《结晶学》晶体定向和晶面符号
合集下载
《结晶学》第3章晶体定向和晶面符号
注意:七大晶系中,单斜晶系先确定y 注意:七大晶系中,单斜晶系先确定y轴,其它 晶系均先确定z 晶系均先确定z轴
思考: 思考:
能否根据各晶体晶体常数特点确定属于 何种晶系? 何种晶系?
§3.3
对称型的国际符号
一、国际符号中对称要素的表示法
对称面:m 对称面: 对称轴:以轴次的数字表示, 对称轴:以轴次的数字表示, 如 1、2、3、4 和 6
Z
举例: 举例:
Y
X
答案(100)(100)(010)(010)(001)(001) 答案(100)(100)(010)(010)(001)(001) )(100)(010)(010)(001)(001
补充说明: 补充说明:
1)晶面符号中某指数为0,表示该晶面平行于相应晶轴。 晶面符号中某指数为0 表示该晶面平行于相应晶轴。 2)同一晶体中,如有两晶面,对应三组晶面指数的绝 同一晶体中,如有两晶面, 对值全部相等,而正负号恰好全部相反, 对值全部相等,而正负号恰好全部相反,则两晶面必 相互平行。 相互平行。 3)同一晶面符号中,指数的绝对值越大,表示晶面在 同一晶面符号中,指数的绝对值越大, 相应结晶轴上的截距系数值(绝对值)越小; 相应结晶轴上的截距系数值(绝对值)越小;在轴单位 相等的情况下,还表示相应截距的绝对长度也越短。 相等的情况下,还表示相应截距的绝对长度也越短。
即:
◆ ◆ ◆
平行的对称轴或旋转反伸轴; 平行的对称轴或旋转反伸轴; 垂直的对称面; 垂直的对称面; 当这两类对称要素在同一方向上同时存在 则写成分式的形式。 分式的形式 时,则写成分式的形式。
晶
系
序 位 1 2 3 1
代表方向 x或y或z轴方向 三次轴方向 x、y或x、z或y、z轴之间 四次轴, 四次轴,即z方向 与四次轴垂直, 与四次轴垂直,在x或y轴方向 与四次轴垂直,并与位2 与四次轴垂直,并与位2成450 六次或三次轴,即z 方向 六次或三次轴, 与六次或三次轴垂直, 与六次或三次轴垂直,在x或y或u轴方向 与六次或三次轴垂直,并与位2 与六次或三次轴垂直,并与位2成300角 x轴方向 y轴方向 z轴方向 y轴方向 任意方向
3.晶体定向及晶面符号概述
面 -----单面 1、平行双面1、反映双面及轴双面1 。
柱 ----(单柱 4 、复柱3) 锥 ----(单锥7、双锥 7) 体 ------ 23
低级晶族的单形
平行双面
轴双面
斜方单锥
斜方四面体
斜方双锥
斜方柱
中级晶族的单形
三方单锥
六方单锥
四方单锥
复三方单锥复六方单锥复四方Fra bibliotek锥三方双锥
六方双锥
四方双锥
晶面符号举例!
1. 等轴晶系:立方体、八面体 2. 四方晶系:四方柱、四方双锥 3. 六方晶系:六方柱 4. 三方晶系:菱面体 5. 斜方晶系:斜方双锥 6. 单斜晶系:石膏单晶
3、简整指数定律: 晶面在晶轴上的截距系数之比,往往为简单的整数比。 (1)简单?见P.38 图4-8 网面密度:a1b1 > a1b2 > a1b3 > a1b4 > ……a1bx 晶面在x、y、轴上的截距系数之比: b1 b2 b3 b4 b5 b6 bx a1b1 = 1:1 Z Y a1b2 = 1:2 a1b3 = 1:3 a1 a1b4 = 1:4 …… a2 a1bx= 1: x 网面密度越大、晶面在 X 晶轴上的截距系数之比 网面密度与截距系数比的关系 越简单。布拉维法则: 实际晶体往往被网面密度较大的晶面所包围。
(2)整数?(见P.38 图4-7 ) 把平行于晶胞的三个行列 作为晶轴,用该行列上的结 点间距作为轴单位。晶轴相 应于行列,晶面相应于面网, 晶面截晶轴于结点(a1b2), 或者晶面平移后截晶轴于结 点(kb5→a2b4),故晶面在 晶轴上的截距系数之比必为 一整数比。
(a1b2:x=1a ,y= 2b :即1: 2) (a2b4:x=2a ,y= 4b :即2: 4)
3.晶体定向及晶面符号
晶体的规则连生
第一节、 晶体定向及晶面符号
一、晶体定向
(一)、概念
晶体定向 —— 在晶体中确定一个坐标系统; 1、晶轴 ------ 晶体中的坐标轴; 2、轴单位---- 各晶轴上的量度单位:a、b、c
(二)晶轴的安置
晶轴----晶体中的坐标轴;是交晶体中心一点的 三条或四条直线。(内部构造的三条或四条行 列的方向)
复三方单锥
三方双锥
复六方单锥
复四方单锥
六方双锥
四方双锥
复三方双锥
复六方双锥
复四方双锥
三方柱
六方柱
四方柱
复三方柱
复六方柱
复四方柱
四方四面体
复四方偏三角面体
菱面体
复三方偏三角面体
斜三三方方方四偏偏面方方面体面体体
六六方方偏偏方方面面体体
四方偏方面体
高级晶族的单形
四面体 八面体
立方体 四六面体
偏方复十 二面体
(a1b2:x=1a ,y= 2b :即1: 2) (a2b4:x=2a ,y= 4b :即2: 4)
第二节、单形和聚形
1、单形
(1)概念
由对称要素联系起来的一组晶面的总合。
八面体
菱形十二面体
(2)特点
①. 在理想情况下, 同一单形各晶面 同形等大; ②. 在实际晶体上, 同一单形各晶面 性质相同;
1、三轴系统:X 、Y、Z:适用以下5个晶系:
(1)三斜晶系
(2)单斜晶系
(3)斜方晶系
(4)四方晶系
r
(5)等轴晶系
2、四轴系统:适用以下2个晶系:
(1)三方晶系: X 、Y、U、Z (2)六方晶系: X 、Y、U、Z
一
晶 轴: 轴单位:
第一节、 晶体定向及晶面符号
一、晶体定向
(一)、概念
晶体定向 —— 在晶体中确定一个坐标系统; 1、晶轴 ------ 晶体中的坐标轴; 2、轴单位---- 各晶轴上的量度单位:a、b、c
(二)晶轴的安置
晶轴----晶体中的坐标轴;是交晶体中心一点的 三条或四条直线。(内部构造的三条或四条行 列的方向)
复三方单锥
三方双锥
复六方单锥
复四方单锥
六方双锥
四方双锥
复三方双锥
复六方双锥
复四方双锥
三方柱
六方柱
四方柱
复三方柱
复六方柱
复四方柱
四方四面体
复四方偏三角面体
菱面体
复三方偏三角面体
斜三三方方方四偏偏面方方面体面体体
六六方方偏偏方方面面体体
四方偏方面体
高级晶族的单形
四面体 八面体
立方体 四六面体
偏方复十 二面体
(a1b2:x=1a ,y= 2b :即1: 2) (a2b4:x=2a ,y= 4b :即2: 4)
第二节、单形和聚形
1、单形
(1)概念
由对称要素联系起来的一组晶面的总合。
八面体
菱形十二面体
(2)特点
①. 在理想情况下, 同一单形各晶面 同形等大; ②. 在实际晶体上, 同一单形各晶面 性质相同;
1、三轴系统:X 、Y、Z:适用以下5个晶系:
(1)三斜晶系
(2)单斜晶系
(3)斜方晶系
(4)四方晶系
r
(5)等轴晶系
2、四轴系统:适用以下2个晶系:
(1)三方晶系: X 、Y、U、Z (2)六方晶系: X 、Y、U、Z
一
晶 轴: 轴单位:
晶体定向和晶面符号
3L2为三轴,(3L2;3L23PC) L2为Z轴,2个P的法线为X、Y轴(L22P) L2为Y轴(L2;L2PC) P之法线为Y轴(P) 2个均垂直与b轴的适当晶棱方向为X、Z轴 三个适当的晶棱方向为Z、X、Y轴
三、晶面符号
晶体定向后,表示晶面在空间相对位置的符号,又 叫米氏符号。
即晶面在三个晶轴(X,Y,Z)上截距系数的倒数比h:k:l; 通常表示为(hkl)
3、同一米氏符号中,如有两个指数的绝对值相等,而且 与它们相对应的那两个结晶轴的轴单位也相等时,则晶面 与此二结晶轴以等角度相交;
4、在同一个晶体中,如有两个晶面的三组米氏指数的绝 对值全都相等,而且正、负号恰好全都相反,则此二晶面 平行。
四、单形符号
1、因为单形是一组由对称要素联系起来的相同晶面, 故可以用一个面来表示整个单形。
晶体定向和晶面符号
一、晶体定向的概念
晶体定向:就是在晶体上选定坐标系统,从而确 定晶面、晶棱的空间方位
二、建立坐标系统
1、晶体是多面体
三维坐标系统
三个方向即晶轴 量度单位轴单位
2、选择方法
微观上: 选择平行六面体中交于一点的三个行列的方向
宏观体现: 选择对称轴、对称面的法线、晶棱 的方向
摆法:
X轴:前后,前为 +,后为 - Y轴:左右,右为+ Z轴:上下,上为+
a=b≠c α=β=γ=90°
a≠b≠c α=γ=90° β>90°
a≠b≠c
α≠β ≠ γ a≠b≠c
选轴原则(按晶体几何常数特征)
以三个相互垂直的L4(Li4,L2)为X、Y、Z三 轴
唯一的高次轴为Z轴; 两个相互垂直的L2(P 之法线,晶棱)为X、Y轴
唯一的高次轴为Z轴 三个互成60°交角的L2(P之法线,适当晶 棱)为X、Y、U轴
三、晶面符号
晶体定向后,表示晶面在空间相对位置的符号,又 叫米氏符号。
即晶面在三个晶轴(X,Y,Z)上截距系数的倒数比h:k:l; 通常表示为(hkl)
3、同一米氏符号中,如有两个指数的绝对值相等,而且 与它们相对应的那两个结晶轴的轴单位也相等时,则晶面 与此二结晶轴以等角度相交;
4、在同一个晶体中,如有两个晶面的三组米氏指数的绝 对值全都相等,而且正、负号恰好全都相反,则此二晶面 平行。
四、单形符号
1、因为单形是一组由对称要素联系起来的相同晶面, 故可以用一个面来表示整个单形。
晶体定向和晶面符号
一、晶体定向的概念
晶体定向:就是在晶体上选定坐标系统,从而确 定晶面、晶棱的空间方位
二、建立坐标系统
1、晶体是多面体
三维坐标系统
三个方向即晶轴 量度单位轴单位
2、选择方法
微观上: 选择平行六面体中交于一点的三个行列的方向
宏观体现: 选择对称轴、对称面的法线、晶棱 的方向
摆法:
X轴:前后,前为 +,后为 - Y轴:左右,右为+ Z轴:上下,上为+
a=b≠c α=β=γ=90°
a≠b≠c α=γ=90° β>90°
a≠b≠c
α≠β ≠ γ a≠b≠c
选轴原则(按晶体几何常数特征)
以三个相互垂直的L4(Li4,L2)为X、Y、Z三 轴
唯一的高次轴为Z轴; 两个相互垂直的L2(P 之法线,晶棱)为X、Y轴
唯一的高次轴为Z轴 三个互成60°交角的L2(P之法线,适当晶 棱)为X、Y、U轴
3晶体定向及晶面符号概述
右右右右型型型型
六方偏方面体
(4)单形符号
由于同一单形的各个晶面的晶面指数的绝对值不变,而 只是正负号和顺序不同; 例:立方体(100)(T00)(010)(0T0) (001)(00T) ① 单形符号----在单形各个晶面中,选择一个代表晶面的符
即: 尽量使 α= β= r = 90o 三、六方晶系 r =120o
3、尽量选择轴单位相等或趋于相等的行列作为晶轴 即: 尽量使 a=b=c
各晶系的晶体定向举例:
★ 等轴晶系:3L4、或3Li4、或 3L2 → X、Y、Z 轴⊥或棱→ X、Y、U轴 ★ 三方晶系:L3 → Z轴, 3L2或P⊥或棱 → X、Y、 U 轴 ★ 四方晶系:L4 或 Li4 →Z轴,2L2或2P⊥或晶棱 → X、Y轴 ★ 斜方晶系:3L2 或3P⊥或 棱 → X、Y、Z轴 ★ 单斜晶系:L2或P⊥→ Y轴, 2个晶棱 → X、Z轴 ★ 三斜晶系:3条晶棱 → X、Y、 Z轴
Z b1 b2 b3 b4 b5 b6 bx Y a1
a1bx= 1: x
a2
网面密度越大、晶面在
X
晶轴上的截距系数之比
网面密度与截距系数比的关系
越简单。布拉维法则:
实际晶体往往被网面密度较大的晶面所包围。
(2)整数?(见P.38 图4-7 ) 把平行于晶胞的三个行列
作为晶轴,用该行列上的结
点间距作为轴单位。晶轴相
∨∨
γα
∨
β
轴角:α、β、γ
r
(三)、晶体定向原则
1、选择晶体中的对称要素或晶棱作为坐标轴 晶体中的对称要素:Ln 、Li n、P 的法线、晶棱,必须
按下列顺序选择晶轴:Ⅰ轴、Ⅱ面、Ⅲ 晶棱。
(1)、先确定Z轴(单斜晶系先确定 Y 轴)
晶体定向和晶面符号《结晶学》
一、晶体定向的概念
晶体定向就是在晶体上选择坐标系统。即选择
坐标轴(或称为结晶轴)和确定各坐标轴上的 单位长(轴单位)之比(轴率)。
Z
Z
U Y X Y
X
1、晶轴:交于晶体中心的三条轴,它们分别称为x、y、z
轴,晶轴之间的夹角称为轴角,分别表示为:(yz)、 (zx)、(xy)。 注意:三方晶系及六方晶系为四轴定向,在水平方向 上为x、y、u三条互成120度夹角的坐标。
B、在上述前提下,应尽可能使晶轴垂直,轴单位
近乎相等。
§3.2各晶系晶体定向的具体原则
三轴定向
等轴、四方、斜方、单斜、三斜
四轴定向
三方、六方
1、等轴晶系
选轴原则:相互垂直的L4或Li4或L2为x、y、z轴
Z
Y
X
晶体常数:a=b=c,α =β =γ =900
2、四方晶系
选轴原则:以L4或Li4为z轴,以垂直z轴并相 互垂直的L2或P的法线或晶棱方向为x、y轴。
:
OC2
= e:f:g
C2
O
A1 A2
B2
B1
X
Y
1、截距系数之比为整数比
因为晶面是面网,晶轴是行列,晶面与晶轴之交点 为结点,或平移相交于结点。因此,若以晶轴之结 点间距为度量单位,则晶面在晶轴上的截距系数之 比为整数比
c
a
b
2、为简单整数比
晶体面网密度越大,则晶面在晶轴上的截距系数之 比越简单。又依布拉维法则,晶体总是为面网密度 较大的面网所包围,所以为简单整数比。
数为0表示晶棱垂直于相应晶轴。
(4)对于三方、六方晶系的四轴定向,相应晶棱 符号的一般式写作 [u v · w].
结晶学4晶体的定向及晶面符号
以L2或P的法线为Y轴,以垂直于Y轴 的主要晶棱方向为X、Z轴
三斜晶系
以三个主要的晶棱方向为X、Y、Z轴
晶体常数特点
a=b=c
a = b = g = 90
a=b≠c
a = b = g = 90
a=b≠c
a = b = 90 g = 120
a≠b≠c
a = b = g = 90
a≠b≠c
a = g = 90 b > 90
三、各个晶系的晶体定向
在七个晶系中,其晶格常数是不一样的,所以各个晶系 中定向原则也是不同的,在七个晶系中,等轴、四方、斜 方、单斜、三斜等晶系选择三轴定向。其中Z轴位于直立 方向,上正下负;X轴位于前后方向,前正后负;Y轴位于 左右方向,右正左负。
三方、六方晶系还要层增加u轴,u轴的前端为负,后端 为正,x、y、u的正端之间的交角为120°
晶系 等轴晶系
选轴原则 以互相垂直的L4或Li4为X、Y、Z轴
四方晶系
L4或Li4为Z轴,以垂直Z轴,并互相垂 直的L2或P的法线为X、Y轴
三方晶系 及六方晶系
以L3或 L6 或Li6 为Z轴,以垂直Z轴并 彼此交角120°的L2或P法线为X、Y、 U
斜方晶系 单斜晶系
以互相垂直的L2或P的法线为X、Y、 Z轴
a≠b≠ c
a b g
第二节 晶面符号的确定
一、晶面符号
1、概念:代表晶面在空间的方位的符号称为晶面符号。晶 体定向后,借助晶面和晶轴的交截关系来确定。晶面符号 有许多种表示方式,目前国际上通用的是米氏符号,这是 英国人米勒在1939年创造的。
米氏符号是用晶面在晶轴上截距系数的倒数比来表示的。
假设有一晶面ABC在X、Y、Z三个晶 轴上的截距分别为OA、OB、OC,轴 单位用a、b、c来度量,则
三斜晶系
以三个主要的晶棱方向为X、Y、Z轴
晶体常数特点
a=b=c
a = b = g = 90
a=b≠c
a = b = g = 90
a=b≠c
a = b = 90 g = 120
a≠b≠c
a = b = g = 90
a≠b≠c
a = g = 90 b > 90
三、各个晶系的晶体定向
在七个晶系中,其晶格常数是不一样的,所以各个晶系 中定向原则也是不同的,在七个晶系中,等轴、四方、斜 方、单斜、三斜等晶系选择三轴定向。其中Z轴位于直立 方向,上正下负;X轴位于前后方向,前正后负;Y轴位于 左右方向,右正左负。
三方、六方晶系还要层增加u轴,u轴的前端为负,后端 为正,x、y、u的正端之间的交角为120°
晶系 等轴晶系
选轴原则 以互相垂直的L4或Li4为X、Y、Z轴
四方晶系
L4或Li4为Z轴,以垂直Z轴,并互相垂 直的L2或P的法线为X、Y轴
三方晶系 及六方晶系
以L3或 L6 或Li6 为Z轴,以垂直Z轴并 彼此交角120°的L2或P法线为X、Y、 U
斜方晶系 单斜晶系
以互相垂直的L2或P的法线为X、Y、 Z轴
a≠b≠ c
a b g
第二节 晶面符号的确定
一、晶面符号
1、概念:代表晶面在空间的方位的符号称为晶面符号。晶 体定向后,借助晶面和晶轴的交截关系来确定。晶面符号 有许多种表示方式,目前国际上通用的是米氏符号,这是 英国人米勒在1939年创造的。
米氏符号是用晶面在晶轴上截距系数的倒数比来表示的。
假设有一晶面ABC在X、Y、Z三个晶 轴上的截距分别为OA、OB、OC,轴 单位用a、b、c来度量,则
晶体定向和晶面符号
等轴晶系的定向: – 晶格常数为: α=β=γ=90°, a = b = c – 三个互相垂直的L4, Li4或L2为X, Y, Z轴 – Z轴直立,Y轴左右水平,X轴前后水平
四方晶系的定向: – 晶格常数为: α=β=γ=90°, a = b ≠ c – 唯一的L4或Li4为Z轴; 相互垂直的L2, 或相互垂直 的对称面法线, 或适当的晶棱为X, Y轴 – Z轴起立,Y轴左右水平,X轴前后水平
无L2及P时: X、Y、U 轴平行晶棱选取
斜方 3L2——X、Y、Z轴;
L22P中:L2——Z轴, 2P的法线——X、Y 轴
单斜 L2或P的法线——Y 轴,垂直Y轴的主要晶棱——X、Z
轴
a=b ≠ c, α=β =90° γ =120 °
a ≠ b ≠ c, α=β=γ=90°
a ≠ b ≠ c, α=γ=90° β>90°
第八章 晶体定向和晶面符号
一、晶体定向
在晶体中确定坐标系统 以晶体中心为原点建立一个坐标系,由X,Y,Z三轴组成,也 可由X,Y,U,Z四轴组成(对三方晶系与六方晶系).
Z
Y X 三个晶轴不一定垂直
Z U
Y
X
120º
几个基本术语: – 结晶轴:X、Y、Z, 或a、b、c – 轴角:α=b^c,β=c^a,γ=a^b – 轴单位:a、b、c – 轴率:a:b:c – 晶体几何常数:a:b:c, α,β,γ
三斜 以不在同一平面内的三个主要晶棱方向为X、Y、Z轴
a ≠ b ≠ c,
α≠β≠γ ≠ 90°
二、晶面符号
表示晶面在空间相对位置的符号 米氏符号——晶面在三晶轴上截距系数的倒数比(hkl) 晶面指数——h、k、l
h:k:l = a/OX:b/OY:c/OZ
晶体定向和晶面符号
各晶系的定向法则
晶体的三轴定向: – 选择三个坐标轴: X, Y, Z 或者a, b, c
晶体的四轴定向: – 适用于六方晶系和三方晶系的晶体。它与三轴定向的 不同是, 除选择一个直立结晶轴外,还选择三个水平结 晶轴。
等轴晶系的定向 四方晶系的定向 斜方晶系的定向 单斜晶系的定向 三斜晶系的定向 三方和六方晶系的四轴定向
三斜晶系的定向: – 晶格常数为: α ≠ β ≠ γ ≠ 90 °, a ≠ b ≠ c – 适当的晶棱为X, Y, Z轴 – 大致上Z轴直立,Y轴左右,X轴前后
三方和六方晶系的四轴定向:
选择唯一的高次轴作为直立结晶轴c轴,在垂直c轴的平面 内选择三个相同的、即互成60°的L2或P的法线,或适当的 显著晶棱方向作为水平结晶轴,即X轴、Y轴以及d轴(U轴) – 晶格常数为: α =β = 90°, γ =120°, a=b≠c – Z直立,Y轴左右水平,X轴前后水平偏左30°
三斜 以不在同一平面内的三个主要晶棱方向为X、Y、Z轴
a ≠ b ≠ c,
α≠β≠γ ≠ 90°
二、晶面符号
表示晶面在空间相对位置的符号 米氏符号——晶面在三晶轴上截距系数的倒数比(hkl)
晶面指数——h、k、l h:k:l = a/OX:b/OY:c/OZ
四轴定向时的晶面符号: –定义同三轴定向 –用(h k ī l)的形式表达 –指数依次与a、b、d和c轴相对应 –存在 h + k + ī = 0
z
x 宏观形态
y 微观结构
晶轴选择的原则
1、优选选对称轴做晶轴 2、当对称轴的数量不能满足需要时,选对称面的法线 3、前两者不足,则选平行于晶棱的方向 4、在上述前提下,应尽可能使所选晶轴彼此垂直或趋于 垂直,并使轴单位彼此相等或趋于相等(L2PC) 5、在遵循上述原则的前提下,尽量使晶轴的夹角为90度
第四章晶体的定向和晶面符号
第四章 晶体的定向和晶面符号
• • • • • 晶体定向的概念 晶体定向的原则 各晶系的定向法则 晶面符号与单形符号 晶带及晶带符号
一、晶体的定向(三轴定向)
在晶体上确定坐标系统,即选坐标轴和确 定各轴上的轴单位长度之比。 (1) 晶轴:是交于晶体中心的三条直线。为x、y、 z(或a、b、c)。 (2) 轴角:α、β、γ (3) 轴长和轴率:晶轴 是晶体中格子构造中 的行列,轴长(轴单位) 是该行列上的结点间距。 分别以 a、b、c表示, a:b:c为轴率。 (4)晶体常数: 轴率a:b:c和轴角α、β、γ
三方和六方晶系的四轴定向:
– 选择唯一的高次轴作为直立结晶轴Z轴,在垂直Z 轴的平面内选择三个相同的、即互成60°交角的L2 或P的法线,或适当的显著晶棱方向作为水平结晶 轴,即x 轴、 y 轴以及 d 轴(U轴) – 晶体几何常数: a = b = 90°, g =120°, a = b ≠ c – z 轴直立, y 轴左右水平, x 轴前后水平偏左30°
斜方晶系 单斜晶系
a = b = g = 90
a≠b≠c a = g = 90 b > 90 a≠b≠c a≠b≠g
以L2或P的法线为Y轴,以垂直于Y轴 的主要晶棱方向为X、Z轴 以不在同一平面的三个主要的晶棱方 向为X、Y、Z轴
三斜晶系
四、晶面符号与单形符号
1.整数定律
• 任何晶面截距系数之比,都是简单的整数比。
a=b≠c a = b = 90 g = 120
a≠b≠c
三方晶系 及六方晶系
以L3或 L6 或Li6 为Z轴,以垂直Z轴并彼 此交角120°(正端)的3个L2或P法线或 晶棱方向为 X 、 Y 、 U , 在 L i 6 3L 2 3P 对称
晶体的定向和晶面符号
三斜晶系
以不在同一平面的三个主要的晶棱方 向为X、Y、Z轴
晶体常数特点
a=b=c
= b = g = 90
a=b≠c
= b = g = 90
a=b≠c
= b = 90 g = 120
a≠b≠c
= b = g = 90
a≠b≠c
= g = 90 b > 90
a≠b≠ c
b g
各晶系的晶体几何常数特点
• 不同晶系中,这三个序号位所代表的方向完全不同,所 以,不同晶系的国际符号的写法也就完全不同,一定不要 弄混淆.
• 每个晶系的国际符号写法见表4-2(此表很重要,要
熟记!).
表4-3各晶系对称型的国际符号中各序位所代表的方向: 、U
晶系
选轴原则
等轴晶系 四方晶系
三方晶系 及六方晶系
斜方晶系 单斜晶系
001
_
101
111
011 111
_ 110
100
__ 111
_ 101
010 110
_
111
_
011
四轴定向的晶面符号
• 定义同三轴定向,指数的排列顺序依次为X、Y、U和Z
轴,轴率为1:1:1:C,C=c/a,
• 用(h k i l)的形式表达, h:k:i:l=1/OX:1/OY:1/OU:1/OZ
么可以表达为
hx+ky+lz=0
晶带定律的应用:
(321)
米氏指数(Miller indices)是指:用来表达晶 面在晶体上之方向的一组无公约数的整数, 它们的具体数值等于该晶面在结晶轴上所截 截距系数的倒数比。
• 如果将米氏指数按顺序连写,并置于园括
晶体的定向和晶面符号课件
晶体的定向和晶面符号课件
目录
• 晶体定向 • 晶面符号 • 晶体结构与性质 • 晶体学实验技术 • 晶体学研究前沿与展望 • 附录与参考文献
01
晶体定向
定义与重要性
定义
晶体定向是指通过确定晶体中某一晶 向指数或某一晶面指数的方法来确定 晶体空间结构的方法。
重要性
晶体定向是研究晶体结构的重要手段 ,通过确定晶向或晶面指数,可以获 得晶体结构对称性、空间群等信息, 有助于理解晶体性质和应用。
晶体结构
不同晶体结构具有不同的物理和 化学性质。
晶体尺寸
晶体尺寸对光学、电学和热学性 质产生影响。
晶体缺陷
晶体缺陷可以影响其物理和化学 性质。
晶体在材料科学中的应用
半导体材料
晶体硅、锗等是重要的半导体材料,用于制造电 子器件。
光学材料
某些晶体具有特殊的光学性质,如激光晶体、光 学窗口等。
结构材料
某些晶体具有高强度、高硬度等特性,可用于制 造刀具、航空航天结构件等。
晶体学研究的发展趋势与展望
多学科交叉融合
加强多学科交叉融合,促进晶体学与相关学科的协同发展 。
理论模拟与实验研究相结合
加强理论模拟与实验研究的结合,提高研究水平和深度。
国际化合作与交流
积极参与国际合作与交流,共同推动晶体学研究的进步和 发展。
06
附录与参考文献
附录
晶体的定向
确定晶体取向的常用方法:X射线衍射、反光显微镜观察等。
晶体定向的方法
01
02
03
几何作图法
通过几何作图方法确定晶 体中某一晶向指数或某一 晶面指数。
X射线衍射法
利用X射线衍射原理确定 晶体结构中的晶向和晶面 指数。
目录
• 晶体定向 • 晶面符号 • 晶体结构与性质 • 晶体学实验技术 • 晶体学研究前沿与展望 • 附录与参考文献
01
晶体定向
定义与重要性
定义
晶体定向是指通过确定晶体中某一晶 向指数或某一晶面指数的方法来确定 晶体空间结构的方法。
重要性
晶体定向是研究晶体结构的重要手段 ,通过确定晶向或晶面指数,可以获 得晶体结构对称性、空间群等信息, 有助于理解晶体性质和应用。
晶体结构
不同晶体结构具有不同的物理和 化学性质。
晶体尺寸
晶体尺寸对光学、电学和热学性 质产生影响。
晶体缺陷
晶体缺陷可以影响其物理和化学 性质。
晶体在材料科学中的应用
半导体材料
晶体硅、锗等是重要的半导体材料,用于制造电 子器件。
光学材料
某些晶体具有特殊的光学性质,如激光晶体、光 学窗口等。
结构材料
某些晶体具有高强度、高硬度等特性,可用于制 造刀具、航空航天结构件等。
晶体学研究的发展趋势与展望
多学科交叉融合
加强多学科交叉融合,促进晶体学与相关学科的协同发展 。
理论模拟与实验研究相结合
加强理论模拟与实验研究的结合,提高研究水平和深度。
国际化合作与交流
积极参与国际合作与交流,共同推动晶体学研究的进步和 发展。
06
附录与参考文献
附录
晶体的定向
确定晶体取向的常用方法:X射线衍射、反光显微镜观察等。
晶体定向的方法
01
02
03
几何作图法
通过几何作图方法确定晶 体中某一晶向指数或某一 晶面指数。
X射线衍射法
利用X射线衍射原理确定 晶体结构中的晶向和晶面 指数。
3.晶体定向及晶面符号
6、 研究双晶的意义: (1)鉴定矿物------如:长石族矿物 (2)矿物晶体材料的应用 --------
作压电材料的 α -石英,不允许有双晶 作光学材料的 α -石英,允许有道芬双晶,
不允许巴西双晶 作光学材料的冰洲石, 不允许双晶存在。
尖晶石律双晶
常见双晶
燕尾双晶
聚片双晶 十字双晶
膝状双晶 穿插双晶
即: 尽量使 α= β= r = 90o 三、六方晶系 r =120o
3、尽量选择
各晶系的晶体定向举例:
★ 等轴晶系:3L4、或3Li4、或 3L2 → X、Y、Z 轴 ★ 六方晶系:L6 或 Li6 → Z轴,3L2或3P⊥或棱→ X、Y、U轴 ★ 三方晶系:L3 → Z轴, 3L2或P⊥或棱 → X、Y、 U 轴 ★ 四方晶系:L4 或 Li4 →Z轴,2L2或2P⊥或晶棱 → X、Y轴 ★ 斜方晶系:3L2 或3P⊥或 棱 → X、Y、Z轴 ★ 单斜晶系:L2或P⊥→ Y轴, 2个晶棱 → X、Z轴 ★ 三斜晶系:3条晶棱 → X、Y、 Z轴
∨∨
γα
∨
β
轴角:α、β、γ
r
(三)、晶体定向原则
1、选择晶体中的对称要素或晶棱作为坐标轴 晶体中的对称要素:Ln 、Li n、P 的法线、晶棱,必须
按下列顺序选择晶轴:Ⅰ轴、Ⅱ面、Ⅲ 晶棱。
(1)、先确定Z轴(单斜晶系先确定 Y 轴)
★ 等轴晶系: ★ 六方晶系: ★ 三方晶系:
L4、或Li4、或L2 → Z轴
Z b1 b2 b3 b4 b5 b6 bx Y a1
a1bx= 1: x
a2
网面密度越大、晶面在
X
晶轴上的截距系数之比
网面密度与截距系数比的关系
《结晶学》第3章晶体定向和晶面符号PPT课件
1、首先看第二位是否为“3”,若为“3”(3代表4L3), 则为高级晶族等轴晶系
2、第二位不是3,则看第一位。若第一位为高次轴符号, 则为中级晶族;根据轴次高低判断属于相应晶系
3、符号中无高次轴符号,则为低级晶族。 只出现 1 或 1,则为三斜; “2” ≤1,或“m” ≤1,则为单斜; “2” >1, 或“m” >1,则为斜方
的全部对称要素。
即:
◆ 平行的对称轴或旋转反伸轴; ◆ 垂直的对称面; ◆ 当这两类对称要素在同一方向上同时存在
时,则写成分式的形式。
晶系 等轴晶系
四方晶系
三方及六方 晶系
斜方晶系 单斜晶系 三斜晶系
序位
1 2 3 1 2 3 1 2 3 1 2 3 1 1
代表方向
x或y或z轴方向 三次轴方向 x、y或x、z或y、z轴之间 四次轴,即z方向 与四次轴垂直,在x或y轴方向 与四次轴垂直,并与位2成450 六次或三次轴,即z 方向 与六次或三次轴垂直,在x或y或u轴方向 与六次或三次轴垂直,并与位2成300角 x轴方向 y轴方向 z轴方向 y轴方向 任意方向
z
y
x
晶体常数 a≠b≠c,α=γ=90°β>90°
5、三斜晶系
选轴原则:以不在同一平面内的3个主要晶棱 方向为x、y、z轴
Z
Y X
晶体常数 a≠b≠c,αβγ 90°
6、三方、六方晶系
选轴原则:以L6、Li6、L3为z轴,以垂直z轴并彼此相 交为1200的3个L2或P的法线或晶棱方向为x、y、u轴
OX OY OU OZ
根据定向时三个水平轴正端互成120o交角
关系,三个指数之间的关系为h+k+i=0
u
T
O
2、第二位不是3,则看第一位。若第一位为高次轴符号, 则为中级晶族;根据轴次高低判断属于相应晶系
3、符号中无高次轴符号,则为低级晶族。 只出现 1 或 1,则为三斜; “2” ≤1,或“m” ≤1,则为单斜; “2” >1, 或“m” >1,则为斜方
的全部对称要素。
即:
◆ 平行的对称轴或旋转反伸轴; ◆ 垂直的对称面; ◆ 当这两类对称要素在同一方向上同时存在
时,则写成分式的形式。
晶系 等轴晶系
四方晶系
三方及六方 晶系
斜方晶系 单斜晶系 三斜晶系
序位
1 2 3 1 2 3 1 2 3 1 2 3 1 1
代表方向
x或y或z轴方向 三次轴方向 x、y或x、z或y、z轴之间 四次轴,即z方向 与四次轴垂直,在x或y轴方向 与四次轴垂直,并与位2成450 六次或三次轴,即z 方向 与六次或三次轴垂直,在x或y或u轴方向 与六次或三次轴垂直,并与位2成300角 x轴方向 y轴方向 z轴方向 y轴方向 任意方向
z
y
x
晶体常数 a≠b≠c,α=γ=90°β>90°
5、三斜晶系
选轴原则:以不在同一平面内的3个主要晶棱 方向为x、y、z轴
Z
Y X
晶体常数 a≠b≠c,αβγ 90°
6、三方、六方晶系
选轴原则:以L6、Li6、L3为z轴,以垂直z轴并彼此相 交为1200的3个L2或P的法线或晶棱方向为x、y、u轴
OX OY OU OZ
根据定向时三个水平轴正端互成120o交角
关系,三个指数之间的关系为h+k+i=0
u
T
O
1.4晶体的定向及晶面符号
晶体定向
5. 六方晶系:具有一个六次轴(包括六次反轴)的点群。首先 选择六次轴或六次反轴作为C轴,然后将垂直于六次轴的两个 二次轴或晶面法线作为a、b晶轴。为了满足六次轴的对称,a、 b轴必须满足:①单位轴长必须相等,即a0=b0;②交角为120º
晶体定向
6. 三方晶系:具有一个三次轴的点群。有2种取向方式:①六方晶
①由晶面(h1 k1 l1)和(h2 k2 l2)求晶带符号 根据晶带定律建立方程组:
h1u+k1v+l1w = 0 h2u+k2v+l2w = 0 解出:
u:v:wk1l1:l1h1:h1k1 k2l2 l2h2 h2k2
解法:①将每一个晶面的面指数在一 列上连续写2次,其指数按次序一一对 应; ②将最右及最左的纵行删去,如 右式; ③用交叉相乘方法,并依次取 出乘积差数即可。
晶面间距好像晶体的指纹,是进行物相鉴别 的重要依据。
1 晶体的定向和晶体的分类 2 晶面指数和晶棱指数 3 晶带定律 4 晶面间距
晶体定向
晶体的定向就是以晶体中心为原点建立一个坐标系,由X,Y,Z三轴 组成,也可由X,Y,U,Z四轴组成(对三方晶系与六方晶系).
c 大拇指
Z
β
α
O
食指
γ
a
=bc
β= a c
γ=ab
中指
b
U
Y
X
120º
坐标轴符合右手定则
晶带定律
②由晶向[u1 v1 w1]和[u2 v2 w2]求晶面符号 建立方程组:
得:
hu1+kv1+lw1 = 0 hu2+kv2+lw2 = 0
h:k:lv1w1:w1u1:u1v1 v2w2 w2u2 u2v2
晶带定律
晶体学基础6晶体定向和晶体学符号
目前国际上通用的都是米氏符号(Miller‘s symbol),亦 称米勒符号
晶体学坐标系和宏观晶体定向
晶面符号
某晶面在X,Y,Z轴上的截距为 2a,3b,6c, 那么截距系数为2, 3, 6, 倒数为1/2, 1/3, 1/6, 化简以后的倒数比为3:2:1, 写 做(321),这就是该晶面的晶面 符号. 注意:三个晶轴上的轴单位不 一定相等,所以,截距系数与 截距不一定成正比。
[u v w] = [u v w] 此例:[u v w] = [1 2 3]
四轴定向时的晶棱符号
– 以[u v m w]的形式表达
晶体学坐标系和宏观晶体定向
晶带
•晶带: 交棱相互平行的一组晶面. •晶带轴:移至过晶体中心的一条交棱。 •晶带符号:交棱的晶棱符号.
•晶体上的晶面是以晶带的形式发育的
晶面符号晶面符号它是根据晶面它是根据晶面或晶体中平行于晶面的其他平面或晶体中平行于晶面的其他平面与各结晶轴的交截关系用简单的数字符号形式来表达它们在晶轴的交截关系用简单的数字符号形式来表达它们在晶体上方位的一种晶体学符号晶体上方位的一种晶体学符号目前国际上通用的都是米氏符号目前国际上通用的都是米氏符号millerssymbolmillerssymbol亦称米勒符号称米勒符号晶面符号晶面符号某晶面在轴上的截距为2a3b6c2a3b6c那么截距系数为那么截距系数为2倒数为倒数为121316121316化简以后的倒数比为化简以后的倒数比为3
Hale Waihona Puke 晶带定律晶带定律: 任两晶带(晶棱)相交可决定一可能晶面,任两晶面 相交可决定一可能晶带(晶棱). 晶带定律(zone law) 任一属于[u v w]晶带的晶面(h k l),必定有: h u + k v + l w = 0 晶带方程
相关主题