平面上,板的一端静止有一个质量为的小平板车B3.图示,质量为2kg A的水平速度射穿物体的子弹以600m/s A。

高中物理动量守恒定律的技巧及练习题及练习题(含答案)含解析.docx

高中物理动量守恒定律的技巧及练习题及练习题(含答案)含解析.docx

高中物理动量守恒定律的技巧及练习题及练习题( 含答案 ) 含解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、 m,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度v0向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能(2)第一次碰撞过程中甲对乙的冲量【答案】(1) 1 mv02; (2)4mv0【解析】【详解】解: (1)设第一次碰撞刚结束时甲、乙的速度分别为v1、 v2,之后甲做匀速直线运动,乙以v2初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速v2度相等,有: v12而第一次碰撞中系统动量守恒有:2mv02mv1 mv2由以上两式可得: v1v0, v2v0 2所以第一次碰撞中的机械能损失为:E 1g2mgv021g2mgv121mv221mv02 2224(2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:I mv20 mv02.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。

某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为 M=l kg,点火后全部压缩气体以 v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有m的压缩气体,每级总2质量均为M,点火后模型后部第一级内的全部压缩气体以速度v o从底部喷口在极短时间2内竖直向下喷出,喷出后经过2s时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。

喷气过程中的重力和整个过程中的空气阻力忽略不计, g 取 10 m / s2,求两种模型上升的最大高度之差。

【答案】 116.54m【解析】对模型甲:0 M m v甲mv0v甲21085m200.56 m h甲 =92g对模型乙第一级喷气:0M m v乙1m v022解得:v乙130ms2s 末:v乙‘1=v乙1gt10msh乙1= v乙21v '乙2140m2 g对模型乙第一级喷气:Mv乙‘1 =(M m)v乙2mv02222解得:v乙2=670 m9sh乙2= v乙2222445m277.10 m 2g81可得:h h乙1+h乙2h甲 =9440m116.54m 。

选修1高中物理《动量守恒定律》单元测试题含答案(1)

选修1高中物理《动量守恒定律》单元测试题含答案(1)

选修1高中物理《动量守恒定律》单元测试题含答案(1)一、动量守恒定律 选择题1.如图所示,质量为M 的长木板A 静止在光滑的水平面上,有一质量为m 的小滑块B 以初速度v 0从左侧滑上木板,且恰能滑离木板,滑块与木板间动摩擦因数为μ.下列说法中正确的是A .若只增大v 0,则滑块滑离木板过程中系统产生的热量增加B .若只增大M ,则滑块滑离木板过程中木板所受到的冲量减少C .若只减小m ,则滑块滑离木板时木板获得的速度减少D .若只减小μ,则滑块滑离木板过程中滑块对地的位移减小2.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为03v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()A .若m 0=3m ,则能够射穿木块B .若m 0=3m ,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动C .若m 0=3m ,子弹刚好能射穿木块,此时子弹相对于木块的速度为零D .若子弹以3v 0速度射向木块,并从木块中穿出,木块获得的速度为v 1;若子弹以4v 0速度射向木块,木块获得的速度为v 2;则必有v 1<v 23.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m 的小物块从槽上高h 处开始下滑,重力加速度为g ,下列说法正确的是A .物体第一次滑到槽底端时,槽的动能为3mgh B .物体第一次滑到槽底端时,槽的动能为6mgh C .在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒D .物块第一次被弹簧反弹后能追上槽,但不能回到槽上高h 处4.如图所示,在光滑的水平面上有体积相同、质量分别为m =0.1kg 和M =0.3kg 的两个小球A 、B ,两球之间夹着一根压缩的轻弹簧(弹簧与两球不相连),A 、B 两球原来处于静止状态.现突然释放弹簧,B 球脱离弹簧时的速度为2m/s ;A 球进入与水平面相切、半径为0.5m 的竖直面内的光滑半圆形轨道运动,PQ 为半圆形轨道竖直的直径,不计空气阻力,g 取10m/s 2,下列说法正确的是( )A .A 、B 两球离开弹簧的过程中,A 球受到的冲量大小等于B 球受到的冲量大小 B .弹簧初始时具有的弹性势能为2.4JC .A 球从P 点运动到Q 点过程中所受合外力的冲量大小为1N ∙sD .若逐渐增大半圆形轨道半径,仍然释放该弹簧且A 球能从Q 点飞出,则落地的水平距离将不断增大5.在光滑的水平桌面上有等大的质量分别为M =0.6kg ,m =0.2kg 的两个小球,中间夹着一个被压缩的具有E p =10.8J 弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态。

高中物理动量定理解题技巧讲解及练习题(含答案)及解析(1)

高中物理动量定理解题技巧讲解及练习题(含答案)及解析(1)

高中物理动量定理解题技巧讲解及练习题(含答案)及解析(1)一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图,一轻质弹簧两端连着物体A 和B ,放在光滑的水平面上,某时刻物体A 获得一大小为的水平初速度开始向右运动。

已知物体A 的质量为m ,物体B 的质量为2m ,求:(1)弹簧压缩到最短时物体B 的速度大小; (2)弹簧压缩到最短时的弹性势能;(3)从A 开始运动到弹簧压缩到最短的过程中,弹簧对A 的冲量大小。

【答案】(1)(2)(3)【解析】 【详解】(1)弹簧压缩到最短时,A 和B 共速,设速度大小为v ,由动量守恒定律有①得②(2)对A 、B 和弹簧组成的系统,由功能关系有③得④(3)对A 由动量定理得⑤得⑥3.冬奥会短道速滑接力比赛中,在光滑的冰面上甲运动员静止,以10m/s 运动的乙运动员从后去推甲运动员,甲运动员以6m/s 向前滑行,已知甲、乙运动员相互作用时间为1s ,甲运动员质量m 1=70kg 、乙运动员质量m 2=60kg ,求:⑴乙运动员的速度大小;⑵甲、乙运动员间平均作用力的大小。

高考物理动量守恒定律(一)解题方法和技巧及练习题(1)

高考物理动量守恒定律(一)解题方法和技巧及练习题(1)

高考物理动量守恒定律(一)解题方法和技巧及练习题(1)一、高考物理精讲专题动量守恒定律1.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.2.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立.故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.3.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。

物理动量守恒定律专题练习(及答案)含解析

物理动量守恒定律专题练习(及答案)含解析

①求弹簧恢复原长时乙的速度大小; ②若乙与挡板 P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板 P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I=8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为 和 ,对两滑块及弹簧组成的系统,设向 左的方向为正方向,由动量守恒定律可得:
又知
(2 分)
因为子弹在射穿第一块钢板的动能损失为 ΔE 损 1=f·d=
mv
2 0
(1
分),
由能量守恒得:
1 2
mv
2 1

1 2
mV
2 1

1 2
mv
2 0
-ΔE
损 1(2
分)
且考虑到 v1 必须大于 V1,
解得:v1= ( 1 3 ) v0 26
设子弹射入第二块钢板并留在其中后两者的共同速度为 V2,
物理动量守恒定律专题练习(及答案)含解析
一、高考物理精讲专题动量守恒定律
1.在图所示足够长的光滑水平面上,用质量分别为 3kg 和 1kg 的甲、乙两滑块,将仅与甲 拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板 P.现将两滑块由静止释放,当弹簧 恢复原长时,甲的速度大小为 2m/s,此时乙尚未与 P 相撞.
(1)求物块 M 碰撞后的速度大小; (2)若平台表面与物块 M 间的动摩擦因数 μ=0.5,物块 M 与小球的初始距离为 x1=1.3 m, 求物块 M 在 P 处的初速度大小. 【答案】(1)3.0m/s(2)7.0m/s 【解析】 试题分析:(1)碰后物块 M 做平抛运动,设其平抛运动的初速度为 V
6.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元练14 动量守恒定律一、单项选择题(每小题3分,共15分,每小题只有一个选项符合题意)1.质量为2kg 的物体在光滑水平面上受到与水平方向成30°角的拉力F=3N 的作用,经过10s 时间(g 取10m/s 2)( )A .力F 的冲量为153N ·s B.物体的动量的变化是30kg ·m/sC .重力的冲量是零 D.弹力的冲量是185N ·s2.中微子失踪之谜是一直困扰着科学家的问题,原来中微子在离开太阳向地球运动的过程中,发生“中微子振荡”,转化为一个μ子和一个ζ子.科学家通过对中微子观察和理论分析.终于弄清了中微子失踪之谜,成为“2001年世界十大科技突破”之一.若中微子在运动中只转化为一个μ子和一个ζ子,并已知μ子的运动方向与中微子原来的方向一致,则ζ子的运动方向( )A .一定与中微子方向一致 B.一定与中微子方向相反C .可能与中微子方向不在同一直线上 D.只能与中微子方向在同一直线上3.如图所示,小车放在光滑的水平面上,将系绳小球拉开到一定的角度,然后同时放开小球和小车,那么在以后的过程中( )A .小球向左摆动时,小车向右运动,且系统动量守恒B .小球向左摆动时,小车向右运动,系统动量不守恒C .小球向工摆到最高点,小球的速度为零而小车速度不为零D .小球摆动过程中,小球的机械能守恒4.如图所示,小球A 和小球B 质量相同,球B 置于光滑水平面上,当球A 从高为h 处由静止摆下,到达最低点恰好与B 相碰,并粘合在一起继续摆动,它们能上升的最大高度是( )A . hB.2h C .4h D.8h 5.如图所示,小车B 静止于水平轨道上,其左端固定一根劲度系数为k 的轻弹簧,小车B 的质量为m 2.小车A 的质量为m 1,从高出水平轨道h 处由静止开始沿曲轨道滑下,在水平轨道上与小车B 发生相互作用.若轨道是光滑的,则弹簧压缩量最大时,A 车的速度v A 和弹簧的弹性势能E p 分别为( )A .gh m E gh vA p 1,2== B.2,21211gh m E m m gh m v p A =+= C .2121211,2m m gh m m E m m gh m v p A +=+= D. 2121,m m gh m m Ep v A +== 二、多项选择题(每题4分,共16分,每小题有多个选项符合题意)6.下列运动过程中,在任意相等时间内,物体动量变化相等的是( )A.匀速圆周运动 B.自由落体运动C.平抛运动 D.匀减速直线运动7.两小船静止在水面,一人在甲船的船头用绳水平拉乙船,则在两船靠拢的过程中,它们一定相同的物理量是(不计水的阻力)()A.动量的大小 B.动量变化率的大小C.动能 D.位移的大小8.某物体沿粗糙斜面上滑,达到最高点后又返回原处,下列分析中正确的是()A.上滑、下滑两过程中摩擦力的冲量大小相等B.上滑、下滑两过程中合外力的冲量相等C.上滑、下滑两过程中动量变化的方向相同D.整个运动过程中动量变化的方向沿斜面向下9.甲、乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p1=5kg·m/s,p2=7kg·m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10kg·m/s,则二球质量m1和m2间的关系可能是下列的()A.m1=m2 B.3m1=m2 C.4m1=m2 D.6m1=m2三、简答题(每小题9分,共36分,把答案填在相应的横线上或按题目要求作答)10.质量为m长为L的船,静止在水面上,在船头和船尾各有一个质量为m1和m2的人.不计水的阻力,则两人互换位置后,船移动的距离是 .11.A、B两个小球,A球的质量为m,B球的质量为2m,A位于x轴上的原点处,B位于x轴上离原点为L处.假设两球间存在着大小为F的恒定相互作用力,起初两球都处于静止状态,现轻轻释放两球,因相互吸引使两球发生碰撞,碰撞处离原点的距离为,刚要发生碰撞时A球的速度为,B球的速度为 .12.如图所示是用来验证动量守恒的实验装置,弹性球1用细线悬挂于O点,O点下方桌子的边沿有一竖直立柱.实验时,调节悬点,使弹性球1静止时恰与立柱上的球2接触且两球等高.将球1拉到A点,并使之静止,同时把球2放在立柱上.释放球1,当它摆到悬点正下方时与球2发生对心碰撞.碰后球1向左最远可摆到B点,球2落到水平地面上的C点.测出有关数据即可验证1,2两球碰撞时动量守恒.现已测出A点离水平桌面的距离为a.B点离水平桌面的距离为b,C点与桌子边沿间的水平距离为C.此外,还需要测量的量是、和 .根据测量的数据,该实验中动量守恒的表达式为(忽略小球的大小).13.高速摄影机每秒可摄取1000张照片.用它来摄取高尔夫球试验时机械击球块击中高尔夫球的连续照片.如图所示,左面三幅是碰击前摄下的连续照片,右面三幅是碰击后摄下的连续照片.照片上垂线间距为1cm,球的质量为0.045kg,机械击球块质量为0.27kg,碰撞前击球块和球构成的系统动量为,碰撞后球的动量为,根据计算结果你能得出什么结论 .四、计算或论述题(本题共4小题,共53分.解答时请写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须写出明确的数值和单位).14.(12分)“蹦床”已成为奥运会的比赛项目.质量为m 的运动员从床垫正上方h 1高处自由落下,落垫后反弹的高度为h 2,设运动员每次与床垫接触的时间为t ,求在运动员与床垫接触的时间内运动员对床垫的平均作用力.(空气阻力不计,重力加速度为g )某同学给出了如下的解答:设在时间t 内,床垫对运动员的平均作用力大小为F ,运动员刚接触床垫时的速率为v 1,刚离开床垫的平均作用力.(空气阻力不计,重力加速度为g )设在时间t 内,床垫对运动员的平均作用力大小为F ,运动员刚接触床垫时的速率为v 1,刚离开床垫时的速率为v 2,则由动量定理可知p Ft ∆= ① 12mv mv p -=∆ ②由机械能守恒定律分别有 11121221gh v mgh mv == ③ 22222221gh v mgh mv == ④ 由①②③④式联立可得t gh m gh m F 1222-=⑤ 该同学解符号过程是否正确?若不正确,请指出该同学解答过程中所有的不妥之处,并加以改正.15.(13分)如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A.求男演员落地点C 与O 点的水平距离s.已知男演员质量m 1,和女演员质量m 2之比221=m m ,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R.16.(13分)如图所示,在光滑水平面上沿着直线按不同的间距依次排列着质量均为m的滑块1,2,3,…,n-1,n,滑块P的质量也为m.P从静止开始在大小为F的水平恒力作用下向右运动,经过时间T与滑块1碰撞,碰撞后滑块便粘在一起,以后每经过时间T就与下一滑块碰撞一次,每次碰撞后均粘在一起,碰撞经历的时间极短,每个滑块都可简化为质点.求:(1)第一次碰撞后瞬间的速率及第一次碰撞过程中产生的内能;(2)发生第n次碰撞后滑块P的速度v n;(3)第n-1个滑块与第n个滑块间的距离s n-1.17.(15分)如图所示是新兴的冰上体育比赛“冰壶运动”的场地(水平冰面)示意图,实际尺尺如图为已知,要令球队获胜你需要推出你的冰壶石以使其停留在O为圆心的圆心线之内,并把对手的冰壶石击出同样以O为圆心的圆垒之外.已知圆心线半径r=0.6m,而圆垒的半径R=1.8m.在某次比赛中,甲队以速度v01=3m/s将质量m=19kg的冰壶石从左侧栏线A处向右推出,冰壶石沿中心线运动并恰好停在O处,乙队队员以速度v02=4m/s将质量M=20kg 的冰壶石也A处向右推出,冰壶石也沿中心线运动到O点并和甲队冰壶石发生碰撞,设两个冰壶石均可看成质点且碰撞前后均沿中心线运动,不计碰撞时的动能损失,两个冰壶石与水平冰面的动摩擦因数相同,g取10m/s2.(1)求冰壶石与水平冰面间的动摩擦因数 ;(2)乙队的冰壶石能否停在圆心线区域之内并把甲队冰壶石击出圆垒之外从而取胜?你必须通过计算得出结论.单元练14 动量守恒定律1.D 2.D 3.B4.C 解析 小球A 下摆到最低点过程中,机械能守恒,设到最低点时速度为v ,则有221mv mgh = A 、B 球碰撞过程,动量守恒,设碰后粘在一起的速度为v 1,则有mv=2mv 1 A 、B 球粘在一起上摆到最高过程,机械能守恒,设最大高度为h 1,则有422211121h h mh mv ==由以上各式得 5.C 6.BCD 7.AB 8.CD9.BC 解析 甲乙两球在碰撞过程中动量守恒,所以有p 1+p 2=./2,121s m kg p p p ⋅=''+'即 由于在碰撞过程中,不可能有其他形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加,所以有212211212221215121,2222m m m p m p m p m p ≤'+'≥+所以有 题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有;75,212211m m m p m p <>即同时还要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即.51,212111m m m p m p >'<'所以 10.L m m m m m 2121||++- 11.m FL m FLL 33432 12.弹性球1,2的质量m 1、m 2 立柱高h 桌面高HhH c m h b m h a m ++-=-21122 13.13.5kg ·m/s 2.7kg ·m/s 系统动量守恒14.此同学解答有如下错误(1)原解法中②式中未注意动量的矢量性正确的表达式为规定竖直向上方向为正,△p=mv 2+mv 1(2)①式中冲量应为合外力的冲量,即垫对运动员的作用力和重力的合力冲量 正确的表达式为12)(mv mv p t mg F F +=∆=-=合 tgh m gh m mg t mv mv mg F 121222++=++=(3)题中所求F 为床垫对运动员的作用力,而题要求运动员对床垫的作用力正确的表述为由牛顿第三定律可得,运动员对床垫的作用力大小tgh m gh m mg F F 1222++==' (4)未说明运动员对床垫作用力的方向,应给出“运动员对床垫作用力的方向竖直向下”15.设分离前男女演员在秋千最低点B 的速度为v 0,由机械能守恒定律202121)(21)(v m m gR m m +=+ 设刚分离时男演员速度的大小为v 1,方向与v 0相同;女演员速度的大小为v 2,方向与v 0相反,由动量守恒(m 1+m 2)v 0=m 1v 1-m 2v 2分离后,男演员做平抛运动,设男演员从被推出到落在C 点所需的时间为t ,根据题给条件,由运动学规律t v s gt R 12,214== 根据题给条件,女演员刚好回到A 点,由机械能守恒定律,222221v m gR m =已知221=m m ,由以上各式可得s=8R. 16.(1)mT F E 4221=∆ (2)由动量定理得mn nFT v n )1(+= (3)前n-1个滑块一起匀加速移动s n-1后,与第n 个滑块相碰nmFT n aT T v s n n 2)12(212211-=+=-- 17.(1)对甲队员推出的冰壶石有201210mv mgs A -=-μ,得015.022==Ags v θμ (2)设乙队员推出的冰壶石运动到O 点时的速度为v 1,则有s m s g v v Mgs Mv Mv A A /521,212120220221=-=-=-μμ 两冰壶石碰撞后,设甲队冰壶石的速度2v ',乙队冰壶石速度为2v '',则有 212222122212121,Mv v M v m Mv v M v m ='+'=''+' 解得s m Mm m M v s m v M m M v /13.0,/1.52212=+-=''=+='碰撞后, 对甲冰壶石:22121v m mgs '=μ m gv s 7.862221='=μ 由于.,6.0,8.121因而乙队取胜m r s m R s =<=>。

相关文档
最新文档