新北师大版八年级数学上册第七章平行线的证明知识点复习
北师大版八年级数学上册第七章平行线的证明复习与小结课件
课后巩固
第七章
练一练
完成相关作业.
平行线的证听
平行线的证明
第六章
数据的分析
九条基本事实
目前我们学习了九条基本事实中的八条,它们是:
基本事实1:两点确定一条直线。 基本事实2:两点之间线段最短。
基本事实3:过一点有且只有一条直线与这条直线垂直。
基本事实4:两条直线被第三条直线所截,如果同位角相等,
那么两直线平行. 简述:同位角相等,两直线平行.
基本事实5:过直线外一点有且只有一条直线与这条直线平行。
于它的任意一个内角C. 三角形的一个外角大于与它
不相邻的任意内角D. 三角形的外角和是180°
基础训练
第七章
4. 如图AB∥CD,∠C=110°,∠B=120°,
则∠E等于 (
)
C
A. 110°
B. 120°
C. 130°
D. 150°
5.如图,将三角板的直角顶点放在直尺的一边上,若
∠1=65°,则∠2的度数为 25° .
什么是证明? 演绎推理的过程称为证明.
什么是定理?经过证明的真命题称为定理. 定理都只能经过公
理、定义和已经证明为真的命题来证明.
什么是推论? 由一个基本事实或定理直接推出的定理,叫做这个
基本事实或定理的推论. 推论可以当作定理使用.
什么是三角形
由三角形的一边与另一边的反向延长线构成的角.
的外角?
基本事实
证明:∵EF⊥AB,CD⊥AB,,
∴CD∥EF,
∴∠BCD=∠CFG,∠DCG=∠CGF.
∵∠CGF=∠CFG,
∴∠BCD=∠DCA,
∴CD平分∠ACB.
第七章
平行线的证明
平行线的判定++平行线的性质++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册
∴EF∥BC(同旁内角互补,两直线平行).
又 ∵AD∥BC,
∴EF∥AD(平行于同一条直线的两条直线平行);
7.4 平行线的性质
重
难
题
型
突
破
返回目录
(2)由(1)知∠FCB=38°,又 CE 平分∠FCB,
∴∠BCE=
∠FCB=19°(角平分线的定义).
在同一平面内,垂直于
同一条直线的两条直线
如图,∵b⊥a,c⊥a,
∴b∥c
平行
其他
方法
如 图 ,∵a ∥b,a ∥c,
平行于同一条直线的
两条直线平行
∴b∥c
7.3 平行线的判定
返回目录
归纳总结
考
点
要判断两条直线是否平行,首先要观察图形中与要判断
清
单 的两条直线有关的同位角、内错角、同旁内角的关系,这是
7.3 平行线的判定
返回目录
[解析]汽车行驶的方向不变,则汽车拐弯前与拐弯后
重
难
题 的行驶路线互相平行,如图所示.先右转后左转的两个角是
型 同位角,根据同位角相等,两直线平行,可知选项 D 正确
突
破 .
[答案] D
7.3 平行线的判定
返回目录
变式衍生 如图,已知∠1=90°,为保证两条铁轨平
重
难
∵∠1=60°(已知),∠ABC=∠1(对顶角相等),
∴∠ABC=60°(等量代换).
∵∠2=120°(已知),
∴∠ABC+∠2=180°,
∴AB∥CD(同旁内角互补,两直线平行).
∵∠2+∠BCD=180°(平角的定义),
第7章 平行线的证明(知识清单)-八年级数学上期中期末考试满分全攻略(北师大版)
第7章平行线的证明知识清单一、定义与命题1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.要点诠释:(1)定义实际上就是一种规定.(2)定义的条件和结论互换后的命题仍是真命题.2.命题:判断一件事情的句子叫做命题.真命题:正确的命题叫做真命题.假命题:不正确的命题叫做假命题.要点诠释:(1)命题的结构:命题通常由条件(或题设)和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项,一般地,命题都可以写成”如果……那么……”的形式,其中“如果”开始的部分是条件,“那么”后面是结论.(2)命题的真假:对于真命题来说,当条件成立时,结论一定成立;对于假命题来说,当条件成立时,不能保证结论正确,即结论不成立.二、证明的必要性要判断一个命题是不是真命题,仅仅依靠经验、观察、实验和猜想是不够的,必须一步一步、有根有据地进行推理. 推理的过程叫做证明.三、公理与定理1.公理:通过长期实践总结出来,并且被人们公认的真命题叫做公理.要点诠释:欧几里得将“两点确定一条直线”等基本事实作为公理.2.定理:通过推理得到证实的真命题叫做定理.要点诠释:证明一个命题的正确性要按已知、求证、证明的顺序和格式写出.其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程.四、平行公理及平行线的判定定理1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.2.平行线的判定定理判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.五、平行线的公理、定理公理:两条平行线被第三条直线所截,得到的同位角相等.(简记为:两直线平行,同位角相等).定理:两条平行线被第三条直线所截,得到的内错角相等(简记为:两直线平行,内错角相等).定理:两条平行线被第三条直线所截,得到的同旁内角互补(简记为:两直线平行,同旁内角互补).要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.六、平行线的性质定理的探究过程1.两条平行线被第三条直线所截,得到的内错角相等(简记为:两直线平行,内错角相等).因为a ∥b,所以∠1=∠2(两直线平行,同位角相等),又∠3=∠1 (对顶角相等)所以∠2=∠3.2.两条平行线被第三条直线所截,得到的同旁内角互补(简记为:两直线平行,同旁 内角互补).因为a ∥b,所以∠3=∠2(两直线平行,内错角相等),又∠3+∠1=180°(补角的定义),所以∠2+∠1=180°.要点诠释:平行线性质定理的证明,要借助平行线线性质公理,因为公理是人们在生产和生活中总结出来的正确的结论,不需要证明,但是定理、性质或推论到的证明其正确性.七、平行线的性质与判定(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.321cba八、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.九、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.。
北师大版数学八年级上册第七章-平行线的证明讲义
实用文档第七章 平行线的证明一、思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧︒⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧的内角。
于任何一个和它不相邻:三角形的一个外角大推论角的和。
于和它不相邻的两个内:三角形的一个外角等推论。
等于定理:三角形的内角和三角形内角和定理条直线平行。
平行于同一条直线的两互补。
两直线平行,同旁内角等。
两直线平行,内错角相等。
两直线平行,同位角相平行线的性质平行。
同旁内角互补,两直线行。
内错角相等,两直线平行。
同位角相等,两直线平平行线的判定的例子。
,而不具有命题的结论反例:具备命题的条件分类:真命题、假命题部分组成。
结构:由条件和结论两句子。
定义:判断一件事情的命题平行线的证明21180二、考点聚焦考点1 定义与命题例1 下列四个命题中,真命题有 ( )①任意三角形的内角和为180°。
②经过直线外一点,有且只有一条直线与这条直线平行。
③两条直线被第三条直线所截,同旁内角互补;④在同一平面内,若直线a ⊥b ,b ⊥c ,则直线a 与c 不相交。
A.1个B.2个C.3个D.4个变式1-1:对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是()A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角。
考点2 平行线的性质和判定例2 如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由。
变式2-1:如图,直线l∥2l,∠A=125°,∠B=85°,1则∠1+∠2= ()A.30°B.35°C.36°D.40°变式2-2:如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数。
新北师大版八年级数学上册第七章平行线的证明知识点复习汇编
AB E P DC F平行线的证明知识点复习知识点1:命题(1)判断一件事情的句子,叫_____________. _______的命题是真命题,不正确的命题是___________.(2)公认的真命题称为____________,经过证明的真命题称为_____________.典型练习:1:判断下列命题是真命题还是假命题,如果是假命题,举出一个反例:①.若a>b ,则ba 11 . ②.两个锐角的和是锐角.③.同位角相等,两直线平行. ④.一个角的邻补角大于这个角. ⑤.两个负数的差一定是负数.2.甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”甲说:“是乙不小心闯的祸.” 乙说:“是丙闯的祸.”丙说:“乙说的不是实话.” 丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的( )A.甲B. 乙C.丙D.丁知识点2:平行线(1).平行线的判定:公理:____________相等,两直线平行. 判定定理1:___________相等,两直线平行.判定定理2:_______________,两直线平行. 定理:平行于同一直线的两直线___________.(2).平行线的性质公理:两直线平行,同位角___________. 性质定理1:两直线平行,内错角_________.性质定理2:两直线平行,同旁内角__________.典型练习:1、已知如图∠1=∠2,BD 平分∠ABC ,求证:AB//CD2.已知:BC//EF ,∠B=∠E ,求证:AB//DE 。
3、小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零 件,要求AB ∥CD ,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB 与CD 肯定是平行的,你知道什么原因吗?4.如图,某湖上风景区有两个观望点A,C和两个度假村B,D.度假村D在C的正西方向,度假村B在C的南偏东30°方向,度假村B到两个观望点的距离都等于2km.(1)求道路CD与CB的夹角;(2)如果度假村D到C是直公路,长为1km,D到A是环湖路,度假村B到两个观望点的总路程等于度假村D到两个观望点的总路程.求出环湖路的长;(3)根据题目中的条件,能够判定DC∥AB吗?若能,请写出判断过程;若不能,请你加上一个条件,判定DC∥AB.5.与平行线有关的探究题(1)、利用平行线的性质探究:如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.当动点P落在第①部分时,小明同学在研究∠PAC、∠APB、∠PBD三个角的数量关系时,利用图1,过点P 作PQ∥BD,得出结论:∠APB=∠PAC+∠PBD.请你参考小明的方法解决下列问题:(1)当动点P落在第②部分时,在图2中画出图形,写出∠PAC、∠APB、∠PBD三个角的数量关系;(2)当动点P落在第③、第○4部分时,在图3、图4中画出图形,探究∠PAC、∠APB、∠PBD之间的数量关系,写出结论并选择其中一种情形加以证明.知识点三:三角形的内角和外角(1)三角形内角和定理:三角形的内角和等于__________.(2) 定理:三角形的一个外角等于和它不相邻的____________________.(3) 定理:三角形的一个外角大于任何一个和它____________________.典型练习:1.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E;(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?说明你的结论的正确性;(3)把图(2)中的点C向上移到BD上时,如图(3)所示,五个角的和(即∠CAD+∠B+ ∠ACE+∠D+∠E)有无变化?说明你的结论的正确性.2..认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠AB C 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC =90°+21∠A,理由如下: ∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线,∴∠1=21∠ABC ,∠2=21∠ACB ∴∠1+∠2=21(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°—∠A∴∠1+∠2=21(180°—∠A )=90°—21∠A ∴∠BOC=180°—(∠1+∠2)=180°—(90°—21∠A ) ∴∠BOC=90°+21∠A 探究2:如图2,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 请说明理由.探究3:如图3,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?(只写结论,不需证明)综合测试题:一、填空题1.如上图,AD ∥BC ,AC 与BD 相交于O ,则图中相等的角有_____对.2.如上右图,已知AB ∥CD ,∠1=100°,∠2=120°,则∠α=_____.3.如右图,DAE 是一条直线,DE ∥BC ,则∠BAC =_____.4.“一次函数y=kx-2,当k>0时,y 随x 的增大而增大”是一个_______命题(填“真”或“假”)二、选择题1.下列命题正确的是( )A.内错角相等B.相等的角是对顶角C.三条直线相交 ,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行2.两平行直线被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交3. 下列句子中,不是命题的是( )A.三角形的内角和等于180度;B.对顶角相等;C.过一点作已知直线的平行线;D.两点确定一条直线.4.如右图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )A.AD ∥BCB.∠B =∠CC.∠2+∠B =180°D.AB ∥CD5.如右图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°三、解答题1.如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.2.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?3.如图,如图,在三角形ABC中,∠C=70°,∠B=38°,AE是∠BAC的平分线,AD⊥BC于D.(1)求∠DAE的度数;(2)判定AD是∠EAC的平分线吗?说明理由.(3)若∠C=α°,∠B=β°,试猜想∠DAE与∠C—∠B有何关系,并证明你的猜想.∠DAE的度数.(∠C>∠B)4.如图,y轴的负半轴平分∠AOB,P为y轴负半轴上的一动点,过点P作x轴的平行线分别交OA、OB 于点M、N.(1)如图1,MN⊥y轴吗?为什么?(2)如图2,当点P在y轴的负半轴上运动到AB与y轴的交点处,其他条件都不变时,等式∠APM=(∠OBA﹣∠A)是否成立?为什么?(3)当点P在y轴的负半轴上运动到图3处(Q为BA、NM的延长线的交点),其他条件都不变时,试问∠Q、∠OAB、∠OBA之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.。
北师大版八年级数学上册平行线的证明知识点归纳
北师大版八年级数学上册《平行线的证明》知识点归纳北师大版八年级数学上册《平行线的证明》知识点归纳第七章平行线的证明1、为什么要证明?实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有理有据的证明。
2、定义与命题(1)定义:对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义。
(2)命题:判断一件事情的句子,叫做命题。
一般地,每个命题都由条件和结论两部分组成。
条件是已知的事项,结论是由已知事项推断出的事项。
命题可以写成“如果......那么......”的形式,其中如果引出的部分是条件,那么引出的部分是结论。
(3)真命题:正确的命题称为真命题。
(4)假命题:不正确的命题称为假命题。
要说明一低点命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具备命题的结论,这种例子称为反例,3、公理、定理公理:公认的真命题称为公理。
证明:演绎推理的过程称为证明。
定理:经过证明的真命题称为定理。
4、本书认定的真命题:(1)、两点确定一条直线。
(2)、两点之间的距离最短。
(3)、同一平面内,过一点有且只有一条直线与已知直线垂直。
(4)、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
(5)、过直线外一点有且只有一条直线�_ 这条直线平行。
(6)、两边及其夹角分别相等的两个三角形全等。
(7)、两角及其夹边分别相等的两个三角形全等。
(8)、三边分别相等的两个三角形全等。
(9)、数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据。
(10、)同角(等角)的补角相等。
同角(等角)的余角相等。
(11)、三角形的任意两边之和大于第三边。
(12)、对顶角相等。
5、平行线的判定;两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
(内错角相等,两直线平行)。
两条直线被第三条直线所载,如果同旁内角互补,那么这两条直线平行。
北师大版八年级数学上册-第七章平行线的证明(同步+复习)精品讲义课件
【例题】∠AOB是直角,∠BOC是一任意 角,OE平分∠AOC,OD平分∠BOC,则 ∠DOE的度数是一个常数,这个结论正确吗? 为什么? A
E O D 设∠BOC=α,证明∠DOE的大小与α无关即可. C B
【练习】
1 1 2 a1 1 2 3 2 3 1 1 3 a2 2 3 4 3 8 1 1 4 a3 3 4 5 4 15 依上述规律,a99 ? an呢?你能验证你的结论吗?
① ② 三角形一个外角等于不相邻两内角的和。 三角形一个外角大于任何一个不相邻的内角。
【例2】△ABC中,∠ABC的平分线与 △ABC的外角∠ACE的平分线相交于点D, 且∠D=30°,求∠A的度数。
A D
B
每个定理的文字、符号、图形语言。 用来证明两直线平行。 补充:两直线都和第三条直线平行,这 两条直线平行。 定理1、2的证明。
【例题】
【练习1】
【练习2】
第四单元:平行线的性质
平行线的性质
性质与判定的区别—— 性质
公理:两直线平行,同位角相等。 定理1:两直线平行,内错角相等。 定理2:两直线平行,同旁内角互补。
第二单元:定义与命题
一.定义与命题
1. 定义:对名称和术语的含义加以描述,作出 明确的规定,也就是给出它们的定义。叫做 命题:判断一件事情的句子,叫做命题。 命题的条件和结论:一般地,每个命题都由 条件和结论两部分组成。条件是已知事项, 结论是由已知事项推出的事项。 命题可以写成“如果---那么---”的形式,其 中如果引出的部分是条件,那么引出的部分 是结论。 命题有正确的也有错误的。命题改写要熟练。
【练习】△ABC中,∠A=50°,高BE和CF 所在的直线相交于O点,求∠BOC的度数。
北师大版八年级上册 第七章 平行线的证明 复习回顾(知识点+典型题)
八上第七章《平行线的证明》复习回顾一.基本概念(一)定义:对名称和术语的含义加以描述,作出明确的规定,这就是定义。
在表示定义的句子中常有“叫…,称为…,是…”等关键字眼。
(二)命题:判断一件事情的句子,叫做命题 1.它包含两层含义:①命题必须是一个完整的句子,常为陈述句; ②命题必须对某件事作出肯定或否定的判断; 2. 每个命题都由条件和结论两部分组成。
条件是已知的事项,结论是由已知事项推断出来的事项。
一般地,命题都可以写成“如果……,那么……”的形式。
3.命题有真命题、假命题、逆命题之分。
(三)公理:公认的真命题称为公理;公理是不需要经过推理证实的真命题。
(四)定理:经过证明的真命题称为定理;公理和定理都可以作为判断其他命题真假的依据。
(五)证明:推理的过程称为证明 例1.下列命题是真命题的是( )A .若直角三角形其中两边为3和4,则第三边为5B .﹣1的立方根是它本身C .经过一点有且只有一条直线与已知直线平行D .内错角相等 例2.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等;②如果∠1和∠2是对顶角,那么∠1=∠2;③ 三角形的最大角不小于60°;④如果,>02x 那么.0>x A.1个 B.2个 C.3个 D.4个 例3.下列命题中,真命题的是( ) A. 同旁内角互补 B. 相等的角是对顶角 C. 同位角相等,两直线平行 D. 直角三角形两个锐角互补 二.基本性质(一)平行线的性质与判定1.性质①两直线平行,同位角相等; ②两直线平行,内错角相等; ③两直线平行,同旁内角互补; ④平行于同一直线的两直线平行; 2.判定①同位角相等,两直线平行; ②内错角相等,两直线平行; ③同旁内角互补,两直线平行;④在同一平面内,不相交的两直线平行;(定义判别) ⑤平行于同一直线的两直线平行;⑥在同一平面内,垂直于同一直线的两直线平行;例4.在下列图形中,由∠1=∠2能得到AB ∥CD 的是( )A .B .C .D .例5.如图,直线EF 分别交AB 、CD 于点E 、F,EG 平分∠BEF,AB ∥CD.若∠1=72°,则∠2的度数为( ) A.54° B.59° C.72° D.108°例6.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为_________.例7.如图,在△ABC 中,∠ABC 的平分线与∠ACB 的平分线交于点D ,过点D 作BC 的平行线交AB 于点E ,交AC 于点F ,已知∠BED +∠CFD =240∘,则∠BDC =______. 例8.如图,在△ABC 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F ,使得EF =ED ,连CF .(1)求证:CF//AB(2)若∠ABC =50∘,连接BE ,BE 平分∠ABC ,AC 平分∠BCF ,求∠A 的度数.练习:1.如图,已知AB ∥CD ,BC ∥DE ,那么∠B +∠D =__________.2、如图,写出两个能推出直线AB ∥CD 的条件________________________. 3.如图,AD=CD ,AC 平分∠DAB ,求证DC ∥AB .例5图32例6图第2题第1题CAB DE4.已知:如图,AB∥CD,∠BPF与∠CGE是一对内错角,PQ平分∠BPF,GH平分∠CGE.求证:PQ∥GH.5.如图,AD⊥BC,EF⊥BC,∠3=∠C.求证:∠1=∠2.6.如图,AB∥CD,∠1=58°,FG平分∠EFD,求∠FGB的度数7.如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,求∠ECD的度数AB GD F CE132(二)复杂图形中平行线的构造和应用解题关键:遇到拐点处作已知平行线的平行线,然后根据同位角、内错角和同旁内角的关系求角的度数。
新北师大版八上第七章《平行线的证明》单元复习
1、你还记得本章学过哪些知识? 2、这些知识有什么内在联系?
定义 定义 与命题
两个作用—判定和性质
命题
假命题 真命题
结构: 条件 + 结论
如果。。。那么。。。 形式:
判断方法: 举反例 公理 9个公理 定理 推论
判断方法
证明
倒推法-执“果”索“因 1找出条件结论 分析方法 一般 综合法-由“因”导“果 2画图写出已知求证 步骤: 言必有据 证明注意 3写证明过程
一定要
三角形 内角和 平行线的 定理及 性质定理 证明
平行线的 判定定理
因果对应 逻辑有序 三角形 三角形内角和定理和外角的性质 推论 外角3 是进行角的计算和证明的重要依据 个性质 证明关于角的不等关系通常转化 到三角形中利用外角的性质来解决。
第二环节 做一做 做一做
1.下列语句是命题的有( 1,3,4 ) (1)两点之间线段最短;(2)向雷锋同志学习;(3)对顶角 相等;(4)对应角相等的两个三角形是全等三角形; 2.下列命题,哪些是真命题?哪些是假命题?如果是真命题, 请写出条件与结论,如果是假命题,请举出反例! A (1)同角的补角相等; 真 1 F E (2)同位角相等,两直线平行;真 3 (3)若|a|=|b|,则a=b; 假 2 C B
∴∠ABC + ∠BCF = 180° (两直线平行,同旁内角互补)
∴∠ABC+∠CDE +∠BCD=∠ABC +∠BCF +∠ECD +∠DCF =180°+ 180°=360°(等式性质)
即:∠ABC+∠CDE +∠BCD =360°
变式二:
3.已知:如图,直线AB∥ED,∠ABC 、∠CDE 、∠BCD之间 有什么数量关系?请说明理由。
北师大版数学八年级上册第七章平行线的证明单元复习课课件
7.已知a,b,c为同一平面内三条不同直线,若a⊥b,c⊥b,则a 与c的位置关系是__a_∥__c____. 8.如图Z7-8,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于 点E,点F为线段CD延长线上一点,∠BAF=∠EDF,则下列结论正确 的是_①__②__③____(填序号). ①∠BAD+∠ADC=180°; ②AF∥DE;③∠DAF=∠F; ④若CD=DF,则DE=AF.
第七章 平行线的证明
单元复习课 本章知识梳理
目录
01 课标要求 02 知识导航
课标要求
1.定义、命题、定理: (1)通过具体实例,了解定义、命题、定理、推论的意义. (2)结合具体实例,会区分命题的条件和结论. (3)知道证明的意义和证明的必要性,知道证明要合乎逻辑,知 道证明的过程中可以有不同的表达情势,会综合运用证明的格式.
2.探索并证明平行线的判定定理:两条直线被第三条直线所截, 如果同位角相等(或内错角相等或同旁内角互补),那么这两条 直线平行;探索并证明平行线的性质定理:两条平行直线被第三 条直线所截,同位角相等(或内错角相等或同旁内角互补). 3.探索并证明三角形内角和定理,掌握该定理的推论:三角形的 一个外角等于与它不相邻的两个内角的和.
知识导航
定义:对名称和术语的含义加以描述,作出明确的规定,就是给 出它们的定义
平 行 线 的 证 明
概念:判断一件事情的句子
定
结构:每个命题都由条件和结论组成,通常可以写
义 命题
成“如果……那么……”的情势
与 命 题
分类:(1)真命题:正确的命题;(2)假命题: 不正确的命题
公理:公认的真命题
定理:经过证明的真命题
证明:(1)∵∠EGB+∠CHE=180°,∠CHE+∠EHD=180°, ∴∠EGB=∠EHD. ∴AB∥CD. (2)∵AB∥CD, ∴∠BGF=∠CHE. ∵GM平分∠BGF,HN平分∠CHE, ∴∠NHE=∠MGF. ∴GM∥NH. ∴∠M=∠N.
北师大版八年级上册数学《平行线的性质》平行线的证明说课教学复习课件
4 平行线的性质
3.如图,AB∥CD,∠B=42°,∠2=35°,则∠1= ,
∠A=
,∠ACB=
,∠BCD=
.
栏目索引
答案 42°;35°;103°;138°
解析 因为AB∥CD,所以∠1=∠B=42°,∠A=∠2=35°,∠BCD=180°∠B=138°. 易得∠ACB=180°-∠1-∠2=103°.
4 平行线的性质
栏目索引
3.(2016四川资阳安岳期末) 是大众汽车的标志图案,其中蕴涵着许多 几何知识.如图,已知BC∥AD,BE∥AF.
(1)∠A与∠B相等吗?请说明理由; (2)若∠DOB=135°,求∠A的度数.
4 平行线的性质
栏目索引
解析 (1)相等.理由:因为BC∥AD(已知),所以∠B=∠DOE(两直线平行, 同位角相等).因为BE∥AF(已知),所以∠A=∠DOE(两直线平行,同位角 相等),所以∠A=∠B(等量代换). (2)因为BC∥AD(已知),所以∠B+∠DOB=180°(两直线平行,同旁内角互 补),又因为∠DOB=135°,所以∠B=180°-135°=45°,又∠A=∠B,所以 ∠A=45°.
4 平行线的性质
栏目索引
4.如图所示,点A、B、C在同一条直线上,且∠1=∠2,∠3=∠D.试说明 BD∥EC.
4 平行线的性质
证明 ∵∠1=∠2(已知), ∴AD∥BE(内错角相等,两直线平行). ∴∠D=∠DBE(两直线平行,内错角相等). 又∵∠D=∠3(已知), ∴∠3=∠DBE(等量代换), ∴DB∥EC(内错角相等,两直线平行).
则∠1=∠A=120°,∵∠ABC=150°,∴∠2=30°. ∵AE∥CD,∴BF∥CD,∴∠2+∠C=180°,∴∠C=150°.
2024八年级数学上册第七章平行线的证明4平行线的性质习题课件新版北师大版
∠ EFG ,∠ CED =∠ GHD .
(2)试判断∠ AED 与∠ D 之间的数量关系,并说明理由;
1
2
3
4
5
6
7
8
9
10
(2)解:∠ AED +∠ D =180°.理由如下:
∵ CE ∥ GF ,∴∠ C =∠ FGD .
第七章
4
平行线的证明
平行线的性质
CONTENTS
目
录
01
1星题
落实四基
02
2星题
提升四能
03
3星题
发展素养
知识点1平行线的性质
1. 如图,已知直线 a ∥ b .
(1)根据“两直线平行,同位角相等”,可得
∠1=∠ 5
∠ 6
,∠4=∠ 8
,∠3=∠
1
2
3
,∠2=
7 ;
4
5
6
7
8
9
10
1. 如图,已知直线 a ∥ b .
(
C
)
A. 40°
B. 45°
C. 50°
D. 55°
1
2
3
4
5
6
7
8
9
10
3. [2023济宁]如图, a , b 是直尺的两边, a ∥ b ,把三角板
的直角顶点放在直尺的 b 边上,若∠1=35°,则∠2的度
数是(
B
)
A. 35°
1
2
3
4
5
6
7
8
9
10
知识点2平行线的性质与判定的关系
平行线的证明+思维图解+++知识考点梳理+课件件+2024-2025学年北师大版数学八年级上册
课标领航·核心素养学段目标1. 探索并ຫໍສະໝຸດ 明平行线的判定定理:两条直线被第三条直
线所截,如果内错角相等(或同旁内角互补),那么这两条
直线平行.
2. 掌握平行线的性质定理Ⅰ:两条平行直线被第三条直
线所截,同位角相等.* 了解定理的证明.
3. 探索并证明平行线的性质定理Ⅱ:两条平行直线被第
行
线
的
证
明
三角形内角和定理
三
角
形
的
外
角
三角形的内角和等
于 180°
三角形的一个外角等于和它不相邻
的两个内角的和
三角形的一个外角大于任何一个和
它不相邻的内角
第七章 平行线的证明
单
元
思
维
图
解
同位角相等,两直线平行
平
行
线
的
证
明
平
行
线
平行线
的判定
内错角相等,两直线平行
同旁内角互补,两直线平行
两直线平行,同位角相等
∵DA⊥FA,∴∠DAF=90°,
∴∠FAB=∠DAF-∠2=52.5°.
综合与实践
[点拨] 本题考查了平行线的判定与性质,锻炼和提升
学生的推理能力,熟练掌握平行线的判定与性质是解答本题
的关键.
平行线
的性质
两直线平行,内错角相等
两直线平行,同旁内角互补
平行于同一条直线的两条直线
平行
综合与实践
运用平行线的判定与性质解决问题
初中阶段综合与实践领域,可采用项目式学习的方式,
通过平行线判定与性质的学习,使学生能够从给定条件出
发,依据规则推出结论,初步掌握推理的基本形式和规则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的证明知识点复习
7.1为什么要证明、7.2定义与命题
知识点1:
1、判断一件事情的句子,叫_____________. _______的命题是真命题,不正确的命题是___________.
2、公认的真命题称为____________,经过证明的真命题称为_____________.
练习1:判断下列命题是真命题还是假命题,如果是假命题,举出一个反例:
①.若a>b ,则b a 11 . ②.两个锐角的和是锐角. ③.同位角相等,两直线平行. (4).一个角的邻补角大于这个角.
(5).两个负数的差一定是负数.
专题 推理在实际中的应用
1.甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”
甲说:“是乙不小心闯的祸.” 乙说:“是丙闯的祸.”
丙说:“乙说的不是实话.” 丁说:“反正不是我闯的祸.”
如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的( )
A.甲
B. 乙
C.丙
D.丁
7.3平行线的判定
知识点2:
平行线的判定:公理:____________相等,两直线平行. 判定定理1:___________相等,两直线平行. 判定定理2:_______________,两直线平行. 定理:平行于同一直线的两直线___________. 专题 平行线的判定的实际应用
2、已知如图∠1=∠2,BD 平分∠ABC ,求证:AB//CD
3.已知:BC//EF ,∠B=∠E ,求证:AB//DE 。
4、小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零
件,要求AB ∥CD ,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠
BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB 与CD 肯定是平
行的,你知道什么原因吗?
A B E P D C F
5.如图,某湖上风景区有两个观望点A ,C 和两个度假村B ,D .度 假村D 在C 的正西方向,度假村B 在C 的南偏东30°方向,度假村B 到两个观望点的距离都等于2km .
(1)求道路CD 与CB 的夹角;
(2)如果度假村D 到C 是直公路,长为1km ,D 到A 是环湖路,度假村B 到两
个观望点的总路程等于度假村D 到两个观望点的总路程.求出环湖路的长;
(3)根据题目中的条件,能够判定DC ∥AB 吗?若能,请写出判断过程;若不
能,请你加上一个条件,判定DC ∥AB .
7.4平行线的性质
知识点3:平行线的性质
公理:两直线平行,同位角___________. 性质定理1:两直线平行,内错角_________.
性质定理2:两直线平行,同旁内角__________.
练习:6、已知:如图,AB//CD ,BC//DE ,∠B=70°, 求∠D 的度数。
专题 与平行线有关的探究题
7、如图,AB ∥CD ,分别探讨下面四个图形中∠APC 与∠PAB 、∠PCD 的关系,请你从所得到的关系中任选 一个加以说明.(适当添加辅助线,其实并不难)
8、利用平行线的性质探究:
如图,直线AC ∥BD ,连接AB ,直线AC ,BD 及线段AB 把平面分成①②③④四个部分,规定线上各点
不属于任何部分.当动点P 落在某个部分时,连接PA 、PB ,构成∠PAC 、∠APB 、∠PBD 三个角.当动 点P 落在第①部分时,小明同学在研究∠PAC 、∠APB 、∠PBD 三个角的数量关系时,利用图1,过点P 作PQ ∥BD ,得出结论:∠APB=∠PAC+∠PBD .请你参考小明的方法解决下列问题:
(1)当动点P 落在第②部分时,在图2中画出图形,写出∠PAC 、∠APB 、∠PBD 三个角的数量关系;
(2)当动点P 落在第③、第○4部分时,在图3、图4中画出图形,探究∠PAC 、∠APB 、∠PBD 之间 的数量关系,写出结论并选择其中一种情形加以证明.
A B E D
C
7.5三角形内角和定理
知识点四:(1)三角形内角和定理:三角形的内角和等于__________.
(2) 定理:三角形的一个外角等于和它不相邻的____________________.
(3) 定理:三角形的一个外角大于任何一个和它____________________.
专题与三角形内角和外角有关的探究题
9.如下几个图形是五角星和它的变形.
(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E;
(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有
无变化?说明你的结论的正确性;
(3)把图(2)中的点C向上移到BD上时,如图(3)所示,五个角的和(即∠CAD+∠B+ ∠ACE+∠D+∠E)有无变化?说明你的结论的正确性.
10.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.
探究1:如图1,在△ABC中,O是∠AB C与∠ACB的平分线BO和CO的交点,通过分析发现
∠BOC=90°+1
2
A
,理由如下:
∵BO和CO分别是∠ABC和∠ACB的角平分线,
探究2:如图2,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?
请说明理由.
探究3:如图3,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与
∠A有怎样的关系?(只写结论,不需证明)
答案:
1、D 【解析】 本题可分三种情况进行讨论:
①若甲真,则乙假,丙真,丁真,这种情况下,三人说了实话,显然与条件不符;
②若甲假,乙真,则丙假,丁真,这种情况下,两人说了实话,显然与条件不符;
③若甲假,乙假,则丙真,丁假,这种情况下,只有丙说了实话,符合题目给出的条件. 由于丁说了假话,因此闯祸的人一定是丁.故选D .
2、解:AB 与CD 平行.
理由是:延长AE 交DC 于M ,
∵∠AED=90°,∠EDC=55°, ∴∠AMD=∠AED-∠EDC=35°,
∵∠BAE=35°, ∴∠BAE=∠AMD , ∴AB ∥DC .
3.解:(1)如图所示,过C 作CM ⊥CD 交AB 与M ,则∠DCM=90°,∠MCB=30°,
∴CD 与CB 的夹角为90°+30°=120°;
(2)环湖路的长=AB+BC-CD=3km ; (3)不能判定DC ∥AB .
加上的条件可以是:CA 平分∠DCB .
证明:∵AB=AC , ∴∠CAB=∠ACB , ∵CA 平分∠DCB , ∴∠DCA=∠ACB , ∴∠DCA=∠CAB , ∴DC ∥AB .
4、解:如图:
(1)∠APC=∠PAB+∠PCD ;
证明:过点P 作AB ∥PF , ∵AB ∥PF ,∴AB ∥CD ∥PF ,
∴PCD CPF PBA APF ∠=∠∠=∠,, ∴∠APC=∠PAB+∠PCD . (2)∠APC+∠PAB+∠PCD=360°; (3)∠APC=∠PAB-∠PCD ; (4)∠PCD=∠PAB+∠APC.
5、解:(1)如图,当动点P 落在第②部分时,∠APB =360°-(∠PAC+∠PBD );
(2)当动点P 落在第③部分时, ∠PAC=∠APB+∠PBD ;
当动点P 落在第○4部分时,∠PAC =∠APB+∠PBD .
证明:如图,∵∠PAC=∠AEB , ∠AEB=∠PBD+∠APB ,
∴∠PAC= ∠APB +∠PBD .
6、解:(1)如图,连接CD .
在△ACD 中,根据三角形内角和定理,得出∠A+∠2+∠3+∠ACE+∠ADB=180°.
∵∠1=∠B+∠E=∠2+∠3,
∴∠A+∠B+∠ACE+∠ADB+∠E=∠A+∠B+∠E+∠ACE+∠ADB=
∠A+∠2+∠3+∠ACE+∠ADB=180°.
(2)无变化.
根据平角的定义,得出∠BAC+∠CAD+∠DAE=180°.
∵∠BAC=∠C+∠E ,∠EAD=∠B+∠D ,
∴∠CAD+∠B+∠C+∠D+∠E=∠BAC+∠CAD+∠DAE=180°;
(3)无变化.
∵∠ACB=∠CAD+∠D ,∠ECD=∠B+∠E ,
∴∠CAD+∠B+∠ACE+∠D+∠E=∠ACB+∠ACE+∠ECD=180°.
7、解:(1)探究2的结论:∠BOC=12A ∠. 理由如下: ∵ BO 和CO 分别是∠ABC 和∠ACD 的角平分线,所以
1
1
1,2221
12()1
2221
1
21(1)122ABC ACD
ACD A ABC A BOC BOC A A
∠=∠∠=∠∠∆∴∠∠∠∴∠=∠+∠=∠+∠∠∆∴∠=∠-∠=∠+∠-∠=∠又是A B C 的一外角
A C D =A +A
B C
是的一外角
(2)探究3的结论:∠BOC=90°-1
2A ∠。