《材料性能学》第四章作业参考答案

合集下载

《材料性能学》课后答案

《材料性能学》课后答案

《工程材料力学性能》(第二版)课后答案第一章材料单向静拉伸载荷下的力学性能一、解释下列名词滞弹性:在外加载荷作用下,应变落后于应力现象。

静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。

弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。

比例极限:应力—应变曲线上符合线性关系的最高应力。

包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。

解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。

晶体学平面--解理面,一般是低指数,表面能低的晶面。

解理面:在解理断裂中具有低指数,表面能低的晶体学平面。

韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。

静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。

是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。

二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能?答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。

改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。

三、什么是包辛格效应,如何解释,它有什么实际意义?答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。

特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。

包辛格效应可以用位错理论解释。

第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。

《材料物理性能》课后习题答案

《材料物理性能》课后习题答案
第六章材料的功能转换性能
6-1金红石(TiO2)的介电常数是100,求气孔率为10%的一块金红石陶瓷介质的介电常数。
6-2一块1cm*4cm*0.5cm的陶瓷介质,其电容为2.4-6μF,损耗因子tgδ为0.02。求:①相对介电常数;②损耗因素。
6-3镁橄榄石(Mg2SiO4)瓷的组成为45%SiO2,5%Al2O3和50%MgO,在1400℃烧成并急冷(保留玻璃相),陶瓷的εr=5.4。由于Mg2SiO4的介电常数是6.2,估算玻璃的介电常数εr。(设玻璃体积浓度为Mg2SiO4的1/2)
第二冲击断裂抵抗因子:
=170*0.021=3.57 J/(cm.s)
2-3一热机部件由反应烧结氮化硅制成,其热导率λ=0.184J/(cm.s.℃),最大厚度=120mm.如果表面热传递系数h=0.05 J/(cm2.s.℃),假定形状因子S=1,估算可兹应用的热冲击最大允许温差。
解:
=226*0.184
《材料物理性能》
第一章材料的力学性能
1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:
由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al2O3(E = 380 GPa)和5%的玻璃相(E = 84GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
1)必要条件:材料原子中具有未充满的电子壳层,即原子磁矩
2)充分条件:交换积分A > 0
2.用能量的观点说明铁磁体内形成磁畴的原因

第四章材料的断裂韧性..

第四章材料的断裂韧性..
17
材料性能学 四、裂纹尖端塑性区及KⅠ的修正
1、裂纹尖端塑性区: 裂纹尖端附近的σ≥σs→塑性变形→存在裂纹尖端塑性区。
2、塑性区的边界方程
3、在x轴上,θ=0,塑性区的宽度r0为:
4、修正后塑性区的宽度R0为:
18
材料性能学 四、裂纹尖端塑性区及KⅠ的修正
5、等效裂纹的塑性区修正值ry:
6、KⅠ的修正 (σ/σs≥0.6~0.7): 线弹性断裂力学计算得到σy的分布曲线为ADB; 屈服并应力松弛后σy的分布曲线为CDEF; 若将裂纹顶点由O虚移至O´点, 则在虚拟的裂纹顶点O´以外的弹性应力分布曲线为GEH。 采用等效裂纹长度(a+ry)代替实际裂纹长度a,即
14
材料性能学 三、断裂韧度KⅠc和断裂K判据
已知
K Y
1、平面应变断裂韧度KⅠc (MPa·m1/2)
σ↑(或,和) ↑→KⅠ↑ σ↑→σc (或) ↑→c 裂纹失稳扩展→断裂 →KⅠ=KⅠc 2、平面应力断裂韧度Kc σ↑(或,和) ↑→KⅠ↑ σ↑→σc (或) ↑→ c 裂纹失稳扩展→断裂 →KⅠ=Kc ***Kc>KⅠc
无限远处有均匀应力σ的线弹性问题。
AB两点的张开位移为
36
材料性能学
各种断裂韧度关系:
平面应力:
平面应变:
37
材料性能学
§4.3
一、化学成分、组织结构对断裂韧度的影响 1、化学成分的影响 2、基体相结构和晶粒尺寸的影响 3、夹杂和第二相的影响 4、显微组织的影响:影响材料的断裂韧度。 二、特殊改性处理对断裂韧度的影响 1、亚温淬火 2、超高温淬火 3、形变热处理 三、外界因素对断裂韧度的影响 1、温度 2、应变速率
8
材料性能学

付华-材料性能学-部分习题答案1

付华-材料性能学-部分习题答案1

第一章材料的弹性变形一、填空题:1.金属材料的力学性能是指在载荷作用下其抵抗变形或断裂的能力。

2. 低碳钢拉伸试验的过程可以分为弹性变形、塑性变形和断裂三个阶段。

3. 线性无定形高聚物的三种力学状态是玻璃态、高弹态、粘流态,它们的基本运动单元相应是链节或侧基、链段、大分子链,它们相应是塑料、橡胶、流动树脂(胶粘剂的使用状态。

二、名词解释1.弹性变形:去除外力,物体恢复原形状。

弹性变形是可逆的2.弹性模量:拉伸时σ=EεE:弹性模量(杨氏模数)切变时τ=GγG:切变模量3.虎克定律:在弹性变形阶段,应力和应变间的关系为线性关系。

4.弹性比功定义:材料在弹性变形过程中吸收变形功的能力,又称为弹性比能或应变比能,表示材料的弹性好坏。

三、简答:1.金属材料、陶瓷、高分子弹性变形的本质。

答:金属和陶瓷材料的弹性变形主要是指其中的原子偏离平衡位置所作的微小的位移,这部分位移在撤除外力后可以恢复为0。

对高分子材料弹性变形在玻璃态时主要是指键角键长的微小变化,而在高弹态则是由于分子链的构型发生变化,由链段移动引起,这时弹性变形可以很大。

2.非理想弹性的概念及种类。

答:非理想弹性是应力、应变不同时响应的弹性变形,是与时间有关的弹性变形。

表现为应力应变不同步,应力和应变的关系不是单值关系。

种类主要包括滞弹性,粘弹性,伪弹性和包申格效应。

3.什么是高分子材料强度和模数的时-温等效原理?答:高分子材料的强度和模数强烈的依赖于温度和加载速率。

加载速率一定时,随温度的升高,高分子材料的会从玻璃态到高弹态再到粘流态变化,其强度和模数降低;而在温度一定时,玻璃态的高聚物又会随着加载速率的降低,加载时间的加长,同样出现从玻璃态到高弹态再到粘流态的变化,其强度和模数降低。

时间和温度对材料的强度和模数起着相同作用称为时=温等效原理。

四、计算题:气孔率对陶瓷弹性模量的影响用下式表示:E=E0 (1—1.9P+0.9P2)E0为无气孔时的弹性模量;P为气孔率,适用于P≤50 %。

材料性能学-部分习题答案

材料性能学-部分习题答案

第一章材料的弹性变形一、填空题:1.金属材料的力学性能是指在载荷作用下其抵抗变形或断裂的能力。

2. 低碳钢拉伸试验的过程可以分为弹性变形、塑性变形和断裂三个阶段。

3. 线性无定形高聚物的三种力学状态是玻璃态、高弹态、粘流态,它们的基本运动单元相应是链节或侧基、链段、大分子链,它们相应是塑料、橡胶、流动树脂(胶粘剂的使用状态。

二、名词解释1.弹性变形:去除外力,物体恢复原形状。

弹性变形是可逆的2.弹性模量:拉伸时σ=EεE:弹性模量(杨氏模数)切变时τ=GγG:切变模量3.虎克定律:在弹性变形阶段,应力和应变间的关系为线性关系。

4.弹性比功定义:材料在弹性变形过程中吸收变形功的能力,又称为弹性比能或应变比能,表示材料的弹性好坏。

三、简答:1.金属材料、陶瓷、高分子弹性变形的本质。

答:金属和陶瓷材料的弹性变形主要是指其中的原子偏离平衡位置所作的微小的位移,这部分位移在撤除外力后可以恢复为0。

对高分子材料弹性变形在玻璃态时主要是指键角键长的微小变化,而在高弹态则是由于分子链的构型发生变化,由链段移动引起,这时弹性变形可以很大。

2.非理想弹性的概念及种类。

答:非理想弹性是应力、应变不同时响应的弹性变形,是与时间有关的弹性变形。

表现为应力应变不同步,应力和应变的关系不是单值关系。

种类主要包括滞弹性,粘弹性,伪弹性和包申格效应。

3.什么是高分子材料强度和模数的时-温等效原理?答:高分子材料的强度和模数强烈的依赖于温度和加载速率。

加载速率一定时,随温度的升高,高分子材料的会从玻璃态到高弹态再到粘流态变化,其强度和模数降低;而在温度一定时,玻璃态的高聚物又会随着加载速率的降低,加载时间的加长,同样出现从玻璃态到高弹态再到粘流态的变化,其强度和模数降低。

时间和温度对材料的强度和模数起着相同作用称为时=温等效原理。

四、计算题:气孔率对陶瓷弹性模量的影响用下式表示:E=E0 (1—1.9P+0.9P2)E0为无气孔时的弹性模量;P为气孔率,适用于P50 。

材料性能学 4.断裂韧性

材料性能学  4.断裂韧性
定厚度后保持不
变。因此,工程 上 KⅠC 是指达到 一定厚度后(平
面应变)断裂韧
度。
过渡区
KC 平面应力
平面应变
KⅠC
B
B
2.5
K C
s
2
五、裂纹尖端塑性区及 KⅠ修正
按K1建立的脆性断裂判据,只适用于线弹性体。其实, 金属材料在裂纹扩展前,其尖端附近总要先出现或 大或小的塑性变形区,
如果塑性区尺寸裂纹尺寸及净截面尺寸小时,(小 一个数量级以上)即在小范围屈服下,对K进行修正 后,依然可用。
究点到裂纹尖端距离 r 有如下关系:
1
y r 2

1
r 2 y K
1
当 r →0 时, σy →∞,表明裂纹尖端前沿应力场具有 r 2阶奇异性。参
数 K 表征了应力场奇异性程度,其含义是,当 r →0 时, σy 以 K 的速度→∞, K 越大,则σy →∞的速度也越大,表明应力分布曲线越陡,即应力集中程度 越大,因此,参数 K 又称为“应力场强度因子”。
二、裂纹尖端应力状态
1、平面应力状态
x 0
y 0
xy 0
z 0
yz zx 0
z
E
x
y
对含穿透裂纹的薄板,可将裂纹顶端前沿视为平面应力 状态,此时材料受剪切力大,易于塑性变形,阻碍裂纹扩展。
2、平面应变状态
z 0
x 0 y 0 xy 0
x 0 y 0 z x y
2
R01
1
Hale Waihona Puke Ks平面应力
R02
2
1
2
K
s
2
平面应变
三维塑性区形状及塑性区内应力分布

材料力学第四章作业答案

材料力学第四章作业答案

材料⼒学第四章作业答案材料⼒学第四章作业答案标准化⽂件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-4-1 试作下列各轴的扭矩图。

(a)(b)4-4 图⽰圆截⾯空⼼轴,外径D=40mm ,内径d=20mm ,扭矩m kN T ?=1,试计算mm 15=ρ的A 点处的扭矩切应⼒A τ以及横截⾯上的最⼤和最⼩的扭转切应⼒。

解:P A I T ρ?= )1(3244απ-=D I p ⼜mm 20d = D=40mm 5.0==∴Dd α 41244310235500)5.01(32)1040(14.3m I p --?=-= MPa Pa I T P A 7.63107.6310235500101510161233=?===∴--ρτ P W T =max τ 9433431011775)5.01(16)1040(14.3)1(16--?=-=-=απD W P a Pa W T P MP9.84109.841011775101693max=?=??==∴-τ当2'd =ρ时 MPa Pa I T P 4.42104.4210235500101010161233'min =?===--ρτ4-6 将直径d=2mm ,长l=4m 的钢丝⼀端嵌紧,另⼀端扭转⼀整圈,已知切变模量G=80GPa ,试求此时钢丝内的最⼤切应⼒m ax τ。

解:r G ?=τ dx d R r R ??=∴ R=mm d 12= 3331057.1414.321012101---?==??=?=∴l dx d R r R π?MPa Pa r G 6.125106.1251057.11080639=?==?=∴-τ(⽅法⼆:π?2=, l=4 ,P GI Tl =? ,324d I P π=,rIp W p = ,l Gd W T P πτ==max )4-7 某钢轴直径d=80mm ,扭矩m kN T ?=4.2,材料的许⽤切应⼒MPa 45][=τ,单位长度许⽤扭转⾓m /)(5.0][ =θ,切变模量G=80GPa ,试校核此轴的强度和刚度。

《材料物理性能》课后习题答案

《材料物理性能》课后习题答案
第二冲击断裂抵抗因子:
=170*0.021=3.57 J/(cm.s)
2-3一热机部件由反应烧结氮化硅制成,其热导率λ=0.184J/(cm.s.℃),最大厚度=120mm.如果表面热传递系数h=0.05 J/(cm2.s.℃),假定形状因子S=1,估算可兹应用的热冲击最大允许温差。
解:
=226*0.184
《材料物理性能》
第一章材料的力学性能
1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:
由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al2O3(E = 380 GPa)和5%的玻璃相(E = 84GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
Cp=21*24。94=ቤተ መጻሕፍቲ ባይዱ23.74 J/mol.K
2-2康宁1723玻璃(硅酸铝玻璃)具有下列性能参数:λ=0.021J/(cm.s.℃);α=4.6*10-6/℃;σp=7.0Kg/mm2.E=6700Kg/mm2,μ=0.25.求第一及第二热冲击断裂抵抗因子。
第一冲击断裂抵抗因子:
=
=170℃
==447℃
第四章材料的光学性能
3-1.一入射光以较小的入射角i和折射角r通过一透明明玻璃板,若玻璃对光的衰减可忽略不计,试证明明透过后的光强为(1-m)2
解:
W = W’ + W’’
其折射光又从玻璃与空气的另一界面射入空气

3-2光通过一块厚度为1mm的透明Al2O3板后强度降低了15%,试计算其吸收和散射系数的总和。

湖南大学材料性能学作业习题答案

湖南大学材料性能学作业习题答案

第一章一、解:1.滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象, 称为滞弹性。

2. 塑性:在给定载荷下,材料产生永久变形的特性。

3•解理台阶:解理裂纹与螺型位错相交形成解理台阶。

4. 河流状花样:解理裂纹与螺型位错相遇后,沿裂纹前端滑动二相互汇合,同号台阶相互汇合长大,当汇合台阶足够大时,便成为河流状花样。

5. 强度:材料在外力作用下抵抗永久变形和断裂的能力称为强度。

二、解:1.E :弹性模量。

2. d 0.2 :屈服强度3. b b :抗拉强度4. £ :条件应变或条件伸长率。

三、解:由d m= ( E Y s/ao)?得:丫s= d m2 • ao/E ①将代入d c= (2E • 丫s/ JI a)?=d m- ( 2*ao/刃*a)=504MPA.四、解:由题中所给式子知:⑴:材料的成分增多,会引起滑移系减少、孪生、位错钉插等,材料越容易断裂;⑵:杂质:聚集在晶界上的杂质越多,材料越容易断裂;⑶:温度:温度降低,位错摩擦阻力越大,所以材料越容易断裂;⑷、晶粒大小:晶粒越小,位错堆积越少,晶界面积越大,材料韧性越好,所以不容易断裂;⑸、应力状态:减小切应力与正应力比值的应力状态都会使材料越容易断裂;⑹、加载速率:加载速率越大,材料越容易断裂五、解:两者相比较,前者为短比例式样,后者为长比例式样,而对于韧性金属材料,比例试样尺寸越短,其断后伸长率越大,所以 d 5大于d 10.第二章作业题1应力状态软性系数:按“最大切应力理论”计算的最大切应力与按“相当最大正应力理论”计算的最大正应力的比值。

2缺口效应:截面的急剧变化产生缺口,在静载荷作用下,缺口截面上的应力状态将发生变化,产生缺口效应,影响金属材料的力学性能。

3布氏硬度:用一定直径的硬质合金球做压头,施以一定的试验力,将其压入试样表面,经规定保持时间后卸除,试样表面残留压痕。

HBW通过压痕平均直径求得。

材料性能学作业及答案

材料性能学作业及答案

材料性能学作业及答案本学期材料性能学作业及答案第一次作业P36-37第一章1名词解释4、打算金属屈服强度的因素有哪些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。

外在因素:温度、应变速率和应力状态。

10、将某材料制成长50mm,直径5mm的圆柱形拉伸试样,当进行拉伸试验时塑性变形阶段的外力F与长度增量ΔL的关系为:F/N 6000 8000 10000 12000 14000ΔL 1 2.5 4.5 7.5 11.5求该材料的硬化系数K及应变硬化指数n。

解:已知:L0=50mm,r=2.5mm,F与ΔL如上表所示,由公式(工程应力)σ=F/A0,(工程应变)ε=ΔL/L0,A0=πr2,可计算得:A0=19.6350mm2σ1= 305.5768,ε1=0.0200,σ2=407.4357 ,ε2=0.0500,σ3= 509.2946,ε3=0.0900,σ4= 611.1536,ε4=0.1500,σ5= 713.0125,ε5=0.2300,又由公式(真应变)e=ln(L/L0)=ln(1+ε),(真应力)S=σ(1+ε),计算得:e1=0.0199,S1=311.6883,e2=0.0489,S2=427.8075,e3=0.0864,S3=555.1311,e4=0.1402,S4=702.8266,e5=0.2076,S5=877.0053,又由公式S=Ke n,即lgS=lgK+nlge,可计算出K=1.2379×103,n=0.3521。

11、试述韧性断裂与脆性断裂的区分。

为什么脆性断裂最危急?答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。

韧性断裂:是断裂前产生明显宏观塑性变形的断裂特征:断裂面一般平行于最大切应力与主应力成45度角。

《材料性能学》总复习题部分答案

《材料性能学》总复习题部分答案

绪论二、单项选择题1、下列不是材料力学性能的是()A、强度B、硬度C、韧性D、压力加工性能2、属于材料物理性能的是()A、强度B、硬度C、热膨胀性D、耐腐蚀性三、填空题1、材料的性能可分为两大类:一类叫_ _,反映材料在使用过程中表现出来的特性,另一类叫_ _,反映材料在加工过程中表现出来的特性。

2、材料在外加载荷(外力)作用下或载荷与环境因素(温度、介质和加载速率)联合作用下所表现的行为,叫做材料_ 。

四、简答题1、材料的性能包括哪些方面?2、什么叫材料的力学性能?常用的金属力学性能有哪些?第一章材料单向静拉伸的力学性能一、名词解释弹性极限:是材料由弹性变形过渡到弹—塑性变形时的应力(或达到最大弹性变形所需要的应力)。

强度:是材料对塑性变形和断裂的抗力。

屈服强度:材料发生屈服或发生微量塑性变形时的应力。

抗拉强度:拉伸实验时,试样拉断过程中最大实验力所对应的应力。

塑性变形:是材料在外力作用下发生的不可逆永久变形但不破坏的能力。

韧性:材料断裂前吸收塑性变形功和断裂功的能力。

二、单项选择题1、根据拉伸实验过程中拉伸实验力和伸长量关系,画出的力——伸长曲线(拉伸图)可以确定出金属的()A、强度和硬度B、强度和塑性C、强度和韧性D、塑性和韧性2、试样拉断前所承受的最大标称拉应力为()A、抗压强度B、屈服强度C、疲劳强度D、抗拉强度3、拉伸实验中,试样所受的力为()A、冲击B、多次冲击C、交变载荷D、静态力4、常用的塑性判断依据是()A、断后伸长率和断面收缩率B、塑性和韧性C、断面收缩率和塑性D、断后伸长率和塑性5、工程上所用的材料,一般要求其屈强比(C )A、越大越好B、越小越好C、大些,但不可过大D、小些,但不可过小6、工程上一般规定,塑性材料的δ为()A、≥1%B、≥5%C、≥10%D、≥15%7、形变强化是材料的一种特性,是下列( C )阶段产生的现象。

A、弹性变形;B、冲击变形;C、均匀塑性变形;D、屈服变形。

《材料性能学》习题答案

《材料性能学》习题答案

10℃;
(3)由曲线可知,该钢在-10℃的 Ak 用。
9 J ,不满足 Ak 10 J 的要求,故此钢不适于此应
3.14 解: (1)根据题意,求出工作状态下裂纹尖端应力场强度因子 KI 值:
K I 2 a 2 800MPa (2.5 103 )m 80MPa m
与题中所给不同状态的 KIC 比较,仅有热处理状态①和②满足 KI<KIC(即不脆断) ;
1 = 6 2 .; 4 2
= 7; 2.0 3
,则: = 81.1
m1 cos 28.1 cos 62.4 0.409 m2 cos 28.1 cos 72.0 0.273 m3 cos 28.1 cos81.1 0.136
显然, m1 m2 m3 ,即 m1 滑移系最先滑移; (2)根据临界分切应力概念, c m s ,则有 c 0.409 1.95 0.80MPa 2.15 解:
Chapter 5 P234-235
5.1 解:
B B ) , ln ln A , T T B 则在 800℃(1073K)时: ln 7.3 104 ln A ; 1073 B 在 950℃(1223K)时: ln1.29 103 ln A ; 1233
稳态蠕变速率 与温度的关系为: A exp(
00452803917n12617381根据题意应满足11315mpa220001334314315107500149331431510pampa则由sn曲线后算该铜的疲劳寿命约为103由sn曲线粗略后算2014t6合金的条件疲劳极限约为160mpa则由题意314120510160101求该容器的疲劳寿命剩余寿命根据paris公式有

材料性能学作业及答案

材料性能学作业及答案

本学期材料性能学作业及答案第一次作业P36-37第一章1名词解释4、决定金属屈服强度的因素有哪些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。

外在因素:温度、应变速率和应力状态。

10、将某材料制成长50mm,直径5mm的圆柱形拉伸试样,当进行拉伸试验时塑性变形阶段的外力F与长度增量ΔL的关系为:F/N 6000 8000 10000 12000 14000ΔL 1 2.5 4.5 7.5 11.5求该材料的硬化系数K及应变硬化指数n。

解:已知:L0=50mm,r=2.5mm,F与ΔL如上表所示,由公式(工程应力)σ=F/A0,(工程应变)ε=ΔL/L0,A0=πr2,可计算得:A0=19.6350mm2σ1= 305.5768,ε1=0.0200,σ2=407.4357 ,ε2=0.0500,σ3= 509.2946,ε3=0.0900,σ4= 611.1536,ε4=0.1500,σ5= 713.0125,ε5=0.2300,又由公式(真应变)e=ln(L/L0)=ln(1+ε),(真应力)S=σ(1+ε),计算得:e1=0.0199,S1=311.6883,e2=0.0489,S2=427.8075,e3=0.0864,S3=555.1311,e4=0.1402,S4=702.8266,e5=0.2076,S5=877.0053,又由公式S=Ke n,即lgS=lgK+nlge,可计算出K=1.2379×103,n=0.3521。

11、试述韧性断裂与脆性断裂的区别。

为什么脆性断裂最危险?答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。

韧性断裂:是断裂前产生明显宏观塑性变形的断裂特征:断裂面一般平行于最大切应力与主应力成45度角。

材料性能学智慧树知到课后章节答案2023年下南昌大学

材料性能学智慧树知到课后章节答案2023年下南昌大学

材料性能学智慧树知到课后章节答案2023年下南昌大学南昌大学绪论单元测试1.在应变速率较高的情况下,金属材料的屈服应力()。

答案:升高2.发生全反射的条件有:()。

答案:入射角等于或大于临界角;光线从光密介质到光疏介质第一章测试1.橡胶类材料的弹性变形是呈卷曲状的分子链在力的作用下通过()的运动沿受力方向产生的伸展。

答案:链段2.选择空间飞行器用的材料,为了既保证结构的刚度,又要求有较轻的质量,主要采用()作为衡量材料弹性性能的指标。

答案:比弹性模数3.对于要求服役时其应力-应变关系严格遵守线性关系的机件,应以()为选择材料的依据答案:比例极限4.应力和应变严格服从胡克定律的弹性变形称为()。

答案:完全弹性;理想弹性5.非理想弹性包括()等几种类型答案:粘弹性;滞弹性;伪弹性;包申格效应6.形状记忆合金是利用材料的()来实现的。

答案:伪弹性7.在金属单晶体和多晶体材料中均会出现包申格效应。

答案:错8.滑移是金属晶体在()的作用下,沿滑移面和滑移方向进行的切变过程。

切应力9.σr0.2是指规定残余伸长为()时的应力值,为屈服强度.答案:0.2%第二章测试1.扭转试验时,在与试样轴线呈()方向上承受最大正应力。

答案:45°2.弯曲试验时,截面的应力分布是表面最大。

答案:对3.缺口的存在改变了材料的应力状态,会出现以下缺口效应:()。

答案:应力状态软性系数减小,由单相拉应力变为双向或三相拉应力,导致缺口附近屈服强度提高,塑性变形困难,使材料脆化。

;产生应力集中;缺口附近的应变速率增高4.缺口尖端的曲率半径越小,缺口越深,材料对缺口的敏感性越()。

大5.对于任何硬度试验所得到的硬度值,其物理意义均相同。

答案:错6.280 HBS10/3000/30 是指()。

答案:采用10mm直径的淬火钢球为压头,3000kgf载荷、保载30秒,测得的布氏硬度值为280。

7.应力状态软性系数越小,表示应力状态越硬,材料越易于产生()。

材料性能学第四章课后答案全部答案2020免费.docx

材料性能学第四章课后答案全部答案2020免费.docx

材料性能学第四章课后答案全部答案2020免费问:蟹螯一般不食用。

答:正确问:新的星级饭店评定标准的变化:强调客房舒适度,对低星级饭店餐饮、康乐设施、客房微型酒吧和卫生间设施的要求有所降低,强调( ) ,强调安全性,强调特色经营。

答:绿色环保问:( )是制定战略的客观基础。

答:战略环境问:市场预测可使企业更好地满足市场需求,提高企业的竞争能力。

答:对问:若可导函数ƒ(x)在区间I上单调,则其导函数ƒ′(x)也单调。

()答:错误问:细胞膜的主动转运是借助于膜上答:泵蛋白的耗能过程问:对静息电位的叙述错误的是答:各种细胞的静息电位是相等的问:春、秋两季是气候转化季节,中医提醒人们要特别注意()答:春捂秋冻问:马克思主义中国化的最新理论成果是科学发展观。

答:错误问:关于1904年的电影《火车大劫案》,下列说法正确的是()。

答:它融合了美国西部片、强盗片、警匪片的元素它的叙事非常流畅、清晰它第一次用电影画面说出“与此同时”这个语言问:下面选项中对于白玉和不同稀饭的对应关系正确的是()。

答:糯米粥(和田籽玉)加麦片的梗米粥(韩国玉)问:下面选项中属于和田籽玉和俄罗斯灰皮玉的差别的是()。

答:和田籽玉的云絮和冰点反差不大、比较柔和。

俄罗斯灰皮玉的云絮和冰点反差较大。

和田籽玉的皮是真的。

俄罗斯灰皮玉的皮是假的。

问:在判断籽玉的第一步是判断籽玉的两个特征,主要是()。

答:外部特征内部特征问:插花容器的功能是————。

答:提供水分烘托作品固定花枝问:籽玉的感觉是()的,类似于蜡烛油一样的感觉。

答:油润的滋润的舒服的问:《尼多斯的阿芙洛狄忒》现藏于意大利首都罗马西北角高地的一个内陆城邦国家——梵蒂冈城国。

答:对问:水杨酸的鉴别答:在弱酸性条件下与Fe3+反应生成紫堇色配合物问:以下哪项表示在检索结果当中A和B必须同时出现?答:A*B问:下列哪项不属于中国传统民居特征()答:中轴对称,布局规整问:“上帝不掷骰子”是以下哪位物理学家说的。

材料性能学作业及答案

材料性能学作业及答案

本学期材料性能学作业及答案第一次作业P36-37第一章1名词解释4、决定金属屈服强度的因素有哪些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。

外在因素:温度、应变速率和应力状态。

10、将某材料制成长50mm,直径5mm的圆柱形拉伸试样,当进行拉伸试验时塑性变形阶段的外力F与长度增量ΔL的关系为:F/N 6000 8000 10000 12000 14000ΔL 1 2.5 4.5 7.5 11.5求该材料的硬化系数K及应变硬化指数n。

解:已知:L0=50mm,r=2.5mm,F与ΔL如上表所示,由公式(工程应力)σ=F/A0,(工程应变)ε=ΔL/L0,A0=πr2,可计算得:A0=19.6350mm2σ1= 305.5768,ε1=0.0200,σ2=407.4357 ,ε2=0.0500,σ3= 509.2946,ε3=0.0900,σ4= 611.1536,ε4=0.1500,σ5= 713.0125,ε5=0.2300,又由公式(真应变)e=ln(L/L0)=ln(1+ε),(真应力)S=σ(1+ε),计算得:e1=0.0199,S1=311.6883,e2=0.0489,S2=427.8075,e3=0.0864,S3=555.1311,e4=0.1402,S4=702.8266,e5=0.2076,S5=877.0053,又由公式S=Ke n,即lgS=lgK+nlge,可计算出K=1.2379×103,n=0.3521。

11、试述韧性断裂与脆性断裂的区别。

为什么脆性断裂最危险?答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。

韧性断裂:是断裂前产生明显宏观塑性变形的断裂特征:断裂面一般平行于最大切应力与主应力成45度角。

精品 课后习题及参考答案-材料性能学课后习题与解答

精品 课后习题及参考答案-材料性能学课后习题与解答

材料性能学课后习题与解答绪论1、简答题什么是材料的性能?包括哪些方面?[提示] 材料的性能定量地反映了材料在给定外界条件下的行为;解:材料的性能是指材料在给定外界条件下所表现出的可定量测量的行为表现。

包括○1力学性能(拉、压、、扭、弯、硬、磨、韧、疲)○2物理性能(热、光、电、磁)○3化学性能(老化、腐蚀)。

第一章单向静载下力学性能1、名词解释:弹性变形塑性变形弹性极限弹性比功包申格效应弹性模量滞弹性内耗韧性超塑性韧窝解:弹性变形:材料受载后产生变形,卸载后这部分变形消逝,材料恢复到原来的状态的性质。

塑性变形:微观结构的相邻部分产生永久性位移,并不引起材料破裂的现象。

弹性极限:弹性变形过度到弹-塑性变形(屈服变形)时的应力。

弹性比功:弹性变形过程中吸收变形功的能力。

包申格效应:材料预先加载产生少量塑性变形,卸载后再同向加载,规定残余应力(弹性极限或屈服强度)增加;反向加载,规定残余应力降低的现象。

弹性模量:工程上被称为材料的刚度,表征材料对弹性变形的抗力。

实质是产生100%弹性变形所需的应力。

滞弹性:快速加载或卸载后,材料随时间的延长而产生的附加弹性应变的性能。

内耗:加载时材料吸收的变形功大于卸载是材料释放的变形功,即有部分变形功倍材料吸收,这部分被吸收的功称为材料的内耗。

韧性:材料断裂前吸收塑性变形功和断裂功的能力。

超塑性:在一定条件下,呈现非常大的伸长率(约1000%)而不发生缩颈和断裂的现象。

韧窝:微孔聚集形断裂后的微观断口。

2、简答(1) 材料的弹性模量有那些影响因素?为什么说它是结构不敏感指标?解:○1键合方式和原子结构,共价键、金属键、离子键E高,分子键E低原子半径大,E小,反之亦然。

○2晶体结构,单晶材料在弹性模量在不同取向上呈各向异性,沿密排面E大,多晶材料为各晶粒的统计平均值;非晶材料各向E同性。

○3化学成分,○4微观组织○5温度,温度升高,E下降○6加载条件、负载时间。

对金属、陶瓷类材料的E没有影响。

完整版材料力学性能课后习题答案整理

完整版材料力学性能课后习题答案整理

材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。

1弹性比功:金属材料吸收弹性变形功的能力.一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后.随时间延长产生附加弹性应变的现象称为滞弹性.也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形.卸载后再同向加载.规定残余伸长应力增加;反向加载.规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时.便形成一个高度为b的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下.当外加正应力达到一定数值后.以极快速率沿一定晶体学平面产生的穿晶断裂.因与大理石断裂类似.故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内.可以是韧性断裂.也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展.多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时.冲击吸收功明显下降.断裂方式由原来的韧性断裂变为脆性断裂.这种现象称为韧脆转变2、说明下列力学性能指标的意义。

答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 P153、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。

合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小.但是不改变金属原子的本性和晶格类型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 a
4F 100 106 3.14 (12.5 103 ) 2 =100(MPa) F =12265.6(N) 4 d2
从以上计算看出,在分析或者绘制 S-N 曲线时,务必清楚地指出 S 所代表的物理意义。 6. 证明:由题意知疲劳裂纹扩展速率满足 Paris 公式,即
min =75/125=0.6 max
2. 根据题意,本题 S-N 曲线中 S 代表应力幅(即 2a),
(1)图中,表示寿命超出对应周次。 (2)从图中读出设计寿命 1E5 次,则对应的最大应力幅为 350MPa。 4. 给出了 S-N 曲线, 拉压对称循环, 应力比 r=-1, 疲劳平均应力为m=0. 但在做相关计算时, 必须指明 S 所代表的具体意义:最大应力幅?还是最大应力? (I)图中 S 是最大应力max,曲线代表的是max-N: (1) 从图中读出 1045 钢的疲劳极限(最大应力)为 330MPa 则应力幅(2a)=2max=660MPa= 直径 d=6.52(mm) 考虑安全系数为 2,则允许的最小直径为 6.52 2 =9.22(mm)
max
4 Fmax 100 106 3.14 (12.5 103 ) 2 =100(MPa) F =12265.6(N) max 4 d2
对称拉压循环,因此循环载荷幅度 F Fmax Fmin 2 Fmax =24531(N) (II) 图中 S 是最大应力幅 2a,即曲线代表的是 2a-N (1) 则应力幅(2a)=330MPa= 直径 d=9.22(mm) 考虑安全系数为 2,则允许的最小直径为 9.22 2 =13.04(mm) (2) F Fmax Fmin 2 Fmax =15000(N), 2 a
第四章作业参考答案
1.已知疲劳试验的平均应力(m)和应力幅(2a),按照定义: 平均应力: m
max min
2
;应力半幅: a
max min
2

最大应力: max m a =100+25=125(MPa) 最小应力: min m a =100-25=75(MPa) 应力比: r
4
1905 1435 4 =25850(N.m); 细轴段(108mm)弯矩= 11 10 0.032 =3520 (N.m) 2000
弯曲疲劳中表面最大应力 max
M 32 M 12925 133 , 因为 2* ,所以校核粗轴。 3 W d 3250 108
F 4F 4 22000 660 106 2 2 d 4 d d2
1
(2) 根据给出的疲劳最大载荷及铜试样直径,得到最大应力: max
4 Fmax =149.3(MPa), d2
按照图中给出的 S(最大应力)-N 曲线,该最大应力对应的寿命约为 1E8 周; (3) 按照给出的最大应力 S-N 曲线,2014-T6 铝合金的疲劳极限约 100MPa
3
粗轴最大应力计算为:max=~112(MPa). 考虑安全系数为 1.5,设计允许的最大应力为 240/1.5=160(MPa) 通过校核,车轴 A-A 截面在运行过程中是安全的。
13. 从尺寸上讲,疲劳贝纹线是疲劳断口上的宏观区域,又称海滩花样,肉眼即可观察,是 疲劳裂纹的稳态扩展区域; 而疲劳条带指每周次循环应力作用下疲劳裂纹的扩展形态, 肉眼 难以观察,条带宽度以微米级计甚至更小。 从成因上讲, 贝纹线是疲劳裂纹扩展前沿线痕迹, 因为疲劳过程中载荷大小或应力状态变化、 频率变化、温度变化、以及运行中启动、停车等外部因素导致裂纹扩展产生相应微小变化, 而在疲劳断口上出现类似“树轮”的现象,通常在工程构件中出现,实验室疲劳试样便面上 述因素的变化,则很少出现贝纹线。 疲劳条带又称疲劳辉纹,在高倍显微镜下表现为平行条带。对于塑性材料而言,疲劳裂纹扩 展工程中,裂纹周期性发生张开、闭合,裂纹尖端发生塑性钝化、折叠,பைடு நூலகம்断口上每循环一 周,产生一个新的疲劳条带。对于脆性材料,则是周期性最大拉伸应力导致裂尖应力集中超 过解理应力时,发生解理面的张开,随后的压应力使得裂纹闭合尖锐化,在断口上出现明显 的解理台阶和河流花样。 16. 材料的疲劳寿命由两个部分组成:疲劳裂纹萌生寿命+疲劳裂纹扩展寿命。从疲劳裂纹 源的萌生机理可见, 疲劳裂纹的萌生来源于驻留滑移带内的位错滑移, 如果材料表面硬度高、 即难以屈服,位错运动阻力大,则裂纹难以萌生,即可以增加疲劳萌生阶段寿命。裂纹扩展 的寿命则由自 a0 扩展到 af 来决定,当疲劳最大应力一定时,材料的断裂韧度 KIC 提高则临 界裂纹长度 af 增加,裂纹扩展阶段的寿命也增加。一般来讲,延性优异的材料,其 KIC 高. 因此即使表面要求硬、相对脆的材料,其内部依然选择软的、延性的。
2
2
N f a0
N f K IC
K IC 2 2 2 Y max a0
3

K Ic a f 1 ,因为通常 a0 1(m), K IC 2 MPa m 2a0 a0
9. 根据题图,画出弯矩图, 得到粗轴段(直径 133mm)最大弯矩 M= 11 10
3
da n 4 c K I c K I , K I Y a Y a ( max min ) , K Im ax Y max a dN
da cY 4 a 2 ( max min ) 4
dN
Nf
0
dN
af
a0
K IC , af 4 2 4 cY a ( max min ) Y max
da
2
2
K IC ao a f a0 Y max 1 1 1 ( ) 即Nf 2 c(Y ) 4 a0 a f c(Y ) 4 a0 a f K IC 4 c(Y ) a0 Y max N f Y max 1 1 2 假定,max 为定值, ; 4 2 4 c(Y ) a0 a0 K IC c(Y ) K IC 3 N f
F 4F 4 22000 330 106 2 2 d 4 d d2
F 4 15000 =298.57(MPa) 2 d 4 3.14 64 106
按照铜的 S(2a)-N 曲线,则对应的寿命<1, 即静拉伸断裂。 (3)按照给出的最大应力幅 S-N 曲线,2014-T6 铝合金的疲劳极限约 100MPa
相关文档
最新文档