2016年贵州省安顺市中考数学试卷(含答案与解析)

合集下载

2013-2018年贵州省安顺市中考数学试题汇编(含参考答案与解析)

2013-2018年贵州省安顺市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年贵州省安顺市中考数学试题汇编(含参考答案与解析)1、2013年贵州省安顺市中考数学试题及参考答案与解析 (2)2、2014年贵州省安顺市中考数学试题及参考答案与解析 (18)3、2015年贵州省安顺市中考数学试题及参考答案与解析 (42)4、2016年贵州省安顺市中考数学试题及参考答案与解析 (61)5、2017年贵州省安顺市中考数学试题及参考答案与解析 (83)6、2018年贵州省安顺市中考数学试题及参考答案与解析 (101)2013年贵州省安顺市中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题3分,满分30分)1.计算﹣|﹣3|+1结果正确的是( )A .4B .2C .﹣2D .﹣42.某市在一次扶贫助残活动中,共捐款2580000元,将2580000用科学记数法表示为( )A .2.58×107元B .2.58×106元C .0.258×107元D .25.8×1063.将点A (﹣2,﹣3)向右平移3个单位长度得到点B ,则点B 所处的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知关于x 的方程x 2﹣kx ﹣6=0的一个根为x=3,则实数k 的值为( )A .1B .﹣1C .2D .﹣25.如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是( )A .∠A=∠CB .AD=CBC .BE=DFD .AD ∥BC6.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )A .8米B .10米C .12米D .14米7.若()221a y a x -=+是反比例函数,则a 的取值为( )A .1B .﹣lC .±lD .任意实数8.下列各数中,3.14159,0.131131113…,﹣π,17-,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个9.已知一组数据3,7,9,10,x ,12的众数是9,则这组数据的中位数是( )A .9B .9.5C .3D .1210.如图,A 、B 、C 三点在⊙O 上,且∠AOB=80°,则∠ACB 等于( )A .100°B .80°C .50°D .40°二.填空题(本大题共8小题,每小题4分,共32分)11.计算:= . 12.分解因式:2a 3﹣8a 2+8a= .13.4x a+2b ﹣5﹣2y 3a ﹣b ﹣3=8是二元一次方程,那么a ﹣b= .14.在Rt △ABC 中,∠C=90°,tanA=43,BC=8,则△ABC 的面积为 . 15.在平行四边形ABCD 中,E 在DC 上,若DE :EC=1:2,则BF :BE= .16.已知关于x 的不等式(1﹣a )x >2的解集为21x a -<,则a 的取值范围是 . 17.如图,在平面直角坐标系中,将线段AB 绕点A 按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为 .18.直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 个点.三.解答题(本大题共8小题,满分88分,解答应写出必要的文字说明或演算步骤)19.(8分)计算:2sin60°+2﹣1﹣20130﹣|1﹣20.(10分)先化简,再求值:211121a a a a ⎛⎫-÷ ⎪+++⎝⎭,其中1a . 21.(10分)某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路.实际施工时,每月的工效比原计划提高了20%,结果提前5个月完成这一工程.求原计划完成这一工程的时间是多少月?22.(10分)已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (﹣2,0),与反比例函数在第一象限内的图象的交于点B (2,n ),连接BO ,若S △AOB =4.(1)求该反比例函数的解析式和直线AB 的解析式;(2)若直线AB 与y 轴的交点为C ,求△OCB 的面积.23.(12分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.24.(12分)某校一课外活动小组为了解学生最喜欢的球类运动情况,随机抽查本校九年级的200名学生,调查的结果如图所示.请根据该扇形统计图解答以下问题:(1)求图中的x的值;(2)求最喜欢乒乓球运动的学生人数;(3)若由3名最喜欢篮球运动的学生,1名最喜欢乒乓球运动的学生,1名最喜欢足球运动的学生组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.25.(12分)如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD 的垂线交AD的延长线于点C.(1)求证:CT为⊙O的切线;(2)若⊙O半径为2,AD的长.26.(14分)如图,已知抛物线与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.参考答案与解析一、选择题(本大题共10小题,每小题3分,满分30分)1.计算﹣|﹣3|+1结果正确的是()A.4 B.2 C.﹣2 D.﹣4【知识考点】有理数的加法;绝对值.【思路分析】首先应根据负数的绝对值是它的相反数,求得|﹣3|=3,再根据有理数的加法法则进行计算即可.【解答过程】解:﹣|﹣3|+1=﹣3+1=﹣2.故选C.【总结归纳】此题考查了有理数的加法,用到的知识点是有理数的加法法则、绝对值,理解绝对值的意义,熟悉有理数的加减法法则是解题的关键.2.某市在一次扶贫助残活动中,共捐款2580000元,将2580000用科学记数法表示为()A.2.58×107元B.2.58×106元C.0.258×107元D.25.8×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将2580000元用科学记数法表示为:2.58×106元.故选:B.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.。

2016年中考数学真题试题及答案(word版)

2016年中考数学真题试题及答案(word版)

(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为 . 24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依
据题意得: ,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700, 答:这两批水果功够进700千克; (2)设售价为每千克a元,则: , 630a≥7500×1.26,∴ ,∴a≥15,答:售价至少为每千克15元. 25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD, ∠EAB=90°+∠EAD, ∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB, ∴EB=GD; (2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则 在△BDH中, ∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD; (3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= , ∴EB=GD= . 26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得 x1=-1,x2=3, ∴点A的坐标(-1,0),点B的坐标(3,0); (2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又 ∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4), 设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得, ,解得 , ∴直线CD的解析式为y=x+3; (3)存在.由(2)得,E(-3,0),N(-
保密 ★ 启用前
2016年中考真题数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的 四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题 卡内相应的位置上) 1、计算的结果是( ) A、 B、 C、1 D、22、若∠α的余角是30°,则cosα的值是( ) A、 B、 C、 D、 3、下列运算正确的是( ) A、 B、 C、 D、4、下列图形是轴对称图形,又是中心对称 图形的有( )

2016学年贵州省安顺中考数学年试题答案

2016学年贵州省安顺中考数学年试题答案

数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前浙江省杭州市2016年初中毕业升学文化考试数 学本试卷满分120分,考试时间100分钟.参考公式:二次函数2(0)y ax bx c a =++≠图象的顶点坐标公式24()24b ac b a a--,第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1( )A .2B .3C .4D .5 2.如图,已知直线a b c ∥∥,直线m 分别交直线a ,b ,c 于点A ,B ,C ;直线n 分别交直线a ,b ,c 于点D ,E ,F .若12AB BC =,则DE EF = ( )A .13B .12C .23D .1 3.下列选项中,如图所示的圆柱的三视图画法正确的是( )ABCD4.如图是某市2016年四月份每日的最低气温(℃)的统计图.则在四月份每日的最低气温这组数据中,中位数和众数分别是( )A .14℃,14℃B .15℃,15℃C .14℃,15℃D .15℃,14℃5.下列各式的变形中,正确的是 ( )A .236x x x =B||xC .21()1x x x x -÷=-D .22111()24x x x -+=-+6.已知甲煤场有煤518吨,乙煤场有煤106吨.为了使甲煤场存煤数是乙煤场的2倍,需要从甲煤场运煤到乙煤场.设从甲煤场运x 吨煤到乙煤场,则可列方程为( )A .5182(106)x =+B .5182106x -=⨯C .5182(106)x x -=+D .5182(106)x x +=-7.设函数(0,0)k y k x x =≠>的图象如图所示.若1z y=,则z 关于x 的函数图象可能为( )BCD8.如图,已知AC是O 的直径,点B 在圆周上(不与A ,C重合),点D 在AC 的延长线上,连接BD 交O 于点E .若3AOB ADB ∠=∠,则( )A .DE EB = B EB =C DO =D .DE OB =9.已知直角三角形纸片的两条直角边长分别为m 和n ()m n <,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都为等腰三角形,则( )A .2220m mn n ++=B .2220m mnn -+= C .2220mmn n +-=D .2220m mn n --=俯视图左视图主视图俯视图左视图主视图主视图左视图俯视图主视图左视图俯视图FE D CB A c ba nm毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------DA数学试卷 第3页(共6页) 数学试卷 第4页(共6页)10.设a ,b 是实数,定义关于@的一种运算如下:22@()()a b a b a b =+--,则下列结论: ①若@0a b =,则0a =或0b =; ②@()@@a b c a b a c +=+;③不存在实数a ,b ,满足22@5a b a b =+;④设a ,b 是矩形的长和宽,若该矩形的周长固定,则当a b =时,@a b 的值最大.其中正确的是( )A .②③④B .①③④C .①②④D .①②③第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上) 11.tan60= .12.已知一包糖果共有五种颜色(糖果仅有颜色差别),如图是这包糖果颜色分布百分比的统计图.在这包糖果中任意取一粒糖果,则取出的糖果的颜色为绿色或棕色的概率是 .13.若整式22x ky +(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 (写出一个即可).14.在菱形ABCD 中,=30A ∠,在同一平面内,以对角线BD 为底边作顶角为120在等腰三角形BDE ,则EBC ∠的度数为 .15.在平面直角坐标系中,已知(2,3)A ,(0,1)B ,(3,1)C .若线段AC 与BD 互相平分,则点D 关于坐标原点的对称点的坐标为 .16.已知关于x 的方程2m x =的解满足3,(03)25x y n n x y n -=-⎧⎨+=⎩<<.若1y >,则m 的取值范围是 .三、解答题(本大题共7小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题得分6分) 计算116()23÷-+.116()62312186=÷-+÷=-+=方方同学的计算过程如下:原式 请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.18.(本小题满分8分)某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季度的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量的百分比从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量.”你觉得圆圆说得对吗?为什么?数学试卷 第5页(共6页) 数学试卷 第6页(共6页)19.(本小题满分8分)如图,在ABC △中,点D ,E 分别在边AB ,AC 上,AED B =∠∠.射线AG 分别交线段DE ,BC 于点F ,G ,且AD DFAC CG=. (1)求证:ADF ACG ∽△△; (2)若12AD AC =,求AFFG的值.20.(本小题满分10分)把一个足球垂直于水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式2205(04)h t t t =-≤≤.(1)当3t =时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t 的值;(3)若存在实数1t 和212()t t t ≠,当1t t =或2t 时,当1t t =或2t 时,足球距离地面的高度都为m (米),求m 的取值范围.21.(本小题满分10分)如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A ,D ,G 在同一条直线上,且3AD =,1DE =.连接AC ,CG ,AE ,并延长AE 交CG 于点H .(1)求sin EAC ∠的值; (2)求线段AH 的长.22.(本小题满分12分)已知函数21y ax bx =+,2(0)y ax b ab =+≠.在同一平面直角坐标系中: (1)若函数1y 的图象过点(1,0)-,函数2y 的图象过点(1,2),求a ,b 的值; (2)若函数2y 的图象经过1y 的图象的顶点. ①求证:20a b +=;②当312x <<时,比较1y 与2y 的大小.23.(本小题满分12分)在线段AB 的同侧作射线AM 和BN ,若MAB ∠与NBA ∠的平分线分别交射线BN ,AM 于点E ,F ,AE 和BF 交于点P .如图,点点同学发现当射线AM ,BN 交于点C ,且60ACB =∠时,有以下两个结论:①120APB =∠;②AF BE AB +=. 那么,当AM BN ∥时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出APB ∠的度数,写出线段AF ,BE ,AB 长度之间的等量关系,并给予证明;(2)设点Q 为线段AE 上一点,5QB =.若16AF BE +=,四边形ABEF的面积为求AQ 的长.GFE DC BAPFE MNCB AH G FEDCBA 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。

贵州省安顺市中考数学试卷

贵州省安顺市中考数学试卷

年贵州省安顺市中考数学试卷一、选择题(共小题,每小题分,满分分)树梢,问小鸟至少飞行().(分)若是反比例函数,则的取值为().(分)下列各数中,,,…,﹣π,,,无理数的个数有().(分)计算:﹣..(分)(•安顺)分解因式:﹣..(分)(•安顺)﹣﹣﹣﹣是二元一次方程,那么﹣..(分)(•鞍山)在△中,∠°,,,则△的面积为..(分)(•黄石)在平行四边形中,在上,若::,则:..(分)已知关于的不等式(﹣)>的解集为<,则的取值范围是..(分)(•扬州)如图,在平面直角坐标系中,将线段绕点按逆时针方向旋转°后,得到线段′,则点′的坐标为..(分)(•安顺)直线上有个点,我们进行如下操作:在每相邻两点间插入个点,经过次这样的操作后,直线上共有个点.三、解答题(共小题,满分分,解答应写出必要的文字说明或演算步骤).(分)(•安顺)计算:°﹣﹣﹣﹣.(分)(•安顺)先化简,再求值:(﹣)÷,其中﹣..(分)(•安顺)某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路.实际施工时,每月的工效比原计划提高了,结果提前个月完成这一工程.求原计划完成这一工程的时间是多少月?.(分)(•重庆)已知:如图,在平面直角坐标系中,直线与轴交于点(﹣,),与反比例函数在第一象限内的图象的交于点(,),连接,若△.()求该反比例函数的解读式和直线的解读式;()若直线与轴的交点为,求△的面积..(分)如图,在△中,、分别是、的中点,,延长到点,使得,连接.()求证:四边形是菱形;()若,∠°,求菱形的面积..(分)(•乐山)某校一课外活动小组为了解学生最喜欢的球类运动情况,随机抽查本校九年级的名学生,调查的结果如图所示.请根据该扇形统计图解答以下问题:()求图中的的值;()求最喜欢乒乓球运动的学生人数;()若由名最喜欢篮球运动的学生,名最喜欢乒乓球运动的学生,名最喜欢足球运动的学生组队外出参加一次联谊活动.欲从中选出人担任组长(不分正副),列出所有可能情况,并求人均是最喜欢篮球运动的学生的概率..(分)(•鞍山)如图,是⊙直径,为⊙上一点,平分∠交⊙于点,过作的垂线交的延长线于点.()求证:为⊙的切线;()若⊙半径为,,求的长..(分)(•临沂)如图,已知抛物线与轴交于(﹣,),(,)两点,与轴交于点(,).()求抛物线的解读式;()设抛物线的顶点为,在其对称轴的右侧的抛物线上是否存在点,使得△是等腰三角形?若存在,求出符合条件的点的坐标;若不存在,请说明理由;()点是抛物线上一点,以,,,为顶点的四边形是直角梯形,试求出点的坐标.年贵州省安顺市中考数学试卷参考答案与试卷解读一、选择题(共小题,每小题分,满分分)树梢,问小鸟至少飞行()中,.(分)若是反比例函数,则的取值为()(为常数,.(分)下列各数中,,,…,﹣π,,,无理数的个数有()由圆周角定理知,∠∠∠.(分)计算:﹣.故答案为﹣解:根据题意得:..(分)(•鞍山)在△中,∠°,,,则△的面积为.,××,则::..(分)已知关于的不等式(﹣)>的解集为<,则的取值范围是>..(分)(•扬州)如图,在平面直角坐标系中,将线段绕点按逆时针方向旋转°后,得到线段′,则点′的坐标为(,)..(分)(•安顺)直线上有个点,我们进行如下操作:在每相邻两点间插入个点,经过次这样的操作后,直线上共﹣.(分)(•安顺)先化简,再求值:(﹣)÷,其中﹣.解:原式÷×﹣时,原式.的交于点(,),连接,若△.()求该反比例函数的解读式和直线的解读式;()若直线与轴的交点为,求△的面积.,得)代入反比例函数的解读式为,可得反比例函数的解读式为:×(将点的坐标代入,得;,;×()求证:四边形是菱形;()若,∠°,求菱形的面积.,×结果如图所示.请根据该扇形统计图解答以下问题:()求图中的的值;()求最喜欢乒乓球运动的学生人数;()若由名最喜欢篮球运动的学生,名最喜欢乒乓球运动的学生,名最喜欢足球运动的学生组队外出参加一次联谊活动.欲从中选出人担任组长(不分正副),列出所有可能情况,并求人均是最喜欢篮球运动的学生的概率...(分)(•鞍山)如图,是⊙直径,为⊙上一点,平分∠交⊙于点,过作的垂线交的延长线于点.()求证:为⊙的切线;()若⊙半径为,,求的长.中,()求抛物线的解读式;()设抛物线的顶点为,在其对称轴的右侧的抛物线上是否存在点,使得△是等腰三角形?若存在,求出符合条件的点的坐标;若不存在,请说明理由;()点是抛物线上一点,以,,,为顶点的四边形是直角梯形,试求出点的坐标.,,<,应舍去,即点坐标为或(,,。

贵州安顺初中毕业考试数学试题—-解析版

贵州安顺初中毕业考试数学试题—-解析版

贵州省安顺市中考数学试卷一、单项选择题(共30分,每小题3分)1、(2011•安顺)﹣4的倒数的相反数是()A、﹣4B、4 C 、﹣D 、2、(2011•安顺)已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)()A、3.84×104千米B、3.84×105千米C、3.84×106千米D、38.4×104千米3、(2011•安顺)如图,己知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C 的度数是()A、100°B、110°C、120°D、150°4、(2011•安顺)我市某一周的最高气温统计如下表:21世纪教育网最高气温(℃)25 26 27 28天数 1 1 2 3则这组数据的中位数与众数分别是()A 、27,28 B、27.5,28 C、28,27 D、26.5,275、(2008•黄石)若不等式组有实数解,则实数m的取值范围是()A、m≤B、m<C、m>D、m≥6、(2011•安顺)如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A、B、C、D、7、(2007•遵义)函数y=﹣中的自变量x的取值范围是()A、x≥0B、x<0且x≠1C、x<0D、x≥0且x≠18、(2006•浙江)在△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,顶点C运动的路线长是()A、B、C、πD、9、(2011•安顺)正方形ABCD边长为1,E、F、G、H分别为边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设小正方形EFGH的面积为y,AE=x.则y关于x的函数图象大致是()A、B、C、D、10、(2011•安顺)一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A、(4,O)B、(5,0)C、(0,5)D、(5,5)二、填空题(共32分,每小题4分)11、(2011•安顺)分解因式:x3﹣9x=_________.12、(2011•安顺)小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数.根据调查结果绘制了人数分布直方图.若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为_________°.13、(2011•安顺)已知圆锥的母线长为30,侧面展开后所得扇形的圆心角为120°,则该圆锥的底面半径为_________.14、如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=_________.15、(2011•安顺)某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x元/立方米,则所列方程为_________.16、(2011•安顺)如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是_________.17、(2011•安顺)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为_________.18、(2011•安顺)如图,在Rt△ABC中,∠C=90°,CA=CB=4,分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是_________.三、解答题(本大题共9个小题,共88分)19、(2011•安顺)计算:.20、(2011•安顺)先化简,再求值:,其中a=2﹣.21、(2011•安顺)一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行40米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,求这条河的宽度.(参考数值:tan31°≈)22、(2011•安顺)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣l,﹣2和﹣3.小强从A布袋中随机取出一个小球,记录其标有的数字为a,再从B布袋中随机取出一个小球,记录其标有的数字为b,这样就确定点Q的一个坐标为(a,b).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x﹣3上的概率.23、(2011•安顺)如图,已知反比例函数的图象经过第二象限内的点A(﹣1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A ,并且经过反比例函数的图象上另一点C(n,一2).(1)求直线y=ax+b的解析式;(2)设直线y=ax+b与x轴交于点M,求AM的长.24、(2011•安顺)某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.(1)求每件T恤和每本影集的价格分别为多少元?(2)有几种购买T恤和影集的方案?25、(2011•安顺)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.26、(2011•安顺)已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论;(3)若⊙O的直径为18,cosB=,求DE的长.27、(2011•菏泽)如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.答案与评分标准一、单项选择题(共30分,每小题3分)1、(2011•安顺)﹣4的倒数的相反数是()A、﹣4B、4 C 、﹣D 、考点:倒数;相反数。

历年贵州省安顺市中考数学模拟试题(含答案)

历年贵州省安顺市中考数学模拟试题(含答案)

2016年贵州省安顺市中考数学试卷一、选择题.(本大题共10小题,每小题3分,共30分)1.(3分)(2016•安顺)﹣2016的倒数是()A.2016 B.﹣2016 C.D.﹣2.(3分)(2016•安顺)下列计算正确的是()A.a2•a3=a6B.2a+3b=5ab C.a8÷a2=a6 D.(a2b)2=a4b3.(3分)(2016•安顺)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10104.(3分)(2016•安顺)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦5.(3分)(2016•安顺)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对6.(3分)(2016•安顺)某校九年级(1)班全体学生2016年初中毕业体育考试的成绩统计A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分7.(3分)(2016•安顺)已知命题“关于x的一元二次方程x2+bx+1=0,必有实数解”是假命题,则在下列选项中,b的值可以是()A.b=﹣3 B.b=﹣2 C.b=﹣1 D.b=28.(3分)(2016•安顺)如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)9.(3分)(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.10.(3分)(2016•安顺)某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A.B.C.D.二、填空题.(本大题共8小题,每小题4分,共32分)11.(4分)(2016•安顺)把多项式9a3﹣ab2分解因式的结果是.12.(4分)(2016•安顺)在函数中,自变量x的取值范围是.13.(4分)(2016•安顺)如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=度.14.(4分)(2016•安顺)根据如图所示的程序计算,若输入x的值为1,则输出y的值为.15.(4分)(2016•安顺)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=.16.(4分)(2016•安顺)如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则阴影部分面积是(结果保留π).17.(4分)(2016•安顺)如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.18.(4分)(2016•安顺)观察下列砌钢管的横截面图:则第n个图的钢管数是(用含n的式子表示)三、解答题.(本大题共8小题,共88分)19.(8分)(2016•安顺)计算:cos60°﹣2﹣1+﹣(π﹣3)0.20.(10分)(2016•安顺)先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入.21.(10分)(2016•安顺)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标.22.(10分)(2016•安顺)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.23.(12分)(2016•安顺)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?24.(12分)(2016•安顺)某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).25.(12分)(2016•安顺)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.26.(14分)(2016•安顺)如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.2016年贵州省安顺市中考数学试卷参考答案与试题解析一、选择题.(本大题共10小题,每小题3分,共30分)1.(3分)(2016•安顺)﹣2016的倒数是()A.2016 B.﹣2016 C.D.﹣【分析】直接利用倒数的定义分析得出答案.【解答】解:﹣2016的倒数是﹣.故选D.【点评】此题主要考查了倒数的定义,正确把握互为倒数之间关系是解题关键.2.(3分)(2016•安顺)下列计算正确的是()A.a2•a3=a6B.2a+3b=5ab C.a8÷a2=a6 D.(a2b)2=a4b【分析】A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用积的乘方及幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、a2•a3=a5,本选项错误;B、2a+3b不能合并,本选项错误;C、a8÷a2=a6,本选项正确;D、(a2b)2=a4b2,本选项错误.故选C.【点评】此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.(3分)(2016•安顺)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 400 000 000=4.4×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2016•安顺)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.(3分)(2016•安顺)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.【点评】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.6.(3分)(2016•安顺)某校九年级(1)班全体学生2016年初中毕业体育考试的成绩统计A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.7.(3分)(2016•安顺)已知命题“关于x的一元二次方程x2+bx+1=0,必有实数解”是假命题,则在下列选项中,b的值可以是()A.b=﹣3 B.b=﹣2 C.b=﹣1 D.b=2【分析】根据判别式的意义,当b=﹣1时△<0,从而可判断原命题为是假命题.【解答】解:△=b2﹣4,当b=﹣1时,△<0,方程没有实数解,所以b取﹣1可作为判断命题“关于x的一元二次方程x2+bx+1=0,必有实数解”是假命题的反例.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.(3分)(2016•安顺)如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)【分析】直接利用平移中点的变化规律求解即可.【解答】解:由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后的坐标是(﹣2,﹣4).故选A.【点评】本题考查了图形的平移变换,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9.(3分)(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.10.(3分)(2016•安顺)某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A.B.C.D.【分析】先求出△AEF和△DEG的面积,然后可得到五边形EFBCG的面积,继而可得y与x的函数关系式.【解答】解:S△AEF=AE×AF=x2,S△DEG=DG×DE=×1×(3﹣x)=,S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG=9﹣x2﹣=﹣x2+x+,则y=4×(﹣x2+x+)=﹣2x2+2x+30,∵AE<AD,∴x<3,综上可得:y=﹣2x2+2x+30(0<x<3).故选:A【点评】本题考查了动点问题的函数图象,解答本题的关键是求出y与x的函数关系式,对于有些题目可以不用求出函数关系式,根据走势或者特殊点的值进行判断.二、填空题.(本大题共8小题,每小题4分,共32分)11.(4分)(2016•安顺)把多项式9a3﹣ab2分解因式的结果是a(3a+b)(3a﹣b).【分析】首先提取公因式9a,进而利用平方差公式法分解因式得出即可.【解答】解:9a3﹣ab2=a(9a2﹣b2)=a(3a+b)(3a﹣b).故答案为:a(3a+b)(3a﹣b).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.(4分)(2016•安顺)在函数中,自变量x的取值范围是x≤1且x≠﹣2.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.故答案为:x≤1且x≠﹣2.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13.(4分)(2016•安顺)如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=45度.【分析】先根据等腰直角三角形的性质求出∠ABC的度数,再由平行线的性质即可得出结论.【解答】解:∵△ABC为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=45°,∵m∥n,∴∠1=45°;故答案为:45.【点评】此题考查了等腰直角三角形和平行线的性质,用到的知识点是:两直线平行,同位角相和等腰直角三角形的性质;关键是求出∠ABC的度数.14.(4分)(2016•安顺)根据如图所示的程序计算,若输入x的值为1,则输出y的值为4.【分析】观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.【点评】解答本题的关键就是弄清楚题图给出的计算程序.由于代入1计算出y的值是﹣2,但﹣2<0不是要输出y的值,这是本题易出错的地方,还应将x=﹣2代入y=2x2﹣4继续计算.15.(4分)(2016•安顺)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=4﹣.【分析】连接OC,根据垂径定理得出CE=ED=CD=3,然后在Rt△OEC中由勾股定理求出OE的长度,最后由BE=OB﹣OE,即可求出BE的长度.【解答】解:如图,连接OC.∵弦CD⊥AB于点E,CD=6,∴CE=ED=CD=3.∵在Rt△OEC中,∠OEC=90°,CE=3,OC=4,∴OE==,∴BE=OB﹣OE=4﹣.故答案为4﹣.【点评】本题主要考查了垂径定理,勾股定理等知识,关键在于熟练的运用垂径定理得出CE、ED的长度.16.(4分)(2016•安顺)如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则阴影部分面积是2π(结果保留π).【分析】根据题意有S阴影部分=S扇形BAD﹣S半圆BA,然后根据扇形的面积公式:S=和圆的面积公式分别计算扇形和半圆的面积即可.【解答】解:根据题意得,S阴影部分=S扇形BAD﹣S半圆BA,∵S扇形BAD==4π,S半圆BA=•π•22=2π,∴S阴影部分=4π﹣2π=2π.故答案为2π.【点评】此题考查了扇形的面积公式:S=,其中n为扇形的圆心角的度数,R为圆的半径),或S=lR,l为扇形的弧长,R为半径.17.(4分)(2016•安顺)如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.【分析】设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.【解答】解:如图所示:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴,解得:x=,则EH=.故答案为:.【点评】此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.18.(4分)(2016•安顺)观察下列砌钢管的横截面图:则第n个图的钢管数是n2+n(用含n的式子表示)【分析】本题可依次解出n=1,2,3,…,钢管的个数.再根据规律以此类推,可得出第n 堆的钢管个数.【解答】解:第一个图中钢管数为1+2=3;第二个图中钢管数为2+3+4=9;第三个图中钢管数为3+4+5+6=18;第四个图中钢管数为4+5+6+7+8=30,依此类推,第n个图中钢管数为n+(n+1)+(n+2)+…+2n=+=n2+n,故答案为:n2+n.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题.(本大题共8小题,共88分)19.(8分)(2016•安顺)计算:cos60°﹣2﹣1+﹣(π﹣3)0.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用负整数指数幂法则计算,第三项利用二次根式性质化简,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣+2﹣1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2016•安顺)先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=•=,当x=3时,原式==3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(10分)(2016•安顺)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标.【分析】(1)先过点A作AD⊥x轴,根据tan∠ACO=2,求得点A的坐标,进而根据待定系数法计算两个函数解析式;(2)先联立两个函数解析式,再通过解方程求得交点B的坐标即可.【解答】解:(1)过点A作AD⊥x轴,垂足为D由A(n,6),C(﹣2,0)可得,OD=n,AD=6,CO=2∵tan∠ACO=2∴=2,即=2∴n=1∴A(1,6)将A(1,6)代入反比例函数,得m=1×6=6∴反比例函数的解析式为将A(1,6),C(﹣2,0)代入一次函数y=kx+b,可得解得∴一次函数的解析式为y=2x+4(2)由可得,解得x1=1,x2=﹣3∵当x=﹣3时,y=﹣2∴点B坐标为(﹣3,﹣2)【点评】本题主要考查了反比例函数与一次函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.22.(10分)(2016•安顺)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形时,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,(6分)▱ABCD的BC边上的高为2×sin60°=,(7分)∴菱形AECF的面积为2.(8分)【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.23.(12分)(2016•安顺)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?【分析】首先设该校的大寝室每间住x人,小寝室每间住y人,根据关键语句“高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满”列出方程组即可.【解答】解:(1)设该校的大寝室每间住x人,小寝室每间住y人,由题意得:,解得:.答:该校的大寝室每间住8人,小寝室每间住6人.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,抓住题目中的关键语句,列出方程组.24.(12分)(2016•安顺)某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.【解答】解:(1)56÷20%=280(名),答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;”用列表法为:共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是.【点评】此题考查了列表法与树状图法,扇形统计图,以及条形统计图,熟练掌握运算法则是解本题的关键.25.(12分)(2016•安顺)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.【分析】(1)连接OE.欲证直线CE与⊙O相切,只需证明∠CEO=90°,即OE⊥CE即可;(2)在直角三角形ABC中,根据三角函数的定义可以求得AB=,然后根据勾股定理求得AC=,同理知DE=1;方法一、在Rt△COE中,利用勾股定理可以求得CO2=OE2+CE2,即=r2+3,从而易得r的值;方法二、过点O作OM⊥AE于点M,在Rt△AMO中,根据三角函数的定义可以求得r的值.【解答】解:(1)直线CE与⊙O相切.…(1分)理由如下:∵四边形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;连接OE,则∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°∴∠AE0+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半径,∴直线CE与⊙O相切.…(5分)(2)∵tan∠ACB==,BC=2,∴AB=BC•tan∠ACB=,∴AC=;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB=,∴DE=DC•tan∠DCE=1;方法一:在Rt△CDE中,CE==,连接OE,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即=r2+3解得:r=方法二:AE=AD﹣DE=1,过点O作OM⊥AE于点M,则AM=AE=在Rt△AMO中,OA==÷=…(9分)【点评】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.26.(14分)(2016•安顺)如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.【分析】(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,)三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,如图,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为(4,﹣),(2+,)或(2﹣,).【点评】本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.。

贵州省安顺市中考数学试题及答案

贵州省安顺市中考数学试题及答案

贵州省安顺市初中毕业生学业招生考试特别提示:1、本卷为数学科试题单,共27个题,满分150分.共4页.考试时间120分钟.2、考试采用闭卷形式,用笔在特制答题卡上答题,不能在本题单上作答.3、答题时请仔细阅读答题卡上的注意事项,并根据本题单各题的编号在答题卡上找到答题的对应位置,用规定的笔进行填涂和书写. 一、单项选择题(共30分,每小题3分)1. (2011贵州安顺,1,3分)-4的倒数的相反数是( )A .-4B .4C .-41D .41【答案】D 2.(2011贵州安顺,2,3分)已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)( )A .3.84×104千米B .3.84×105千米C .3.84×106千米D .38.4×104千米 【答案】B 3.(2011贵州安顺,3,3分)如图,己知AB ∥CD ,BE 平分∠ABC ,∠ CDE =150°,则∠C 的度数是( )A .100°B .110°C .120°D .150°【答案】C 4.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃) 25 26 27 28 天 数1 123 则这组数据的中位数与众数分别是( ) A .27,28 B .27.5,28 C .28,27 D .26.5,27【答案】A5.(2011贵州安顺,5,3分)若不等式组⎩⎨⎧≥-≥-0035m x x 有实数解,则实数m 的取值范围是( )A .m ≤35B .m <35C .m >35D .m ≥35【答案】A6. (2011贵州安顺,6,3分)如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是( )第3题图A .B .C .D .【答案】A7. (2011贵州安顺,7,3分)函数1--=x xy 中自变量x 的取值范围是( ) A .x ≥0 B .x <0且x ≠l C .x <0 D .x ≥0且x ≠l【答案】D8. (2011贵州安顺,8,3分)在Rt △ABC 中,斜边AB =4,∠B = 60°,将△ABC 绕点B 按顺时针方向旋转60°,顶点C 运动的路线长是( )A .3πB .32πC .πD .34π 【答案】B9. (2011贵州安顺,9,3分)正方形ABCD 边长为1,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 上的点,且AE =BF =CG =DH .设小正方形EFGH 的面积为y ,AE =x . 则y 关于x 的函数图象大致是( )A .B .C .D .【答案】C 10.(2011贵州安顺,10,3分)一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( ) A .(4,O) B.(5,0) C .(0,5) D .(5,5)【答案】B二、填空题(共32分,每小题4分) 11.(2011贵州安顺,11,4分)因式分解:x 3-9x = .【答案】x ( x -3 )( x +3 ) 12.(2011贵州安顺,12,4分)小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数.根据调查结果绘制了人数分布直方图.若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为 .第10题图【答案】144º 13.(2011贵州安顺,13,4分)已知圆锥的母线长力30,侧面展开后所得扇形的圆心角为120°,则该圆锥的底面半径为 .【答案】10 14.(2011贵州安顺,14,4分)如图,点E (0,4),O (0,0),C (5,0)在⊙A 上,BE 是⊙A 上的一条弦,则tan ∠OBE = .【答案】541 5.(2011贵州安顺,14,4分)某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x 元/立方米,则所列方程为 .【答案】826%)201(50=-+xx16.(2011贵州安顺,16,4分)如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′点,那么△ADC ′的面积是 .【答案】6cm 2 17.(2011贵州安顺,17,4分)已知:如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标第16题图第14题图第12题图为 .【答案】P (3,4)或(2,4)或(8,4) 18.(2011贵州安顺,18,4分)如图,在Rt △ABC 中,∠C =90°,CA =CB =4,分别以A 、B 、C 为圆心,以21AC 为半径画弧,三条弧与边AB 所围成的阴影部分的面积是 .【答案】π28-三、解答题(本大题共9个小题,共88分)19.(2011贵州安顺,19,8分)计算:23860tan 211231-+-+︒-⎪⎭⎫ ⎝⎛---【答案】原式=3223232-+--+=2 .20.(2011贵州安顺,20,8分)先化简,再求值:⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-+-+--142244122a a a a a a a ,其中a =2-3 【答案】原式=a aa a a a a -÷⎥⎦⎤⎢⎣⎡-+---4)2(2)2(12=aa a a a a a a -⋅-+---4)2()2)(2()1(2=2)2(1-a当a =32-时,原式=31.21.(2011贵州安顺,21,8分)一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A 处观测到河对岸水边有一点C ,测得C 在A 北偏西31°的方向上,沿河岸第18题图第17题图向北前行40米到达B 处,测得C 在B 北偏西45°的方向上,请你根据以上数据,求这条河的宽度.(参考数值:tan 31°≈53)【答案】过点C 作CD ⊥AB 于D ,由题意31=∠DAC ,45=∠DBC ,设CD = BD = x 米,则AD =AB +BD =(40+x )米,在Rt ACD ∆中,tan DAC ∠=AD CD ,则5340=+x x ,解得x = 60(米).22.(2011贵州安顺,22,10分)有A 、B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-l ,-2和-3.小强从A 布袋中随机取出一个小球,记录其标有的数字为a ,再从B 布袋中随机取出一个小球,记录其标有的数字为b ,这样就确定点Q 的一个坐标为(a ,b ).⑴用列表或画树状图的方法写出点Q 的所有可能坐标; ⑵求点Q 落在直线y =x -3上的概率.【答案】(1)列表或画树状图略,点Q 的坐标有(1,-1),(1,-2),(1,-3),(2,-1),(2,-2),(2,-3);(2)“点Q 落在直线y = x -3上”记为事件,所以3162)(==A P ,即点Q 落在直线y = x -3上的概率为31.23.(2011贵州安顺,23,10分)如图,已知反比例函数xky =的图像经过第二象限内的点A (-1,m ),AB ⊥x 轴于点B ,△AOB 的面积为2.若直线y =ax +b 经过点A ,并且经过反比例函数xky =的图A 第21题图D第21题图象上另一点C (n ,一2).⑴求直线y =ax +b 的解析式;⑵设直线y =ax +b 与x 轴交于点M ,求AM 的长.【答案】(1)∵点A (-1,m )在第二象限内,∴AB = m ,OB = 1,∴221=⋅=∆BO AB S ABO 即:2121=⨯m ,解得4=m ,∴A (-1,4), ∵点A (-1,4),在反比例函数x k y =的图像上,∴4 =1-k,解得4-=k ,∵反比例函数为x y 4-=,又∵反比例函数xy 4-=的图像经过C (n ,2-)∴n42-=-,解得2=n ,∴C (2,-2),∵直线b ax y +=过点A (-1,4),C (2,-2)∴⎩⎨⎧+=-+-=b a b a 224 解方程组得 ⎩⎨⎧=-=22b a∴直线b ax y +=的解析式为22+-=x y ;(2)当y = 0时,即022=+-x 解得1=x ,即点M (1,0)在ABM Rt ∆中,∵AB = 4,BM = BO +OM = 1+1 = 2,由勾股定理得AM =52.24.(2011贵州安顺,24,10分)某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T 恤或一本影集作为纪念品.已知每件T 恤比每本影集贵9元,用200元恰好可以买到2件T 恤和5本影集.⑴求每件T 恤和每本影集的价格分别为多少元? ⑵有几种购买T 恤和影集的方案? 【答案】(1)设T 恤和影集的价格分别为元和元.则x y ⎩⎨⎧=+=-200529y x y x 第23题图解得答:T 恤和影集的价格分别为35元和26元.(2)设购买T 恤件,则购买影集 (50-) 本,则解得,∵为正整数,∴= 23,24,25, 即有三种方案.第一种方案:购T 恤23件,影集27本;第二种方案:购T 恤24件,影集26本;第三种方案:购T 恤25件,影集25本. 25.(2011贵州安顺,25,10分)如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE 上,且AF =CE =AE .⑴说明四边形ACEF 是平行四边形;⑵当∠B 满足什么条件时,四边形ACEF 是菱形,并说明理由.【答案】(1)证明:由题意知∠FDC =∠DCA = 90°.∴EF ∥CA ∴∠AEF =∠EAC ∵AF = CE = AE ∴∠F =∠AEF =∠EAC =∠ECA 又∵AE = EA ∴△AEC ≌△EAF ,∴EF = CA ,∴四边形ACEF 是平行四边形 . (2)当∠B =30°时,四边形ACEF 是菱形 .理由是:∵∠B =30°,∠ACB =90°,∴AC =AB 21,∵DE 垂直平分BC ,∴ BE =CE又∵AE =CE ,∴CE =AB 21,∴AC =CE ,∴四边形ACEF 是菱形.26.(2011贵州安顺,26,12分)已知:如图,在△ABC 中,BC =AC ,以BC 为直径的⊙O 与边AB 相交于点D ,DE ⊥AC ,垂足为点E .⑴求证:点D 是AB 的中点;⑵判断DE 与⊙O 的位置关系,并证明你的结论;⑶若⊙O 的直径为18,cosB =31,求DE 的长.⎩⎨⎧==2635y x t t ()15305026351500≤-+≤t t 92309200≤≤t t t 第25题图【答案】(1)证明:连接CD ,则CD AB ⊥, 又∵AC = BC , CD = CD , ∴ACD Rt ∆≌BCD Rt ∆∴AD = BD , 即点D 是AB 的中点.(2)DE 是⊙O 的切线 .理由是:连接OD , 则DO 是△ABC 的中位线,∴DO ∥AC , 又∵DE AC ⊥; ∴DE DO ⊥ 即DE 是⊙O 的切线;(3)∵AC = BC , ∴∠B =∠A , ∴cos ∠B = cos ∠A =31, ∵ cos ∠B =31=BC BD , BC = 18,∴BD = 6 , ∴AD = 6 , ∵ cos ∠A =31=AD AE , ∴AE = 2,在AED Rt ∆中,DE =2422=-AE AD .27.(2011贵州安顺,27,12分)如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0).⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论;⑶点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小时,求m 的值.第26题图第26题图【答案】(1)∵点A (-1,0)在抛物线y =21x 2 + bx -2上,∴21× (-1 )2 + b × (-1) –2 = 0,解得b =23-∴抛物线的解析式为y =21x 2-23x -2. y =21x 2-23x -2 =21 ( x 2 -3x - 4 ) =21(x -23)2-825,∴顶点D 的坐标为 (23, -825).(2)当x = 0时y = -2, ∴C (0,-2),OC = 2。

安顺中考数学试题及答案

安顺中考数学试题及答案

安顺中考数学试题及答案一、选择题1. 若a和b是两个不同的非零数,且a+b=0,则a和b互为相反数。

()A. 正确B. 错误答案:A2. 下列哪个选项是二次函数y=ax^2+bx+c(a≠0)的图像?()A. 直线B. 抛物线C. 双曲线D. 圆答案:B3. 一个数的平方根是它本身的数是()。

A. 0B. 1C. -1D. 以上都是答案:A二、填空题4. 已知一个直角三角形的两条直角边分别为3和4,根据勾股定理,斜边的长度为______。

答案:55. 一个多项式除以单项式,商为多项式,余数为单项式,那么这个多项式的次数至少是单项式次数的______。

答案:1三、解答题6. 已知方程x^2 - 5x + 6 = 0,求方程的解。

解:方程x^2 - 5x + 6 = 0可以分解为(x - 2)(x - 3) = 0,因此方程的解为x1 = 2,x2 = 3。

7. 某商店销售一种商品,进价为每件80元,售价为每件100元,每天可售出100件。

如果每降价1元,每天可多售出10件。

设降价x元,利润为y元,求y与x的函数关系式,并求出最大利润及对应的售价。

解:根据题意,利润y = (100 - 80 - x)(100 + 10x) = -10x^2 +100x + 2000。

这是一个开口向下的二次函数,其最大值出现在顶点处,即x = -b/2a = -100/(-20) = 5。

此时,y = -10(5)^2 + 100(5) + 2000 = 2250元。

因此,最大利润为2250元,对应的售价为100 - 5= 95元。

结束语:以上为安顺中考数学试题及答案,希望同学们通过练习能够掌握相关知识点,提高解题能力。

2016年贵州省安顺市中考数学试卷-答案

2016年贵州省安顺市中考数学试卷-答案

贵州省安顺市2016年初中毕业生学业、升学(高中、中职、五年制专科)招生考试数学答案解析第Ⅰ卷一、选择题.1.【答案】D【解析】-2016的倒数是-12016.故选D . 2.【答案】C【解析】A.235a a a =,本选项错误;B.23a b +不能合并,本选项错误;C.826a a a ÷=,本选项正确;D.2242()a b a b =,本选项错误.故选C .3.【答案】B【解析】94 400 000 000 4.410=⨯,故选:B .4.【答案】D【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面,故选:D .5.【答案】B【解析】根据题意得4080x y -=⎧⎨-=⎩, 解得48x y =⎧⎨=⎩, (1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为48820++=.故选B .6.【答案】D【解析】该班人数为:256687640++++++=,得45分的人数最多,众数为45;第20和21名同学的成绩的平均值为中位数,中位数为:4545452+=; 平均数为:3523954264464584875064044.42540⨯+⨯+⨯+⨯+⨯+⨯+⨯= 故错误的为D .7.【答案】C【解析】24b =﹣,当1b =﹣时,0<,方程没有实数解,所以b 取﹣1可作为判断命题“关于x 的一元二次方程210x bx ++=,必有实数解”是假命题的反例,故选C .8.【答案】A【解析】由题意可知此题规律是x 2,y 3+(﹣),照此规律计算可知顶点P(4,1)﹣﹣平移后的坐标是(2,4)--,故选A .9.【答案】D【解析】如图:,由勾股定理,得:AC =AB =,BC ,∴△ABC 为直角三角形, ∴1tan 2AC B AB ∠==, 故选:D .10.【答案】A 【解析】21122S AEF AE AF x =⨯=,11313222x S DEG DG DE x -=⨯=⨯⨯-=(), S 五边形EFBCG=S 正方形ABCD ﹣S △AEF ﹣S △DEG22131115922222x x x x -=--=-++, 则22111542230222y x x x x =⨯-++=-++, ∵AE AD <,∴3x <,综上可得:2223003y x x x =++﹣(<<).故选:A第Ⅱ卷二、填空题11.【答案】(3)(3)a a b a b +-【解析】32229(9)(3)(3)a ab a a b a a b a b -=-=+-12.【答案】1x ≤且2x ≠﹣【解析】根据二次根式有意义,分式有意义得:10x ≥﹣且20x +≠,解得:1x ≤且2x ≠﹣.13.【答案】45【解析】∵△ABC 为等腰直角三角形,90BAC ∠=,∴45ABC ACB ∠=∠=,∵m ∥n ,∴145∠=;故答案为:4514.【答案】4【解析】依据题中的计算程序列出算式:1224⨯﹣.由于12242⨯=﹣﹣,20﹣<, ∴应该按照计算程序继续计算,22244⨯=(﹣)﹣,∴4y =.15.【答案】4【解析】如图,连接OC .∵弦CD ⊥AB 于点E ,CD=6, ∴132CE ED CD ===.∵在Rt OEC ∆中,90OEC ∠=,3CE =,4OC =,∴OE ==,∴4BE OBOE ==﹣故答案为416.【答案】2π【解析】根据题意得,S 阴影部分=S 扇形BAD ﹣S 半圆BA ,∵S 扇形BAD =29044360ππ=,S 半圆12222BA ππ==, ∴S 阴影部分422πππ==﹣.故答案为2π.17.【答案】32【解析】如图所示:∵四边形EFGH 是矩形,∴EH ∥BC ,∴AEH ABC △∽△,∵AM ⊥EH ,AD ⊥BC , ∴AM EH AD BC=, 设3EH x =,则有2EF x =,22AM AD EF x ==﹣﹣, ∴22323x x -=, 解得:12x =, 则32EH =. 故答案为:32.18.【答案】23322n n + 【解析】第一个图中钢管数为123+=;第二个图中钢管数为2349++=;第三个图中钢管数为345618+++=;第四个图中钢管数为4567830++++=,依此类推,第n 个图中钢管数为223312222222n n n n n n n n n n n ++++++⋯+=+⨯+=+()()(), 三、解析题 19.【答案】11=21221-+-=原式 20.【答案】1122x x x x x x +=+-=-原式当3x =时,原式=3.21.【答案】(1)过点A 作AD ⊥x 轴,垂足为D由A (n,6),C 2,0)(﹣可得,OD n =,6AD =,2CO =∵2tan ACO ∠= ∴2AD CD =,即622n=+ ∴1n =∴A (1,6)将A (1,6)代入反比例函数,得166m =⨯= ∴反比例函数的解析式为6y x= 将A (1,6),C 2,0)(﹣代入一次函数y kx b =+,可得602k b k b =+⎧⎨=-+⎩解得24k b =⎧⎨=⎩ ∴一次函数的解析式为24y x =+(2)由246y x x y =+⎧⎪⎨=⎪⎩可得,246x x += 解得11x =,23x =﹣∵当23x =﹣时,2y =﹣∴点B 坐标为(﹣3,﹣2)22.【答案】(1)证明:∵在▱ABCD 中,AB CD =,∴BC AD =,ABC CDA ∠=∠.又∵12BE EC BC ==,12AF DF AD ==, ∴BE DF =. ∴ABE CDF ≌.(2)∵四边形AECF 为菱形时,∴AE EC =.又∵点E 是边BC 的中点,∴BE EC =,即BE AE =.又24BC AB ==, ∴12AB BC BE ==,∴AB BE AE ==,即△ABE 为等边三角形,▱ABCD 的BC 边上的高为260sin ⨯︒=,∴菱形AECF 的面积为23.【答案】(1)设该校的大寝室每间住x 人,小寝室每间住y 人,由题意得:55507405055730x y x y +=⎧⎨+=⎩, 解得:86x y =⎧⎨=⎩. 答:该校的大寝室每间住8人,小寝室每间住6人.24.【答案】(1)5620%280÷=(名),答:这次调查的学生共有280名;(2)28015%42⨯=(名),2804256287084=﹣﹣﹣﹣(名), 补全条形统计图,如图所示:根据题意得:8428030%÷=,36030%108︒⨯=,答:“进取”所对应的圆心角是108;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用树状图为:共20种情况,恰好选到“C ”和“E ”有2种, ∴恰好选到“进取”和“感恩”两个主题的概率是110. 25.【答案】(1)直线C E 与⊙O 相切理由如下:∵四边形ABCD 是矩形,∴BC ∥AD ,ACB DAC ∠=∠;又∵ACB DCE ∠=∠,∴DAC DCE ∠=∠;连接OE ,则DAC AEO DCE ∠=∠=∠;∵90DCE DEC ∠+∠=∴090AE DEC ∠+∠=∴90OEC ∠=,即OE ⊥CE .又OE 是⊙O 的半径,∴直线CE 与⊙O 相切.(2)∵2AB tan ACB BC ∠==,2BC =∴•AB BC tan ACB =∠∴AC =又∵ACB DCE ∠=∠,∴2tan DCE tan ACB ∠=∠=, ∴•1DE DC tan DCE =∠=;方法一:在Rt △CDE中,CE =OE ,设⊙O 的半径为r ,则在Rt △COE 中,222CO OE CE =+,即22r)3r =+解得:r = 方法二:1AE AD DE =-=,过点O 作OM ⊥AE 于点M ,则1122AM AE ==在Rt △AMO 中:12AM OA COS EAO ===∠26.【答案】(1)设抛物线的解析式为2y ax bx c =++(0a ≠),∵A (﹣1,0),B (5,0),C (0,52-)三点在抛物线上,∴0255052a b c a b c c ⎧⎪-+=⎪++=⎨⎪⎪=-⎩, 解得12252a b c ⎧=⎪⎪=-⎨⎪⎪=-⎩. ∴抛物线的解析式为:2522y x x =﹣﹣;(2)∵抛物线的解析式为:2522y x x =﹣﹣, ∴其对称轴为直线22b x a=-=, 连接BC ,如图1所示,∵B (5,0),C (0,52-),∴设直线BC 的解析式为0y kx b k =+≠(), ∴5052k b b +=⎧⎪⎨=-⎪⎩, 解得1252k b ⎧=⎪⎪⎨⎪=-⎪⎩,∴直线BC 的解析式为1522y x =-,当2x =时,53122y =-=-,∴P (2,32-);(3)存在.如图2所示,当点N 在x 轴下方时,∵抛物线的对称轴为直线2x =,C (0,52-),∴1N (4,52-);当点N 在x 轴上方时,如图,过点2N 作2N D ⊥x 轴于点D ,在22AN D M CO 与中,222222N AD CM OANCM AN D M CO∠=∠⎧⎪=⎨⎪∠=∠⎩∴22AN D M CO ASA △≌△(), ∴252N D CO ==,即2N 点的纵坐标为52.∴21552222x x --=,解得2x =+2x =∴2N 5(2)2+,3N 5(2)2.综上所述,符合条件的点N 的坐标为(4,52-),5(2)2或5(2)2.。

贵州中考数学试题及答案

贵州中考数学试题及答案

贵州中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 1D. x = 6答案:B2. 已知一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -2答案:A4. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C5. 函数y = 3x + 2的图象经过点:A. (0,2)B. (1,5)C. (-1,1)D. (2,6)答案:B6. 下列哪个选项是不等式2x - 3 > 5的解集?A. x > 4B. x < 4C. x > 2D. x < 2答案:A7. 已知一个圆的直径是10,那么这个圆的半径是:A. 5B. 10C. 20D. 15答案:A8. 一个数的立方根是3,那么这个数是:A. 27B. 9C. 3D. 1答案:A9. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 10D. -10答案:A10. 已知一个等腰三角形的底边长为6,两腰的长度相等,且周长为24,那么腰的长度是:A. 6B. 8C. 10D. 12答案:B二、填空题(每题3分,共30分)11. 一个数的平方是25,那么这个数是______。

答案:±512. 一个数的倒数是1/2,那么这个数是______。

答案:213. 一个数的绝对值是10,那么这个数是______。

答案:±1014. 函数y = 2x + 3与x轴的交点坐标是______。

答案:(-3/2, 0)15. 一个圆的半径是7,那么这个圆的面积是______。

答案:49π16. 一个数的平方根是4,那么这个数是______。

答案:1617. 一个数的立方根是8,那么这个数是______。

2016年贵州省安顺市中考数学试卷附详细答案(原版+解析版)

2016年贵州省安顺市中考数学试卷附详细答案(原版+解析版)

2016年贵州省安顺市中考数学试卷一、选择题.(本大题共10小题,每小题3分,共30分)1.﹣2016的倒数是()A.2016B.﹣2016C. D.﹣2.下列计算正确的是()A.a2•a3=a6B.2a+3b=5abC.a8÷a2=a6D.(a2b)2=a4b3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10104.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦5.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对6.某校九年级(1)班全体学生2016年初中毕业体育考试的成绩统计如表:成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分7.已知命题“关于x的一元二次方程x2+bx+1=0,必有实数解”是假命题,则在下列选项中,b的值可以是()A.b=﹣3B.b=﹣2C.b=﹣1D.b=28.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)9.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B. C. D.10.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x 米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A. B. C. D.二、填空题.(本大题共8小题,每小题4分,共32分)11.把多项式9a3﹣ab2分解因式的结果是.12.在函数中,自变量x的取值范围是.13.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=度.14.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.15.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE= .16.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB 边的中点为圆心,AB长的一半为半径画弧,则阴影部分面积是(结果保留π).17.如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.18.观察下列砌钢管的横截面图:则第n个图的钢管数是(用含n的式子表示)三、解答题.(本大题共8小题,共88分)19.计算:cos60°﹣2﹣1+﹣(π﹣3)0.20.先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入.21.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标.22.如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.23.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?24.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).25.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.26.如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.2016年贵州省安顺市中考数学试卷参考答案与试题解析一、选择题.(本大题共10小题,每小题3分,共30分)1.﹣2016的倒数是()A.2016B.﹣2016C. D.﹣【分析】直接利用倒数的定义分析得出答案.【解答】解:﹣2016的倒数是﹣.故选D.【点评】此题主要考查了倒数的定义,正确把握互为倒数之间关系是解题关键.2.下列计算正确的是()A.a2•a3=a6B.2a+3b=5abC.a8÷a2=a6D.(a2b)2=a4b【分析】A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用积的乘方及幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、a2•a3=a5,本选项错误;B、2a+3b不能合并,本选项错误;C、a8÷a2=a6,本选项正确;D、(a2b)2=a4b2,本选项错误.故选C.【点评】此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 400 000 000=4.4×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.【点评】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.6.某校九年级(1)班全体学生2016年初中毕业体育考试的成绩统计如表:成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为: =45,平均数为: =44.425.故错误的为D.故选D.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.7.已知命题“关于x的一元二次方程x2+bx+1=0,必有实数解”是假命题,则在下列选项中,b的值可以是()A.b=﹣3B.b=﹣2C.b=﹣1D.b=2【分析】根据判别式的意义,当b=﹣1时△<0,从而可判断原命题为是假命题.【解答】解:△=b2﹣4,当b=﹣1时,△<0,方程没有实数解,所以b取﹣1可作为判断命题“关于x的一元二次方程x2+bx+1=0,必有实数解”是假命题的反例.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)【分析】直接利用平移中点的变化规律求解即可.【解答】解:由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后的坐标是(﹣2,﹣4).故选A.【点评】本题考查了图形的平移变换,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B. C. D.【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.10.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x 米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A. B. C. D.【分析】先求出△AEF和△DEG的面积,然后可得到五边形EFBCG的面积,继而可得y与x 的函数关系式.【解答】解:S△AEF=AE×AF=x2,S△DEG=DG×DE=×1×(3﹣x)=,S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG=9﹣x2﹣=﹣x2+x+,则y=4×(﹣x2+x+)=﹣2x2+2x+30,∵AE<AD,∴x<3,综上可得:y=﹣2x2+2x+30(0<x<3).故选:A【点评】本题考查了动点问题的函数图象,解答本题的关键是求出y与x的函数关系式,对于有些题目可以不用求出函数关系式,根据走势或者特殊点的值进行判断.二、填空题.(本大题共8小题,每小题4分,共32分)11.把多项式9a3﹣ab2分解因式的结果是a(3a+b)(3a﹣b).【分析】首先提取公因式9a,进而利用平方差公式法分解因式得出即可.【解答】解:9a3﹣ab2=a(9a2﹣b2)=a(3a+b)(3a﹣b).故答案为:a(3a+b)(3a﹣b).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.在函数中,自变量x的取值范围是x≤1且x≠﹣2.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.故答案为:x≤1且x≠﹣2.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=45度.【分析】先根据等腰直角三角形的性质求出∠ABC的度数,再由平行线的性质即可得出结论.【解答】解:∵△ABC为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=45°,∵m∥n,∴∠1=45°;故答案为:45.【点评】此题考查了等腰直角三角形和平行线的性质,用到的知识点是:两直线平行,同位角相和等腰直角三角形的性质;关键是求出∠ABC的度数.14.根据如图所示的程序计算,若输入x的值为1,则输出y的值为4.【分析】观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.【点评】解答本题的关键就是弄清楚题图给出的计算程序.由于代入1计算出y的值是﹣2,但﹣2<0不是要输出y的值,这是本题易出错的地方,还应将x=﹣2代入y=2x2﹣4继续计算.15.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=4﹣.【分析】连接OC,根据垂径定理得出CE=ED=CD=3,然后在Rt△OEC中由勾股定理求出OE的长度,最后由BE=OB﹣OE,即可求出BE的长度.【解答】解:如图,连接OC.∵弦CD⊥AB于点E,CD=6,∴CE=ED=CD=3.∵在Rt△OEC中,∠OEC=90°,CE=3,OC=4,∴OE==,∴BE=OB﹣OE=4﹣.故答案为4﹣.【点评】本题主要考查了垂径定理,勾股定理等知识,关键在于熟练的运用垂径定理得出CE、ED的长度.16.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB 边的中点为圆心,AB长的一半为半径画弧,则阴影部分面积是2π(结果保留π).【分析】根据题意有S阴影部分=S扇形BAD﹣S半圆BA,然后根据扇形的面积公式:S=和圆的面积公式分别计算扇形和半圆的面积即可.【解答】解:根据题意得,S阴影部分=S扇形BAD﹣S半圆BA,∵S扇形BAD==4π,S半圆BA=•π•22=2π,∴S阴影部分=4π﹣2π=2π.故答案为2π.【点评】此题考查了扇形的面积公式:S=,其中n为扇形的圆心角的度数,R为圆的半径),或S=lR,l为扇形的弧长,R为半径.17.如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.【分析】设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH 的长.【解答】解:如图所示:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴,解得:x=,则EH=.故答案为:.【点评】此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.18.观察下列砌钢管的横截面图:则第n个图的钢管数是n2+n(用含n的式子表示)【分析】本题可依次解出n=1,2,3,…,钢管的个数.再根据规律以此类推,可得出第n 堆的钢管个数.【解答】解:第一个图中钢管数为1+2=3;第二个图中钢管数为2+3+4=9;第三个图中钢管数为3+4+5+6=18;第四个图中钢管数为4+5+6+7+8=30,依此类推,第n个图中钢管数为n+(n+1)+(n+2)+…+2n=+=n2+n,故答案为: n2+n.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题.(本大题共8小题,共88分)19.计算:cos60°﹣2﹣1+﹣(π﹣3)0.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用负整数指数幂法则计算,第三项利用二次根式性质化简,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣+2﹣1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=•=,当x=3时,原式==3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标.【分析】(1)先过点A作AD⊥x轴,根据tan∠ACO=2,求得点A的坐标,进而根据待定系数法计算两个函数解析式;(2)先联立两个函数解析式,再通过解方程求得交点B的坐标即可.【解答】解:(1)过点A作AD⊥x轴,垂足为D由A(n,6),C(﹣2,0)可得,OD=n,AD=6,CO=2∵tan∠ACO=2∴=2,即=2∴n=1∴A(1,6)将A(1,6)代入反比例函数,得m=1×6=6∴反比例函数的解析式为将A(1,6),C(﹣2,0)代入一次函数y=kx+b,可得解得∴一次函数的解析式为y=2x+4(2)由可得,解得x1=1,x2=﹣3∵当x=﹣3时,y=﹣2∴点B坐标为(﹣3,﹣2)【点评】本题主要考查了反比例函数与一次函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.22.如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形时,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,(6分)▱ABCD的BC边上的高为2×sin60°=,(7分)∴菱形AECF的面积为2.(8分)【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.23.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?【分析】首先设该校的大寝室每间住x人,小寝室每间住y人,根据关键语句“高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满”列出方程组即可.【解答】解:(1)设该校的大寝室每间住x人,小寝室每间住y人,由题意得:,解得:.答:该校的大寝室每间住8人,小寝室每间住6人.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,抓住题目中的关键语句,列出方程组.24.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.【解答】解:(1)56÷20%=280(名),答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D EA (A,B)(A,C)(A,D)(A,E)B (B,A)(B,C)(B,D)(B,E)C (C,A)(C,B)(C,D)(C,E)D (D,A)(D,B)(D,C)(D,E)E (E,A)(E,B)(E,C)(E,D)用树状图为:共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是.【点评】此题考查了列表法与树状图法,扇形统计图,以及条形统计图,熟练掌握运算法则是解本题的关键.25.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.【分析】(1)连接OE.欲证直线CE与⊙O相切,只需证明∠CEO=90°,即OE⊥CE即可;(2)在直角三角形ABC中,根据三角函数的定义可以求得AB=,然后根据勾股定理求得AC=,同理知DE=1;方法一、在Rt△COE中,利用勾股定理可以求得CO2=OE2+CE2,即=r2+3,从而易得r的值;方法二、过点O作OM⊥AE于点M,在Rt△AMO中,根据三角函数的定义可以求得r的值.【解答】解:(1)直线C E与⊙O相切.…(1分)理由如下:∵四边形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;连接OE,则∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°∴∠AE0+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半径,∴直线CE与⊙O相切.…(5分)(2)∵tan∠ACB==,BC=2,∴AB=BC•tan∠ACB=,∴AC=;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB=,∴DE=DC•tan∠DCE=1;方法一:在Rt△CDE中,CE==,连接OE,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即=r2+3解得:r=方法二:AE=AD﹣DE=1,过点O作OM⊥AE于点M,则AM=AE=在Rt△AMO中,OA==÷=…(9分)【点评】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.26.如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.【分析】(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,)三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,如图,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为(4,﹣),(2+,)或(2﹣,).【点评】本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.。

2016学年贵州省安顺中考数学年试题

2016学年贵州省安顺中考数学年试题

浙江省杭州市2016年初中毕业升学文化考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根,依此即可求解3=,故选B. 【考点】算术平方根 2.【答案】A【解析】直接根据平行线分线段成比例定理求解,∵a b c ∥∥,∴12DF AB EF BC ==,故选A. 【考点】平行线分线段成比例 3.【答案】A【解析】根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,可得答案,该圆柱体的主视图、俯视图均为矩形,左视图为圆,故选:A . 【考点】简单几何体的三视图 4.【答案】A【解析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出,由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;因图中是按从小到大的顺序排列的,最中间的环数是14℃、14℃,故中位数是14℃,故选:A . 【考点】众数,条形统计图,中位数 5.【答案】B【解析】直接利用二次根式的性质以及同底数幂的乘法运算法则和分式的混合运算法则分别化简求出答案,A .235•x x x =,故此选项错误;B .x ,正确;C .211x x x x-÷=-(),故此选项错误;D .22111()24x x x -+=-+,故此选项错误;故选:B .【考点】二次根式的性质与化简,同底数幂的乘法,多项式乘多项式,分式的混合运算 6.【答案】C【解析】设从甲煤场运煤x 吨到乙煤场,根据题意列出方程解答即可,设从甲煤场运煤x 吨到乙煤场,可得:5182(106)x x -=+,故选C .【考点】一元一次方程的理解和应用 7.【答案】A【解析】根据反比例函数解析式以及1z y=,即可找出z 关于x 的函数解析式,再根据反比例函数图象在第一象限可得出0k >,结合x 的取值范围即可得出结论,∵ky x =(0,0k x ≠>),∴11xk z y x k===(0,0k x ≠>).∵反比例函数ky x =(0,0k x ≠>)的图象在第一象限,∴0k >,∴10k>.∴z 关于x 的函数图象为第一象限内,且不包括原点的正比例的函数图象,故选D . 【考点】反比例函数和一次函数的图像与性质8.【答案】D【解析】连接EO ,只要证明D EOD ∠=∠即可解决问题.连接EO .∵OB OE =,∴B OEB ∠=∠,∵OEB D DOE ∠=∠+∠,3AOB D ∠=∠,∴3B D D ∠+∠=∠,∴3D DOE D D ∠+∠+∠=∠,∴DOE D ∠=∠,∴ED EO OB ==,故选D .【考点】圆周角定理 9.【答案】C【解析】如图,根据等腰三角形的性质和勾股定理可得222()m m n m +=-,整理即可求解,如图,222()m m n m +=-,22222m n mn m =-+,2220m mn n +-=.故选:C .【考点】等腰直角三角形,等腰三角形的性质 10.【答案】C【解析】根据新定义可以计算出各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的①根据题意得:22@()()a b a b a b =+--,∴22()()0a b a b +--=,整理得:()()0a b a b a b a b ++-+-+=,即40ab =,解得:0a =或0b =,正确;②∵22@()()()a b c a b c a b c +=++---,2222@@()()()()44a b a c a b a b a c a c ab ac +=+--++--=+=44ab ac +,∴@()@@a b c a b a c+=+正确;③222@25@()()a b a b a b a b a b =+=+--,,令22225()()a b a b a b +=+--,解得,0,0a b ==,故错误;④∵22@()()4a b a b a b ab =+--=,2()0a b -≥,则2220a ab b -+≥,即222a b ab +≥,∴2224a b ab ab ++≥,∴4ab 的最大值是222a b ab ++,此时2224a b ab ab ++=,解得a b =,∴@a b 最大时,a b =,故④正确,故选C .【考点】因式分解的应用,整式的混合运算,二次函数的最值第Ⅱ卷二、填空题11.【解析】根据特殊角的三角函数值直接得出答案即可,tan60︒【考点】特殊角的三角函数值 12.【答案】12【解析】先求出棕色所占的百分比,再根据概率公式列式计算即可得解,棕色所占的百分比为:120%15%30%15%180%20%----=-=,所以,130%20%50%2P =+==(绿色或棕色)。

安顺市中考数学试题及答案

安顺市中考数学试题及答案

一、选择题(共30分,每小题3分)1. D 2 .B 3. C 4. C 5.A 6.B 7.A 8.A 9.D 10.D二、填空题(共32分,每小题4分)11、-1 12、2 13、))((b a b a a -+ 14、25 15、6 16、76 17、B 18,30三、解答题(共88分)19.解:3235322(6')12(8')2222=∙-∙+=-+=原式 20.解:()()()()()()2222242(3')6'2222x x x x x x -+-⎡⎤-=∙+=⎢⎥-⎣⎦原式或 ()2254415(8')222x x --===时,21.解:解①得2<x (3′) 解②得1-≥x(6′) ∴12x -≤<(7′) ∴所求不等式组的整数解为:-1. 0.1 . (8′) 22.解:(1)50,20 (4′) (2)103(7′)(3)依题意,有= 18 . (8′)解得x ≈530 . 经检验,x =530是原方程的解.答:每张乒乓球门票的价格约为530元. (10′)说明:学生答案在区间[528,530]内都得满分。

23.解:(1)∵点A (1,1)在反比例函数x 2ky =的图象上,∴k=2.∴反比例函数的解析式为:x 1y =. (3′)一次函数的解析式为:b x 2y +=.∵点A (1,1)在一次函数b x 2y +=的图象上 ∴1b -=.∴一次函数的解析式为1x 2y -= (6′)(2)∵点A (1,1) ∴∠AOB=45o .∵△AOB 是直角三角形 ∴点B 只能在x 轴正半轴上.① 当∠OB 1A=90 o 时,即B 1A ⊥OB 1.∵∠AOB 1=45o ∴B 1A= OB 1 . ∴B 1(1,0).(8′)② 当∠O A B 2=90 o 时,∠AOB 2=∠AB 2O=45o ,∴B 1 是OB 2中点, ∴B 2(2,0). (10′)综上可知,B 点坐标为(1,0)或(2,0).24. 解:(1)设成人人数为x 人,则学生人数为(12-x)人. 则 (1′)35x + 235(12 –x )= 350 (4′)解得:x = 8 (7′)故:学生人数为12 – 8 = 4 人, 成人人数为8人. (8′)(2)如果买团体票,按16人计算,共需费用:35×0.6×16 = 336元336﹤350 所以,购团体票更省钱。

贵州省安顺市中考数学试卷(内含答案详析)

贵州省安顺市中考数学试卷(内含答案详析)

安庆市七级数学下学期期末考试试卷数学(考试时间共120分钟,满分120分)准考证号:__________ 姓名:________ 座位号:___________一、选样题(本题共10小题,每小题3分,共30分)1.(3分)(贵州安顺)一个数的相反数是3,则这个数是()A.﹣ B.C.﹣3 D.3分析:两数互为相反数,它们的和为0.解答:解:设3的相反数为x.则x+3=0,x=﹣3.故选C.点评:本题考查的是相反数的概念,两数互为相反数,它们的和为0.2.(3分)(贵州安顺)地球上的陆地而积约为149000000km2.将149000000用科学记数法表示为()A. 1.49×106 B.1.49×107 C.1.49×108 D.1.49×109考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:149 000 000=1.49×108,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(贵州安顺)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.1个B.2个C.3个D.4个考点:中心对称图形;轴对称图形..分析:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合,结合选项所给的图形即可得出答案.解答:解:①既是轴对称图形,也是中心对称图形,故正确;②是轴对称图形,不是中心对称图形,故错误;③既是轴对称图形,也是中心对称图形,故正确;④既不是轴对称图形,也不是中心对称图形,故错误.综上可得共有两个符合题意.故选B.点评:本题考查轴对称及中心对称的定义,属于基础题,掌握好中心对称图形与轴对称图形的概念是关键.4.(3分)(贵州安顺)用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB 的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)考点:作图—基本作图;全等三角形的判定与性质..分析:我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.解答:解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:B.点评:本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.5.(3分)(贵州安顺)如图,∠A0B的两边0A,0B均为平面反光镜,∠A0B=40°.在0B 上有一点P,从P点射出一束光线经0A上的Q点反射后,反射光线QR恰好与0B平行,则∠QPB的度数是()A.60° B.80° C.100°D.120°考点:平行线的性质..专题:几何图形问题.分析:根据两直线平行,同位角相等、同旁内角互补以及平角的定义可计算即可.解答:解:∵QR∥OB,∴∠AQR=∠AOB=40°,∠PQR+∠QPB=180°;∵∠AQR=∠PQO,∠AQR+∠PQO+∠RQP=180°(平角定义),∴∠PQR=180°﹣2∠AQR=100°,∴∠QPB=180°﹣100°=80°.故选B.点评:本题结合反射现象,考查了平行线的性质和平角的定义,是一道好题.6.(3分)(贵州安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b ﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系..分析:先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.解答:解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选A.点评:本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.7.(3分)(贵州安顺)如果点A(﹣2,y1),B(﹣1,y2),C(2,y3)都在反比例函数的图象上,那么y1,y2,y3的大小关系是()A.y1<y3<y2 B.y2<y1<y3 C.y1<y2<y3 D.y3<y2<y1考点:反比例函数图象上点的坐标特征..分析:分别把x=﹣2,x=﹣1,x=2代入解析式求出y1、y2、y3根据k>0判断即可.解答:解:分别把x=﹣2,x=﹣1,x=2代入解析式得:y1=﹣,y2=﹣k,y3=,∵k>0,∴y2<y1<y3.故选B.点评:本题主要考查对反比例函数图象上点的坐标特征的理解和掌握,能根据k>0确定y1、y2、y3的大小是解此题的关键.8.(3分)(贵州安顺)已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是()A.30° B.60° C.90° D.180°考点:圆锥的计算..分析:根据弧长=圆锥底面周长=6π,圆心角=弧长×180÷母线长÷π计算.解答:解:由题意知:弧长=圆锥底面周长=2×3π=6πcm,扇形的圆心角=弧长×180÷母线长÷π=6π×180÷6π=180°.故选D.点评:本题考查的知识点为:弧长=圆锥底面周长及弧长与圆心角的关系.解题的关键是熟知圆锥与扇形的相关元素的对应关系.9.(3分)(贵州安顺)如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于()A.A B.C.D.考点:锐角三角函数的定义..分析: tan∠CFB的值就是直角△BCF中,BC与CF的比值,设BC=x,则BC与CF就可以用x表示出来.就可以求解.解答:解:根据题意:在Rt△ABC中,∠C=90°,∠A=30°,∵EF⊥AC,∴EF∥BC,∴∵AE:EB=4:1,∴=5,∴=,设AB=2x,则BC=x,AC=x.∴在Rt△CFB中有CF=x,BC=x.则tan∠CFB==.故选C.点评:本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻边比斜边;正切等于对边比邻边.10.(3分)(贵州安顺)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则PA+PB的最小值为()A.B.1C.2D.2考点:轴对称-最短路线问题;勾股定理;垂径定理..分析:作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,根据轴对称确定最短路线问题可得AB′与MN的交点即为PA+PB的最小时的点,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠AON=60°,然后求出∠BON=30°,再根据对称性可得∠B′ON=∠BON=30°,然后求出∠AOB′=90°,从而判断出△AOB′是等腰直角三角形,再根据等腰直角三角形的性质可得AB′=OA,即为PA+PB的最小值.解答:解:作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,则AB′与MN的交点即为PA+PB的最小时的点,PA+PB的最小值=AB′,∵∠AMN=30°,∴∠AON=2∠AMN=2×30°=60°,∵点B为劣弧AN的中点,∴∠BON=∠AON=×60°=30°,由对称性,∠B′ON=∠BON=30°,∴∠AOB′=∠AON+∠B′ON=60°+30°=90°,∴△AOB′是等腰直角三角形,∴AB′=OA=×1=,即PA+PB的最小值=.故选A.点评:本题考查了轴对称确定最短路线问题,在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍的性质,作辅助线并得到△AOB′是等腰直角三角形是解题的关键.二、填空题(本题共8小题,每题4分,共32分)11.(4分)(贵州安顺)函数y=中,自变量x的取值范围是x≥﹣2且x≠0.考点:函数自变量的取值范围..分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(4分)(2014•怀化)分解因式:2x2﹣8=2(x+2)(x﹣2).考点:提公因式法与公式法的综合运用..分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案为:2(x+2)(x﹣2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(4分)(贵州安顺)已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为2.考点:方差..分析:根据方差的性质,当一组数据同时加减一个数时方差不变,进而得出答案.解答:解:∵一组数据1,2,3,4,5的方差为2,∴则另一组数据11,12,13,14,15的方差为2.故答案为:2.点评:此题主要考查了方差的性质,正确记忆方差的有关性质是解题关键.14.(4分)(贵州安顺)小明上周三在超市恰好用10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多用了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x袋牛奶,则根据题意列得方程为(x+2)(﹣0.5)=12.考点:由实际问题抽象出分式方程..分析:关键描述语为:“每袋比周三便宜0.5元”;等量关系为:周日买的奶粉的单价×周日买的奶粉的总数=总钱数.解答:解:设他上周三买了x袋牛奶,则根据题意列得方程为:(x+2)(﹣0.5)=12.故答案为:(x+2)(﹣0.5)=12.点评:此题主要考查了由实际问题抽象出分式方程,列方程解应用题的关键步骤在于找相等关系.15.(4分)(贵州安顺)求不等式组的整数解是﹣1,0,1.考点:一元一次不等式组的整数解..分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.解答:解:解x﹣3(x﹣2)≤8,x﹣3x≤2,解得:x≥﹣1,解5﹣x>2x,解得:x<2,∴不等式组的解集为﹣1≤x<2,则不等式组的整数解为﹣1,0,1.故答案为:﹣1,0,1.点评:此题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(4分)(贵州安顺)如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为5.考点:翻折变换(折叠问题)..分析:设DE=x,则AE=8﹣x.根据折叠的性质和平行线的性质,得∠EBD=∠CBD=∠EDB,则BE=DE=x,根据勾股定理即可求解.解答:解:设DE=x,则AE=8﹣x.根据折叠的性质,得∠EBD=∠CBD.∵AD∥BC,∴∠CBD=∠ADB.∴∠EBD=∠EDB.∴BE=DE=x.在直角三角形ABE中,根据勾股定理,得x2=(8﹣x)2+16x=5.即DE=5.点评:此题主要是运用了折叠的性质、平行线的性质、等角对等边的性质和勾股定理.17.(4分)(贵州安顺)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11,…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4,….观察图中的规律,第n(n为正整数)个黑色梯形的面积是Sn=8n﹣4.考点:直角梯形..专题:压轴题;规律型.分析:由∠AOB=45°及题意可得出图中的三角形都为等腰直角三角形,且黑色梯形的高都是2;根据等腰直角三角形的性质,分别表示出黑色梯形的上下底,找出第n个黑色梯形的上下底,利用梯形的面积公式即可表示出第n个黑色梯形的面积.解答:解:∵∠AOB=45°,∴图形中三角形都是等腰直角三角形,从图中可以看出,黑色梯形的高都是2,第一个黑色梯形的上底为:1,下底为:3,第2个黑色梯形的上底为:5=1+4,下底为:7=1+4+2,第3个黑色梯形的上底为:9=1+2×4,下底为:11=1+2×4+2,则第n个黑色梯形的上底为:1+(n﹣1)×4,下底为:1+(n﹣1)×4+2,故第n个黑色梯形的面积为:×2×[1+(n﹣1)×4+1+(n﹣1)×4+2]=8n﹣4.故答案为:8n﹣4.点评:此题考查了直角梯形的性质与等腰直角三角形的性质.此题属于规律性题目,难度适中,注意找到第n个黑色梯形的上底为:1+(n﹣1)×4,下底为1+(n﹣1)×4+2是解此题的关键.18.(4分)(贵州安顺)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1,3.与y轴负半轴交于点C,在下面五个结论中:①2a﹣b=0;②a+b+c>0;③c=﹣3a;④只有当a=时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a值可以有四个.其中正确的结论是③④.(只填序号)考点:抛物线与x轴的交点;二次函数图象与系数的关系;等腰三角形的判定..分析:先根据图象与x轴的交点A,B的横坐标分别为﹣1,3确定出AB的长及对称轴,再由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴AB=4,∴对称轴x=﹣=1,即2a+b=0.故①错误;②根据图示知,当x=1时,y<0,即a+b+c<0.故②错误;③∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,即c=﹣3a.故③正确;④当a=,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,如图,∴抛物线的解析式为y=x2﹣x﹣,把x=1代入得y=﹣1﹣=﹣2,∴D点坐标为(1,﹣2),∴AE=2,BE=2,DE=2,∴△ADE和△BDE都为等腰直角三角形,∴△ADB为等腰直角三角形.故④正确;⑤要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵AO=1,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣,与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AB=AC=4时∵AO=1,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AC=BC时在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程无解.经解方程组可知只有两个a值满足条件.故⑤错误.综上所述,正确的结论是③④.故答案是:③④.点评:本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a>0,抛物线开口向上;抛物线的对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).三、解答题(本题共8小题,共88分)19.(8分)(贵州安顺)计算:(﹣2)0+()﹣1+4cos30°﹣|﹣|考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值..专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=1+3+4×﹣2=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(贵州安顺)先化简,再求值:(x+1﹣)÷,其中x=2.考点:分式的化简求值..分析:将括号内的部分通分,再将除法转化为乘法,因式分解后约分即可化简.解答:解:原式=[﹣]•=•=•=﹣,当x=2时,原式=﹣=3.点评:本题考查了分式的化简求值,熟悉因式分解和分式除法法则是解题的关键.21.(10分)(贵州安顺)天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,推出了如下收费标准(如图所示):某单位组织员工去具有喀斯特地貌特征的黄果树风景区旅游,共支付给旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有喀斯特地貌特征的黄果树风景区旅游?考点:一元二次方程的应用..分析:首先根据共支付给旅行社旅游费用27000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x名员工去黄果树风景区旅游.即可由对话框,超过25人的人数为(x﹣25)人,每人降低20元,共降低了20(x﹣25)元.实际每人收了[1000﹣20(x﹣25)]元,列出方程求解.解答:解:设该单位去具有喀斯特地貌特征的黄果树旅游人数为x人,则人均费用为1000﹣20(x﹣25)元由题意得x[1000﹣20(x﹣25)]=27000整理得x2﹣75x+1350=0,解得x1=45,x2=30.当x=45时,人均旅游费用为1000﹣20(x﹣25)=600<700,不符合题意,应舍去.当x=30时,人均旅游费用为1000﹣20(x﹣25)=900>700,符合题意.答:该单位这次共有30名员工去具有喀斯特地貌特征的黄果树风景区旅游.点评:考查了一元二次方程的应用.此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.(10分)(贵州安顺)如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数(x >0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.考点:反比例函数与一次函数的交点问题..专题:待定系数法.分析:(1)根据反比例函数的特点k=xy为定值,列出方程,求出m的值,便可求出反比例函数的解析式;根据m的值求出A、B两点的坐标,用待定实数法便可求出一次函数的解析式.(2)根据函数图象可直接解答.解答:解:(1)由题意可知,m(m+1)=(m+3)(m﹣1).解,得m=3.(2分)∴A(3,4),B(6,2);∴k=4×3=12,∴.(3分)∵A点坐标为(3,4),B点坐标为(6,2),∴,∴,∴y=﹣x+6.(5分)(2)根据图象得x的取值范围:0<x<3或x>6.(7分)点评:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式,比较简单.23.(12分)(贵州安顺)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.考点:矩形的判定;角平分线的性质;等腰三角形的性质;正方形的判定..专题:证明题;开放型.分析:(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.解答:(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.理由:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.点评:本题是以开放型试题,主要考查了对矩形的判定,正方形的判定,等腰三角形的性质,及角平分线的性质等知识点的综合运用.24.(12分)(贵州安顺)学校举办一项小制作评比活动.作品上交时限为3月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的作品件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的件数是12.请你回答:(1)本次活动共有60件作品参赛;各组作品件数的众数是12件;(2)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?(3)小制作评比结束后,组委会决定从4件最优秀的作品A、B、C、D中选出两件进行全校展示,请用树状图或列表法求出刚好展示作品B、D的概率.考点:频数(率)分布直方图;众数;列表法与树状图法..分析:(1)直接利用频数除以频率=总数进而得出答案,再利用众的定义求出即可;(2)利用总数乘以频率=频数,进而分别求出获奖概率得出答案;(3)利用树状图列举出所有可能,进而得出答案.解答:解:(1)由题意可得出,本次活动参赛共有:12÷=12÷=60(件),各组作品件数的众数是12;故答案为:60,12;(2)∵第四组有作品:60×=18(件),第六组有作品:60×=3(件),∴第四组的获奖率为:=,第四组的获奖率为:;∵<,∴第六组的获奖率较高;(3)画树状图如下:,由树状图可知,所有等可能的结果为12种,其中刚好是(B,D)的有2种,所以刚好展示作品B、D的概率为:P==.点评:此题主要考查了频数分布直方图的应用以及众的定义以及树状图法求概率等知识,正确画出树状图是解题关键.25.(12分)(贵州安顺)如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的延长线交于点P,PC=PG.(1)求证:PC是⊙O的切线;(2)当点C在劣弧AD上运动时,其他条件不变,若BG2=BF•BO.求证:点G是BC 的中点;(3)在满足(2)的条件下,AB=10,ED=4,求BG的长.考点:切线的判定与性质;勾股定理;圆周角定理;相似三角形的判定与性质..专题:几何综合题.分析:(1)连OC,由ED⊥AB得到∠FBG+∠FGB=90°,又PC=PD,则∠1=∠2,而∠2=∠FGB,∠4=∠FBG,即可得到∠1+∠4=90°,根据切线的判定定理即可得到结论;(2)连OG,由BG2=BF•BO,即BG:BO=BF:BG,根据三角形相似的判定定理得到△BGO∽△BFG,由其性质得到∠OGB=∠BFG=90°,然后根据垂径定理即可得到点G是BC 的中点;(3)连OE,由ED⊥AB,根据垂径定理得到FE=FD,而AB=10,ED=4,得到EF=2,OE=5,在Rt△OEF中利用勾股定理可计算出OF,从而得到BF,然后根据BG2=BF•BO即可求出BG.解答:(1)证明:连OC,如图,∵ED⊥AB,∴∠FBG+∠FGB=90°,又∵PC=PG,∴∠1=∠2,而∠2=∠FGB,∠4=∠FBG,∴∠1+∠4=90°,即OC⊥PC,∴PC是⊙O的切线;(2)证明:连OG,如图,∵BG2=BF•BO,即BG:BO=BF:BG,而∠FBG=∠GBO,∴△BGO∽△BFG,∴∠OGB=∠BFG=90°,即OG⊥BG,∴BG=CG,即点G是BC的中点;(3)解:连OE,如图,∵ED⊥AB,∴FE=FD,而AB=10,ED=4,∴EF=2,OE=5,在Rt△OEF中,OF===1,∴BF=5﹣1=4,∵BG2=BF•BO,∴BG2=BF•BO=4×5,∴BG=2.点评:本题考查了切线的判定定理:过半径的外端点与半径垂直的直线是圆的切线.也考查了垂径定理、勾股定理以及三角形相似的判定与性质.26.(14分)(贵州安顺)如图,在平面直角坐标系中,四边形ABCD是等腰梯形,AD∥BC,AB=DC,BC在x轴上,点A在y轴的正半轴上,点A,D的坐标分别为A(0,2),D(2,2),AB=2,连接AC.(1)求出直线AC的函数解析式;(2)求过点A,C,D的抛物线的函数解析式;(3)在抛物线上有一点P(m,n)(n<0),过点P作PM垂直于x轴,垂足为M,连接PC,使以点C,P,M为顶点的三角形与Rt△AOC相似,求出点P的坐标.考点:二次函数综合题..分析:(1)先在Rt△ABO中,运用勾股定理求出OB===2,得出B(﹣2,0),再根据等腰梯形的对称性可得C点坐标为(4,0),又A(0,2),利用待定系数法即可求出直线AC的函数解析式;(2)设所求抛物线的解析式为y=ax2+bx+c,将A,C,D三点的坐标代入,利用待定系数法即可求出抛物线的函数解析式;(3)先由点P(m,n)(n<0)在抛物线y=﹣x2+x+2上,得出m<﹣2或m>4,n=﹣m2+m+2<0,于是PM=m2﹣m﹣2.由于∠PMC=∠AOC=90°,所以当Rt△PCM与Rt△AOC相似时,有==或==2.再分两种情况进行讨论:①若m<﹣2,则MC=4﹣m.由==,列出方程=,解方程求出m的值,得到点P的坐标为(﹣4,﹣4);由==2,列出方程=2,解方程求出m的值,得到点P的坐标为(﹣10,﹣28);②若m>4,则MC=m﹣4.由==时,列出方程=,解方程求出m的值均不合题意舍去;由==2,列出方程=2,解方程求出m的值,得到点P的坐标为(6,﹣4).解答:解:(1)由A(0,2)知OA=2,在Rt△ABO中,∵∠AOB=90°,AB=2,∴OB===2,∴B(﹣2,0).根据等腰梯形的对称性可得C点坐标为(4,0).设直线AC的函数解析式为y=kx+n,则,解得,∴直线AC的函数解析式为y=﹣x+2;(2)设过点A,C,D的抛物线的函数解析式为y=ax2+bx+c,则,解得,∴y=﹣x2+x+2;(3)∵点P(m,n)(n<0)在抛物线y=﹣x2+x+2上,∴m<﹣2或m>4,n=﹣m2+m+2<0,∴PM=m2﹣m﹣2.∵Rt△PCM与Rt△AOC相似,∴==或==2.①若m<﹣2,则MC=4﹣m.当==时,=,解得m1=﹣4,m2=4(不合题意舍去),此时点P的坐标为(﹣4,﹣4);当==2时,=2,解得m1=﹣10,m2=4(不合题意舍去),此时点P的坐标为(﹣10,﹣28);②若m>4,则MC=m﹣4.当==时,=,解得m1=4,m2=0,均不合题意舍去;当==2时,=2,解得m1=6,m2=4(不合题意舍去),此时点P的坐标为(6,﹣4);综上所述,所求点P的坐标为(﹣4,﹣4)或(﹣10,﹣28)或(6,﹣4).点评:本题是二次函数的综合题型,其中涉及到的知识点有利用待定系数法求一次函数、二次函数的解析式,勾股定理,等腰梯形的性质,相似三角形的性质,难度适中.利用分类讨论、数形结合及方程思想是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前贵州省安顺市2016年初中毕业生学业、升学(高中、中职、五年制专科)招生考试数 学本试卷满分150分,考试时间120分钟第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2016-的倒数是( )A .2016B .2016-C.12016 D .12016- 2.下列计算正确的是( )A .236=a a aB .235+=a b abC .826÷=a a aD .224()=a b a b3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为 ( ) A .84410⨯B .94.410⨯C .84.410⨯D .104.410⨯4.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是 ( )A .的B .中C .国D .梦5.已知实数x ,y 满足|4|80-+-=x y ,则以x ,y 的值为两边长的等腰三角形的周长是( )A .20或16B .20C .16D .以上答案均不对6.成绩(分) 35 39 42 44 45 48 50 人数(人)2566 87 6 根据上表中的信息判断,下列结论中错误的是( )A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分7.已知命题“关于x 的一元二次方程210++=x bx ,必有实数解”是假命题,则在下列选项中,b 的值可以是( )A .3=-bB .2=-bC .1=-bD .2=b8.如图,将△PQR 向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是( )A .(2,4)--B .(2,4)-C .(2,3)-D .(1,3)--9.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是 ( )A .2B .25C .5D .12毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)10.某校校园内有一个大正方形花坛,如图甲所示.它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD 如图乙所示,1=DG 米,==AE AF x 米,在五边形EFBCG 区域上种植花卉,则大正方形花坛种植花卉的面积y与x 的函数图象大致是( )ABCD第Ⅱ卷(非选择题 共120分)二、填空题(本大题共8小题,每小题4分,共32分.请把答案填写在题中的横线上) 11.把多项式329-a ab 分解因式的结果是 .12.在函数12-=+xy x 中,自变量x 的取值范围是 .13.如图,直线∥m n ,△ABC 为等腰直角三角形,90∠=BAC ,则1∠= 度.14.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为.15.如图,AB 是O 的直径,弦⊥CD AB 点E ,若8=AB ,6=CD ,则=BE .16.如图,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 的长为半径画弧,再以AB 边的中点为圆心,AB 长的一半为半径画弧,则阴影部分面积是 (结果保留π).17.如图,矩形EFGH 内接于△ABC ,且边FG 落在BC 上.若⊥AD BC ,3=BC ,2=AD ,23=EF EH ,那么EH 的长为 .数学试卷 第5页(共18页)数学试卷 第6页(共18页)18.观察下列砌钢管的横截面图:1n = 2=n 3=n 4=n则第n 个图的钢管数是 (用含n 的式子表示).三、解答题(本大题共8小题,共88分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)计算:120cos602(2)(π3)--+---.20.(本小题满分10分)先化简,再求值:12(1)11--÷++x x x ,从1-,2,3中选择一个适当的数作为x 值代入.21.(本小题满分10分)如图,在平面直角坐标系中,一次函数(0)y kx b k =+≠的图象与反比例函数(0)=≠my m x的图象交于A ,B 两点,与x 轴交于C 点,点A 的坐标为(,6)n ,点C 的坐标为(2,0)-,且tan 2ACO ∠=.(1)求该反比例函数和一次函数的解析式;(2)求点B 的坐标.22.(本小题满分10分)如图,在□ABCD 中,24==BC AB ,点E ,F 分别是BC ,AD 的中点.(1)求证:ABE CDF △≌△;(2)当四边形AECF 为菱形时,求出该菱形的面积.23.(本小题满分12分)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共18页) 数学试卷 第8页(共18页)24.(本小题满分12分)某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将“互助、平等、感恩、和谐、进取”依次记为(A ,B ,C ,D ,E ).25.(本小题满分12分)如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD ,AC 分别交于点E ,F ,且∠=∠ACB DCE .(1)判断直线CE与O 的位置关系,并证明你的结论;(2)若2tan 2∠=ACB ,2=BC ,求O 的半径.26.(本小题满分14分)如图,抛物线经过(1,0)-A ,(5,0)B ,5(0,)2-C 三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使+PA PC 的值最小,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.数学试卷 第9页(共18页) 数学试卷 第10页(共18页)贵州省安顺市2016年初中毕业生学业、升学(高中、中职、五年制专科)招生考试数学答案解析第Ⅰ卷一、选择题. 1.【答案】D【解析】-2016的倒数是-12016.故选D . 2.【答案】C【解析】A.235a a a =,本选项错误;B.23a b +不能合并,本选项错误;C.826a a a ÷=,本选项正确;D.2242()a b a b =,本选项错误.故选C .3.【答案】B【解析】94 400 000 000 4.410=⨯,故选:B . 4.【答案】D【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面,故选:D . 5.【答案】B 【解析】根据题意得4080x y -=⎧⎨-=⎩, 解得48x y =⎧⎨=⎩,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形; (2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为48820++=.故选B .6.【答案】D【解析】该班人数为:256687640++++++=,得45分的人数最多,众数为45; 第20和21名同学的成绩的平均值为中位数,中位数为:4545452+=; 平均数为:3523954264464584875064044.42540⨯+⨯+⨯+⨯+⨯+⨯+⨯=故错误的为D . 7.【答案】C【解析】24b =﹣,当1b =﹣时,0<,方程没有实数解,所以b 取﹣1可作为判断命题“关于x 的一元二次方程210x bx ++=,必有实数解”是假命题的反例,故选C . 8.【答案】A【解析】由题意可知此题规律是x 2,y 3+(﹣),照此规律计算可知顶点P(4,1)﹣﹣平移后的坐标是(2,4)--,故选A . 9.【答案】D 【解析】如图:,由勾股定理,得:AC =AB =,BC ,∴△ABC 为直角三角形, ∴1tan 2AC B AB ∠==, 故选:D . 10.【答案】A 【解析】21122S AEF AE AF x =⨯=,11313222xS DEG DG DE x -=⨯=⨯⨯-=(), S 五边形EFBCG=S 正方形ABCD ﹣S △AEF ﹣S △DEG22131115922222x x x x -=--=-++,则22111542230222y x x x x =⨯-++=-++,∵AE AD <, ∴3x <,综上可得:2223003y x x x =++﹣(<<).数学试卷 第11页(共18页) 数学试卷 第12页(共18页)故选:A第Ⅱ卷二、填空题11.【答案】(3)(3)a a b a b +-【解析】32229(9)(3)(3)a ab a a b a a b a b -=-=+-12.【答案】1x ≤且2x ≠﹣【解析】根据二次根式有意义,分式有意义得:10x ≥﹣且20x +≠, 解得:1x ≤且2x ≠﹣. 13.【答案】45【解析】∵△ABC 为等腰直角三角形,90BAC ∠=, ∴45ABC ACB ∠=∠=, ∵m ∥n , ∴145∠=; 故答案为:45 14.【答案】4【解析】依据题中的计算程序列出算式:1224⨯﹣. 由于12242⨯=﹣﹣,20﹣<, ∴应该按照计算程序继续计算,22244⨯=(﹣)﹣, ∴4y =.15.【答案】4【解析】如图,连接OC . ∵弦CD ⊥AB 于点E ,CD=6,∴132CE ED CD ===.∵在Rt OEC ∆中,90OEC ∠=,3CE =,4OC =,∴OE ==,∴4BE OBOE ==﹣故答案为416.【答案】2π【解析】根据题意得,S 阴影部分=S 扇形BAD ﹣S 半圆BA ,∵S 扇形BAD =29044360ππ=,S 半圆12222BA ππ==,∴S 阴影部分422πππ==﹣. 故答案为2π. 17.【答案】32【解析】如图所示: ∵四边形EFGH 是矩形, ∴EH ∥BC , ∴AEH ABC △∽△, ∵AM ⊥EH ,AD ⊥BC , ∴AM EHAD BC=, 设3EH x =,则有2EF x =,22AM AD EF x ==﹣﹣,∴22323x x-=, 解得:12x =,则32EH =.故答案为:32.18.【答案】23322n n +【解析】第一个图中钢管数为123+=; 第二个图中钢管数为2349++=; 第三个图中钢管数为345618+++=;数学试卷 第13页(共18页) 数学试卷 第14页(共18页)第四个图中钢管数为4567830++++=, 依此类推,第n 个图中钢管数为223312222222n n n n n n n n n n n ++++++⋯+=+⨯+=+()()(),三、解析题19.【答案】11=21221-+-=原式 20.【答案】1122x x x x x x +=+-=-原式当3x =时,原式=3.21.【答案】(1)过点A 作AD ⊥x 轴,垂足为D 由A (n,6),C 2,0)(﹣可得,OD n =,6AD =,2CO =∵2tan ACO ∠= ∴2AD CD =,即622n=+ ∴1n = ∴A (1,6)将A (1,6)代入反比例函数,得166m =⨯=∴反比例函数的解析式为6y x=将A (1,6),C 2,0)(﹣代入一次函数y kx b =+,可得602k bk b =+⎧⎨=-+⎩解得24k b =⎧⎨=⎩∴一次函数的解析式为24y x =+(2)由246y x x y =+⎧⎪⎨=⎪⎩可得,246x x +=解得11x =,23x =﹣ ∵当23x =﹣时,2y =﹣ ∴点B 坐标为(﹣3,﹣2)22.【答案】(1)证明:∵在▱ABCD 中,AB CD =, ∴BC AD =,ABC CDA ∠=∠. 又∵12BE EC BC ==,12AF DF AD ==, ∴BE DF =. ∴ABE CDF ≌.(2)∵四边形AECF 为菱形时, ∴AE EC =.又∵点E 是边BC 的中点, ∴BE EC =,即BE AE =. 又24BC AB ==, ∴12AB BC BE ==, ∴ABBE AE ==,即△ABE 为等边三角形,▱ABCD 的BC 边上的高为260sin ⨯︒=,∴菱形AECF的面积为23.【答案】(1)设该校的大寝室每间住x 人,小寝室每间住y 人,由题意得:数学试卷 第15页(共18页) 数学试卷 第16页(共18页)55507405055730x y x y +=⎧⎨+=⎩, 解得:86x y =⎧⎨=⎩.答:该校的大寝室每间住8人,小寝室每间住6人. 24.【答案】(1)5620%280÷=(名), 答:这次调查的学生共有280名;(2)28015%42⨯=(名),2804256287084=﹣﹣﹣﹣(名), 补全条形统计图,如图所示:根据题意得:8428030%÷=,36030%108︒⨯=, 答:“进取”所对应的圆心角是108;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用树状图为:共20种情况,恰好选到“C ”和“E ”有2种, ∴恰好选到“进取”和“感恩”两个主题的概率是110. 25.【答案】(1)直线C E 与⊙O 相切 理由如下:∵四边形ABCD 是矩形, ∴BC ∥AD ,ACB DAC ∠=∠; 又∵ACB DCE ∠=∠,∴DAC DCE ∠=∠;连接OE ,则DAC AEO DCE ∠=∠=∠; ∵90DCE DEC ∠+∠= ∴090AE DEC ∠+∠= ∴90OEC ∠=,即OE ⊥CE . 又OE 是⊙O 的半径, ∴直线CE 与⊙O 相切. (2)∵AB tan ACB BC ∠=,2BC =∴•AB BC tan ACB =∠∴AC = 又∵ACB DCE ∠=∠,∴tan DCE tan ACB ∠=∠=∴•1DE DC tan DCE =∠=;方法一:在Rt △CDE中,CE =,连接OE ,设⊙O 的半径为r ,则在Rt △COE 中,222CO OE CE =+,即22r)3r =+解得:r =方法二:1AE AD DE =-=,过点O 作OM ⊥AE 于点M ,则1122AM AE ==在Rt △AMO 中:12AM OA COS EAO ===∠26.【答案】(1)设抛物线的解析式为2y ax bx c =++(0a ≠),数学试卷 第17页(共18页) 数学试卷 第18页(共18页)∵A (﹣1,0),B (5,0),C (0,52-)三点在抛物线上,∴0255052a b c a b c c ⎧⎪-+=⎪++=⎨⎪⎪=-⎩,解得12252a b c ⎧=⎪⎪=-⎨⎪⎪=-⎩.∴抛物线的解析式为:2522y x x =﹣﹣;(2)∵抛物线的解析式为:2522y x x =﹣﹣, ∴其对称轴为直线22bx a=-=, 连接BC ,如图1所示,∵B (5,0),C (0,52-),∴设直线BC 的解析式为0y kx b k =+≠(), ∴5052k b b +=⎧⎪⎨=-⎪⎩,解得1252k b ⎧=⎪⎪⎨⎪=-⎪⎩,∴直线BC 的解析式为1522y x =-, 当2x =时,53122y =-=-, ∴P (2,32-); (3)存在. 如图2所示,当点N 在x 轴下方时,∵抛物线的对称轴为直线2x =,C (0,52-), ∴1N (4,52-); 当点N 在x 轴上方时,如图,过点2N 作2N D ⊥x 轴于点D , 在22AN D M CO 与中,222222N AD CM O AN CM AN D M CO∠=∠⎧⎪=⎨⎪∠=∠⎩∴22AN D M CO ASA △≌△(), ∴252N D CO ==,即2N 点的纵坐标为52. ∴21552222x x --=,解得2x =+2x = ∴2N 5(2)2+,3N 5(2)2.综上所述,符合条件的点N 的坐标为(4,52-),5(2)2或5(2)2.。

相关文档
最新文档