高考技巧大全之高中数学黄金解题模板:专题10 函数图像的判断
第10讲 函数的图像(解析版)2021届新课改地区高三数学一轮专题复习
(2)因为 y=log1[3(x+2)]=-log3[3(x+2)]=-log3(x+2)-1.
3
所以可以先将函数 y=log3x 的图象向左平移 2 个单位,可得 y=log3(x+2)的图象,再作图象关于 x 轴对称的
由
f (x) (1)x , g(x) 2(1)x
3
3
(1)x 3 1
2
(1)x
3
(
1
log
)
1 3
1 2
3
( 1 ) x log3 3
2
知,
f
(x)
向右移动
log3
2
个单位可得到
g
(x)
,故选项
D
正确;
故选: ABD .
5、.已知函数
f(x)=|log3x|,实数
m,n
满足
0<m<n,且
f(m)=f(n),若
3
m
ln x,x≥1, 6、(一题两空)(2019·吉林调研改编)设函数 f(x)= 1-x,x<1,则 f(f(0))=________,若 f(m)>1,则实数 m
的取值范围是________.
【答案】0 (-∞,0)∪(e,+∞)
ln x,x≥1, 【解析】f(f(0))=f(1)=ln 1=0.如图所示,可得 f(x)= 1-x,x<1的图象与直线 y=1 的交点分别为(0,1),
【答案】B
1-x2≥0, 【解析】(1)由 |x|≠0 且|x|≠1,得-1<x<0 或 0<x<1,
高中数学函数像与性质解题技巧
高中数学函数像与性质解题技巧高中数学是一门重要的学科,其中函数一直以来都是考试中的重点内容之一。
掌握函数的像与性质解题技巧,不仅有助于提高解题速度,还能培养学生的思维能力和逻辑思维能力。
一、函数的像与性质在学习函数的过程中,我们常常遇到求函数的像和研究函数的性质的问题。
函数的像是指函数的自变量取某个值时,函数应变量所对应的值。
而函数的性质则是描述函数的特点和规律。
二、像的求解技巧在解题过程中,我们可以利用一些技巧来求函数的像。
首先,我们可以通过函数的图像来判断函数的像。
例如,对于一元二次函数y=ax²+bx+c,我们可以观察抛物线的开口方向和顶点位置来判断函数的像。
如果a>0,抛物线开口向上,顶点是函数的最小值,反之则是最大值。
其次,我们可以利用函数的定义域来进行求解。
例如,对于有理函数f(x)=1/(x-1),我们知道分母不能为0,所以定义域为x≠1。
因此,当x=1时,f(x)没有意义,不存在像。
最后,我们还可以通过函数的方程来求解像。
例如,对于指数函数y=2ˣ,当x=3时,我们可以将x代入函数方程中计算y的值,即y=2³=8。
所以x=3时,y的像是8。
三、性质的研究技巧研究函数的性质有助于我们深入理解函数的规律,并更好地应用于解题中。
首先,我们可以通过图像研究函数的增减性。
例如,对于正比例函数y=kx中,当k>0时,函数是增函数,当k<0时,函数是减函数。
其次,我们可以利用函数的导数来研究函数的性质。
例如,对于求解函数的最值问题,我们可以通过导数的符号变化来判断函数的最值点。
如果函数的导数在某一点的左侧为正,右侧为负,则该点是函数的极大值点。
反之,如果导数在某一点的左侧为负,右侧为正,则该点是函数的极小值点。
最后,我们还可以利用函数的定义来研究函数的性质。
例如,对于奇偶函数的研究,我们可以通过函数方程来判断函数的奇偶性。
如果f(-x)=-f(x),则函数是奇函数;如果f(-x)=f(x),则函数是偶函数。
高考数学:专题10 函数图像的判断(解析版)
【高考地位】函数图像作为高中数学一个“重头戏”,是研究函数性质、方程、不等式重要武器,已经成为各省市高考命题一个热点。
在高考中经常以几类初等函数图像为基础,结合函数性质综合考查,多以选择、填空题形式出现。
【方法点评】方法一 特值法使用情景:函数()f x 解析式已知情况下解题模板:第一步 将自变量或者函数值赋以特殊值;第二步 分别一一验证选项是否符合要求; 第三步 得出结论.例1 函数x x x y sin cos +=图象大致为( )【答案】C考点:函数图像【点评】特值法是解决复杂函数图像问题方法之一,其将复杂问题简单化,且操作性简单可行。
【变式演练1】函数()2ln y x x =+图象大致为( )A .B .C .D .【答案】A【解析】试题分析:解:令()2ln y x x =+0=,解得1,1,2--=x ,∴该函数有三个零点,故排除B ;当2-<x 时,02<+x ,2>x ,02ln ln >>∴x ,∴当2-<x 时,()2ln y x x =+0<,排除C 、D .故选A .考点:函数图象.【变式演练2】函数()1cos f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0x ≠)图象可能为( )【答案】D 【解析】考点:1.函数基本性质;2.函数图象. 【变式演练3】现有四个函数:①②③④图象(部分)如下,则按照从左到右将图象对应函数序号安排正确一组是( )A .④①②③ B.①④③② C.①④②③ D.③④②① 【答案】C【解析】试题分析:因为,所以是偶函数,图象关于轴对称,即与左1图对应,故排除选项A 、D ,因为当时,,故函数图象与左3图对应,故排除选项B ;故选C .【方法点睛】本题考查通过函数解析式和性质确定函数图象,属于中档题;已知函数解析式确定函数图象,往往从以下几方面考虑:定义域(确定图象是否连续),奇偶性(确定图象对称性),单调性(确定图象变化趋势),最值(确定图象最高点或最低点),特殊点函数值(通过特殊函数值排除选项),其主要方法是排除法.考点:1.函数奇偶性;2.函数图象.【变式演练4】函数xe x y )1(2-=图象大致是( )【答案】C 【解析】考点:偶函数图象性质.方法二 利用函数基本性质判断其图像使用情景:函数()f x 解析式已知情况下解题模板:第一步 根据已知函数解析式分析其变化特征如单调性、奇偶性、定义域和值域等;第二步 结合简单基本初等函数图像特征如对称性、周期性等进行判断即可; 第三步 得出结论.例2 函数()(1)ln ||f x x x =-图象大致为( )【答案】A 【解析】考点:1、导数在研究函数单调性中应用;2、函数图像.【思路点睛】本题主要考查了导数在研究函数单调性中应用和函数图像,具有一定综合性,属中档题.其解题一般思路为:首先观察函数表达式特征如0)1(=f ,然后运用导数在研究函数单调性和极值中应用求出函数单调区间,进而判断选项,最后将所选选项进行验证得出答案即可.其解题关键是合理地分段求出函数单调性.【变式演练5】如图,周长为1圆圆心C 在y 轴上,顶点()01A ,,一动点M 从A 开始逆时针绕圆运动一周,记走过弧长AM x =,直线AM 与x 轴交于点()0N t ,,则函数()t f x =图象大致为( )A .B .C .D .【答案】D 【解析】试题分析:由圆对称性可知,动点N 轨迹关于原点对称,且在原点处,21=x ,0=y ;当点M 位于左半圆时,随着弧AM 长递增,t 值递增,且变化由快到慢,由给定图象可知选D . 考点:函数图象.【变式演练6】如图可能是下列哪个函数图象( )A .221xy x =-- B .2sin 41x xy x =+C .ln x y x=D .2(2)xy x x e =- 【答案】D 【解析】考点:函数图象和性质.【变式演练7】如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于x 轴直线:(0)l x t t a =≤≤经过原点O 向右平行移动,l 在移动过程中扫过平面图形面积为y (图中阴影部分),若函数()y f x =大致图像如图,那么平面图形形状不可能是( )【答案】C【解析】试题分析:由函数图象可知,几何体具有对称性,选项A ,B ,D ,l 在移动过程中扫过平面图形面积为y ,在中线位置前,都是先慢后快,然后相反.选项C ,后面是直线增加,不满足题意. 考点:函数图象与图形面积变换关系. 【变式演练8】函数()21x f x e-=(e 是自然对数底数)部分图象大致是( )【答案】C 【解析】【变式演练9】函数2ln x x y x=图象大致是( )A .B .C .D .【答案】D 【解析】试题分析:从题设中提供解析式中可以看出1,0±≠x ,且当0>x 时, x x y ln =,由于x y ln 1/+=,故函数x x y ln =在区间)1,0(e 单调递减;在区间),1(+∞e单调递增.由函数图象对称性可知应选D. 考点:函数图象性质及运用.【变式演练10】函数()21cos 1e xf x x ⎛⎫=-⎪+⎝⎭图象大致形状是( ) A . B .C .D .【答案】B 【解析】考点:函数奇偶性及函数图象. 【变式演练11】若函数()2(2)m xf x x m-=+图象如图所示,则m 范围为( )A .(),1-∞-B .()1,2-C .()0,2D .()1,2 【答案】D考点:1.函数奇偶性;2.函数单调性;3.导数应用.【高考再现】1. 【2016高考新课标1卷】函数22xy x e =-在[]2,2-图像大致为(A )(B )(C )(D )【答案】D考点:函数图像与性质【名师点睛】函数中识图题多次出现在高考试题中,也可以说是高考热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中难点,解决这类问题方法一般是利用间接法,即由函数性质排除不符合条件选项.2.【2015高考安徽,理9】函数()()2ax bf x x c +=+图象如图所示,则下列结论成立是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c >(C )0a <,0b >,0c < (D )0a <,0b <,0c <【答案】 C【考点定位】1.函数图象与应用.【名师点睛】函数图象分析判断主要依据两点:一是根据函数性质,如函数奇偶性、单调性、值域、定义域等;二是根据特殊点函数值,采用排除方法得出正确选项.本题主要是通过函数解析式判断其定义域,并在图形中判断出来,另外,根据特殊点位置能够判断,,a b c 正负关系.3.【2015高考新课标2,理10】如图,长方形ABCD 边2AB =,1BC =,O 是AB 中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 函数()f x ,则()y f x =图像大致为( )(D)(C)(B)(A)yπ4π23π4ππ3π4π2π4yyπ4π23π4ππ3π4π2π4yDPCOAx【答案】B【考点定位】函数图象和性质.【名师点睛】本题考查函数图像与性质,表面看觉得很难,但是如果认真审题,读懂题意,通过点P 运动轨迹来判断图像对称性以及特殊点函数值比较,也可较容易找到答案,属于中档题.4.【2015高考北京,理7】如图,函数()f x 图象为折线ACB ,则不等式()()2log 1f x x +≥解集是( )A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C【解析】如图所示,把函数2log y x =图象向左平移一个单位得到2log (1)y x =+图象1x =时两图象相交,不等式解为11x -<≤,用集合表示解集选C【考点定位】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,体现了数形结合思想.【名师点睛】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,本题属于基础题,首先是函数图象平移变换,把2log y x =沿x 轴向左平移2个单位,得到2log (y x =+2)图象,要求正确画出画出图象,利用数形结合写出不等式解集.5.【2014年.浙江卷.理7】在同意直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=图像可能是( )答案: D考点:函数图像.【名师点睛】本题主要考查了函数指数与对数函数图像和性质,属于常见题目,难度不大;识图常用方法:(1)定性分析法:通过对问题进行定性分析,从而得出图象上升(或下降)趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量计算来分析解决问题;(3)函数模型法:由所提供图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.6. 【2014福建,理4】若函数log (0,1)a y x a a =>≠且图像如右图所示,则下列函数图像正确是( )13OxyDC BAy=log a (-x)y=(-x)ay=x ay=a -x-1-3113OO OO1y x1xy1xyxy【答案】B 【解析】考点:函数图象.【名师点睛】本题主要考查函数图像识别问题及分析问题解决问题能力,求解此题首先要根据图像经过特殊点,确定参数值,然后利用函数单调性确定正确选项,解决此类问题要重视特殊点及单调性应用.【反馈练习】1. 【2017届河北武邑中学高三上周考8.14数学试卷,文5】函数111y x =--图象是( )【答案】B 【解析】试题分析:将1y x =-图象沿x 轴向右平移1个单位得到11y x =--图象,再沿y 轴向上平移1个单位得到111y x =--图象.故选B . 考点:函数图象平移变换.2. 【2017届广东华南师大附中高三综合测试一数学试卷,文10】函数2ln xy x=图象大致为( )A .B .C .D .【答案】B3. 【2017届广东佛山一中高三上学期月考一数学试卷,理6】函数22x y x -=图象大致是( )【答案】A 【解析】试题分析:当1x <-时,22x x <,即220x x -<,排除C 、D ,当3x =时,322310y =-=-<,排除B ,故选A .考点:函数图象.4. 【2016-2017学年山西榆社中学高一10月月考数学试卷,理7】已知函数()f x 定义域为[],a b ,函数()y f x =图象如图甲所示,则函数(||)f x 图象是图乙中( )【答案】B 【解析】考点:函数图象与性质.5. 【2016-2017学年河北徐水县一中高一上月考一数学试卷,理5】下列图中,画在同一坐标系中,函数2y ax bx =+与y ax b =+(0a ≠,0b ≠)函数图象只可能是( )【答案】B【解析】试题分析:()2f x ax bx =+图象是抛物线,()g x ax b =+图象是直线.A 选项()f x 开口向上,说明0a >,直线应斜向上,故A 错误.D 选项()f x 开口向下,说明0a <,直线应斜向下,故D 错误. C 选项()f x 图象不过原点,错误.故选B. 考点:函数图象与性质.6. 【2017届河北武邑中学高三上周考8.14数学试卷,理9】已知函数()y f x =大致图象如图所示,则函数()y f x =解析式应为( )A .()ln x f x e x =B .()ln(||)xf x ex -=C .()ln(||)xf x e x = D .||()ln(||)x f x e x = 【答案】C 【解析】考点:函数性质.7. 【2017届湖南长沙长郡中学高三上周测十二数学试卷,文8】函数22()(44)log x x f x x -=-图象大致为( )【答案】A 【解析】试题分析:因为22()(44)log x x f x x -=-,()2222()(44)log (44)log x x x x f x x x f x ---=-=--=-,所以22()(44)log x x f x x -=-是奇函数,排除B 、C ,又因为0x →时,0y →,所以排除D ,故选A.考点:1、函数图象;2、函数奇偶性.8. 【2017届重庆市第八中学高三上适应性考试一数学试卷,理10】如图1,圆O 半径为1,A 是圆上定点,P 是圆上动点,角x 始边为射线OA ,终边为射线OP ,过点P 作直线OA 垂线,垂足为M ,将点M 到直线OP 距离与O 到M 距离之和表示成x 函数()f x ,则()y f x =在[]0,π上图象大致是( )A .B .C .D .【答案】B 【解析】考点:函数实际应用.9.【 2017届河南新乡一中高三9月月考数学试卷,文7】设曲线2()1f x x =+在点(,())x f x 处切线斜率为()g x ,则函数()cos y g x x =部分图象可以为( )【答案】A 【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A .考点:1、函数图象及性质;2、选择题“特殊值”法.10. 【2017届湖北襄阳五中高三上学期开学考数学试卷,文6】已知函数)(x f 是定义在R 上增函数,则函数1|)1(|--=x f y 图象可能是( )A .B .C .D .【答案】B 【解析】考点:函数图象,图象变换.。
高考数学中如何使用函数图像解题
高考数学中如何使用函数图像解题高考数学是许多学生最为头痛的科目之一,其中数学二的考试难度更是备受关注。
其中,函数图像是高考数学中常被出现的一个重要考点之一。
因此,掌握函数图像的解题方法,对于理解和掌握函数知识点至关重要。
本文将介绍如何在高考数学中使用函数图像解题。
1. 函数概念首先,在介绍函数图像的解题方法之前,我们需要先了解函数的概念。
函数是数学中的一个重要概念,用于描述两个变量之间的关系。
在数学中,通常用f(x) 或y 表示函数,其中x 是自变量,y 或 f(x) 是函数的函数值(也称为因变量)。
函数的定义域是自变量的取值范围,而值域则是函数的所有可能取值的集合。
2. 函数图像的解题方法接下来,我们将介绍函数图像的解题方法。
函数图像通常用来表示函数在平面直角坐标系中的图像。
在解题时,我们可以利用函数图像来判断函数的性质以及求解函数值等问题。
具体而言,函数图像可以帮助我们完成以下任务:(1)判断函数的奇偶性:通过观察函数图像是否关于 y 轴或者原点对称,我们可以判断函数的奇偶性。
如果函数图像关于 y 轴对称,则函数为偶函数;如果函数图像关于原点对称,则函数为奇函数;否则为既非偶函数也非奇函数。
(2)求解函数值:通过函数图像,我们可以读取函数在某个特定的自变量值下的函数值。
这可以帮助我们解决一些求函数值的问题。
(3)确定函数的极值和零点:在函数图像上,函数的极值对应的是函数的最值点,而函数的零点则对应的是函数图像与 x 轴相交的点。
通过观察函数图像,我们可以确定函数在哪些自变量的取值下取到最值,以及函数在哪些自变量取值下为零。
(4)判断函数的单调性:通过观察函数图像上的斜率趋势,我们可以判断函数的单调性。
如果函数图像的斜率单调递增或者单调递减,则函数为单调函数;如果函数图像上既有上升部分又有下降部分,则函数为非单调函数。
(5)求解函数的反函数:函数图像可以帮助我们求解函数的反函数。
具体而言,如果函数图像关于 y = x 对称,则其反函数存在,并且其图像就是原函数图像通过 y = x 对称得到的。
根据函数解析式确认函数图像的技巧
利用函数解析式确认函数图像技巧一:定义域影响函数定义域的限制条件主要有以下五种情况:①分式中的分母不为0②偶次方根下的式子大于等于0③对数函数的真数大于0④0的非正数次方无意义⑤正切函数y=tanx,x≠kπ+π/2(k∈Z)技巧二:奇偶性在函数定义域关于y轴对称的前提下,判断f(x)与f(-x)的关系:如果f(x)+f(-x)=0,则为奇函数,函数图像关于原点对称如果f(x)=f(-x),则为偶函数,函数图像关于y轴对称常见的奇函数有:①f(x)=a‧x n m,(其中m,n均为奇数)②f(x)=A‧sinwx③f(x)=A‧tanwx④f(x)=a x-a-x⑤f(x)=a x−a−xa x+a−x⑥f(x)=log a b−xb+x⑦f(x)=∣ax+b∣-∣ax-b∣常见的偶函数有:①f(x)= a‧x n m,(其中m为奇数,n为偶数)②f(x)=A‧coswx③f(x)=a x+a-x④f(x)=∣ax+b∣+∣ax-b∣奇偶性的四则运算①奇函数+奇函数=奇函数②偶函数+偶函数=偶函数③奇函数×(或÷)奇函数=偶函数④奇函数×(或÷)偶函数=奇函数⑤偶函数×(或÷)奇函数=奇函数⑥偶函数×(或÷)偶函数=偶函数技巧三:特殊值点根据函数表达式,当x取特殊值时(主要是x=0,定义域的端点值或者根据题目的特点得到其他的特殊值),进而得到y的取值或取值范围,从而确定大致的图像位置。
技巧四:极限思想极限思想是分析问题了解决问题的一种数学思想,将一个问题极限化,考虑最极端的情况,忽略过程,得出结果,它是判断函数的图像的一种重要方法,主要将自变量取如下的极限:①x→+∞②x→-∞③x→0+ ④x→0- ⑤x→a+ ⑥x→a-备注:对于⑤⑥中a的取值是视题目中的实际条件而定。
针对极限思想判断函数的取值时,首先判断函数式的正负,再判断大小。
高考函数专题_函数图像.doc
函数图像作图:1. 步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2. 图象变换法作图(对于需要掌握的基本初等函数或者已知部分图像的函数)(1)平移变换【变化是针对自变量的】(2)对称变换①y =f (x )――→关于x 轴对称y = ; ②y =f (x )――→关于y 轴对称y = ; ③y =f (x )――→关于原点对称y = ;④y =a x (a >0且a ≠1)――→关于y =x 对称y = . (3)翻折变换①y =f (x )――→保留x 轴上方图象将x 轴下方图象翻折上去y = . ②y =f (x )――→保留y 轴右边图象,并作其关于y 轴对称的图象y =(4)伸缩变换①y =f (x ) y = .②y =f (x )――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y = .【练习】作函数图象1.分别画出下列函数的图象:(1)y =|lg x |; (2)y =2x +2; (3)y =x 2-2|x |-1; (4)y =x +2x -1.2. 作出下列函数的图象:(1)y =|x -2|(x +1);(2)y =10|lg x |.3.函数f (x )=1+log 2x 与g (x )=21-x 在同一直角坐标系下的图象大致是( )【图像题的几点依据】(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.函数图象的应用:5 已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.6 (2011·课标全国)已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y=|lg x|的图象的交点共有() A.10个B.9个C.8个D.1个7直线y=1与曲线y=x2-|x|+a有四个交点,则a的取值范围是________.高考中和函数图象有关的题目主要的三种形式一、已知函数解析式确定函数图象二、函数图象的变换问题典例:若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为()三、图象应用典例:讨论方程|1-x|=kx的实数根的个数.【练习题】一、选择题(每小题5分,共20分)1.把函数y=(x-2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是() A.y=(x-3)2+3 B.y=(x-3)2+1C.y=(x-1)2+3 D.y=(x-1)2+1答案 C解析函数y=(x-2)2+2的图象向左平移1个单位,将其中的x换为x+1,得到函数y=(x-1)2+2的图象;再向上平移1个单位,变成y=(x-1)2+3的图象.2.若函数f(x)=log a(x+b)的大致图象如图,其中a,b(a>0且a≠1)为常数,则函数g(x)=a x+b的大致图象是()答案 B解析由f(x)=log a(x+b)的图象知0<a<1,0<b<1,则g(x)=a x+b为减函数且g(x)的图象是在y=a x图象的基础上上移b个单位,只有B 适合.3.(2011·陕西)设函数f(x)(x∈R)满足f(-x)=f(x),f(x+2)=f(x),则y=f(x)的图象可能是()答案 B解析 由于f (-x )=f (x ),所以函数y =f (x )是偶函数,图象关于y 轴对称,所以A 、C 错 误;由于f (x +2)=f (x ),所以T =2是函数y =f (x )的一个周期,D 错误.所以选B. 4. (2012·北京)函数f (x )=x 12-⎝⎛⎭⎫12x的零点的个数为 ( )A .0B .1C .2D .3 答案 B解析 将函数零点转化为函数图象的交点问题来求解. 在同一平面直角坐标系内作出y 1=x 12与y 2=⎝⎛⎭⎫12x 的图象如图所 示,易知,两函数图象只有一个交点. 因此函数f (x )=x 12-⎝⎛⎭⎫12x 只有1个零点.二、填空题(每小题5分,共15分) 5. 已知下列曲线:以及编号为①②③④的四个方程:①x-y=0;②|x|-|y|=0;③x-|y|=0;④|x|-y=0.请按曲线A、B、C、D的顺序,依次写出与之对应的方程的编号________.答案④②①③解析按图象逐个分析,注意x、y的取值范围.6. 如图所示,正四棱柱ABCD—A1B1C1D1中,AA1=2,AB=1,M,N分别在AD1,BC上移动,始终保持MN∥平面DCC1D1,设BN=x,MN=y,则函数y=f(x)的图象大致是________.答案③解析过M作ME⊥AD于E,连接EN.则BN=AE=x,ME=2x,MN2=ME2+EN2,即y2=4x2+1,y2-4x2=1 (0≤x≤1,y≥1),图象应是焦点在y轴上的双曲线的一部分.7. (2011·北京)已知函数f (x )=⎩⎪⎨⎪⎧2x , x ≥2,(x -1)3, x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________. 答案 (0,1)解析 画出分段函数f (x )的图象如图所示,结合图象可以看出,若f (x )=k 有两个不同的实根,也即函数y =f (x )的图象与y =k 有两个不同的交点,k 的 取值范围为(0,1). 三、解答题(共25分)8. (12分)已知函数f (x )=x1+x.(1)画出f (x )的草图;(2)指出f (x )的单调区间. 解(1)f (x )=x 1+x =1-1x +1,函数f (x )的图象是由反比例函数y =-1x 的图象向左平移1个单位后,再向上平移1个单位得到,图象如图所示. (2)由图象可以看出,函数f (x )有两个单调递增区间: (-∞,-1),(-1,+∞).9. (13分)已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+ax,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.解 (1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图象上,即2-y =-x -1x +2,∴y =f (x )=x +1x (x ≠0).(2)g (x )=f (x )+ax =x +a +1x ,g ′(x )=1-a +1x 2.∵g (x )在(0,2]上为减函数,∴1-a +1x 2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,∴a +1≥4,即a ≥3,故a 的取值范围是[3,+∞).【练习题2】一、选择题(每小题5分,共15分)1. (2012·厦门模拟)函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则y =f (x +1)的图象大致是 ( )答案 B解析 将f (x )的图象向左平移一个单位即得到y =f (x +1)的图象. 2. 函数y =f (x )与函数y =g (x )的图象如图则函数y=f(x)·g(x)的图象可能是()答案 A解析从f(x)、g(x)的图象可知它们分别为偶函数、奇函数,故f(x)·g(x)是奇函数,排除B项.又g(x)在x=0处无意义,故f(x)·g(x)在x=0处无意义,排除C、D两项.3.(2011·课标全国)函数y=11-x的图象与函数y=2sin πx (-2≤x≤4)的图象所有交点的横坐标之和等于() A.2 B.4 C.6 D.8答案 D解析令1-x=t,则x=1-t.由-2≤x≤4,知-2≤1-t≤4,所以-3≤t≤3.又y=2sin πx=2sin π(1-t)=2sin πt.在同一坐标系下作出y =1t和y =2sin πt 的图象.由图可知两函数图象在[-3,3]上共有8个交点,且这8个交点两两关于原点对称. 因此这8个交点的横坐标的和为0,即t 1+t 2+…+t 8=0.也就是1-x 1+1-x 2+…+1-x 8=0,因此x 1+x 2+…+x 8=8.二、填空题(每小题4分,共12分)4. (2012·课标全国改编)当0<x ≤12时,4x <log a x ,则a 的取值范围是________. 答案 ⎝⎛⎭⎫22,1 解析 易知0<a <1,则由函数y =4x 与y =log a x 的大致图象知,只需满足log a 12>2,解得 a >22,∴22<a <1. 5. 用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为________.答案 6解析f(x)=min{2x,x+2,10-x}(x≥0)的图象如图.令x+2=10-x,得x=4.当x=4时,f(x)取最大值,f(4)=6.6.设b>0,二次函数y=ax2+bx+a2-1的图象为下列之一,则a的值为________.答案-1解析本题考查二次函数的图象与性质,先根据条件对图象进行判断是解题的关键.因为b>0,所以对称轴不与y轴重合,排除图象①②;对第三个图象,开口向下,则a<0,对称轴x=-b2a>0,符合条件,图象④显然不符合.根据图象可知,函数过原点,故f(0) =0,即a2-1=0,又a<0,故a=-1.三、解答题(13分)7.已知函数y=f(x)的定义域为R,并对一切实数x,都满足f(2+x)=f(2-x).(1)证明:函数y=f(x)的图象关于直线x=2对称;(2)若f(x)是偶函数,且x∈[0,2]时,f(x)=2x-1,求x ∈[-4,0]时f (x )的表达式.(1)证明 设P (x 0,y 0)是函数y =f (x )图象上任一点,则y 0=f (x 0),点P 关于直线x =2的对称点为P ′(4-x 0,y 0). 因为f (4-x 0)=f [2+(2-x 0)]=f [2-(2-x 0)]=f (x 0)=y 0,所以P ′也在y =f (x )的图象上,所以函数y =f (x )的图象关于直线x =2对称.(2)解 当x ∈[-2,0]时,-x ∈[0,2],所以f (-x )=-2x -1.又因为f (x )为偶函数,所以f (x )=f (-x )=-2x -1,x ∈[-2,0].当x ∈[-4,-2]时,4+x ∈[0,2],所以f (4+x )=2(4+x )-1=2x +7,而f (4+x )=f (-x )=f (x ),所以f (x )=2x +7,x ∈[-4,-2].所以f (x )=⎩⎪⎨⎪⎧ 2x +7,x ∈[-4,-2],-2x -1,x ∈[-2,0].。
高考数学难点突破难点10 函数图象
函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.●难点磁场(★★★★★)已知函数f (x )=ax 3+bx 2+cx +d 的图象如图,求b 的范围.●案例探究[例1]对函数y =f (x )定义域中任一个x 的值均有f (x +a )=f (a -x ),(1)求证y =f (x )的图象关于直线x =a 对称;(2)若函数f (x )对一切实数x 都有f (x +2)=f (2-x ),且方程f (x )=0恰好有四个不同实根,求这些实根之和命题意图:本题考查函数概念、图象对称问题以及求根问题.属★★★★★级题目. 知识依托:把证明图象对称问题转化到点的对称问题.错解分析:找不到问题的突破口,对条件不能进行等价转化.技巧与方法:数形结合、等价转化.(1)证明:设(x 0,y 0)是函数y =f (x )图象上任一点,则y 0=f (x 0),又f (a +x )=f (a -x ),∴f (2a -x 0)= f [a +(a -x 0)]=f [a -(a -x 0)]=f (x 0)=y 0,∴(2a -x 0,y 0)也在函数的图象上,而2)2(00x x a +-=a ,∴点(x 0,y 0)与(2a -x 0,y 0)关于直线x =a 对称,故y =f (x )的图象关于直线x =a 对称.(2)解:由f (2+x )=f (2-x )得y =f (x )的图象关于直线x =2对称,若x 0是f (x )=0的根,则4-x 0也是f (x )=0的根,由对称性,f (x )=0的四根之和为8.[例2]如图,点A 、B 、C 都在函数y =x 的图象上,它们的横坐标分别是a 、a +1、a +2.又A 、B 、C 在x 轴上的射影分别是A ′、B ′、C ′,记△AB ′C 的面积为f (a ),△A ′BC ′的面积为g (a ).(1)求函数f (a )和g (a )的表达式;(2)比较f (a )与g (a )的大小,并证明你的结论.命题意图:本题考查函数的解析式、函数图象、识图能力、图形的组合等.属★★★★★级题目.知识依托:充分借助图象信息,利用面积问题的拆拼以及等价变形找到问题的突破口. 错解分析:图形面积不会拆拼.技巧与方法:数形结合、等价转化.解:(1)连结AA ′、BB ′、CC ′,则f (a )=S △AB ′C =S 梯形AA ′C ′C -S △AA ′B ′-S △CC ′B =21(A ′A +C ′C )=21(2++a a ), g (a )=S △A ′BC ′=21A ′C ′·B ′B =B ′B =1+a . 0)11121(21)]1()12[(21)122(21)()()2(<++-+++=-+-+-+=+-++=-a a a a a a a a a a a a g a f ∴f (a )<g (a ).●锦囊妙计1.熟记基本函数的大致图象,掌握函数作图的基本方法:(1)描点法:列表、描点、连线;(2)图象变换法:平移变换、对称变换、伸缩变换等.2.高考中总是以几类基本初等函数的图象为基础来考查函数图象的.题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视.●歼灭难点训练一、选择题1.(★★★★)当a ≠0时,y =ax +b 和y =b ax 的图象只可能是()2.(★★★★)某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y 轴表示离学校的距离,x 轴表示出发后的时间,则适合题意的图形是()二、填空题3.(★★★★★)已知函数f (x )=log 2(x +1),将y =f (x )的图象向左平移1个单位,再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y =g (x )的图象,则函数F (x )=f (x )-g (x )的最大值为_________.三、解答题4.(★★★★)如图,在函数y =lg x 的图象上有A 、B 、C 三点,它们的横坐标分别为m ,m +2,m +4(m >1).(1)若△ABC 面积为S ,求S =f (m );(2)判断S =f (m )的增减性.5.(★★★★)如图,函数y =23|x |在x ∈[-1,1]的图象上有两点A 、B ,AB ∥Ox 轴,点M (1,m )(m ∈R 且m >23)是△ABC 的BC 边的中点. (1)写出用B 点横坐标t 表示△ABC 面积S 的函数解析式S =f (t );(2)求函数S =f (t )的最大值,并求出相应的C 点坐标.6.(★★★★★)已知函数f (x )是y =1102+x -1(x ∈R )的反函数,函数g (x )的图象与函数y =-21-x 的图象关于y 轴对称,设F (x )=f (x )+g (x ). (1)求函数F (x )的解析式及定义域;(2)试问在函数F (x )的图象上是否存在两个不同的点A 、B ,使直线AB 恰好与y 轴垂直?若存在,求出A 、B 的坐标;若不存在,说明理由.7.(★★★★★)已知函数f 1(x )=21x -,f 2(x )=x +2,(1)设y =f (x )=⎩⎨⎧∈--∈]1,0[ ),(3)0,1[ ),(21x x f x x f ,试画出y =f (x )的图象并求y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积;(2)若方程f 1(x +a )=f 2(x )有两个不等的实根,求实数a 的范围.(3)若f 1(x )>f 2(x -b )的解集为[-1,21],求b 的值. 8.(★★★★★)设函数f (x )=x +x1的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ).(1)求g (x )的解析表达式;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点坐标;(3)解不等式log a g (x )<log a 29 (0<a <1). 参考答案难点磁场解法一:观察f (x )的图象,可知函数f (x )的图象过原点,即f (0)=0,得d =0,又f (x )的图象过(1,0),∴f (x )=a +b +c ①,又有f (-1)<0,即-a +b -c <0②,①+②得b <0,故b 的范围是(-∞,0)解法二:如图f (0)=0有三根,∴f (x )=ax 3+bx 2+cx +d =ax (x -1)(x -2)=ax 3-3ax 2+2ax ,∴b = -3a ,∵a >0,∴b <0.歼灭难点训练一、1.解析:∵y =b ax =(b a )x ,∴这是以b a 为底的指数函数.仔细观察题目中的直线方程可知:在选择支B 中a >0,b >1,∴b a >1,C 中a <0,b >1,∴0<b a <1,D 中a <0,0<b <1,∴b a >1.故选择支B 、C 、D 均与指数函数y =(b a )x 的图象不符合.答案:A2.解析:由题意可知,当x =0时,y 最大,所以排除A 、C.又一开始跑步,所以直线随着x 的增大而急剧下降.答案:D二、3.解析:g (x )=2log 2(x +2)(x >-2)F (x )=f (x )-g (x )=log 2(x +1)-2log 2(x +2)=log 21441log 441log )2(122222+++=+++=++x x x x x x x x )1(21111log 2->++++=x x x ∵x +1>0,∴F (x )≤41log 211)1(21log 22=++⋅+x x =-2 当且仅当x +1= 11+x ,即x =0时取等号. ∴F (x )max =F (0)=-2.答案:-2三、4.解:(1)S △ABC =S 梯形AA ′B ′B +S 梯形BB ′C ′C -S 梯形AA ′C ′C .(2)S =f (m )为减函数.5.解:(1)依题意,设B (t ,23 t ),A (-t , 23t )(t >0),C (x 0,y 0). ∵M 是BC 的中点.∴20x t +=1,2230y t + =m . ∴x 0=2-t ,y 0=2m -23t .在△ABC 中,|AB |=2t ,AB 边上的高h AB =y 0-23t =2m -3t . ∴S =21|AB |·h AB = 21·2t ·(2m -3t ),即f (t )=-3t 2+2mt ,t ∈(0,1). (2)∵S =-3t 2+2mt =-3(t -3m )2+32m ,t ∈(0,1],若⎪⎪⎩⎪⎪⎨⎧>≤<23130m m ,即23<m ≤3,当t =3m 时,S max =32m ,相应的C 点坐标是(2-3m , 23m ),若3m >1,即m >3.S =f (t )(0,1]上是增函数,∴S max =f (1)=2m -3,相应的C 点坐标是(1,2m -3).6.解:(1)y =1102+x -1的反函数为f (x )=lg x x +-11(-1<x <1).由已知得g (x )=21+x ,∴F (x )=lg x x +-11+21+x ,定义域为(-1,1). (2)用定义可证明函数u =x x +-11=-1+12+x 是(-1,1)上的减函数,且y =lg u 是增函数.∴f (x )是(-1,1)上的减函数,故不存在符合条件的点A 、B .7.解:(1)y =f (x )=⎪⎩⎪⎨⎧∈+--∈-]1,0[,1)0,1[,12x x x x .图略. y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积为(2+2)π.(2)当f 1(x +a )=f 2(x )有两个不等实根时,a 的取值范围为2-2<a ≤1(3)若f 1(x )>f 2(x -b )的解集为[-1,21],则可解得b =235-. 8.(1)g (x )=x -2+41-x .(2)b =4时,交点为(5,4);b =0时,交点为(3,0). (3)不等式的解集为{x |4<x <29或x >6}.。
函数图象的判断(25题)含详细答案
函数图象的判断(25题)含详细答案一、选择题1.函数()33xy x x =-⋅的图象大致是()A .B .C .D .2.函数()2111x x x f x ln x x -+⎛⎫= ⎪--⎝⎭的图象大致为()A .B .C .D .3.函数()()||f x xcosx sinx ln x =+的部分图像大致为()A .B .C .D .4.函数2()(1)31x f x cosx =-⋅+的图像大致为()A .B .C .D .5.函数()313ln xf x x x=-的图象可能为()A .B .C .D .6.函数()2sin222x xx xf x -=-的图象大致为()A .B .C .D .7.已知函数()y f x =部分图象如图所示,则函数()f x 的解析式可能为()A .()sin2f x x x =B .()sin f x x x =C .()2sin xf x x=D .()2sin2xf x x=8.“家在花园里,城在山水间.半城山色半城湖,美丽惠州和谐家园......”首婉转动听的《美丽惠州》唱出了惠州的山姿水色和秀美可人的城市环境.下图1是惠州市风景优美的金山湖片区地图,其形状如一颗爱心.图2是由此抽象出来的一个“心形”图形,这个图形可看作由两个函数的图象构成,则“心形”在x 轴上方的图象对应的函数解析式可能为()A .y =B .y =C .y =D .y =9.已知函数e (21)()1x x f x x -=-,则()f x 的大致图象为()A .B .C .D .10.函数()2221x xf x x--=-的图象大致是()A .B .C .D ..11.函数()1f x x sinx x ⎛⎫=-⎪⎝⎭的图象可能为()A .B .C .D .12.函数3e ()e cosxf x x lncosx+=-的图象大致为()A .B .C .D .13.函数()221()22xxx sinx f x -+=+的部分图象大致是()A .B .C .D .14.如图是下列某个函数在区间[]22-,的大致图象,则该函数是()A .()3223312x x x xf x cosx +-=+B .()322331x x xf x x +-=+C .()3221x x xf x sinx x -+=+D .()2251x xf x cosxx -=+15.数学与音乐有着紧密的关联,我们平时听到的乐音一般来说并不是纯音,而是由多种波叠加而成的复合音.如图为某段乐音的图象,则该段乐音对应的函数解析式可以为()A .112323y sinx sin x sin x =++B .112323y sinx sin x sin x=--C .112323y sinx cos x cos x=++D .112323y cosx cos x cos x=++16.函数()211e xf x sinx ⎛⎫=-⎪+⎝⎭的部分图像大致形状是()A .B .C .D .17.函数()e 1e 1x x f x cosx -=⋅+的图象大致为()A .B .C .D .18.函数())f x xln x =的图象大致为()A .B .C .D .19.函数()e ex xy sinxln -=+在区间[]ππ-,上的图象大致为()A .B .C .D .20.已知函数op =>0,≤0,则函数()1y f x =-的图象大致是()A .B .C .D .21.函数()3sin xf x x x=-在[]ππ-,上的图像大致为()A .B .C .D .22.函数3||x sinxy x -=的大致图象是()A .B .C .D .23.函数101()101x x f x sinx -=⋅+在区间ππ22⎡⎤-⎢⎣⎦,上的图象大致为()A .B .C .D .24.已知函数()f x 的图象如图所示,则该函数的解析式可能是()A .()||||22f x sinx cosx sin x =+-B .()||||22f x sinx cosx sin x =-+C .()||||22f x sinx cosx cos x =-+D .()||||22f x sinx cosx cos x=++25.函数()e e 3πsin 242x x f x x -+⎛⎫=⋅- ⎪⎝⎭在[]44-,上的图象大致是()A .B .C .D .答案解析部分1.【答案】B【知识点】函数的图象【解析】【解答】解:函数()33xy x x =-⋅的定义域为R ,()()()()()33x f x x x f x --=---⋅=-,所以函数()33xy x x =-⋅为奇函数,故排除CD 选项,当01x <<时,3x x <,所以()330xy x x =-⋅<再排除A.故答案为:B.【分析】先求函数的定义域,利用函数的奇偶性判处CD 选项,再根据01x <<时,函数值的正负即可排除A.2.【答案】A【知识点】奇偶函数图象的对称性;函数的图象【解析】【解答】解:因为()2111x x x f x ln x x -+⎛⎫= ⎪--⎝⎭,所以101xx+>-,解得:-1<x<1,即函数f(x)的定义域为(-1,1),所以()()2111111111x x x x x x x f x ln ln xln x x x x x --+++⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭,()()()111111x x x f x x ln xln xln f x x x x --+⎛⎫⎛⎫⎛⎫-=--==-= ⎪ ⎪ ++-⎝⎭⎝⎭⎝⎭,所以函数f(x)是偶函数,故排除C 、D 选项;当0<x<1时,则-1<-x<0,1<1+x<2,0<1-x<1,所以111x x +>-,则1ln 01x x +⎛⎫> ⎪-⎝⎭,所以f(x)<0,排除B 选项;故答案为:A.【分析】先求出f(x)的定义域并化简解析式,利用奇偶性排除C 、D 选项,再推导出当0<x<1时,f(x)<0排除B 选项.3.【答案】A【知识点】函数的奇偶性;奇偶函数图象的对称性;函数的图象【解析】【解答】函数()()||f x xcosx sinx ln x =+的定义域为{}|0x x ≠,且()()()()()f x xcos x sin x ln x xcosx sinx lnx f x -=--+--=--=-⎡⎤⎣⎦,所以函数()f x 是奇函数,其函数图象关于()00,对称,所以C 、D 不符合题意;又ππππππ0222222f cos sin ln ln ⎛⎫=-+⋅=> ⎪⎝⎭,所以B 不符合题意;故答案为:A.【分析】利用奇偶函数的定义可判定出函数()f x 是奇函数,再根据奇函数图象的对称性可排除C 、D ;再由π02f ⎛⎫> ⎪⎝⎭可排除B ;进而可得答案.4.【答案】B【知识点】函数的奇偶性;奇函数与偶函数的性质;函数的图象【解析】【解答】2()(1)31x f x cosx =-⋅+,则()f x 的定义域为R ,又()()()2232111313131x x x x f x cos x cosx cosx f x -⎛⎫⨯⎛⎫⎛⎫-=-⋅-=-⋅=-+⋅=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,所以()f x 为奇函数,图象关于原点对称,故排除CD ,当πx =时,()ππ22π=1π-1+03131f cos ⎛⎫-=< ⎪++⎝⎭,故排除A.故答案为:B.【分析】根据题意,先分析函数的奇偶性,排除C 、D ;结合特殊值()πf ,排除A ;综合可得答案.5.【答案】D【知识点】函数的奇偶性;奇函数与偶函数的性质;函数的图象【解析】【解答】函数()313ln x f x x =-定义域为(0)(0)⋃-∞+∞,,,()()()331133ln x ln x f x x x f x -⎛⎫-=--=--=- ⎪-⎝⎭则函数()f x 为奇函数,其图像关于原点中心对称,排除C ;又()3111110313ln f =⨯-=>,排除AB ;故答案为:D【分析】先判断出函数f (x)为奇函数,排除选项C ;再利用特值f (1)>0排除选项A 、B ;进而得到答案.6.【答案】D【知识点】函数的奇偶性;函数的图象【解析】【解答】由()2sin222x x x x f x -=-可得定义域为{|0}x x ≠,因为()()()2sin222x x x x f x f x ---==-,所以()f x 是偶函数,函数图象关于y 轴对称,A ,C 不符合题意;又()2111sin21022f -⨯=>-,B 中图象不符合,D 中图象符合,故答案为:D .【分析】利用函数的奇偶性以及函数值的符号,逐项进行判断,可得答案.7.【答案】D【知识点】分段函数的解析式求法及其图象的作法;函数的图象【解析】【解答】由图象知()[]00πf x x =∈,,有三个零点经验证只有AD 满足,排除BC 选项,A 中函数满足()sin(2)sin2()f x x x x x f x -=--==为偶函数,D 中函数满足()2(2)22()x x f x sin x sin x f x --=-=-=-为奇函数,而图像关于原点对称,函数为奇函数,排除A ,选D .故答案为:D .【分析】由函数图象结合函数零点与函数与x 轴交点横坐标的等价关系,依据奇函数和偶函数的定义、对称性,逐项排除可得答案。
高中数学函数解题技巧方法总结(高考)
高中数学函数解题技巧方法总结(高考)高中数学函数知识点总结1. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 2. 求函数的定义域有哪些常见类型?()()例:函数的定义域是y x x x =--432lg ()()()(答:,,,)022334Y Y函数定义域求法:● 分式中的分母不为零;● 偶次方根下的数(或式)大于或等于零;● 指数式的底数大于零且不等于一;对数式的底数大于零且不等于一,真数大于零。
● 正切函数x y tan =∈+≠∈Z ππk k x R x ,2,且● 余切函数x y cot = ()Z π∈≠∈k k x R x ,,且●反三角函数的定义域函数y =arcsinx 的定义域是 [-1, 1] ,值域是,函数y =arccosx 的定义域是 [-1, 1] ,值域是[0, π] ,函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R ,值域是(0, π) .当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。
3. 如何求复合函数的定义域?[]的定,则函数,,的定义域是如:函数)()()(0)(x f x f x F a b b a x f -+=>-> 义域是_____________。
[](答:,)a a -复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。
例若函数)(x f y =的定义域为??2,21,则)(log 2x f 的定义域为。
分析:由函数)(x f y =的定义域为??2,21可知:221≤≤x ;所以)(log 2x f y =中有2log 212≤≤x 。
高考函数解题方法加技巧
第一讲函数图象解题思维+方法+技巧课堂笔记一.基本初等函数的图象与性质1.指数函数图象与性质a>1 0<a<1R2.对数函数图象与性质a>1 0<a<1(0,+∞)若你感觉指数对数函数没学好,那问题可能在运算上!3. 幂函数图象对于幂函数y=x α我们只讨论α=1,2,3,12,-1时的情形。
在同一平面直角坐标系中,它们的图象如下:4. 三角函数图像与性质正弦、余弦、正切函数的图像及其性质:二. 函数的单调性1. 定义:设函数f (x )的定义域为I :(1)增函数:如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2幂函数的热点集中在第一象限!这里,谁在上方,谁在下方?这里,谁在上方?谁在下方?终边在坐标轴上角出现频率高不高?时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数.(2)减函数:如果对于定义域I 内某个区间D 上的任意两个自变量的值x1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数. 2. 单调区间若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 三.函数的奇偶性与对称性 1.函数的奇偶性2.函数的对称性1)轴对称:如果一个函数的图象沿一条直线对折,直线两侧的图象能够完全重合,则称该函数具备对称性中的轴对称。
该直线称为该函数的对称轴。
2)中心对称:如果一个函数的图象沿一个点旋转180度,所得的图象能与原函数图象完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。
四. 函数的周期性对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.……………………………………………………………………………………………………… 1.对幂函数f (x )=x −32有以下结论 (1)f (2)f (3)f (4)f (5)f是减函数!叮嘱:自己写单调区间,就写开区间!叮嘱:若函数有两个不同的增区间,中间要用“逗号”,千万别“犯病”啊!奇函数:围城偶函数:人间蒸发8个著名的奇偶函数!偶函数代表一切轴对称函数(图像),这是啥意思?奇函数代表一切中心对称函数(图像),又是啥意思?今天是周几,再过7天还是周几!【解答】解:对幂函数f (x )=x−32=1√x ,以下结论(1)f (x )的定义域是{x |x >0,x ∈R },因此不正确; (2)f (x )的值域是(0,+∞),正确; (3)f (x )的图象只在第一象限,正确; (4)f (x )在(0,+∞)上递减,正确; (5)f (x )是非奇非偶函数,因此不正确. 则所有正确结论的序号是(2)(3)(4). 故答案为:(2)(3)(4).2.已知函数f (x )=sin ωx +a cos ωx (ω>0)的最小正周期为π, 且x =π12是函数f (x)图象的一条对称轴,则f (x )的最大值为( ) A .1 B .√2C .√5D .2解:函数f (x )=sin ωx +a cos ωx (ω>0)的最小正周期为π, 所以:ω=2,当x =π12时,f(π12)=12+√32a 解得:a =√3,所以:f (x )=sin2x +√3cos2x , =2sin (2x +π3), 所以函数的最大值为2. 故选:D .3. 已知函数f (x )={x 2+(4a −3)x +3a ,x <0log a (x +1)+1,x ≥0(a >0且a ≠1)在R 上单调递减,则a 的取值范围是( ) A .[34,1)B .(0,34]C .[13,34]D .(0,13]【解答】解:由题意,分段函数是在R 上单调递减, 可得对数的底数需满足0<a <1,幂函数是一个比较“低调”的函数,不常出现,正要小心!山上有奇峰锁在烟雾中不常看不到偶尔露峥嵘对称轴那里,要么是最大值,要么是最小值。
高考数学考点归纳之 函数的图象
高考数学考点归纳之 函数的图象一、基础知识1.利用描点法作函数图象 其基本步骤是列表、描点、连线. 首先:(1)确定函数的定义域; (2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);其次,列表,描点,连线. 2.函数图象的变换 (1)平移变换①y =f (x )的图象――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a )的图象; ②y =f (x )的图象――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b 的图象. “左加右减,上加下减”,左加右减只针对x 本身,与x 的系数,无关,上加下减指的是在f (x )整体上加减.(2)对称变换①y =f (x )的图象―――――→关于x 轴对称 y =-f (x )的图象; ②y =f (x )的图象―――――→关于y 轴对称 y =f (-x )的图象; ③y =f (x )的图象――――――→关于原点对称y =-f (-x )的图象; ④y =a x (a >0且a ≠1)的图象―――――――→关于直线y =x 对称y =log a x (a >0且a ≠1)的图象. (3)伸缩变换①y =f (x )的图象―――――――――――――――――――→a >1,横坐标缩短为原来的1a 纵坐标不变0<a <1,横坐标伸长为原来的1a倍,纵坐标不变y =f (ax )的图象. ②y =f (x )的图象――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x )的图象. (4)翻折变换 ①y =f (x )的图象――→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象;②y =f (x )的图象――→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象.二、常用结论1.函数图象自身的轴对称(1)f (-x )=f (x )⇔函数y =f (x )的图象关于y 轴对称;(2)函数y =f (x )的图象关于x =a 对称⇔f (a +x )=f (a -x )⇔f (x )=f (2a -x )⇔f (-x )=f (2a +x );(3)若函数y =f (x )的定义域为R ,且有f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b 2对称.2.函数图象自身的中心对称(1)f (-x )=-f (x )⇔函数y =f (x )的图象关于原点对称;(2)函数y =f (x )的图象关于(a,0)对称⇔f (a +x )=-f (a -x )⇔f (x )=-f (2a -x )⇔f (-x )=-f (2a +x );(3)函数y =f (x )的图象关于点(a ,b )成中心对称⇔f (a +x )=2b -f (a -x )⇔f (x )=2b -f (2a -x ).3.两个函数图象之间的对称关系(1)函数y =f (a +x )与y =f (b -x )的图象关于直线x =b -a2对称(由a +x =b -x 得对称轴方程);(2)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称; (3)函数y =f (x )与y =2b -f (-x )的图象关于点(0,b )对称; (4)函数y =f (x )与y =2b -f (2a -x )的图象关于点(a ,b )对称.考点一 作函数的图象[典例] 作出下列函数的图象.(1)y =⎩⎪⎨⎪⎧-2x +3,x ≤1,-x 2+4x -2,x >1;(2)y =2x +2; (3)y =x 2-2|x |-1.[解] (1)分段分别画出函数的图象,如图①所示.(2)y =2x+2的图象是由y =2x 的图象向左平移2个单位长度得到的,其图象如图②所示.(3)y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0,其图象如图③所示.[变透练清]1.[变条件]若本例(2)变为y =⎝⎛⎭⎫12x -2,试作出其图象.解:y =⎝⎛⎭⎫12x -2的图象是由y =⎝⎛⎭⎫12x 的图象向右平移2个单位长度得到的,其图象如图 所示.2.[变条件]若本例(3)变为y =|x 2-2x -1|,试作出其图象.解:y =⎩⎨⎧x 2-2x -1,x ≥1+2或x ≤1-2,-x 2+2x +1,1-2<x <1+2,其图象如图所示.考点二 函数图象的识辨[例1] (2018·全国卷Ⅱ)函数f (x )=e x -e -xx 2的图象大致为( )[解析] ∵y =e x -e -x 是奇函数,y =x 2是偶函数,∴f (x )=e x -e -xx 2是奇函数,图象关于原点对称,排除A 选项;当x =1时,f (1)=e -1e >0,排除D 选项;又e>2,∴1e <12,∴e -1e>1,排除C 选项.故选B.[答案]B[例2]已知定义在区间[0,4]上的函数y=f(x)的图象如图所示,则y=-f(2-x)的图象为()[解析]法一:先作出函数y=f(x)的图象关于y轴的对称图象,得到y=f(-x)的图象;然后将y=f(-x)的图象向右平移2个单位,得到y=f(2-x)的图象;再作y=f(2-x)的图象关于x轴的对称图象,得到y=-f(2-x)的图象.故选D.法二:先作出函数y=f(x)的图象关于原点的对称图象,得到y=-f(-x)的图象;然后将y=-f(-x)的图象向右平移2个单位,得到y=-f(2-x)的图象.故选D.[答案]D[解题技法]1.函数图象与解析式之间的4种对应关系(1)从函数的定义域,判断图象的左右位置,从函数的值域(或有界性),判断图象的上下位置;(2)从函数的单调性,判断图象的升降变化趋势;(3)从函数的奇偶性,判断图象的对称性:奇函数的图象关于原点对称,在对称的区间上单调性一致,偶函数的图象关于y 轴对称,在对称的区间上单调性相反;(4)从函数的周期性,判断图象是否具有循环往复特点. 2.通过图象变换识别函数图象要掌握的两点(1)熟悉基本初等函数的图象(如指数函数、对数函数等函数的图象); (2)了解一些常见的变换形式,如平移变换、翻折变换. 3.借助动点探究函数图象解决此类问题可以根据已知条件求出函数解析式后再判断函数的图象,也可以采用“以静观动”,即将动点处于某些特殊的位置处考察图象的变化特征,从而作出选择.[题组训练]1.(2019•郑州调研)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≥01x ,x <0,g (x )=-f (-x ),则函数g (x )的图象是( )解析:选D 法一:由题设得函数g (x )=-f (-x )=⎩⎪⎨⎪⎧-x 2,x ≤0,1x ,x >0,据此可画出该函数的图象,如题图选项D 中图象.故选D.法二:先画出函数f (x )的图象,如图1所示,再根据函数f (x )与-f (-x )的图象关于坐标原点对称,即可画出函数-f (-x ),即g (x )的图象,如图2所示.故选D.2.如图,不规则四边形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 交AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分的面积为y ,则y 关于x 的图象大致是( )解析:选C 当l 从左至右移动时,一开始面积的增加速度越来越快,过了D 点后面积保持匀速增加,图象呈直线变化,过了C 点后面积的增加速度又逐渐减慢.故选C.考点三 函数图象的应用考法(一) 研究函数的性质[典例] 已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)[解析] 将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.[答案] C[解题技法] 利用函数的图象研究函数的性质对于已知或解析式易画出其在给定区间上图象的函数,其性质常借助图象研究: (1)从图象的最高点、最低点,分析函数的最值、极值; (2)从图象的对称性,分析函数的奇偶性;(3)从图象的走向趋势,分析函数的单调性、周期性.考法(二) 在不等式中的应用[典例] 若不等式(x -1)2<log a x (a >0,且a ≠1)在x ∈(1,2)内恒成立,则实数a 的取值范围为( )A .(1,2] B.⎝⎛⎭⎫22,1C .(1,2)D .(2,2)[解析] 要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需函数y =(x -1)2在(1,2)上的图象在y =log a x 的图象的下方即可.当0<a <1时,显然不成立;当a >1时,如图,要使x ∈(1,2)时,y =(x -1)2的图象在y =log a x 的图象的下方,只需(2-1)2≤log a 2,即log a 2≥1,解得1<a ≤2,故实数a 的取值范围是(1,2].[答案] A [解题技法]当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上下关系问题,从而利用数形结合法求解.[题组训练]1.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)解析:选D 因为f (x )为奇函数, 所以不等式f (x )-f (-x )x <0可化为f (x )x<0,即xf (x )<0,f (x )的大致图象如图所示. 所以xf (x )<0的解集为(-1,0)∪(0,1).2.对a ,b ∈R ,记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,函数f (x )=max{|x +1|,|x -2|}(x ∈R)的最小值是________.解析:函数f (x )=max{|x +1|,|x -2|}(x ∈R)的图象如图所示, 由图象可得,其最小值为32.答案:323.已知函数f (x )=⎩⎨⎧log 2⎝⎛⎭⎫-x2,x ≤-1,-13x 2+43x +23,x >-1,若f (x )在区间[m,4]上的值域为[-1,2],则实数m 的取值范围为________.解析:作出函数f (x )的图象,当x ≤-1时,函数f (x )=log 2⎝⎛⎭⎫-x2单调递减,且最小值为f (-1)=-1,则令log 2⎝⎛⎭⎫-x 2=2,解得x =-8;当x >-1时,函数f (x )=-13x 2+43x +23在(-1,2)上单调递增,在[2,+∞)上单调递减,则最大值为f (2)=2,又f (4)=23<2,f (-1)=-1,故所求实数m 的取值范围为[-8,-1].答案:[-8,-1][课时跟踪检测]A级1.为了得到函数y=2x-2的图象,可以把函数y=2x的图象上所有的点()A.向右平行移动2个单位长度B.向右平行移动1个单位长度C.向左平行移动2个单位长度D.向左平行移动1个单位长度解析:选B因为y=2x-2=2(x-1),所以只需将函数y=2x的图象上所有的点向右平移1个单位长度,即可得到y=2(x-1)=2x-2的图象.2.若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为()解析:选C要想由y=f(x)的图象得到y=-f(x+1)的图象,需要先将y=f(x)的图象关于x轴对称得到y=-f(x)的图象,然后向左平移1个单位长度得到y=-f(x+1)的图象,根据上述步骤可知C正确.3.(2018·浙江高考)函数y=2|x|sin 2x的图象可能是()解析:选D 由y =2|x |sin 2x 知函数的定义域为R , 令f (x )=2|x |sin 2x ,则f (-x )=2|-x |sin(-2x )=-2|x |sin 2x . ∵f (x )=-f (-x ),∴f (x )为奇函数. ∴f (x )的图象关于原点对称,故排除A 、B. 令f (x )=2|x |sin 2x =0,解得x =k π2(k ∈Z),∴当k =1时,x =π2,故排除C ,选D.4.下列函数y =f (x )图象中,满足f ⎝⎛⎭⎫14>f (3)>f (2)的只可能是( )解析:选D 因为f ⎝⎛⎭⎫14>f (3)>f (2),所以函数f (x )有增有减,排除A 、B.在C 中,f ⎝⎛⎭⎫14<f (0)=1,f (3)>f (0),即f ⎝⎛⎭⎫14<f (3),排除C ,选D.5.已知函数f (x )的图象如图所示,则f (x )的解析式可以是( ) A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:选A 由函数图象可知,函数f (x )为奇函数,应排除B 、C.若函数为f (x )=x -1x ,则x →+∞时,f (x )→+∞,排除D.6.已知函数y =f (x +1)的图象过点(3,2),则函数y =f (x )的图象关于x 轴的对称图形一定过点________.解析:因为函数y =f (x +1)的图象过点(3,2),所以函数y =f (x )的图象一定过点(4,2),所以函数y =f (x )的图象关于x 轴的对称图形一定过点(4,-2).答案:(4,-2)7.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.解析:当-1≤x ≤0时,设解析式为f (x )=kx +b (k ≠0),则⎩⎪⎨⎪⎧ -k +b =0,b =1,得⎩⎪⎨⎪⎧k =1,b =1. ∴当-1≤x ≤0时,f (x )=x +1.当x >0时,设解析式为f (x )=a (x -2)2-1(a ≠0), ∵图象过点(4,0), ∴0=a (4-2)2-1,∴a =14.故函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0. 答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0 8.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集为________.解析:令y =log 2(x +1),作出函数y =log 2(x +1)图象如图所示.由⎩⎪⎨⎪⎧ x +y =2,y =log 2(x +1)得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}. 答案:{x |-1<x ≤1} 9.画出下列函数的图象. (1)y =e ln x ; (2)y =|x -2|·(x +1).解:(1)因为函数的定义域为{x |x >0}且y =e ln x =x (x >0), 所以其图象如图所示. (2)当x ≥2,即x -2≥0时,y =(x -2)(x +1)=x 2-x -2=⎝⎛⎭⎫x -122-94; 当x <2,即x -2<0时,y =-(x -2)(x +1)=-x 2+x +2=-⎝⎛⎭⎫x -122+94. 所以y =⎩⎨⎧⎝⎛⎭⎫x -122-94,x ≥2,-⎝⎛⎭⎫x -122+94,x <2.这是分段函数,每段函数的图象可根据二次函数图象作出(其图象如图所示).10.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5].(1)在如图所示给定的直角坐标系内画出f(x)的图象;(2)写出f(x)的单调递增区间;(3)由图象指出当x取什么值时f(x)有最值.解:(1)函数f(x)的图象如图所示.(2)由图象可知,函数f(x)的单调递增区间为[-1,0],[2,5].(3)由图象知当x=2时,f(x)min=f(2)=-1,当x=0时,f(x)max=f(0)=3.B级1.若函数f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x-1,则不等式xf(x)>0在(-1,3)上的解集为()A.(1,3)B.(-1,1)C.(-1,0)∪(1,3)D.(-1,0)∪(0,1)解析:选C 作出函数f (x )的图象如图所示. 当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0); 当x ∈(0,1)时,由xf (x )>0得x ∈∅; 当x ∈(1,3)时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3).2.(2019·山西四校联考)已知函数f (x )=|x 2-1|,若0<a <b 且f (a )=f (b ),则b 的取值范围是( )A .(0,+∞)B .(1,+∞)C .(1,2)D .(1,2)解析:选C 作出函数f (x )=|x 2-1|在区间(0,+∞)上的图象如图所示,作出直线y =1,交f (x )的图象于点B ,由x 2-1=1可得x B =2,结合函数图象可得b 的取值范围是(1,2).3.已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+ax,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.解:(1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图象上,即2-y =-x -1x +2,∴y =f (x )=x +1x (x ≠0).(2)g (x )=f (x )+ax =x +a +1x ,∴g ′(x )=1-a +1x2.∵g (x )在(0,2]上为减函数,∴1-a +1x 2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,∴a +1≥4,即a ≥3,故实数a 的取值范围是[3,+∞).4.若关于x 的不等式4a x -1<3x -4(a >0,且a ≠1)对于任意的x >2恒成立,求a 的取值范围.解:不等式4a x -1<3x -4等价于a x -1<34x -1.令f (x )=a x -1,g (x )=34x -1,当a >1时,在同一坐标系中作出两个函数的图象如图(1)所示,由图知不满足条件; 当0<a <1时,在同一坐标系中作出两个函数的图象如图(2)所示, 当x ≥2时,f (2)≤g (2), 即a 2-1≤34×2-1,解得a ≤12,所以a 的取值范围是⎝⎛⎦⎤0,12.。
高考数学函数答题方法和技巧
高考数学函数答题方法和技巧一.高考函数体命题方向高考函数与方程思想的命题主要体现在三个方面①是建立函数关系式,构造函数模型或通过方程、方程组解决实际问题;②是运用函数、方程、不等式相互转化的观点处理函数、方程、不等式问题;③是利用函数与方程思想研究数列、解析几何、立体几何等问题.在构建函数模型时仍然十分注重“三个二次”的考查.特别注意客观形题目,大题一般难度略大。
二.高考数学函数题答题技巧对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
指数函数指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得可以得到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于x轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
高考数学热门考点与解题技巧考点函数的图象与性质
考点3 函数的图象与性质热门题型题型1函数的单调性(单调区间) 题型2 函数的奇偶性题型3函数的奇偶性和单调性的综合题型4 函数的周期性题型5 识图(知式选图、知图选式) 题型6 函数图像的应用题型1 函数的单调性(单调区间) 例1 判断函数y =x +2x +1在(-1,+∞)上的单调性.法二:y =x +2x +1=1+1x +1. 因为y =x +1在(-1,+∞)上是增函数,所以y =1x +1在(-1,+∞)上是减函数, 所以y =1+1x +1在(-1,+∞)上是减函数.即函数y =x +2x +1在(-1,+∞)上是减函数. 【解题技巧】判断函数的单调性一般有四种方法:定义法、图像法、复合函数单调性法和导数法.变式1.(2017山东理15)若函数()e x f x (e 2.71828=L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x =④()22f x x =+解析 ①()e =e e 22xxxxy f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2x f x -=具有M 性质; ②()e =e e 33xx x x y f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3=e e xxy f x x =⋅,令()3e xg x x =⋅,则()()322e e 3e3xxxg x x x x x '=⋅+⋅=+,所以当3x >-时,()0g x '>;当3x <-时,()0g x '<,所以()3=e e xx y f x x =⋅在(),3-∞-上单调递减,在()3,-+∞上单调递增,故()3f x x =不具有M 性质;④()()2=e e 2x x y f x x =+.令()()2e 2x g x x =+, 则()()()22e2e 2e 110xx x g x xx x ⎡⎤'=++⋅=++>⎣⎦,所以()()2=e e 2x x y f x x =+在R 上单调递增,故()22f x x =+具有M 性质.综上所述,具有M 性质的函数的序号为①④.例2. 已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,求实数a 的取值范围.变式1. 已知f (x )是定义在区间[-1,1]上的增函数,且f (x -2)<f (1-x ),求x 的取值范围.解:由题意,得⎩⎪⎨⎪⎧-1≤x -2≤1-1≤1-x ≤1,解得1≤x ≤2,①因为f (x )是定义在区间[-1,1]上的增函数,且f (x -2)<f (1-x ), 所以x -2<1-x ,解得x <32.②由①②得,1≤x <32. 所以满足题设条件的x 的取值范围为[1,32).题型2函数的奇偶性【例3】判断下列函数的奇偶性.3|3|36)(2-+-=x x x f ; 11)(22-+-=x x x f ; )1(log )(22++=x x x f ;2|2|)1(log )(22---=x x x f ; ⎩⎨⎧>+-<+=)0()0()(22x x x x x x x f .因为对任意实数x ,都有0||12≥+>++x x x x ,故定义域为R.且)()1(log 11(log )1(log )(222222x f x x xx x x x f -=++-=++=-+=-),故)(x f 为奇函数.由100102|2|012<<<<-⇒⎩⎨⎧≠-->-x x x x 或,定义域关于原点对称. 此时,xx x x x f --=---=)1(log 2|2|)1(log )(2222,故有)()(x f x f -=-,所以)(x f 为奇函数.当<x 时,)()(,02x f x x x f x -=--=->-;当>x 时,)()(,02x f x x x f x -=-=-<-.故)(x f 为奇函数.【解题技巧】判断函数的奇偶性,常用以下两种方法:(1)定义法.①首先看定义域是否关于原点对称;②若)()(x f x f -=-,则函数)(x f 为奇函数;若)()(x f x f =-,则函数)(x f 为偶函数.(2)图像法.根据函数图像的对称性进行判断,若函数)(x f 的图像关于原点中心对称,则)(x f 为奇函数;若函数)(x f 的图像关于y 轴对称,则)(x f 为偶函数.题型3函数的奇偶性和单调性的综合题型3 单调性与奇偶性的综合应用【2017,5】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( )A .[2,2]-B . [1,1]-C . [0,4]D . [1,3]变式1..(2017江苏11)已知函数()312e e xxf x x x =-+-, 其中e 是自然对数的底数.若()()2120f a f a -+„,则实数a 的取值范围是 .解析 易知()f x 的定义域为R . 因为()()()312e e xx f x x x ---=---+-()312e exx x x f x =-+-+=-,所以()f x 是奇函数.又()2213e 3e02x x f x x x +'=-+……,且()0f x '=不恒成立,所以()f x 在R 上单调递增. 因为()()2120f a f a -+„,所以()()()22122f a f a f a --=-„,于是212a a --„,即2210a a +-„,解得11,2x ⎡⎤∈-⎢⎥⎣⎦.故填11,2⎡⎤-⎢⎥⎣⎦.变式2.(2015湖南理5)设函数()()()ln 1ln 1f x x x =+--,则()f x 是( ).A.奇函数,且在()0,1上是增函数B.奇函数,且在()0,1上是减函数C.偶函数,且在()0,1上是增函数 D.偶函数,且在()0,1上是减函数题型4 函数的周期性例 5 已知函数)(x f 对任意实数x 都满足)(1)1(x f x f =+,若8)1(=f ,则(2018)f =________.解析1)(1(,)(1)1(=⋅+=+x f x f x f x f ),有1)2()1(=+⋅+x f x f ,所以)2()(+=x f x f ,故2=T ,所以11(2018)(0)(1)8f f f ===.题型5 识图(知式选图、知图选式) 例6 函数22xy x =-的图像大致是()分析观察四个选项给出的图像,区别在于函数零点的个数及单调性不同.解析解法一:当0x ≤时,函数2xy =单调递增,同时函数2y x =-单调递增,故函数()f x 在(],0-∞上单调递增,排除,C D ;当0x >时,()f x 存在两个零点122,4x x ==,所以排除选项B .故选A .解法二:如图2-22所示,有图像可知,函数2xy =与函数2y x =的交点有3个,说明函数AxOxyO y xx yO O y BCD22x y x =-的零点有3个,故排除选项,B C ;当0x x <时,22x x >成立,即220x y x =-<,故排除选项D ,故选A .【解题技巧】利用函数的性质(如定义域、值域、奇偶性、单调性、周期性、特殊点等)排除错误选项,从而筛选出正确答案题型6 函数图像的应用例7 函数0.5()2log 1xf x x =-的零点个数为( ).1A.2B.3C.4D【解题技巧】利用函数图像判断方程解的个数.由题设条件作出所研究对象的图像,利用图像的直观性得到方程解的个数.例8.(2017全国3理15)设函数()1020x x x f x x +⎧=⎨>⎩,,…,则满足()112f x f x ⎛⎫+-> ⎪⎝⎭的x 的取值范围是_______.12-1211(,)44-1()2y f x =-1()y f =-yxO【解题技巧】利用函数图像求解不等式的解集及参数的取值范围.先作出所研究对象的图像,求出它们的交点,根据题意结合图像写出答案变式1. 设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩,若0()1f x >,则0x 的取值范围是().(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞+∞U.(,1)(1,)D -∞-+∞U分析作出函数()y f x =与1y =的图像,由图像得不等式的解集.解析作出函数()y f x =与1y =的图像,如图所示,得0()1f x >所对应的0x 的取值范围是(,1)(1,)-∞-+∞U ,故选D .【高考真题链接】1.(2014 天津理4)函数()()212log 4f x x =-的单调递增区间是( ).A.()0,+¥B.(),0-¥C.()2,+?D.(),2-?解析:选D.2.(2014 北京理 2)下列函数中,在区间()0,+∞上为增函数的是( ). A.1y x =+ B.()21y x =- C.2x y -= D.()0.5log 1y x =+解析:选A3.(2014 陕西理 7)下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( ).A.()12f x x = B.()3f x x = C. ()12xf x ⎛⎫= ⎪⎝⎭D. ()3x f x =解析:选D.5.(2015四川理9)如果函数()()()()212810,02f x m x n x m n =-+-+厖在区间1,22⎡⎤⎢⎥⎣⎦上单调递减,那么mn 的最大值为( ).A. 16B. 18C. 25D.812因为2292m n mn +剟,所以812mn …. 由2n m =且218m n +=,得92m =>,故应舍去. 要使得mn 取得最大值,应有()2182,8m n m n +=<>.所以()()1821828816mn n n =-<-⨯⨯=.所以最大值为18.故选B. 6.(2015北京理5)已知,x y ∈R ,且0x y >>,则( ).A.110x y ->B.sin sin 0x y ->C.11022x y⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭D.ln ln 0x y +>选项C正确:由指数函数1()2tf t ⎛⎫= ⎪⎝⎭是减函数,可得110022xyx y ⎛⎫⎛⎫>>⇒<<⇒ ⎪ ⎪⎝⎭⎝⎭11022xy⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭;选项D 错误:举一个反例如,e x =,1ey =.,x y 满足0x y >>,但ln ln 0x y +=. 故选C.7.(2015安徽理2)下列函数中,既是偶函数又存在零点的是( ). A.cos y x = B.sin y x = C.ln y x = D.21y x =+解析 对于选项A ,cos y x =是偶函数,且由cos 0x =得2x k π=+π,k ∈Z , 故A 正确;对于选项B ,sin y x =是奇函数,故B 错误;对于选项C ,ln y x =的定义域为()0,+∞,故ln y x =不具备奇偶性,故C 错误;对于选项D ,21y x =+是偶函数,但210x +=在实数范围内无解,即21y x =+不存在零点,故D 错误.故选A .8.(2015福建理2)下列函数为奇函数的是( ). A .y x =.sin y x = C .cos y x = D .e e x x y -=-解析 函数y x =sin y x =和cos y x =是偶函数;e e x x y -=-是奇函数.故选D .9.(2015广东理3)下列函数中,既不是奇函数,也不是偶函数的是( ). A .21y x =+.1y x x =+ C .122x x y =+ D .e x y x =+ 解析 令()e xf x x =+,则()11e f =+,()111e f --=-+,即()()11f f ≠-,()()11f f -≠-,所以e xy x =+既不是奇函数也不是偶函数,而A,B,C 依次是偶函数、奇函数、偶函数.故选D .10.(2015全国I 理13)若函数()(2ln =+f x x x a x为偶函数,则=a .解析 由题意可知函数(2ln y x a x =+是奇函数,所以(2ln x a x ++(2ln 0x a x -+=,即 ()22ln ln 0a x x a +-==,解得1a =.11.(2016全国丙理15)已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点()13-,处的切线方程是______________.解析:210x y ++=解法二:由函数性质来求切线方程.因为()f x 为偶函数,所以若()f x 在点()()00,x f x 处的切线方程为y kx b =+,则()f x 在点()()00,x f x --处的切线方程为y kx b =-+.因此,先求出()y f x =在点()1,3--处的切线方程.又()()'130f x x x=+<,得()'12f -=,所以()f x 在点()1,3--处的切线方程为21y x =-, 所以()f x 在点3(1,-)处的切线方程为21y x =--,即210x y ++=. 12.(2014 新课标 2 理 15)已知偶函数()f x 在[)0,+∞单调递减,()20f =. 若()10f x ->,则x 的取值范围是 .解析:(1,3)-13.(2014 福建理7)已知函数()21,0cos ,0x x f x x x ⎧+>=⎨⎩„则下列结论正确的是( ).A. ()f x 是偶函数B. ()f x 是增函数C. ()f x 是周期函数D. ()f x 的值域为[)+∞-,114.(201 4 湖北理10)已知函数()f x 是定义在R 上的奇函数,当0x …时,()()2221232f x x a x a a =-+--.若()(),1x f x f x ∀∈-R „,则实数a 的取值范围为( ).A.11,66⎡⎤-⎢⎥⎣⎦B.66,66⎡-⎢⎣⎦C. 11,33⎡⎤-⎢⎥⎣⎦ D.3333⎡-⎢⎣⎦15.(2014 湖南理3)已知()f x ,()g x 分别是定义在N 上的偶函数和奇函数,且()()321f x g x x x -=++,则()()11f g +=( ).A.3-B.1-C. 1D. 316.(2014 湖南理10)已知函数()21e 2x f x x =+-()0x <与()()2ln g x x x a =++图像上存在关于y 轴对称的点,则a 的取值范围是( ). A.1,e ⎛⎫-∞ ⎪⎝⎭ B.(),e -∞ C.1,e e ⎛⎫- ⎪⎝⎭ D. 1e,e ⎛⎫- ⎪⎝⎭17.(2017天津理6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ). A.a b c << B.c b a <<C.b a c <<D.b c a <<18.(2017北京理5)已知函数()133xx f x ⎛⎫=- ⎪⎝⎭,则()f x ( ). A.是奇函数,且在R 上是增函数 B.是偶函数,且在R 上是增函数 C.是奇函数,且在R 上是减函数 D.是偶函数,且在R 上是减函数解析 由题知()133x x f x ⎛⎫=- ⎪⎝⎭,()()113333xx x x f x f x --⎛⎫-=-=-=- ⎪⎝⎭,所以()f x 为奇函数.又因为3x 是增函数,13x⎛⎫- ⎪⎝⎭也是增函数,所以()f x 在R 上是增函数.故选A.19.(2017全国1理5)函数()f x 在(),-∞+∞单调递减,且为奇函数.若()11f =-,则满足()211x f --剟的x 的取值范围是( ). A .[2,2]-B . [1,1]-C . [0,4]D . [1,3] 解析 因为()f x 为奇函数,所以()()111f f -=-=,于是()121f x --剟等价于()()()121f f x f --剟,又()f x 在()-∞+∞,单调递减,所以121x --剟,所以3x 1剟. 故选D.20.(2016浙江理5)设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( ). A.与b 有关,且与c 有关 B.与b 有关,但与c 无关 C.与b 无关,且与c 无关 D.与c 无关,但与c 有关21.(2016江苏11)设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上(),102,015x a x f x x x +-<⎧⎪=⎨-<⎪⎩„„,其中a ∈R ,若5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()5f a 的值是 .25- 解析 由题意得511222f f a ⎛⎫⎛⎫-=-=-+ ⎪ ⎪⎝⎭⎝⎭,91211225210f f ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭. 由5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,可得35a =,则()()()531f a f f ==-215a =-+=-. 22.(2017江苏14)设()f x 是定义在R 且周期为1的函数,在区间[)0,1上,()2,,x x D f x x x D⎧∈=⎨∉⎩.其中集合*1,n D x x n n ⎧⎫-==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 .从而10nmqp =,则10mn q p ⎛⎫= ⎪⎝⎭,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q ,于是lg x 不可能与x D ∈内的部分对应相等,所以只需要考虑lg x 与每个周期内x D ∉部分的交点.如图所示,通过函数的草图分析,图中交点除()1,0外,其它交点均为x D ∉的部分. 且当1x =时,()1111lg 1ln10ln10x x x x =='==<,所以在1x =附近只有一个交点, 因而方程解的个数为8个.故填8.xy O12134567891023.(2015安徽理9)函数()()2ax bf x x c +=+的图像如图所示,则下列结论成立的是( ).PNM Oy xA.0a >,0b >,0c <B.0a <,0b >,0c >C.0a <,0b >,0c <D.0a <,0b <,0c <24.(2016全国乙理7)函数22e xy x =-在[]2,2-的图像大致为( ).-221Oxy-221Oxy-221Oxy-221OxyA. B. C. D. D 分析 对于函数图像识别题一般是利用函数性质排除不符合条件的选项. 解析 设()22exf x x =-,由()228e f =-∈()0,1,可排除A (小于0),B (从趋势上超过1);又()0,2x ∈时,()4e x f x x '=-,()()()014e 0f f ''⋅=--<, 所以()f x 在()0,1上不是单调函数,排除C.故选D. 25.(2013重庆理6)若a b c<<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( ).A. ()a b ,和()b c ,内B. ()a -∞,和()a b ,内C. ()b c ,和()c +∞,内D. ()a -∞,和()c +∞,内 解析:A26.(2014 山东理 8)已知函数()21f x x =-+,()kxx g =.若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是( ).A.102⎛⎫ ⎪⎝⎭,B.112⎛⎫⎪⎝⎭, C.()1,2 D.()2+∞,解析:B27.(2014 江苏理 13)已知()f x 是定义在R 上且周期为3的函数,当[)0,3x ∈时,()2122f x x x =-+.若函数()y f x a =-在区间[]3,4-上有10个零点(互不相同),则实数a 的取值范围是 . 解析:102⎛⎫ ⎪⎝⎭,28.(2014 天津理 14)已知函数()23f x x x =+,x R Î.若方程()10f x a x --=恰 有4个互异的实数根,则实数a 的取值范围为__________. 解析:(0,1)(9,)U +?29.(2014 浙江理 15)设函数()22,0,0x x x f x x x ⎧+<⎪=⎨-⎪⎩…,若()()2f f a „,则实数a 的取值范围是______.解析:(,2]-?30.(2015湖南理15)已知()32,,x x af x x x a⎧=⎨>⎩„,若存在实数b ,使函数()()g x f x b =-有两个零点,则实数a 的取值范围是 .xyOy=b11Oyx11y=bxyO图(1) 图(2) 图(3)31.(2015天津理8)已知函数()()22,22,2x x f x x x ⎧-⎪=⎨->⎪⎩… ,函数()()2g x b f x =-- , 其中b ∈R ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( ). A.7,4⎛⎫+∞⎪⎝⎭ B.7,4⎛⎫-∞ ⎪⎝⎭ C.70,4⎛⎫ ⎪⎝⎭ D.7,24⎛⎫⎪⎝⎭即2220()(2)202582x x x y f x f x x x x x ⎧++<⎪=+-=⎨⎪-+>⎩,,,剟 ()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图像的4个公共点,由图像可知724b <<.2O yx32.(2015山东理10)设函数311()21xx x f x x -<⎧=⎨⎩≥,,,则满足()()()2f a f f a =的a 的取值范围是( ).A .213⎡⎤⎢⎥⎣⎦,B .[]01,C .23⎡⎫+∞⎪⎢⎣⎭,D .[)1+∞,.解析 因为()()()2=f af f a ,所以()1f a ?.①当1a <时,()311=-f a a …, 解得213a <„;②当1a …时,()21=a f a …,解得1a ….综上所述,23a ….故选C .33.(2015全国I 理12)设函数()()e 21x f x x ax a=--+,其中1a <,若存在唯一的整数x 使得()00f x <,则a 的取值范围是( ).A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭D .3,12e ⎡⎫⎪⎢⎣⎭则()()1010f f -⎧⎪⎨⎪⎩……,即13e 20e 0a -⎧-+⎨⎩……,解得32e a …,又1a <,所以a 的取值范围是3,12e ⎡⎫⎪⎢⎣⎭.故选D. 34.(2017山东理10)已知当[]0,1x ∈时,函数()21y mx =-的图像与y x m =的图像有且只有一个交点,则正实数m 的取值范围是( ).A.(])0,123,⎡+∞⎣U B.(][)0,13,+∞UC.()223,⎡+∞⎣U D.([)23,+∞U解析 解法一:()222121y mx m x mx =-=-+过点()0,1且对称轴为1x m=.当01m <<时,11m>,从而2221y m x mx =-+在区间()0,1上单调递减,函数()21y mx =-与y x m =+的草图如图所示,此时有一个交点;1m 1Oy x当1m >时,11m <,所以2221y m x mx =-+在区间10m ⎛⎫ ⎪⎝⎭,上单调递减,在区间1,1m ⎛⎫ ⎪⎝⎭上单调递增.若函数()21y mx =-与y x m =+有一个交点,草图如图所示,则()2111m m ⨯-+?,解得3m …;1m1mO y x解法二:若2m =,则)[]221,0,1y x x =-∈的值域为[]0,1;[]2,0,1y x x =∈的值域为2,12⎡⎣,所以两个函数的图像无交点,故排除C 、D ;若3m =,则点()1,4是两个函数的公共点.故选B.。
判断函数图象的方法
可编写可改正高三数学培训试卷1判断函数图象的方法吴江市高级中学韩保席判断函数图象是高三考试中常常出现的内容,大多属于简单题,值得重视。
1取点(描点)1.(95)函数y 1的图象是x1据奇偶性和单一性2函数y a|x|(a1)的图象是3函数y=-xcosx的部分图象是()y yy yx x x xOB OB OB OBA B C A3利用平移4函数y11的图象是x11可编写可改正y(A)y(B)yy(C)(D)1111oo1xo 1x1ox1x利用反函数5已知函数 y =log 2x 的反函数是 y=f -1(x),则函数 y=f -1(1-x) 的图象是6设函数f (x )=14x 2(x ≤0),则函数y =f --1(x )的图象是5 利用基本形状7在以下函数图象中, 二次函数y=ax 2+bx 与指数函数y(b )x的图象只好是( )ay y yy1111-1OBxOBx-1OB xOBxABCD综合应用8以下函数与图象不对应的是()yy yy11OB 1xOB1xOB 1 xOB 1 x A :y=|x-1|B :y=e |lnx|C :ylog 0.5 |x 21|D :y= x2可编写可改正9一棱锥被平行于底面的平面截成一个小棱锥和一个棱台,若小棱锥及棱台的体积分别是y和x,则y对于x的函数图象大概形状为3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【高考地位】函数图像作为高中数学的一个“重头戏”,是研究函数性质、方程、不等式的重要武器,已经成为各省市高考命题的一个热点。
在高考中经常以几类初等函数的图像为基础,结合函数的性质综合考查,多以选择、填空题的形式出现。
【方法点评】方法一 特值法使用情景:函数()f x 的解析式已知的情况下解题模板:第一步 将自变量或者函数值赋以特殊值;第二步 分别一一验证选项是否符合要求; 第三步 得出结论.例1 函数x x x y sin cos +=的图象大致为( )【答案】C考点:函数的图像【点评】特值法是解决复杂函数的图像问题的方法之一,其将复杂问题简单化,且操作性简单可行。
【变式演练1】函数()2ln y x x =+的图象大致为( )A .B .C .D .【答案】A 【解析】试题分析:解:令()2ln y x x =+0=,解得1,1,2--=x ,∴该函数有三个零点,故排除B ;当2-<x 时,02<+x ,2>x ,02ln ln >>∴x ,∴当2-<x 时,()2ln y x x =+0<,排除C 、D .故选A .考点:函数的图象.【变式演练2】函数()1cos f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( )【答案】D 【解析】考点:1.函数的基本性质;2.函数的图象. 【变式演练3】现有四个函数:①②③④的图象(部分)如下,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .④①②③ B.①④③② C.①④②③ D.③④②① 【答案】C 【解析】 试题分析:因为,所以是偶函数,图象关于轴对称,即与左1图对应,故排除选项A 、D ,因为当时,,故函数的图象与左3图对应,故排除选项B ;故选C .【方法点睛】本题考查通过函数的解析式和性质确定函数的图象,属于中档题;已知函数的解析式确定函数的图象,往往从以下几方面考虑:定义域(确定图象是否连续),奇偶性(确定图象的对称性),单调性(确定图象的变化趋势),最值(确定图象的最高点或最低点),特殊点的函数值(通过特殊函数值排除选项),其主要方法是排除法. 考点:1.函数的奇偶性;2.函数的图象.【变式演练4】函数xe x y )1(2-=的图象大致是( )【答案】C 【解析】考点:偶函数图象的性质.方法二 利用函数的基本性质判断其图像使用情景:函数()f x 的解析式已知的情况下解题模板:第一步 根据已知函数解析式分析其变化特征如单调性、奇偶性、定义域和值域等;第二步 结合简单的基本初等函数的图像特征如对称性、周期性等进行判断即可;第三步 得出结论.例2 函数()(1)ln ||f x x x =-的图象大致为( )【答案】A 【解析】考点:1、导数在研究函数的单调性中的应用;2、函数的图像.【思路点睛】本题主要考查了导数在研究函数的单调性中的应用和函数的图像,具有一定的综合性,属中档题.其解题的一般思路为:首先观察函数的表达式的特征如0)1(=f ,然后运用导数在研究函数的单调性和极值中的应用求出函数的单调区间,进而判断选项,最后将所选的选项进行验证得出答案即可.其解题的关键是合理地分段求出函数的单调性.【变式演练5】如图,周长为1的圆的圆心C 在y 轴上,顶点()01A ,,一动点M 从A 开始逆时针绕圆运动一周,记走过的弧长AM x =,直线AM 与x 轴交于点()0N t ,,则函数()t f x =的图象大致为( )A .B .C .D .【答案】D 【解析】试题分析:由圆的对称性可知,动点N 的轨迹关于原点对称,且在原点处,21=x ,0=y ;当点M 位于左半圆时,随着弧AM 的长递增,t 的值递增,且变化由快到慢,由给定图象可知选D .考点:函数的图象.【变式演练6】如图可能是下列哪个函数的图象( )A .221xy x =-- B .2sin 41x xy x =+C .ln x y x=D .2(2)xy x x e =- 【答案】D 【解析】考点:函数的图象和性质.【变式演练7】如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于x 轴的直线:(0)l x t t a =≤≤经过原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y (图中阴影部分),若函数()y f x =的大致图像如图,那么平面图形的形状不可能是( )【答案】C 【解析】试题分析:由函数的图象可知,几何体具有对称性,选项A ,B ,D ,l 在移动过程中扫过平面图形的面积为y ,在中线位置前,都是先慢后快,然后相反.选项C ,后面是直线增加,不满足题意.考点:函数的图象与图形面积的变换关系. 【变式演练8】函数()21x f x e-=(e 是自然对数的底数)的部分图象大致是( )【答案】C【变式演练9】函数2ln x x y x=的图象大致是( )A .B .C .D .【答案】D 【解析】试题分析:从题设中提供的解析式中可以看出1,0±≠x ,且当0>x 时, x x y ln =,由于x y ln 1/+=,故函数x x y ln =在区间)1,0(e 单调递减;在区间),1(+∞e单调递增.由函数图象的对称性可知应选D.考点:函数图象的性质及运用. 【变式演练10】函数()21cos 1e xf x x ⎛⎫=-⎪+⎝⎭的图象的大致形状是( ) A . B .C .D .【答案】B考点:函数的奇偶性及函数的图象. 【变式演练11】若函数()2(2)m xf x x m-=+的图象如图所示,则m 的范围为( )A .(),1-∞-B .()1,2-C .()0,2D .()1,2 【答案】D考点:1.函数的奇偶性;2.函数的单调性;3.导数的应用.【高考再现】1. 【2016高考新课标1卷】函数22xy x e =-在[]2,2-的图像大致为(A )(B )(C )(D )【答案】D考点:函数图像与性质【名师点睛】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项. 2.【2015高考安徽,理9】函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c > (C )0a <,0b >,0c < (D )0a <,0b <,0c <【答案】C【考点定位】1.函数的图象与应用.【名师点睛】函数图象的分析判断主要依据两点:一是根据函数的性质,如函数的奇偶性、单调性、值域、定义域等;二是根据特殊点的函数值,采用排除的方法得出正确的选项.本题主要是通过函数解析式判断其定义域,并在图形中判断出来,另外,根据特殊点的位置能够判断,,a b c 的正负关系.3.【2015高考新课标2,理10】如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )(D)(C)(B)(A)xyπ4π23π4π22π3π4π2π4yxxyπ4π23π4π22π3π4π2π4yx【答案】BDPCx【考点定位】函数的图象和性质.【名师点睛】本题考查函数的图像与性质,表面看觉得很难,但是如果认真审题,读懂题意,通过点P 的运动轨迹来判断图像的对称性以及特殊点函数值的比较,也可较容易找到答案,属于中档题.4.【2015高考北京,理7】如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是( )A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C【解析】如图所示,把函数2log y x =的图象向左平移一个单位得到2log (1)y x =+的图象1x =时两图象相交,不等式的解为11x -<≤,用集合表示解集选C【考点定位】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,体现了数形结合思想.【名师点睛】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,本题属于基础题,首先是函数图象平移变换,把2log y x =沿x 轴向左平移2个单位,得到2log (y x =+2)的图象,要求正确画出画出图象,利用数形结合写出不等式的解集.5.【2014年.浙江卷.理7】在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )答案:D考点:函数图像.【名师点睛】本题主要考查了函数的指数与对数函数图像和性质,属于常见题目,难度不大;识图常用的方法:(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.6. 【2014福建,理4】若函数log (0,1)a y x a a =>≠且的图像如右图所示,则下列函数图像正确的是( )13OxyDCBAy=log a(-x)y=(-x)ay=x ay=a-x-1-3113O O O O1yx1xy1xyxy【答案】B【解析】考点:函数的图象.【名师点睛】本题主要考查函数图像的识别问题及分析问题解决问题的能力,求解此题首先要根据图像经过的特殊点,确定参数的值,然后利用函数的单调性确定正确选项,解决此类问题要重视特殊点及单调性的应用.【反馈练习】1.【2017届河北武邑中学高三上周考8.14数学试卷,文5】函数111yx=--的图象是()【答案】B【解析】试题分析:将1yx=-的图象沿x轴向右平移1个单位得到11yx=--的图象,再沿y轴向上平移1个单位得到111yx=--的图象.故选B.考点:函数图象的平移变换.2. 【2017届广东华南师大附中高三综合测试一数学试卷,文10】函数2ln xy x=的图象大致为( )A .B .C .D .【答案】B3. 【2017届广东佛山一中高三上学期月考一数学试卷,理6】函数22x y x-=的图象大致是( )【答案】A 【解析】试题分析:当1x <-时,22x x <,即220x x -<,排除C 、D ,当3x =时,322310y =-=-<,排除B , 故选A .考点:函数的图象.4. 【2016-2017学年山西榆社中学高一10月月考数学试卷,理7】已知函数()f x 的定义域为[],a b ,函数()y f x =的图象如图甲所示,则函数(||)f x 的图象是图乙中的( )【答案】B 【解析】考点:函数图象与性质.5. 【2016-2017学年河北徐水县一中高一上月考一数学试卷,理5】下列图中,画在同一坐标系中,函数2y ax bx =+与y ax b =+(0a ≠,0b ≠)函数的图象只可能是( )【答案】B 【解析】试题分析:()2f x ax bx =+图象是抛物线,()g x ax b =+图象是直线.A 选项()f x 开口向上,说明0a >,直线应斜向上,故A 错误.D 选项()f x 开口向下,说明0a <,直线应斜向下,故D 错误. C 选项()f x 图象不过原点,错误.故选B. 考点:函数图象与性质.6. 【2017届河北武邑中学高三上周考8.14数学试卷,理9】已知函数()y f x =的大致图象如图所示,则函数()y f x =的解析式应为( )A .()ln xf x e x = B .()ln(||)xf x ex -=C .()ln(||)x f x e x =D .||()ln(||)x f x e x = 【答案】C 【解析】考点:函数的性质.7. 【2017届湖南长沙长郡中学高三上周测十二数学试卷,文8】函数22()(44)log x x f x x -=-的图象大致为( )【答案】A 【解析】 试题分析:因为22()(44)log x x f x x -=-,()2222()(44)log (44)log x x x x f x x x f x ---=-=--=-,所以22()(44)log x x f x x -=-是奇函数,排除B 、C,又因为0x →时,0y →,所以排除D ,故选A.考点:1、函数的图象;2、函数的奇偶性.8. 【2017届重庆市第八中学高三上适应性考试一数学试卷,理10】如图1,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离与O 到M 的距离之和表示成x 的函数()f x ,则()y f x =在[]0,π上的图象大致是( )A .B .C .D .【答案】B 【解析】考点:函数的实际应用.9.【 2017届河南新乡一中高三9月月考数学试卷,文7】设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为( )【答案】A 【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A .考点:1、函数的图象及性质;2、选择题“特殊值”法.10. 【2017届湖北襄阳五中高三上学期开学考数学试卷,文6】已知函数)(x f 是定义在R 上的增函数,则函数1|)1(|--=x f y 的图象可能是( )A .B .C .D .【答案】B 【解析】考点:函数的图象,图象变换.。