第16章早期量子论优秀课件

合集下载

高三物理学史《早期量子论和量子力学的准备》课件

高三物理学史《早期量子论和量子力学的准备》课件
温度为T时,单位时间内从物体表面单位面积上所辐射出 来的,波长在λ附近,单位波长间隔内的电磁波能量。
1)辐射出射度 (辐出度) --- M
2) 单色辐射出射度(单色辐出度) (光谱辐射出射度) M
dM
M d
单位:W/(m2.Hz)
式中 dM 是频率在 ν ν +dν 范围内单位时间从物体表面单位
2. 光子与石墨中和原子核束缚很紧的内层电子 的碰撞,应看做是光子和整个原子的碰撞。
∵ m原子 m光子
∴ 弹性碰撞中,入射光子几乎不损失能量, 这时散射光子波长不变。
物理意义
光子假设的正确性,狭义相对论力学的正确性 . 微观粒子也遵守能量守恒和动量守恒定律.
29
氢原子光谱 玻尔的氢原子理论
一、氢原子光谱规律
4861.3Å 蓝
4340.5Å 紫
氢原子光谱经验规律(1885~1908年)
巴尔末公式


B
n2 n2
4
(n 3, 4,5, )
里德堡 波数 1 R( 1 1 )

22 n2
式中R:里德堡常数 R 4 1.096776107 m1 B
32
氢光谱的其他线系:
33
能量 h
质量 动量
E
P


mc2
mc
m
h

h
c2

光具有波粒二象性
一些情况下 突出显示波动性,如光的干涉和衍射
一些情况下 突出显示粒子性,如光电效应等
基本关系式 粒子性:能量 波动性:波长
动量P 频率
h
p h

22
四、光电效应的应用

《量子论初步》课件

《量子论初步》课件

THANK YOU
汇报人:PPT
量子密码学
量子密钥分发:利 用量子力学原理实 现密钥分发,确保 通信安全
量子加密通信:利 用量子密钥加密通 信,确保通信内容 不被窃听
量子安全认证:利 用量子密钥进行身 份认证,确保身份 真实性
量子安全存储:利 用量子密钥进行数 据存储,确保数据 安全
量子传感器和量子成像
量子传感器:利用量子效应进行高精度测量,如磁场、温度、压力等
1926年,薛定谔提出波动力学,量子论 得到进一步完善
1913年,玻尔提出原子模型,量子论开 始形成
1927年,狄拉克提出相对论量子力学, 量子论进入新阶段
量子论的发展历程
1900年,普朗克提出量子论的雏形,提出能量量子化概念 1913年,玻尔提出玻尔模型,解释氢原子光谱 1925年,海森堡提出不确定性原理,量子力学的基本原理之一 1926年,薛定谔提出薛定谔方程,量子力学的基本方程之一 1927年,玻尔提出互补原理,量子力学的基本原理之一 1930年,狄拉克提出狄拉克方程,描述电子的运动和自旋
量子论初步
汇报人:PPT
单击输入目录标题 量子论的背景和历史 量子论的基本概念 量子论的实验验证 量子论的应用前景 量子论的哲学思考
添加章节标题
量子论的背景和历史
量子论的起源
1900年,普朗克提出量子概念,量子论 开始萌芽
1925年,海森堡提出不确定性原理,量 子论进入成熟阶段
1905年,爱因斯坦提出光量子假说,量 子论得到进一步发展
量子成像:利用量子效应进行高分辨率成像,如医学成像、遥感成像等 量子通信:利用量子效应进行安全通信,如量子密钥分发、量子隐形传 态等 量子计算:利用量子效应进行高效计算,如量子模拟、量子优化等

《初期量子论》课件

《初期量子论》课件
电子衍射实验
通过电子衍射实验证实了电子具有波动性,证明了德布罗意理论 的正确性。
原子干涉实验
原子干涉实验进一步证实了物质波的存在,为量子力学的发展奠 定了基础。
意义
物质波理论为理解微观世界的本质提供了重要工具,推动了量子 力学的发展和应用。
THANKS
感谢观看
光量子理论的出现,打破了经典物理学中光的波动说,为量子力学的诞生奠定了 基础。
光子的能量和动量
根据爱因斯坦的光量子理论,每个光 子都具有能量和动量,其大小分别由 公式E=hν和p=h/λ给出。
VS
其中E是光子的能量,h是普朗克常数 ,ν是光子的频率,p是光子的动量, λ是光子的波长。
爱因斯坦的光电效应理论
物质波的波长和动量
波长公式
物质波的波长 $lambda$ 与其对应的动量 $p$ 满足 $lambda = frac{h}{p}$,其中 $h$ 是普朗克常数。
动量定义
动量是描述粒子运动状态的物理量,定义为质量与速 度的乘积。
波长意义
物质波的波长反映了粒子运动的特征,如衍射和干涉 等现象。
物质波理论的验证与意义
能量子假设的意义
打破了经典物理学中能量连续变化的观念,开启了量子力学的研究。
为解释黑体辐射等实验现象提供了理论支持,推动了物理学的发展。
普朗克公式与黑体辐射
普朗克式之 一。
该公式为解决黑体辐射问题提供了重 要的理论工具,对物理学和工程学等 领域产生了深远影响。
1905年,爱因斯坦在论文中提出了光电效应理论,解释了光照射在金属表面时,金属表面会释放出电 子的现象。
根据光电效应理论,当光照射在金属表面时,金属表面的电子吸收光子的能量后,能够克服金属的束缚 力而逸出金属表面。

第16章早期量子物理优秀课件

第16章早期量子物理优秀课件

第16章 早期量子论

§1 黑体辐射和普朗克能量子假说

一、 热辐射

红外夜视图

单色辐射出射度
K
单位时间内,物体上单位面积发射的波长在
l~l+dl范围内的辐射能与波长间隔dl的比值 Ml(T) 。
Ml(T)dMdl(T)
单色辐射出射度亦称物体的单色辐射本领
Ml(T)dMdl(T)
Mν(T)dMdν(T)
(总)辐射出射度
M(T)0Ml(T)dl
M(T) 0
Mν(T)dν
单色吸收比
(l,T)
吸收的电磁波能量 入射的电磁波能量
物体的吸收本领
单色反射比
(l,T)
反射的电磁波能量 入射的电磁波能量
物体的反射本领
ν
(l,T )(l,T )1
平衡热辐射 一个好的吸收体也是一个好的发射体
真空 B1 B2 B3
第16章早期量子物理
量子物理
布埃
拉伦
格费
德 拜
斯 特

狄薛 拉定 克谔
康布
普 顿
罗意 泡利
海 森 堡

洛 伦 兹
爱 因 斯 坦
朗 之 万
威 尔 逊
量子力学的发展
A、 旧量子论的形成(冲破经典→量子假说)
1900年
1905年 1910年 1913年
普朗克
爱因斯坦 卢瑟福 波尔
§3 康普顿散射
1922-1923年,康普顿研究X射线的散射
一、实验装置
X 射线管
晶体
光阑 散射波 l

l0
q
测 器
石墨
X 射线谱仪

《早期量子论》幻灯片PPT

《早期量子论》幻灯片PPT
课本 pp217—250;练习册 第十八单元
“两朵乌云 〞
十九世纪末,经典物理已相当成熟,对物理现象本
质的认识似乎已经完成。“但是,在晴朗的天空中,还
有两朵小小的令人不安的乌云〞。
相对论
?热辐射的 紫外灾难
量子论
§19-1 黑体辐射 普朗克的能量子假说 一 黑体辐射的实验规律
热辐射 物体在任何温度下都向外辐射电磁波
散射X射线的波长为
' 0 .5 0 .01 0 .5 21 2 22
〔2〕由能量守恒,反冲电子所得动能为
E k h h c ' 6 c .6 1 3 3 0 4 3 .0 1 8 0 1 0 .1 5 0 0 0 1 .5 1 0 0 1 5e 2 8
§19-5 氢原子的波尔理论
0 A
h
光量子假设解释了光电效应的全部实验规律。但是,1910年 以前,并未被物理学界承受。
光电效应对于光的本质的认识和量子论的开展曾起过重要的 作用。
爱因斯坦为此获1921诺贝尔物理学奖。
光子的能量、质量和动量
光子能量: h
光子质量:
mc2
hc2
光子有动量?
pmch h
c
因为: m m0
1
Uc= K - U0
其中K 为斜率,普适常数U0 为截
距, 与材料有关直线与横坐标的
交点就是红限频率0
0
U0 K
〔4〕光电效应是瞬时发生的
1 2mm 2 veU cekeU 0
只要入射光频率>0,无
论光多微弱,从光照射阴极
到光电子逸出,驰豫时间不
超过10-9s
以上这些实验规律与经典 电磁波的概念完全不同,经 典波的能量是连续地分布在 空间的。

早期量子论(全)

早期量子论(全)
第六篇
开尔文在迎接20世纪的新年献词: “19世纪已将物理学大厦全部建成,今 后物理学家的任务就是修饰完善这所大 厦”
“在物理学晴朗的天空远处,还有两 朵小小的令人不安的乌云”
经典物理的理论遇到了困难和挑战!
相对论和量子力学构成近代物理的 两大基础.
第六篇
早期量子论
本章内容
第一节
18-1 黑 体 辐 射 ,普 朗克量 子假设
结论: (1)再多用一束绿光照射,是增大光强度,光子数增多;
在相同时间内逸出的光电子数目将增加
(2)电子的初动能将变大
以波长 300nm 的单色光分别照射铝棒和钠棒, 已知钠的红限波长为 0 540 nm 铝的红限波长为 0 296 nm
问:能产生光电效应的是铝棒还是钠棒? 请给出分析过程。
1918年普朗克由于创立了量子理论而获得 了诺贝尔奖金。
世界上最黑的材料
最新黑体
美国赖斯大学的阿加延(右)手持一块世界上最黑的材料, 他的同行李杰西(左)在旁边看着。他们研制的这种最黑的材 料对光的吸收达到99.9%。
三种材料对比:美国国家标志与技术研究所的 反射标准样品(左),新研制的最黑的材料样品(中) 一片玻璃碳(右)
美国赖斯大学的阿加延(右)手持一块世界上最黑的材料, 他的同行李杰西(左)在旁边看着。他们研制的这种最黑的材 料对光的吸收达到99.9%。
单色辐出度
黑体实验规律
例. 太阳光谱的单色幅出度的峰值对应的 Li2
波长λm=483nm,试估计太阳表面温度.
解:
T
b
m
2.898103 m K 483109 m
定义: 分子的热运动使物体辐射电磁波 可在任何温度下自发进行.
特点: 温度→发射的能量→电磁波 的短波成分 例如:加热铁块

大学物理量子物理课件

大学物理量子物理课件

2
c
sin
2
θ
2
其= 中 λc h= / m0c 0.0024 nm(电子的康普顿波长)
∆λλ=λλ −
0=
2
c
sin
2
θ
2
= λc h= / m0c 0.0024 nm
结论: 1. 波长的改变量 ∆λ 与散射角θ有关,散
射角θ 越大, ∆λ 也越大。
2. 波长的改变量∆λ与入射光的波长无关。
问题:为什么在可见光的散射实验中我们没有看到 康普顿效应呢?用x射线是否能看到?
通有电流的电炉丝
热辐射频谱分布曲线 λ
总结:(热辐射的特点) (1) 连续; (2) 频谱分布随温度变化; (3) 温度越高,辐射越强; (4) 物体的辐射本领与温度、材料有关; 辐射本领越大,吸收本领也越大.
通有电流的灯丝 不同温度的铆钉
二、黑体和黑体辐射的基本规律
1. 黑体(绝对黑体) 能完全吸收各种频率的电磁波而无反射的物体,称为黑体。
§16.1 热辐射 普朗克能量子假设
主要内容:
1. 热辐射现象 2. 黑体辐射的规律 3. 普朗克公式和能量量子化假设
一、热辐射 物体内的分子、原子受到热激 发而发射电磁辐射的现象。
物体辐射总能量及能量按波长 分布都决定于温度
例如:加热铁块
(人头部热辐射像)
800K 1000K 1200K 1400K
I 越强 , 到阴极的光子越多, 则逸出的光电子越多.
光电子最大初动能和光频率 ν 成线性关系.
光频率ν > A/h 时,电子吸收一个光子即可克服逸出功 A 逸出 ( ν o= A/h) .
电子吸收一个光子即可逸出,不需要长时间的能量积累.

早期量子论202-精品文档98页

早期量子论202-精品文档98页
5) 光敏电阻: 用光照改变半导体的导电性能制成。
光控继电器、自动控制、 自动计数、自动报警等.
光控继电器示意图 光
放大器 接控件机构
光的波粒二象性
粒子性
波动性
(具有能量) E
(具有频率)
h
(具有动量) P
(具有波长)
二者通过h来联系
E h
P E
/Chh C
I光强 Nh
N为单位时间垂直通过单位面积的光子数
由相对论动量能量关系式 E2p2c2m02c4
光子m0=0
p E h h c c
光子动量:
p h
h
爱因斯坦光电方程
1 2
mVm2
h
A
A
为电子逸出功,
1 2
m
V
2 m
为光电子的最大初动能。
解释光电效应
1)光强越大 光子数越多 光电子越多 饱和光电流越大 --- 入射频率一定时饱和光电流和入射光强成正比
例. 某金属红限波长为 λ0 , 波长为λ(λ<λ0 )照射该金属, 金属释放出的电子(质量为 me )的动量?
相对能量变化 ΔE1.0 51 03321 026 E 51 08
24.2 光电效应与爱因斯坦理论
24.2.1 光电效应
光电效应 光电子
实验规律
1. 饱和电流 2. 遏止电压 3. 红限频率 4. 具有瞬时性
光电管
K
照射光
A.
OO
OO
OO
G
V
B
OO
1. 饱和电流
I
入射光频率一定时,饱和光电流强度 饱
U
Uc
Uc KU0

初识量子论PPT教学课件

初识量子论PPT教学课件
非电学量———传感器———电学量
好处:容易测量
5、火灾报警器
光———电流变化———控制电路通断 非电学量———传感器———电学量———控制电路通断
传感器的应用模式
容易控制 容易测量显示
4、自动排气扇,其中A为水汽传感器,当水 汽的浓度增大时,其内部电阻减小
水汽浓度———电流———控制电路通断
非电学量———传感器———电学量———控制电路通断
频率无关 . 3、弱光照射时应有能量积累过程,不应瞬时发生.
光的波动理论在解释光电 效应时遇到了巨大的困难。后 来,爱因斯坦在普朗克量子化 理论的启发下,提出了光子学 说.
普朗克
爱因斯坦
E h
光子说
爱因斯坦在1905年提出,在空间中传播 的光也不是连续的,而是一份一份的,每一 份叫做一个光量子,简称光子.
化总表现为电磁波的辐射与吸收,不同频率的电磁波其能量 子的值不同,表达式为: E=hυ
其中,υ是电磁波的频率,h是一个普遍适用的常量,称 作普朗克常量。由实验测得h =6.63×10-34J·s。 4.能量的量子化
在微观领域里能量的不连续变化,即只能取分立值的现 象,叫做能量的量子化。
——普朗克的能量子假说不仅解决了黑体辐射的理论困 难,而且揭开了物理学上崭新的篇章。
5.3 初识量子论
一.黑体辐射:能量子假说的提出
1.黑体: 如果一个物体能够吸收照射到它上面的全部辐பைடு நூலகம்而无反
射,这种物体就叫做黑体。 2.黑体辐射:
黑体的温度升高时可以辐射出任何频率的电磁波(包括 可见光和不可见光)。
黑体辐射的实验规律无法用经典物理学的理论解释。
3.能量子假说: 所谓能量子就是能量的最小单元。微观领域里能量的变
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Mb(,T)
2πhc2
hc
5(ekBT 1)
式中: h6 .6 2 6 1 3 04 Js —— 普朗克常数
普朗克公式的得来,起初是半经验的,即利用内插法将适用 于短波的维恩公式和适用于长波的瑞利—金斯公式衔接起来, 在得到了公式后,普朗克才设法从理论上去论证它.
2. 经典理论的基本观点
(1) 电磁辐射来源于带电粒子的振动,电磁波的频率与振动 频率相同.
普朗克引入了“能量子”的假设, 标志着量子物理学的 诞生, 具有划时代的意义. 但是由于这个假设对经典物理学致 命的打击, 所以他同时代的那些物理学家对这一观念都表示 疑惑不解, 甚至怀疑. 洛伦兹说:
“关于辐射量子问题的讨论使科学家们都陷在死胡同里了.”
普朗克本人也由于受传统的经典观念影响太深, 对自己 提出的 “能量子” 思想违反了经典的连续性概念而烦恼和 后悔. 并一直试图用连续性代替不连续性, 回到经典范畴. 经 过十多年徒劳的努力后, 他才相信能量子假设是正确的, 作 用量子 h 反映了新理论的本质.
1900年12月24日,普朗克在法国物 理学会的圣诞会上宣读了题为《关于正 常光谱的能量分布定律》的论文,提出 了与经典物理学格格不入的能量量子化 假设:
h
普朗克获1918年度诺贝尔物理学奖.
意义: 普朗克假说不仅圆满地解释了黑体辐射问题, 还解释了
固体的比热等问题, 成为现代量子理论的重要组成部分.
16.2 光电效应和光的量子性
16.2.1 光电效应
背景:
1887年赫兹在做火 花放电的实验时,发现 加有高电压的金属板被 光照射时,附近的空气 会变成导电的.
《紫外光对放电的影响》
1. 实验装置
光电管 K
照射光
.
A
O
O
O
O
O
O
G
V
B
O
O
金属在光照射下发射电子, 这个现象称为光电效应; 从金属表面逸出的电子称为光电子; 光电子运动形成光电流.
m
m
2.898103 483109
6000K
斯忒ห้องสมุดไป่ตู้-玻耳兹曼定律的应用: Mb(T)T4
测定了物体热辐射总能量,就可确定物体的温度.
红外测温仪
5. 经典物理解释黑体辐射的困难
(1) 瑞利-金斯根据经典电动力学和统计物理导出了瑞利-金斯 公式:
Mb,T2πc4kT
此式在λ较大时能与实验很好符合,而λ小时则不对.
吸收比= 吸收能量 入射总能量
当辐射从外界入射到温度为T
的物体表面时, 在 到+d 的波段
内, 吸收能量与入射总能量之比.
说明
(1) 任何物体,在任何温度下都要辐射电磁波; (2) 物体在辐射电磁波的同时,也吸收电磁波; (3) 基尔霍夫定律: 在同样的温度下, 不同的物体或不同表面
性质的物体, 其单色辐出度与单色吸收率之比是一恒量.
(2) 振子辐射的电磁波含有各种波长,是连续的,辐射能量 也是连续的.
(3) 温度升高,振子振动加强,辐射能增大.
3. 普朗克量子假设
对于频率为 的振子, 振子辐射的能量不是连续的, 而是 分立的, 它的取值是某一最小能量h 的整数倍.
n nh (n =1,2,3…)
4. 量子观念在“非难”中得到发展
所辐射出各种波长的电磁波的能量的总和.
M (T)0 M λ(T)d 单位:W·m-2
(2) 单色辐出度(单色辐射出射度) Mλ(,T) 单位时间内, 从温度为 T 的物体表面的单位面积上,
所辐射出波长在λ---λ+dλ范围内的电磁波的能量.
Mλ(,T)dM d(T) 单位:W·m-3
(3) 单色吸收率 (, T)
不辐射可见 光时,黑花 吸收大,反 射少所以暗
室温
高温
辐射可见光 时,黑花吸 收大,辐射 大所以变亮
吸收
辐射
白底黑花瓷片
辐射和吸收达到平衡时,物体的温度不再变化, 此时物体的热辐射称为平衡热辐射.
2. 描述热辐射的物理量
(1) 辐出度(辐射出射度) M(T) 单位时间内,从温度为 T 的物体表面的单位面积上,
M 1 1 (( ,,T T ))M 2 2 (( ,,T T )) M 0(,T )
一个好的辐射体一定是一个好的吸收体,物体对某
一波长不吸收,那么对这个波长也不辐射.
3. 黑体辐射
黑体: 对于任何温度, 单色吸收率恒等于1的物体.
思考: 黑色的物体是黑体吗?
煤烟
约95% 黑体辐射的特点:
黑体模型
(2) 维恩根据实验结果给出了一个经验公式:
Mb,TA5 eBT
此式在λ较小时与实验符合很好,而λ大时则不好.
瑞利—金斯公式
Mb
(1900年)
长波范围与实验符合, 而在短波范围内不符
合——“紫外灾难”
短波范围与实验符合, 在长波范围内不符合
维恩公式 (1896年)
实验曲线
16.1.2 普朗克量子假设 1. 普朗克公式
6000K
M b(T)0 M bλ(,T) dT4
0.5
式中: 5 .6 7 1 80 0m W 2K 4
5000K
斯特藩-玻耳兹曼常数
0 500
4000K 3000K
1000
1500
(nm)
2000
(2) 维恩位移定律 1.0 Mb (1014×W/m3)
6000K
当黑体的热力学温度升 高时,与单色辐出度的峰值相 对应的波长向短波方向移动.
质点运动学
第16章早期量子论
P.1/55
16.1 黑体辐射和普朗克量子假设
16.1.1 黑体辐射及其基本规律 1. 热辐射
物体中的分子、原子受到热 激发而发射电磁波的现象.
头部各部分温度不同, 因此它 们的热辐射存在差异, 这种差异可 通过热像仪转换成可见光图像.
头部热辐射像
物体辐射电磁波的同时,也吸收电磁波. 物体辐射本领越大,其吸收本领也越大.
峰值波长 m 与温度 T 成反比
0.5
mT b
5000K
b2.8918 0 3m K
4000K
3000K
(nm)
0
500
1000
1500
2000
例: 从太阳光谱的实验观测中,测知单色辐出度
的峰值所对应的波长m约为483nm,
试估算太阳表面的温度.
解: 太阳表面的温度为:
T b 2.898103
一个密闭的空腔上开 一个小孔,则此小孔就 可近似地看成为黑体. 只吸收,不反射.
——理想模型
温度
黑体热辐射
材料性质
与同温度其它物体的热辐射相比,黑体热辐射本领最强.
4. 黑体辐射基本定律
(1) 斯忒藩-玻耳兹曼定律
黑体的辐出度与黑
Mb(, T )(1014×W/m3)
1.0
体的热力学温度的四次 方成正比.
相关文档
最新文档