单节锂离子电池保护芯片
ZL4410(单节保护IC)
正常工作模式下,当放电电流等于或高于设定的值(BATT-电压等于或高于过电流检测电压)并且时间持续超 过过电流检测延时时间时, ZL4410关断放电FET停止放电。这个称为过放电流情况(包括过放电流1,过放电流2 和负载短路电流)。过电流情况下BATT-和GND 间内部连接了 RBATT-S 电阻 。当一个负载连接上, BATT-电 压等于VDD流过负载电阻后的电压。
Overdischarge current 1 Comp
Oscillator
Switch
Charge detection
BATT-
九、 功能描述
图 1. 功能方块图
ZL4410监控电池的电压和电流,并通过断开充电器或负载,保护单节可充电锂电池不会因为过充电压,过放电 压,过放电流以及短路等情况而损坏。这些功能都使可充电电池工作在制定的范围内。 MOSFET已内置,等效电阻典型值为50mΩ 正常工作模式
ZL4410
二合一锂离子/锂聚合物电池保护IC
3、 充电器检测
4、 不正常充电电流检测来自备注:(1)正常工作状态(2)过充电压状态(3)过放电压状态(4)过电流状态
2009-2011 ZHUOLANG Technology Corp Web:
DS-ZL4410-V15_SC page7
在正常放电过程中,当电池电压降到过放检测电压(VDL)以下的时候, 并持续时间达到过放电压检测延时间 (tDL) 或更长, ZL4410将切断电池和负载的连接,停止放电。这种情况被称为过放电压情况。当控制放电的FET 被关断, BATT- 通过内部BATT-与VDD之间的RBATT-D 电阻被拉到高电平。当 BATT- 电压高于负载短路检测
TP4100_TP4101 1000mA、500mA 线性单节锂电池充电放电保护IC
7
充电用于 USB 或小功率电源适配器、太阳 能电池来做电源,而避免电源复位或重启。
电。充满电压固定于 4.2V,而充电电流可通过一个电阻器进行外部设置。当电池达到
4.2V 之后,充电电流降至设定值 1/10,TP4100 将自动终止充电。
TP4100 的放电管理包含了欠压保护、过充保护、输出短路保护、输出过流保护、
芯片过温保护以及多种保护后的延时自激活恢复,其他特点包括充电电流监控器、欠压
充电电流的设定
充电电流是采用一个连接在 PROG 引 脚与地之间的电阻器来设定的。设定电阻器 和充电电流采用下列公式来计算: 根据需要的充电电流来确定电阻器阻值,
公式:
RPROG
900 I BAT
建议客户使用 1%精度电阻用于设置 电流,电阻的偏差直接影响电流的一致性。 不同环境测试电流与公式计算理论值也变 的不完全一致。为了方便客户应用,可根据 下表需求选取合适大小的 RPROG。
STDBY 引脚漏电流
VSTDBY=5V(待机模式)
ቤተ መጻሕፍቲ ባይዱ
STDBY 引脚输出低电平 ISTDBY=5mA
0.3
0.6
V
0
1
μA
0.3
0.6
V
3
ΔVRECHRG TLIM RON
tss tRECHARGE
tTERM IPROG IBAT RBP VOD
再充电电池门限电压 限定温度模式中的结温 功率 FET“导通”电阻 (在 VCC 与 BAT 之间) 软启动时间
VOC
过充保护电压
VOV
IOCP
TBP TCLK TCLKP
非充电状态下 BP 过压
放电输出过流保护
锂电保护芯片CT2101 说明书
过充电流检测延迟时间
tOCC
VDD = 3.5V 7.5
七.功能描述:
CT2101监控电池的电压和电流,并通过断开充电器或者负载,保护单节可充电锂电池不会因为过充 电压、 过放电压、 过放电流以及短路等情况而损坏。 这些功能都使可充电电池工作在指定的范围内; CT2101 支持四种运行模式:正常工作模式、充电工作模式、放电工作模式和休眠工作模式。 1. 正常工作模式 在正常状态下,CT2101由电芯供电,其V 端电压在过充检测电压V 和过放检测电压V 之间,VM端电
DL HD
5. 过放电流情况(过放电流 1和过放电流 2的检测 )
在正常条件下对电池进行放电,当放电电流超过过放检测电流I
检测延迟时间t 态。 恢复条件: 断开负载后电路将自动恢复到正常状态。 6. 负载短路电流情况 或者t
ODC1
或者I
ODC2
,并且维持时间超过过放电流
ODC1
ODC2
时,CT2101将关闭内部开关管,断开放电回路停止放电,进入过放电流保护状
tCU
tDL
tODC1
间 过放电流2检测延迟时
VDD = 3.5V
tODC2
间
VDD = 3.5V
Rev 1.2
2009-12-19
- 5 -
220 负载短路检测延迟时间
320 320 10 10
380 µS 540 12 mS 13.5
tSHORT
VDD = 3.5V 150 8
- 3 -
推荐工作范围
参数 供电电压(VDD 和 GND 间电压) 充电器输入电压(VM 和 GND 间电压) 工作温度范围 符号 VDD VM TOPR 最小值 2.0 -0.3 -40 最大值 5.0 5.5 85 单位 V V ℃
单节锂离子电池保护芯片的设计
单节锂离子电池保护芯片的设计前言锂离子电池保护芯片的设计与其封装结构密切相关,为封装在锂离子电池内部的保护电路的基本结构。
在正常情况下,充电控制端CO 和放电控制端DO 为高电位,N型放电控制管FET1和充电控制管FET2处于导通状态,电路的工作方式可以是电池向负载放电,也可以是充电器对电池进行充电;当保护电路检测到异常现象(过充电、过放电和过电流)时,使CO 或DO输出低电平,从而切断充电或放电回路,实现保护功能。
为了有效利用放电电流或充电电流,FET1和FET2采用导通电阻很小的功率管。
它们的选择原则除了导通电阻要小,还要求体积小,并且关闭时源漏击穿电压要能经受不匹配充电器的影响。
从理论上说,FET1和FET2可以用N 管也可以用P 管。
但由于单节锂离子电池保护电路的电源电压较低,为了减小导通电阻,一般都采用N管。
图1中二极管是FET1和FET2的寄生二极管,它们的存在使系统在过放电状态下能对电池充电,在过充电状态下能对负载放电。
图1 3.6V 锂离子电池保护电路封装结构锂离子电池保护芯片的应用场合要求其具有低电流驱动、高精度检测的特点,另外由于保护电路的供电电源即为电池电压,因此在电池电压的变化范围内,保护电路必须正常工作,本文根据图1 所示的连接关系,设计一种低功耗单节锂离子电池保护芯片,其电池电压可以在1V—5.5V范围内变化。
系统结构设计锂离子电池保护芯片的基本功能是进行过充电保护、过放电保护和过电流保护,其中过电流保护包括充电过流保护和放电过流保护。
下面以保护电路的基本功能为出发点,分析其系统的组成。
检测异常现象锂离子电池保护电路为了实现其基本功能,首先需要检测异常现象。
过充电和过放电检测是将电池电压进行分压(采样)后与基准电压比较实现的;而对于过流检测,保护芯片首先将充放电过程中的电流转化为在功率管FET1、FET2上的电压,然后通过VM与基准电压比较完成,放电过流检测的是正电压,充电过流检测的是负电压。
DP4056替代LTC4056TP4056锂电池充电保护芯片_1000mA
DP4056替代LTC4056TP4056锂电池充电保护芯⽚_1000mADP4056是⼀款完整的单节锂离⼦电池采⽤恒定电流/恒定电压线性充电器。
其底部带有散热⽚的SOP8/MSOP封装与较少的外部元件数⽬使得DP4056成为便携式应⽤的理想选择。
DP4056适合USB电源和适配器电源⼯作。
由于采⽤了内部PMOSFET架构,加上防倒充电路,所以不需要外部隔离⼆极管。
热反馈可对充电电流进⾏⾃动调节,以便在⼤功率操作或⾼环境温度条件下对芯⽚温度加以限制。
充电电压固定于4.2V,⽽充电电流可通过⼀个电阻器进⾏外部设置。
当充电电流在达到最终浮充电压之后降⾄设定值1/10时,DP4056将⾃动终⽌充电循环。
当输⼊电压(交流适配器或USB电源)被拿掉时,⾃动进⼊⼀个低电流状态,将电池漏电流降⾄2uA以下。
在有电源时也可置于停机模式,以⽽将供电电流降⾄55uA。
的其他特点包括电池温度检测、⽋压闭锁、⾃动再充电和两个⽤于指⽰充电、结束的LED 状态引脚。
最⼤额定值⊙输⼊电源电压(Vcc):-0.3V~9.6V⊙ PROG:-0.3V~Vcc+0.3V⊙ BAT:-0.3V~7V⊙ CHRG:-0.3V~10V⊙ STDBY:-0.3V~10V⊙ TEMP:-0.3V~10V⊙ CE:-0.3V~10V⊙ BAT短路持续时间:连续⊙ BAT引脚电流:1200mA⊙ PROG引脚电流:1200uA⊙最⼤结温:145℃⊙⼯作环境温度范围:-40℃~85℃⊙贮存温度范围:-65℃~125℃⊙引脚温度(焊接时间10秒):260℃DP4056芯⽚特性替代LTC4056替代TP4056⊙⾼达1000mA的充电电流⊙⽆需MOSFET、检测电阻或隔离⼆极管⊙⽤于单节锂离⼦电池、采⽤SOP封装的完整线性充电器⊙恒定电流/恒定电压操作,并具有可在⽆过热危险的情况下实现充电速率最⼤化的热调节功能⊙稳定的 1A 恒流充电,⼤幅减少 5000mAh 锂电池充电时间⊙精度达到±1%的 4.2V 预设充电电压⊙⽤于电池电量检测的充电电流监控器输出⊙⾃动再充电⊙充电状态双输出、⽆电池和故障状态显⽰⊙ C/10充电终⽌⊙待机模式下的供电电流为55uA⊙ 2.9V涓流充电⊙软启动限制了浪涌电流⊙电池温度监测功能⊙采⽤8引脚ESOP/MSOP封装典型应⽤原理图应⽤领域⊙⼿机⊙ MP3、MP4播放器⊙数码相机⊙电⼦词典⊙ GPS⊙便携式设备、各种充电器。
单节电池保护IC S8261
0.4 V
*1. 延迟时间的组合项目中的(1)~(9),请参阅表2。
备注 需要上述检测电压值以外的产品时,请向本公司营业部咨询。
过电流1 检测电压
[VIOV1] 0.16 V 0.08 V 0.15 V 0.08 V 0.20 V 0.10 V 0.13 V 0.10 V 0.10 V 0.15 V 0.08 V 0.10 V 0.10 V 0.10 V 0.20 V 0.13 V 0.13 V 0.20 V 0.08 V 0.15 V 0.05 V 0.10 V 0.06 V 0.15 V 0.15 V 0.18 V 0.08 V 0.10 V 0.15 V 0.13 V 0.12 V 0.25 V 0.10 V 0.10 V 0.15 V 0.10 V 0.13 V 0.06 V
0V
S-8261AATMD-G2TT2G 4.300 V 0.10 V 2.30 V
0V
S-8261AAUMD-G2UT2G 4.275 V 0.10 V 2.30 V
0.1 V
S-8261AAXMD-G2XT2G 4.350 V 0.10 V 2.30 V
0.1 V
S-8261AAZMD-G2ZT2G 4.280 V 0.25 V 2.50 V
5
1节电池用电池保护IC S-8261系列 ■ 引脚排列图
SOT-23-6 Top view 65 4
1 23 图2
引脚号
1 2 3 4 5 6
Rev.4.5_00
符号 DO VM CO DP VDD VSS
表4
描述 放电控制用FET门极连接端子(CMOS输出) VM ~ VSS间的电压检测端子(过电流检测端子) 充电控制用FET门极连接端子(CMOS输出) 延迟时间测定用测试端子 正电源输入端子 负电源输入端子
DW02D(锂电池保护IC)
DW02D (文件编号:S&CIC0921)二合一锂电池保护IC一、概述DW02D 产品是单节锂离子/锂聚合物可充电电池组保护的高集成度解决方案。
DW02D 包括了先进的功率MOSFET ,高精度的电压检测电路和延时电路。
DW02D 具有非常小的SOT23-6的封装并且只需要一个外部元器件,这使得该器件非常适合应用于空间限制得非常小的可充电电池组应用。
DW02D 具有过充,过放,过流,短路等所有的电池所需保护功能,并且工作时功耗非常低。
该芯片不仅仅是为手机而设计,也适用于一切需要锂离子或锂聚合物可充电电池长时间供电的各种信息产品的应用场合。
二、特点内部集成等效70mΩ的先进的功率MOSFET ; SOT23-6封装;只需要一个外部电容; 过充电流保护;3段过流保护:过放电流1、过放电流2(可选)、负载短路电流;充电器检测功能; 延时时间内部设定; 高精度电压检测;低静态耗电流:正常工作5.0uA (典型值);休眠状态不超过0.1uA ;兼容ROHS 和无铅标准。
封装形式管脚号管脚名称管脚描述VC CGN DVD DNC BA T T T EST 1234561VCC 内部电路供电端2GND 接地端,接电池芯负极3VDD 正电源供电端4NC 悬空5BATT 电池组的负极,内部FET 开关连接到GND 6TEST测试端正常工作模式如果没有检测到任何异常情况,充电和放电过程都将自由转换。
这种情况称为正常工作模式。
过充电压情况在正常条件下的充电过程中,当电池电压高于过充检测电压(VCU),并持续时间达到过充电压检测延迟时间(tCU)或更长,DW02D 将控制MOSFET 以停止充电。
这种情况称为过充电压情况。
以下两种情况下,过充电压情况将被释放:1、当电池电压低于过充解除电压(VCL),DW02D 控制充电的FET 导通,回到正常工作模式下。
2、当连接一个负载并且开始放电,DW02D 控制充电的FET 导通回到正常工作模式下。
FM3113(单节锂电池保护IC)pdf
特点
高精度电压检测电路 各延迟时间由内部电路设置(无需外接电容) 有过放自恢复功能 工作电流:典型值 3uA,最大值 6.0uA(VDD=3.9V) 连接充电器的端子采用高耐压设计(CS 端和 OC 端,绝对最大额定值是 20V) 有 0V 电池充电功能 宽工作温度范围:-40℃~+85℃ 采用 SOT23-6 封装
--
1.5
--
1.5
耗电流
--
8
V
--
20
V
IDD
VDD=3.9V
IOD
VDD=2.0V
--
3.0
6.0
uA
--
--
0.1
uA
检测电压
VCU VCR VDL VDR VDIP VSIP
----VDD=3.6V VDD=3.0V
4.375 4.150 2.750 2.950 120
0.7
4.400 4.200 2.800 3.000 150
允许向 0V 电池充电功能
1.2
--
--
V
第3页共7页
Version 1.0
深圳市富满电子有限公司
SHENZHEN FUMAN ELECTRONICS CO., LTD.
FM3113(文件编号:S&CIC1334)
延迟时间参数
单节锂电池保护 IC
项目
符号Βιβλιοθήκη 测试条件1.04.425
V
4.250
V
2.850
V
3.050
V
180
mV
1.3
V
VCIP
--
-170
-200
XB8886A 单节锂电池保护芯片 替代S8261 DW01
XB8886A ______________________________________ ________________________________________________________________________________ One Cell Lithium-ion/Polymer Battery Protection ICGENERAL DESCRIPTIONThe XB8886A Series product is a high integration solution for lithium-ion/polymer battery protection.XB8886A contains advanced power MOSFET, high-accuracy voltage detection circuits and delay circuits.XB8886A is put into an SOP8-PP package and only one external component makes it an ideal solution in limited space of battery pack.XB8886A has all the protection functions required in the battery application including overcharging, overdischarging, overcurrent and load short circuiting protection etc. The accurate overcharging detection voltage ensures safe and full utilization charging. The low standby current drains little current from the cell while in storage.The device is not only targeted for digital cellular phones, but also for any otherLi-Ion and Li-Poly battery-powered information appliances requiring long-term battery life.FEATURES·Protection of Charger Reverse Connection·Protection of Battery Cell Reverse Connection·Integrate Advanced Power MOSFET with Equivalent of 8.5mΩ R SS(ON)·SOP8-PP Package·Only One External Capacitor Required·Over-temperature Protection ·Overcharge Current Protection ·Two-step Overcurrent Detection: -Overdischarge Current-Load Short Circuiting·Charger Detection Function·0V Battery Charging Function- Delay Times are generated inside ·High-accuracy Voltage Detection ·Low Current Consumption- Operation Mode:7.8μA typ.- Power-down Mode: 4.5μA typ. ·RoHS Compliant and Lead (Pb) FreeAPPLICATIONSOne-Cell Lithium-ion Battery PackLithium-Polymer Battery PackPower BankFigure 1. Typical Application CircuitORDERING INFORMATIONNote: “YW ” is manufacture date code, “Y ” means the year, “W ” means the weekPIN CONFIGURATIONFigure 2. PIN ConfigurationPIN DESCRIPTIONABSOLUTE MAXIMUM RATINGS(Note: Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)ELECTRICAL CHARACTERISTICSTypicals and limits appearing in normal type apply for T A= 25o C, unless otherwise specifiedThe parameter is guaranteed by design.Figure 3. Functional Block DiagramFUNCTIONAL DESCRIPTIONThe XB8886A monitors the voltage andcurrent of a battery and protects it frombeing damaged due to overcharge voltage,overdischarge voltage, overdischargecurrent, and short circuit conditions bydisconnecting the battery from the loador charger. These functions are required inorder to operate the battery cell withinspecified limits.The device requires only one externalcapacitor. The MOSFET is integrated andits R SS(ON) is as low as8.5mΩtypical.Normal operating modeIf no exception condition is detected, charging and discharging can be carried out freely. This condition is called the normal operating mode.Overcharge ConditionWhen the battery voltage becomes higher than the overcharge detection voltage (V CU) during charging under normal conditionand the state continues for the overcharge detection delay time (t CU) or longer, theXB8886A turns the charging control FEToff to stop charging. This condition is called the overcharge condition. The overcharge condition is released in the following two cases:1, When the battery voltage drops below the overcharge release voltage (V CL), the XB8886A turns the charging control FETon and returns to the normal condition.2, When a load is connected and discharging starts, the XB8886A turns the charging control FET on and returns to the normal condition. The release mechanism is as follows: the discharging current flows through an internal parasitic diode of the charging FET immediately after a load is connected and discharging starts, and the VM pin voltage increases about 0.7 V (forward voltage of the diode) from the GND pin voltage momentarily. TheXB8886A detects this voltage and releases the overcharge condition. Consequently, in the case that the battery voltage is equal to or lower than the overcharge detection voltage (V CU), the XB8886A returns to the normal condition immediately, but in the case the battery voltage is higher than the overcharge detection voltage (V CU),the chip does not return to the normal conditionuntil the battery voltage drops below the overcharge detection voltage (V CU) even if the load is connected. In addition, if the VM pin voltage is equal to or lower than the overcurrent detection voltage when a load is connected and discharging starts, the chip does not return to the normal condition.Remark If the battery is charged to a voltage higher than the overcharge detection voltage (V CU) andthe battery voltage does not drops below the overcharge detection voltage (V CU) even when a heavy load, which causes an overcurrent, is connected, the overcurrent do not work until the battery voltage drops below the overcharge detection voltage (V CU). Since an actual battery has, however, an internal impedance of several dozens of mΩ, and the battery voltage drops immediately after a heavy load which causes an overcurrent is connected, the overcurrent work. Detection of load short-circuiting works regardless of the battery voltage.Overdischarge ConditionWhen the battery voltage drops below the overdischarge detection voltage (V DL) during discharging under normal condition and it continues for the overdischarge detection delay time (t DL) or longer, theXB8886A turns the discharging control FET off and stops discharging. This condition is called overdischarge condition. After the discharging control FET is turned off, the VM pin is pulled up by the R VMD resistorbetween VM and VDD in XB8886A. Meanwhile when VM is bigger than 1.5V (typ.) (the load short-circuiting detection voltage), the current of the chip is reduced to the power-down current (I PDN). This condition is called power-down condition. The VM and VDD pins are shorted by theR VMD resistor in the IC under the overdischarge and power-down conditions. The power-down condition is released when a charger is connected and the potential difference between VM and VDD becomes 1.3 V (typ.) or higher (load short-circuiting detection voltage). At this time, the FET is still off. When the battery voltage becomes the overdischarge detection voltage (V DL) or higher (see note),the XB8886A turns the FET on and changes to the normal condition from the overdischarge condition.Remark If the VM pin voltage is no less than the charger detection voltage (V CHA), when the battery under overdischarge condition is connected to a charger, the overdischarge condition is released (the discharging control FET is turned on) as usual, provided that the battery voltage reaches the overdischarge release voltage (V DU) or higher. Overcurrent ConditionWhen the discharging current becomes equal to or higher than a specified value (the VM pin voltage is equal to or higher than the overcurrent detection voltage) during discharging under normal condition and the state continues for the overcurrent detection delay time or longer, theXB8886A turns off the discharging control FET to stop discharging. This condition is called overcurrent condition. (The overcurrentincludes overcurrent, or load short-circuiting.)The VM and GND pins are shorted internally by the R VMS resistor under the overcurrent condition. When a load is connected, the VM pin voltage equals the VDD voltage due to the load.The overcurrent condition returns to the normal condition when the load is released and the impedance between the B+ and B- pins becomes higher than the automatic recoverable impedance. When the load is removed, the VM pin goes back to the GND potential since the VM pin is shorted the GND pin with the R VMS resistor. Detecting that the VM pin potential is lower than the overcurrent detection voltage(V IOV1), the IC returns to the normal condition.Abnormal Charge Current DetectionIf the VM pin voltage drops below the charger detection voltage (V CHA) during charging under the normal condition and it continues for the overcharge detection delay time (t CU) or longer, the XB8886A turns the charging control FET off and stops charging. This action is called abnormal charge current detection. Abnormal charge current detection works when the discharging control FET is on and the VM pin voltage drops below the charger detection voltage (V CHA). When an abnormal charge current flows into a battery in the overdischarge condition, the XB8886A consequently turns the charging control FET off and stops charging after the battery voltage becomes the overdischarge detection voltage and the overcharge detection delay time (t CU) elapses.Abnormal charge current detection is released when the voltage difference between VM pin and GND pin becomes lower than the charger detection voltage (V CHA) by separating the charger. Since the 0 V battery charging function has higher priority than the abnormal charge current detection function, abnormal charge current may not be detected by the product with the 0 V battery charging function while the battery voltage is low.Load Short-circuiting conditionIf voltage of VM pin is equal or below short circuiting protection voltage (V SHORT), the XB8886A will stop discharging and battery is disconnected from load. The maximum delay time to switch current off is t SHORT. This status is released when voltage of VM pin is higher than short protection voltage (V SHORT), such as when disconnecting the load.Delay CircuitsThe detection delay time for overdischarge current 2 and load short-circuiting startswhen overdischarge current 1 is detected.As soon as overdischarge current 2 or load short-circuiting is detected over detection delay time for overdischarge current 2 or load short- circuiting, the XB8886A stops discharging. When battery voltage falls below overdischarge detection voltage due to overdischarge current, the XB8886A stop discharging by overdischarge current detection. In this case the recovery of battery voltage is so slow that if battery voltage after overdischarge voltage detection delay time is still lower than overdischarge detection voltage, the XB8886A shifts to power-down.Figure 4. Overcurrent delay time0V Battery Charging Function (1) (2) (3)This function enables the charging of a connected battery whose voltage is 0 V by self-discharge. When a charger having 0 V battery start charging charger voltage(V0CHA) or higher is connected between B+ and B- pins, the charging control FET gate is fixed to VDD potential. When the voltage between the gate and the source of the charging control FET becomes equal to or higher than the turn-on voltage by the charger voltage, the charging control FET is turned on to start charging. At this time, the discharging control FET is off and the charging current flows through the internal parasitic diode in the discharging control FET. If the battery voltage becomes equal to or higher than the overdischarge release voltage (V DU), the normal condition returns. Note(1) Some battery providers do not recommend charging of completely discharged batteries. Please refer to battery providers before the selection of 0 V battery charging function.(2) The 0V battery charging function has higher priority than the abnormal charge current detection function. Consequently, a product with the 0 V battery charging function charges a battery and abnormal charge current cannot be detected during the battery voltage is low (at most 1.8 V or lower).(3) When a battery is connected to the IC for the first time, the IC may not enter the normal condition in which discharging is possible. In this case, set the VM pin voltage equal to the GND voltage (short the VM and GND pins or connect a charger) to enter the normal condition.TIMING CHART1.Overcharge and overdischarge detectionV V CU -V V DL +V V DL ONONCHARGEV DDV ov1V SS V VMFigure5-1 Overcharge and Overdischarge Voltage Detection2.Overdischarge current detectionV CU V CU -V HC V DL +V DH V DLONDISCHARGEOFFV DDV V ov2V ov1V SS(1)(4)(1)(1)(1)(4)(4)Figure5-2 Overdischarge Current DetectionRemark: (1) Normal condition (2) Overcharge voltage condition (3) Overdischarge voltage condition (4)Overcurrent conditionXB8886A ______________________________________ ____________________________________________________ ___________________________ 3.Charger DetectionVV CU-VV DL+VV DLONV DDVMV SSVFigure5-3 Charger Detection4.Abnormal Charger DetectionVV CU-VV DL+VV DLONONCHARGEV DDVMV SSVFigure5-4 Abnormal Charger DetectionRemark: (1) Normal condition (2) Overcharge voltage condition (3) Overdischarge voltage condition (4)Overcurrent condition)XB8886A ______________________________________ ____________________________________________________ ___________________________ TYPICAL APPLICATIONAs shown in Figure 6, the bold line is the high density current path which must be kept as short as possible. For thermal management, ensure that these trace widths are adequate. C1& R1 is a decoupling capacitor & resistor which should be placed as close as possible toXB8886A.Fig 6 XB8886A in a Typical Battery Protection CircuitPrecautions• Pay attention to the operating conditions for input/output voltage and load current so that the power loss in XB8886A does not exceed the power dissipation of the package.• Do not apply an electrostatic discharge to this XB8886A that exceeds the performance ratings of the built-in electrostatic protection circuit.XB8886A ______________________________________ ____________________________________________________ ___________________________ - 11 -REV0.3 PACKAGE OUTLINE SOP8-EPAD PACKAGE OUTLINE AND DIMENSIONSIn order to increase the driver current capability of XB8886A and improve the temperature of package, Please ensure Epad and enough ground PCB to release energy.。
单节锂电池保护芯片
单节锂电池保护芯片锂电池是一种重要的电池,广泛应用于手机、电动车和便携式电子设备等领域。
为了保证锂电池的安全和性能,需要使用单节锂电池保护芯片对锂电池进行保护。
单节锂电池保护芯片是一种集成电路,主要用于监测锂电池的电压、电流和温度,并在必要时采取措施保护锂电池。
保护芯片通常由主控芯片、保护单元、电源管理单元和通信接口等组成。
主控芯片是单节锂电池保护芯片的核心部件,负责控制和协调保护单元、电源管理单元和通信接口的工作。
主控芯片能够实时监测锂电池的电压、电流和温度,并根据设定的阈值进行判断和控制。
保护单元是单节锂电池保护芯片的关键部件,负责监测锂电池的电压和电流,并在必要时采取措施进行保护。
保护单元可以通过切断电路、放电保护和过压保护等方式来保护锂电池,避免发生过放电、过充电和短路等危险情况。
电源管理单元是单节锂电池保护芯片的重要组成部分之一,用于管理锂电池的充放电过程。
电源管理单元可以通过控制充电电流和放电电流来保护锂电池,并且可以实现恒流充电和恒压充电等充电模式,提高锂电池的充电效率和充电质量。
通信接口是单节锂电池保护芯片的重要功能之一,用于与外部设备进行通信和数据传输。
通过通信接口,可以实现对锂电池的状态监测和控制,以及对充电器和电池管理系统的通信和控制。
单节锂电池保护芯片具有多种保护功能,可以有效地保护锂电池的安全和性能。
首先,它可以监测锂电池的电压,当电压超出设定的范围时,可以及时切断电路,避免电压过高或过低导致锂电池损坏。
其次,它可以监测锂电池的电流,当电流异常时,可以及时采取措施,避免电流过大导致锂电池过热。
此外,单节锂电池保护芯片还可以监测锂电池的温度,并在必要时控制充电或放电,避免温度过高引发火灾等安全问题。
总之,单节锂电池保护芯片是一种重要的电子元器件,可以有效地保护锂电池的安全和性能。
在使用锂电池的电子设备中,应该广泛应用单节锂电池保护芯片,以提高锂电池的使用寿命和安全性。
XB8089 XB8089D XB8089A 锂电池保护芯片 电源管理 参考价
产品概述XB8089产品是单节锂离子/锂聚合物可充电电池组保护的高集成度解决方案。
XB8089包括了先进的功率MOSFET ,高精度的电压检测电路和延时电路。
XB8089使用带散热片的ESOP8封装,这使得该器件散热非常好。
XB8089具有过充、过放、过流、短路等所有的电池所需要保护功能,并且工作时功耗非常低。
该芯片不仅仅为手机而设计,也适用于一切需要锂离子或锂聚合物可充电电池长时间供电的各种信息产品的应用场合。
典型应用◆ 单芯锂离子电池组; ◆ 锂聚合物电池组; ◆ 移动电源主要特点◆ 内部集成等效18m Ω(典型值)的功率MOSFET ; ◆ 外围电路简单; ◆ 过温保护; ◆ 过充电电流保护;◆ 2段过流保护:1.过放电电流;2.负载短路电流;◆ 充电器检测; ◆ 0V 电池充电功能; ◆ 延迟时间内部设定; ◆ 高精度电压检测;◆ 静态工作电流: 6μA (典型值); ◆ ESOP8封装; ◆ ESD 4KV 。
典型应用电路图如图:粗线部分是过大电流线路,必须尽可能的短。
为了防止温度升高会导致的导线被烧断,因此粗线部分必须要有足够大的半径。
去偶电容C1、C2要离XB8089尽可能的近。
注:PCB LAYOUT 时C1、C2尽量靠近IC管脚。
智芯恒参考价:0.03X引脚定义电路内部结构框图注意:1.注意输入输出电压和负载电流情况,保证芯片功耗不超过封装所承受的最大功耗。
2.本产品具有防静电保护功能,但不要超过产品最大的承受静电能力。
典型参数(除非特别指定,T A =25℃)参数 符号 测试条件 最小典型最大值 单位检测电压过充电检测电压CUV-- 4.25 4.3 4.35 V过充电释放电压CLV-- 4.05 4.1 4.15 V过放电检测电压DLV-- 2.3 2.4 2.5 V过放电释放电压DRV-- 2.9 3.0 3.1 V充电器检测电压CHAV-- -0.12 V检测电流过放电电流检测11IOVI Vdd=3.5V 8 A负载短路检测电流SHORTI Vdd=3.5V 40 A静态电流正常工作电流 OPEI Vdd=3.5V, 6 12 uA待机状态电流 PDNI Vdd=2V,VMfloating 3 uA开关管导通阻抗等效导通阻抗 DSR Vdd=3.6V,18 mΩ过温保护过温保护 120 ℃过温恢复 100 ℃迟延时间过充电检测迟延时间CUT VDD=3.6V~4.4V 150 ms过放电检测迟延时间DLT VDD=3.6V~2.0V 35 ms过电流1检测迟延时间1IOVT VDD=3.6V 8 ms负载短路电流检测延迟时间SHORTT VDD=3.6V 70 us 极限参数(注意:不要超过这些参数以免对器件造成损坏,长期超出工作范围条件时会影响器件的可靠性)参数 参数范围 单位 VDD管脚输入电压 -0.3~6 VVM管脚输入电压 -4~8 V工作温度 -40~+85 ℃最大结温度 125 ℃存储温度 -55-150 ℃ 焊接温度(10秒) 260 ℃功耗(25℃) 0.625 W封装热阻(θJA) 100 ℃/W封装热阻(θJC) 130 ℃/WESD 2000 V功能及参数XB8089监控电池的电压和电流,并通过断开充电器或负载,保护单节可充电锂电池不会因为过充电压,过放电压,过充电流,过放电流以及短路等情况而损坏。
JL1001 .pdF单节正极保护IC
OC
GND-0.3~14
V
VBST
BST
GND-0.3~12
V
PD
―
245
mW
TOP
―
-40~+85
℃
TST
―
-40~+125
℃
表 2. 绝对最大额定值
2016.03 Rev1.2
2/5
数据手册
单节锂电池保护 IC
JL1001
电气参数 (若无特别指明,Ta= 25℃,VCC
=3.5V)
项目
记号
条件
JL1001
负载短路检测延迟时间
向 0V 电池充电功 能
向 0 V 电池充电开始充 电器电压
内部电阻
tSIP V0CHA
VCC=3.5V→4.5V VCC=3.5V→2.5V VCC=VCC→VCC-
0.25V
VCC=VCC→VCC1.50V
向 0 V 电池充电功能
CS-VCC 间电阻
CS-GND 间电阻
封装形式:SOT-23-6
管脚分布及描述
编号
1 2
3
4 5 6
符号
VCC GND
OC
OD CS BST
1VCC BST 6
2GND CS 5
3OC OD 4
图 1. 管脚排布
SOT-23-6
描述
正电源输入端子、电池正电压连接端子 负电源输入端子、电池负电压连接端子 充电控制用 FET 门极连接端子 CS-VCC 间的电压检测端子(过充
输入电压
RCSC RCSD
V1=3.5V, VCS=1V V1=1.5V, VCS=1.5V
VCC-GND 间工作电压
8261G3J高精度单节锂电池保护芯片
Protection IC for 1-Cell Battery PackFeaturesHigh Detection AccuracyOvercharge Detection: ±25mVOverdischarge Detection: ±50mVDischarge Overcurrent Detection: ±15mVCharge Overcurrent Detection: ±30mV High Withstand VoltageAbsolute maximum ratings: 28V(V- pin and CO pin)Ultra Small PackageSOT-23-6 DescriptionThe 8261 is the 1-cell protection IC for lithium-ion/lithium-polymer rechargeable battery pack. The high accuracy voltage detector and delay time circuits are built in 8261 with state-of-art design and process.To minimize power consumption, 8261 activates power down mode when an overdischarge event is detected (for power-down mode enabled version). Besides, 8261 performs protection functions with four external components for miniaturized PCB.The tiny package is especially suitable for compact portable device, i.e. slim mobile phone and Bluetooth earphone.ApplicationMobile phone battery packsDigital camera battery packsBluetooth earphone Li-ion battery module Typical Application CircuitPackage and Pin DescriptionOrdering Information Marking InformationPin No. Symbol pin Description1 DO Connection of discharge control FET gate2 V-Voltage detection between V- pin and VSS pin(Overcurrent / charger detection pin)3 CO Connection of charge control FET gate4 NC No connection5 V DD Connection for positive power supply input6 V SS Connection for negative power supply inputVersion codeSOT-23-61 2 36 5 41) ~ 3) : Version codeProduct version code:8261 OverchargeDetectionVoltageV DET1 (V)OverchargeReleaseVoltageV REL1 (V)OverdischargeDetectionVoltageV DET2 (V)OverdischargeRelease VoltageV REL2 (V)OvercurrentDetectionVoltage V DET3 (V)0V BatteryCharge FunctionPower downmodeFunctionG3P 4.200 4.100 2.750 2.850 0.150 Unavailable Yes G2J 4.325 4.125 2.500 2.900 0.150 Unavailable Yes G3J 4.280 4.080 3.000 3.000 0.080 Available Yes G2N 4.275 4.175 2.300 2.400 0.100 Available Yes Remark Please contact our sales office for the products with detection voltage value other than those specified above.Absolute Maximum RatingsSymbol Descriptions RatingUnits V DDSupply Voltage -0.3 to 7V V-V- pin V DD - 28 to V DD + 0.3 V V COCO pin V DD -28 to V DD + 0.3 V V DOOutput VoltageDO pin Vss - 0.3 to V DD + 0.3VP D Power Dissipation SOT23-6250 mW T OPTOperating Temperature Range -40 to +85 °C T STGStorage Temperature Range -55 to +125°CApplying any over “Absolute Maximum Ratings” practice can permanently damage the device. These data are indicated the absolute maximum values only but not implied any operating performance.Electrical CharacteristicsSymbolItem Conditions MIN TYP MAX UnitDetection VoltageV DET1 Overcharge detection voltage -- V DET1-0.025 V DET1 V DET1+0.025VV REL1 Overcharge release voltage V DET1 ≠ V REL1V REL1-0.05 V REL1 V REL1+0.05 V V DET2 Over-discharge detection voltage -- V DET2-0.05 V DET2 V DET2+0.05 V V REL2 Over-discharge release voltage V DET2 ≠ V REL2 V REL2-0.10 V REL2 V REL2+0.10 V V DET3 Discharge overcurrent detection voltageV DD =3.5V V DET3-0.015 V DET3V DET3+0.015VV DET4 Charge overcurrent detection V DD =3.5V -0.13 -0.10 -0.07 V V SHORTLoad short-circuiting detection voltageV DD =3.5V0.30 0.50 0.70 VDetection Delay Time- 0.96 1.2 1.4 sVDD=4.28V , C ISS =1200pF ,V TH =0.6V0.96 1.22 1.42 s t VDET1* Output delay time of overchargeVDD=4.28V , C ISS =1200pF ,V TH =0.4V0.95 1.23 1.43 s V DET2 >2.5V 120 150 180 ms t VDET2 Output delay time of overdischarge V DET2 ≦2.5V 100 150 200 ms V DET2 >2.5V 7.2 9 11 ms t VDET3Output delay time of discharge overcurrent V DET2 ≦2.5V 6 9 12 ms t SHORTOutput delay time of Load short-circuiting detectionV DD =3.5V 240 300 360μs V DD = 3.5V 7.2 9 11 msV DD =3.5V ,C ISS =1200pF , V TH =0.6V 15.1 19.5 23.8 ms t VDET4*Output delay time of charge overcurrentV DD =3.5V ,C ISS =1200pF , V TH =0.4V16.8 21.6 26.4 ms(Ta = 25o C)(Continued)Symbol Item ConditionsMINTYPMAXUnitCurrent Consumption (power-down function enabled)V DD Operating input voltage V DD - V SS 2.2 6.0VI DD Supplycurrent V DD= 3.5V,V-=0V 1.0 3.0 5.5 μAI STANDBY Power-down current (power-downfunction enabled IC only)V DD=2.0V, V- floating 0.2 μA0V battery Charging FunctionV0CHA 0 V battery charge starting chargervoltage0 V battery chargingfunction “available”1.0 VV0INH 0V battery charge inhibition batteryvoltage0 V battery chargingfunction “unavailable”(Vcharger=4V~14V)0.3 VOutput ResistanceR COH CO pin H resistance V CO=3.0V, V DD=3.5V,V-=0V- 5 10KΩR COL CO pin L resistance V CO=0.5V, V DD=4.5V,V-=0V- 5 10MΩR DOH DO pin H resistance V DO=3.0V, V DD=3.5V,V-=0V- 5 10KΩR DOL DO pin L resistance V DO=0.5V, V DD=1.8V,V-=0V- 5 10KΩV- internal ResistanceR VMD Internal resistance between V- andV DDV DD= 1.8V,V-=0V 100 300 900 KΩR VMS Internal resistance between V- andV SSV DD= 3.5V,V-= 1.0V 100 200 400 KΩ*: Please note that a N-channel MOSFET“turning off delay time”will be affected by 1.Input capacitance (C ISS). 2.Gate threshold voltage (V TH); It causes the delay times of overcharge (tV DET1) and charge overcurrent (tV DET4) of 8261 are prolonged approximately “10ms” to turn off the N-channel MOSFETs to cutting off the current flowing path.Test CircuitsOvercharge, overdischarge and the release detection voltages (test circuit 1)1) Set V1=3.5V, V2=0V, S1=ON and S2=OFF, then 8261 enters operating mode.2) Increase V1 voltage (from 3.5V) gradually. The V1 voltage is the overcharge detection voltage (V DET1)when CO pin goes low (from high).3) Decrease V1 gradually. The V1 voltage is the overcharge release detection voltage (V REL1) when CO pingoes high again.4) Continue decreasing V1. The V1 voltage is the overdischarge detection voltage (V DET2) when DO pin goeslow. Then increase V1 gradually. The V1 voltage is the overdischarge release detection voltage (V REL2), when DO pin returns to high.Note: The overcharge and overdischarge release voltages are defined in versions.Discharge overcurrent detection voltage (test circuit 1)1) Set V1=3.5 V, V2=0V, S1=ON and S2=OFF and XY8261 enter operating condition.2) Increase V2 (from 0V) gradually. The V2 voltage is the discharge overcurrent detection voltage (V DET3)when DO pin goes low (from high).Charge overcurrent detection voltage (test circuit 1)1) Set V1=3.5V, V3=0V, S1=OFF and S2=ON and XY8261 enter operating condition.2) Increase V3 gradually. The V3 voltage is the charge overcurrent detection voltage (V DET4) when CO pingoes low (from high).Load short-circuiting detection voltage (test circuit 1)1) Set V1=3.5V, V2=0V, S1=ON and S2=OFF and 8261 enter operating condition.2) Increase V2 immediately (within 10uS) till DO pin goes “low” from high with a delay time which isbetween the minimum and the maximum of Load short-circuiting delay time.Overcharge, overdischarge delay time (test circuit 1)1) Set V1=3.5V, V2=0V, S1=ON and S2=OFF to enter operating condition.2) Increase V1 from V DET1-0.2V to V DET1+0.2V immediately (within 10us). The overcharge detection delaytime (t VDET1) is the period from the time V1 gets to V DET1+0.2V till CO pin switches from high to low. 3) Set V1=3.5V, V2=0V, S1=ON and S2 = OFF to enter operating condition.4) Decrease V1 from V DET2+0.2V to V DET2-0.2V immediately (within 10us). The overdischarge detection delaytime (t VDET2) is the period from the time V1 gets to V DET2-0.2V till DO pin switches from high to low.Discharge overcurrent delay time (test circuit 1)1) Set V1=3.5V, V2=0V, S1=ON and S2=OFF to enter operating condition.2) Increase V2 from 0V to 0.25V immediately (within 10us). The discharge overcurrent detection delay time(t VDET3) is the period from the time V2 gets to 0.25V till DO pin switches from high to low.Charge overcurrent delay time (test circuit 1)1) Set V1=3.5V, V3=0V, S1=OFF and S2=ON to enter operating condition.2) Increase V3 from 0V to 0.3V immediately (within 10us). The charge overcurrent detection delay time(t VDET4) is the period from the time V3 gets to 0.3V till CO pin gets to low from high.8261高精度单节锂电保护芯片Load short-circuiting delay time (test circuit 1)1)Set V1=3.5V, V2=0V, S1=ON and S2=OFF to enter operating condition.2)Increase V2 from 0V to 1.6V immediately (within 10us). The Load short-circuiting detection voltage delaytime (t SHORT) is the period from the time V2 gets to 1.6V till DO pin switches from high to low.Operating & power down current consumption (test circuit 2)1)Set V1=3.5V, V2=0V and S1=ON to enter operating condition and measure the current I1. I1 is theoperating condition current consumption (I DD).2)Set V1=V2=1.5V and S1=ON enter overdischarge condition and measure current I1. I1 is the powerdown current consumption (I STANDBY).Resistance between V- and V DD, V- and V SS (test circuit 2)1)Set V1=1.8V, V2=0V and S1=ON and XY8261 enters overdischarge condition. V1/I1 is the internalresistance between V- and VDD pin (R VMD).2)Set V1=3.5V, V2=1.0V and S1=ON and XY8261 enters discharge overcurrent condition. V2/I2 is theinternal resistance between V- and V SS pin (R VMS).Output resistance (test circuit 3)1)Set V1=3.5V, V2=0V, V3=3.0V, S1=OFF and S2=ON to enter operating condition. (V3-V1)/I2 is theinternal resistance (R COH).2)Set V1=4.5V, V2=0V, V3 =0.5V, S1=OFF and S2=ON to enter overcharge condition. V3/I2 is the internalresistance (R COL).3)Set V1=3.5V, V2=0V, V3=3.0V, S1=ON and S2=OFF to enter operating condition. (V3-V1)/I2 is theinternal resistance (R DOH).4)Set V1=1.8 V, V2=0V, V3 =0.5V, S1=ON and S2=OFF to enter overdischarge condition. V3/I2 is theinternal resistance (R DOL).0V battery charge starting charger voltage (products with 0V battery charging function is “Available”) (test circuit 4)1)Set V1=V2=0V, increase V2 gradually.2)The V1 voltage is the 0V charge inhibition voltage (V0INH) when CO pin switches from low to high (V V- +0.1V or higher).0V battery charge inhibition battery voltage (products with 0V battery charging function is “Unavailable”) (test circuit 4)1)Set V1=0V, V2=4V and increase V1 gradually.2)The V1 voltage is the 0V charge inhibition voltage (V0INH) when CO pin switches from low to high (V V- +0.1V or higher).Note: The charger voltage should not be higher than 14V of 0V battery charge inhibition battery voltage.Recommended:1) '0 V charge available' doesn't means 8261 can reco ver the zero-V cell to be full charged if this cell hasbeen already damaged due to too low voltage.2) In 8261, the '0 V charge inhibition' voltage is rather lower (0.3V~0.5V). That is, 8261 allowscharging such low voltage cell and recover it.3) For safety consideration, we strongly recommended to select '0 V charge inhibition' to prevent fromcharging a damaged cell.TestCircuitTest circuit 1 Test circuit 2Test circuit 4Test circuit 3OperationThe 8261 provides overcharge, overdischarge, discharge overcurrent, charge overcurrent and loadshort-circuiting protections for the 1-cell battery pack. 8261 continuously monitors the voltage of battery between V DD pin and VSS pin to control overcharge and overdischarge protections. When the battery pack is in charging stage, the current flows from the charger to the battery through EB+ and EB-; the voltage between V- pin and VSS pin is negative. On the other hand, when the battery pack is in discharging stage, the current flows from battery to the load through EB+ and EB-; the voltage between V- pin and VSS pin is positive. The 8261 also monitors the voltage which is determined by the current of charge and discharge and the series Rds(on) of MOSFETs between V- pin and V SS pin to detect charge overcurrent and discharge overcurrent current conditions. (1) Normal Condition (Operation mode)The 8261 turns both the charging and discharging control MOSFETs on when the voltage of battery is in the range from overcharge detection voltage (V DET1) to overdischarge detection voltage (V DET2), and the VM pin voltage is in the range from overcurrent detection voltage (V DET4) to discharge overcurrent detection voltage (V DET3). This is called the normal condition that charging and discharging can be carried out freely.Caution: The XY8261 may be needed connecting a charger to return to normal condition, when the batteryis connected for the first time.(2) Overcharge Condition1) Overcharge Protection:When the V DD voltage is higher than the overcharge detection voltage (V DET1) and lasts for longer than the overcharge detection delay time (t VDET1), 8261 turns off the external charging MOSFET to protect the pack from being overcharged, which CO pin turns to “L” from “H” level. 2) Overcharge Protection Release:When the battery voltage is lower than V REL1 and the V- pin voltage is between charge overcurrent detection voltage (V DET4) and discharge overcurrent detection voltage (V DET3), the XY8261 would release this condition.When the battery voltage is lower than V DET1 and charger is removed, the 8261 can be released from this condition. (3) Overdischarge Condition1) Overdischarge Protection:When the V DD voltage is lower than the overdischarge detection voltage (V DET2) and lasts longer than overdischarge detection delay time (t VDET2), 8261 turns off the external discharge MOSFET to protect the pack from being overdischarged, which DO pin turns to “L” from “H” level. In overdischarge condition V- pin is pulled-up to V DD by a resistor (R VMD ) between the V- pin and V DD pin. After that, when V- pin voltage is higher than V DD /2(Typ), the IC gets to power down mode. 2) Overdischarge Protection Release:The overdischarge protection is released when(a) a charger is connected and V- pin voltage is lower than -0.7V (Typ.) and battery voltage is higher thanthe overdischarge voltage, or8261高精度单节锂电保护芯片(b)a charger is connected, and V- pin voltage is higher than –0.7V (Typ.) and battery voltage is higherthan the overdischarge release voltage.(4) Discharge Overcurrent Condition1) Discharge Overcurrent Protection:The 8261 provides discharge overcurrent protection and load short-circuiting protection:(a) Discharge overcurrent protection occurs when V- pin voltage between V DET3 and V SHORT and lasts for acertain delay time (t VDET3) or longer .(b) Load short-circuiting protection occurs when V- pin voltage higher than V SHORT and lasts for a certaindelay time (t SHORT ) or longer .When above conditions happen, the DO pin goes “L” from ”H” to turn off the discharging MOSFET .In discharge overcurrent and load short-circuiting conditions, V- pin is pulled-down to V SS pin by the internal resistor (R VMS ). 2) Discharge Overcurrent and Load Short-Circuiting Protection Release:The IC detects the status by monitoring V- pin voltage that is inversely proportional to the impedance (Rload) between two terminals (EB+ and EB-). The Rload increases while the V- pin voltage decreases. When the V- pin voltage equals to V SHORT or lower , discharge overcurrent status returns to normal mode. The relation between V- and Rload is shown as follows:(5) Charge Overcurrent ConditionThe 8261 provides charge overcurrent protection to prevent the battery pack from being connected to an unexpected charger .1) Charge Overcurrent ProtectionWhen the voltage of V- pin is lower than charge overcurrent detection voltage (V DET4) and lasts for a certain delay time (t DET4) or longer , the CO pin goes “L” from ”H” to turn off the charging MOSFET . 2) Charge Overcurrent Release: Charge overcurrent protection can be only released by disconnecting thecharger . (6) Power Down Condition1) Entering to Power Down Mode:8261 enters the power down mode when overdischarge protection occurs and V- pin voltage is higher than V DD /2 (typical). The V- pin voltage is pulled-up to the V DD through the R VMD resistor. The internal circuits is shut off, therefore, the power-down current (I STANDBY ) is reduced to be low 0.2uA (Max.). 2) Power Down Mode Release:The power down mode is released when a charger is connected and V- pin voltage is lower than V DD /2 (typical).Note: Power down condition is for power down mode enabled version only.RVMSRVMS + RloadX VDD V-=; whereV- ≦ Vshort8261高精度单节锂电保护芯片Block DiagramVSS DO V-COVDD(a) Normal condition (b) Overcharge condition (c) Charge overcurrent condition*: The charger is assumed to charge with a constant current.Timing Chart(1) Overcharge, Charge Overcurrent OperationV V V V V V CO pin voltageBattery voltagecurrentCharge/Discharge V-pin voltageV V(2) Overdischarge, Discharge Overcurrent, Load Short-Circuiting Operation(a) Normal condition (b) Overdischarge condition (c) Discharge overcurrent condition (d) Load short-circuit condition*: The charger is assumed to charge with a constant current.BatteryV-Charge/DO pin V tV V V V V tttvoltagepin voltageV V Charge CurrentDischarge currentvoltageVRecommended Application CircuitTable1 Constant for external componentsSymbol Parts Purpose Recommended Min . Max . RemarksFET1N channelMOSFETDischarge control------------*1) 0.4 V < Threshold voltage < Overdischarge detection voltage. Gate to source withstand voltage > Charger voltage.FET2N channel MOSFETCharge control ---- ---- ----*1) 0.4 V < Threshold voltage <Overdischarge detection voltage. Gate to source withstand voltage > Charger voltage.R1 ResistorESD protection for power fluctuation470Ω 240Ω 1K Ω *2) Set Resistance to the value 2R1<R2.C1Capacitor For power fluctuation0.1uF0.022uF1.0uF*3) Install a 0.22uF capacitor or higher .R2 Resistor Protection for reverseconnection of a charger 1K Ω 300Ω 2K Ω *4) The resistor is preventing big current when a charger is connectedin reverse.*1) If the threshold voltage of an FET is lower than 0.4V, the FET may failed to stop the charging current.If an FET has a threshold voltage equal to or higher than the overdischarge detection voltage, discharging may be stopped before overdischarge is detected.If the charger voltage is higher than the withstanding voltage between the gate and source, the FET may be damaged. *2) Employing an over-specification (listed in above table) R1 may result in overcharge detection voltage and release voltagehigher than the defined voltage (listed in page 4)If R1 has a higher resistance, the IC may be damaged caused by over absolute maximum rating of VDD voltage when a charger is connected reversely.EB+EB-*3) Applying a smaller capacitance C1 to system, DO may failed to function when load short-circuiting is detected.*4) If R2 resistance is higher than 2kΩ, the charging current may not be cut when a high-voltage charger is connected.Caution: 1) The above constants may be changed without notice.2) The application circuit above is for reference only. To determine the correct constants,evaluation of actual application is required.Precautions: 1) The application condition for the input voltage, output voltage, and load current should not exceed the package power dissipation.2) Do not apply an electrostatic discharge to this IC that exceeds the performance ratingsof the built-in electrostatic protection circuit.Package InformationSOT-23-6 Dimensionsθ°θ12. Reference: JEDECMO-178AA3. SOT23-5 / SOT23-6。
CT2101A CT2101B CT2101F 正极控制的二合一锂电保护芯片
VHD
370
400
430
mV
350
400
450
充电器检测电压 VCHA
负载短路检测电 压
VSHORT
VDD = 3.5V
VDD+0.07 VDD+0.12 VDD+0.2 V
VDD+0.02 VDD+0.12 VDD+0.25
1.20 1.15
1.25 1.25
1.30 V
1.35
检测电流
过充检测电流
DD
于保护状态,无输出,这时请将V 端和VM端短接一次,电路即可进入正常工作状态。
DD
2. 过充电压情况
正常状态下,对电池进行充电,当电芯电压(即V 端电压,下面统称V )超过过充检测电压V ,且维
DD
DD
CU
持时间超过过充电压检测延迟时间Tcu时,则CT2101内部开关管关闭,断开充电回路停止充电,进入过充电
mS
7.5
10
13.5
七.功能描述:
CT2101监控电池的电压和电流,并通过断开充电器或者负载,保护单节可充电锂电池不会因为过充 电压、过放电压、过放电流以及短路等情况而损坏。这些功能都使可充电电池工作在指定的范围内;CT2101 支持四种运行模式:正常工作模式、充电工作模式、放电工作模式和休眠工作模式。
DL
压将被VM的对地的内阻 RVMS下拉。当 VM 和地之间的电压小于等于1.5V(典型值),整个电池的电流 消耗将降低至休眠状态下的电流消耗值I ,进入休眠状态。
DDQ
恢复条件: 当电池处于过放电压保护状态时,需要对电池进行充电才能使电池恢复到正常状态。因为过放电电池可能
处于两种状态中:一种是放电的时候VDD电压大于2.0V小于V ,此时电池处于过放电保护状态;另外一
RB324A_1.0内置 MOSFET 锂电池保护芯片
检测延时
过充检测电压延时 过放检测电压延时
过放电流 1 检测延时 过放电流 2 检测延时 短路电流检测延时
TOCV TODV TIOV1
TIOV2 TSHORT
条件
最小值 典型值 最大值 单位
4.25 4.30 4.35 V 4.09 4.15 4.21 V
2.65 2.75 2.85 V
2.9
3.0 3.1
原理图
绝对最大额定值
Figure 2. 原理图
参数
符号
最小值
最大值
单位
供电电压 (VDD 和 GND 间电压 )
VDD
充电器输入电压(VM和GND间电压) VM
存贮温度范围 结温 功率损耗 T=25°C
TSTG TJ PMAX
-0.3 -5
-55 -40
8.0
V
10.0
V
145
°C
145
°C
600
mW
功能描述
RB324A 监控电池的电压和电流,并通 过断开充电器或者负载,保护单节可充电锂 电池不会因为过充电压、过放电压、过放电 流以及短路等情况而损坏。这些功能都使可 充电电池工作在指定的范围内。该芯片仅需 一颗外接电容和一个外接电阻,MOSFET已内 置,等效电阻的典型值为36mΩ。
RB324A 支持四种运行模式:正常工作 模式、充电工作模式、放电工作模式和休眠 工作模式。
内置 MOSFET 锂电池保护芯片 RB324A
概述
特性
RB324A 是一款内置 MOSFET 的单节锂电池保 护芯片。该芯片具有非常低的功耗和非常低 阻抗的内置 MOSFET。该芯片有充电过压, 充电过流,放电过压,放电过流,过热,短 路等各项保护等功能,确保电芯安全,高效 的工作。 RB324A 采用 DFN2X2-6 封装,外围只需要一 个电阻和一个电容,应用极其简洁,工作安 全可靠。
HY2110单节锂电池保护IC中文规格书
.
© 2009-2015 HYCON Technology Corp
DS-HY2110-V16_SC page3
HY2110
1 节锂离子/锂聚合物电池保护 IC
1. 概述
HY2110 系列 IC,内置高精度电压检测电路和延迟电路,是用于单节锂离子/锂聚合物可 再充电电池的保护 IC。 本 IC 适合于对 1 节锂离子/锂聚合物可再充电电池的过充电、过放电和过电流进行保护。
录
概述 ........................................................................................................................................................... 4 特点 ........................................................................................................................................................... 4 应用 ........................................................................................................................................................... 4 方框图 ........................................................................................................................................................ 5 订购信息 .................................................................................................................................................... 5 产品目录 .................................................................................................................................................... 6 封装、脚位及标记信息 .............................................................................................................................. 6 绝对最大额定值 ......................................................................................................................................... 6 电气特性 .................................................................................................................................................... 7 电池保护IC应用电路示例 ........................................................................................................................... 8 工作说明 .................................................................................................................................................... 9 正常工作状态......................................................................................................................................... 9 过充电状态 ............................................................................................................................................ 9 过放电状态 ............................................................................................................................................ 9 充电器检测 .......................................................................................................................................... 10 放电过流状态(放电过流检测功能和负载短路检测功能) .................................................................. 10
RICOH单节锂离子电池保护IC用户手册
单节电池保护IC用户手册
一、规格书相关问题 4.充电过流保护相关(VD4)
1)充电过电流保护解除方法? 回答:断开充电器并接上负载就可以解除充电过电流保护。
2)电平解除型(Auto-release t type)芯片的 充电过流保护的解除方式有什么不同? 回答: 没有什么不同。无论是电平解除型芯片还是锁存型芯片,都是通过断开充电器并接上负载来解除充电 过流保护的。
一、规格书相关问题 5.其它功能
1)哪些保护模式中芯片是处于待机模式(休眠模式)的? 回答: 只有在过放电保护实施之后,芯片才会进入待机模式(休眠模式)。 其它保护模式时(过流/短路/过充/充电过流),芯片不会进入待机模式。
2)规格书的电气特性表里为什么会有两种不同的待机电流值? 回答: 根据型号的不同,芯片有两种不同的待机模式,所以有两种待机电流值(以R5402N为例): 过放电保护的解除方式为电平解除型的芯片:待机电流值=1.2uA(典型值); 过放电保护的解除方式为锁存型的芯片:待机电流值数量级为几nA(典型值),最大值0.1uA(25°C)。
所以,介绍材料里提到的测试结果仅作为参考值使用,用来说明使用理光的保护IC的方案板可以通过 该项测试;但是这项测试结果主要还是和不同的PCB板的材质、层数、尺寸、版图设计等因素有关。 如果要确保方案板可以顺利通过ESD测试,客户需要更多地考虑上述因素。
5)延时短缩模式(DS mode)的目的是什么?会影响正常工作模式吗? 回答: 延时短缩模式是为了方便客户做批量产品的延时测试时,可以缩短总的测试时间。 只要将V-引脚电压设定在延时短缩阈值上,就可以实现该功能,无需改动量产板的电路和版图,无需 改动其它引脚的电压设定,所以不会影响量产板在完成该项测试后的正常工作。
保护CT2105
室温 -40℃-+85℃
4.40 3.00
tSH
VDD=3.5V
室温 -40℃-+85℃
288 216
tIOC
VDD=3.5V
室温 -40℃-+85℃
8.8 6.5
表格 4.1 工作电性参数
推荐工作条件
参数名称
符号
最小值
电池电压(VDD与GND之间电压)
VDD
2.0
充电器输入电压(VM与GND之间电压 )
注:当电池首次连接时,即使电池电压在正常范围内,电路仍有可能处于保护状态,此时只需将VDD与
VM短接一次,电路即可进入正常状态。
5.2 过充电压检测及解除 在正常条件下的充电过程中,当电池电压高于过充检测电压(VOC),并持续时间达到过充电压检测延迟时
间(tVOC)或更长,CT2105将控制内置MOSFET 以停止充电。这种情况称为过充电压情况。如果异常情况在过充电压检测延迟时间(tVOC) 内消失,系统将不动作。
5.5 过放电流检测及解除 如果放电电流超过额定值,且持续时间大于等于过放电流检测延迟时间,电池和负载将被断开。如果在
过放电流检测延迟时间内,电流又降至额定值范围之内,系统将不动作。 当VM 引脚和地之间的阻抗增至大于等于能够自动恢复到正常状态的阻抗,过放电流状态将被复位。断开
负载的连接,可以确保从过放电流情况恢复到正常状态。
间(tVOD)或更长,CT2105将断开电池与负载的连接,以停止放电。这种情况被称为过放电压情况。当放电控 制MOSFET被截止,VVM将被IC的VM和地之间的内阻RVMS下拉。 当VM和地之间的电压小于等于1.5V(典型值) 时, 电流消耗将降低至休眠状态下的电流消耗(IPD)。 这种情况被称为休眠情况。
单节锂离子电池保护芯片
7-1
宁波华泰半导体有限公司
PDF created with FinePrint pdfFactory Pro trial version
典型应用:
NINGBO HUATAI SEMICONDUCTOR CO., LTD
D01A
A
应用提示:
以上图为典型应用电路图,其中元件的电参数为推荐值。
Conditions
Topt=25℃
MIN
TYP
MAX Unit
VDDI Vst
Vdet1
工作电压 锂电池充电时的最小 工作电压 过充电阈电压
VDD-Vss 定义 VDD-V-值
VDD-Vss=0 检测电源电压上升沿
1.5
10
v
1.2
v
4.25
4.275
4.30
v
Vrel1 过充电恢复电压
V-<= -30mV
此时 V-端上升为“高电平”。放电输出延时的时间和外接电容 Ct 亦有关,具体见后面的表格。 在检测到过放电后为了使 DO 脚的电平再次变为“高电平”,在充电时,锂电池的电压升到
大于或等于过放电恢复电压值 Vrel2 时,DO 即为“高电平,过放电保护也会被释放。 当一颗电芯的电压等于零时,连接充电器到电池板,系统就可以在充电电压高于 Vst 的电
4.075
4.125
4.175
v
tVdet1
过充电输出延迟时间 VDD=3.6~4.35v, Ct=10nF
90
125
160
ms
Vdet2 Vrel2
过放电阈电压 过放电恢复电压
检测电源电压下降沿 V-=0v
2.46
2.50
2.60
单节锂离子锂聚合物可充电电池组保护芯片概述特性
图一、典型应用电路
-1-
REV0.1
订货信息
XB5352G
产品型号
封装
过充电压 [VCU] (V)
过充恢复电 压
[VCL] (V)
过放电压 [VDL] (V)
XB5352G SOT23-5 4.425
XB5352G 具有过充,过放,过流,过 温 及短路等所有的电池所需保护功能,并 且工 作时功耗非常低。
该芯片不仅仅是为手机而设计,也适用 于一切需要锂离子或锂聚合物可充电电池 长 时间供电的各种信息产品的应用场合,如 智 能手环、手表、蓝牙耳机等产品。
应用
单节锂离子电池 聚合物锂电池
特性
•充电器反向连接保护 •电池反向连接保护 •集成等效 45 mΩ 的先进的功率 MOSFET • SOT23-5 封装 •只有一个外部电容器 •过温保护 •过充电流保护 •2 段过流保护 -过放电流 1 -负载短路电流 •充电器检测功能 •0V 电池充电功能 •延时时间内部设定 •高精度电压检测 •低静态耗电流
绝对最大额定值
(注意: 为保护器件,不允许超过以下最大额定值. 长时间工作在最大额定值条件下可能会影响产品的可靠性)
VDD 输入电压 VM 输入电压
参数
数值 -0.3 to 6 -6 to 10
单位 V V
-2REV0.1
工作环境温度 最大结温 储存温度 引脚温度 ( 焊接, 10 秒) 环境温度 25°C 时的功耗 封装热限 (结温) θJA 封装热阻 (结到环境) θJA
VDD=2.0V VM pin 悬空 VDD=3.6V
VM=1.0V
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单位
V
V V
V V mW ℃ ℃
绝对最大值范围
绝对最大值是一个极限值,在任何情况下即使极短的时间亦不能被超过。 更重要的,任何两项的绝对值都不能同时达到极限。任何超越绝对最大值工作, 将会引起器件的永久损坏。这仅仅是重要的范围值,但并不意味着所有的功能 操作必须在此极限值下去做。
电气特性:
Symbol
当放电使用时,锂离子电池电压低于放电检测器 VD2 的检测阈值 VDET2 时,COUT 和 DOUT 都输出低电平使锂离子电池与负载断开。仅当充电器接入或者锂离子电池电压回升超过 VDET2+Vhys2 时,COUT 和 DOUT 才输出高电平,使电池可进行充电或者处于正常工作状态。
在检测到过放电后,电路功耗迅速降低,内部休眠控制电路控制芯片进入休眠状态,消耗 极其微小的电流。
NINGBO HUATAI SEMICONDUCTOR CO., LTD
D01
单节锂离子电池保护芯片
概要 :
锂离子电池是一种绿色产品,对环境无污染,目前已有广泛应用,很多便携式的设备包括 手机都要用到它。D01 用于可反复充电的单个锂离子电池保护电路中。它首先能控制锂离子电 池正常使用,同时又能有效地保护锂离子电池免受过充电、过电流、过放电和短路的不正常使 用。该系列产品具有高可靠性的特点。
NINGBO HUATAI SEMICONDUCTOR CO., LTD
D01
可选规格:
典型值
规格
D01A D01B D01C D01D D01E
过充电阈电压
VDET1(V) 4.175 4.225 4.275 4.325 4.375
过充电恢复电压
VREL1(V) 4.064 4.114 4.164 4.214 4.264
7 0.5
0.5
6.0 0.6
Unit
V
V
V V ms V V V V µs V V V V µA µA
注∶表中“下限值、典型值、上限值” ,本公司可按市场需要进行适当调整。
6-3
宁波华泰半导体有限公司
PDF created with FinePrint pdfFactory Pro trial version
NINGBO HUATAI SEMICONDUCTOR CO., LTD
D01
Ø 内置保护电路--------------------过电流保护 精度
Ø 过充电输出延时------------------当 C3=0.001μF 且 VDD = 3.6 → 4.4V 时
Ø 微型封装------------------------SOT-23-6/6-pin
PDF created with FinePrint pdfFactory Pro trial version
NINGBO HUATAI SEMICONDUCTOR CO., LTD
D01
极限最大值
符号
VDD
VVCt
VCOUT VDOUT
PD Tm Tstg
VDDI
Vst
VDET1 Vhys1 TVDET1 VDET2 Vhys1 VDET3 Vshort
tshort Vol1 Voh1 Vol2 Voh2
IDD I standby
Item
Conditions
工作电压 锂电池充电时的最小工 作电压 过充电阈电压 过充电滞后范围 过充电输出延迟 过放电阈电压 过放电滞后范围 过电流阈电压 短路保护电压
过放电阈电压
VDET2(V) 2.50 2.50 2.53 2.55 2.55
过放电恢复电压
VREL2(V) 2.65 2.65 2.68 2.70 2.70
注∶表中所列电压值,本公司可按市场需要进行适当调整。
1. 过充电恢复电压 VREL1= VDET1-Vhys1; 过放电恢复电压 VREL2= VDET2+Vhys2,
过流检测器 VD3 可以从 V- 端检测到过流和短路,一旦 V-超过,和 COUT 都可立即输出 低电平,关断外接 MOSFET,切断输出电流。当外部短路消除后,芯片会自动恢复原来的正常 工作状态。
芯片内含有充电检测点路 VD4,从 V- 端检测充电器是否接入,以完成实现正常的充电。 封装为 6-pin,SOT23-6。
D01 是单节可充锂离子电池的充/放电保护芯片,它包括对锂电池的过充、过放、过流及短 路的控制。每个芯片包括过充电检测器、过放电检测器、过流检测器和充电状态检测器。 当充电电压超过充电检测器 VD1 的阈值电压 VDET1 时,COUT 和 DOUT 均输出低电平,COUT 达到充电器负电平。当 VDD 降到 VDD-Vhys1 以下或者将电池板从充电器上取下,COUT 和 DOUT 都输出高电平使锂离子电池处于正常放电工作状况。COUT 和 DOUT 均输出低电平的过 充电保护延迟时间由外接电容 Ct 决定。
成“关断”,以切断充电电流。 当 VDD 的电压值高于 VDET1 值,如果 VDD 的电压值在输出延时的时间范围内恢复到低于 VDET1
的值,那么 VD1 将不能输出信号关断充电控制 MOSFET。
输出延时 t ( µF )
0.001
0.005
0.01
( ms )
2. 其它技术指标和 D01C 相同。
操作 :
VD1/过充电保护器 芯片内的监控电路 VD1 监测 VDD 脚的电压,当 VDD 电压值从低电平到高于 VDET1 时,即超
出过充电保护的阈值 VDET1,VD1 判断为过充电并且使用作外部充电控制 Nch-MOS-FET 转向“关” 的状态,此时,COUT 处于“低电平”状态,充电停止。 有两种情况使 VD1 在检测到过充后复位,使 COUT 引脚再次转为“高电平”,可以恢复充电。
应用
0.12V- 0.19V, ±20%
40ms
单节锂电电池组的保护器 高精度的手机锂离子电池保护器和其他使用单节锂离子电的产品配件
功能框图
管脚定义:
管脚号
1 2 3 4 5 6
符号
DOUT VCOUT Ct VDD VSS
描
述
过放电保护输出
状态检测
过充电保护输出
过充输出延时的外接电容
电源
地
6-2
宁波华泰半导体有限公司
NINGBO HUATAI SEMICONDUCTOR CO., LTD
D01
VD2/过放电保护器
VD2 是用来监测脚的电压。当电压值低于过放电保护的阈值时,VD2 能感应到过放电的同
时通过使 DOUT 和 COUT 输出“低电平”来关断外部放电控制 N 沟道 MOS FET,以切断放电电流。
在检测到过放电后只要将充电器与电池连接,就可以使 COUT 和 DOUT 脚的电平再次变为“高
典型应用:
6-5
宁波华泰半导体有限公司
PDF created with FinePrint pdfFactory Pro trial version
NINGBO HUATAI SEMICONDUCTOR CO., LTD
D01
应用提示 :
以上图为典型应用电路图,其中元件的电参数为推荐值。
4.15V- 4.40V,
分 A,B,C,D,E 五档(每档 50 Mv)
过放电保护器阀值 2.45V- 2.60V
6-1
宁波华泰半导体有限公司
PDF created with FinePrint pdfFactory Pro trial version
电平”,进入正常充电状态。
此外,当电池电芯的电压大于等于过放电恢复电压值 VREL2 值时,也会退出过放电保护,使
电池进入正常放电状态。 当电芯的电压等于零时,连接充电器到电池板,系统就可以在充电电压高于 Vst 的电压值
(1.2V)时进行充电。 在 VD2 检测到过放电到 2.2V 后,进入待机状态。在 VDD =2.0V 时,待机状态的电流在
定义
工作电压 输入电压 引脚 V引脚 Ct 输出电压 引脚 Cout 引脚 Dout
耗散功率
工作温度范围
存储温度范围
范围
-0.3-12
VDD–26 到 VDD +0.3 VDD–0.3 到 VDD +0.3
VDD-26 到 VDD +0.3 VDD–0.3 到 VDD +0.3
150 -40 到 85 -55 到 125
图中“+”端与“-”端之间,可接入充电器或用电负载。
R1 和 C1 用来稳定 D01 供电电压,R1 的阻值应小于 500 欧。如果 R1 取值过大,会在 R1 上造成压降,
也将使检测电压变高,造成错误。
R2 和 C2 用来稳定 V-脚电压。可以增加电路的抗干扰能力。理论上 C2 越大越好,一般小于 1uF。R2
40
200
400
COUT 脚的输出由内置于缓冲驱动器的电平转换器组成,输出低电平时的电压与 V- 脚相同,输 出高电平时的电压与 VDD 脚相同。
6-4
宁波华泰半导体有限公司
PDF created with FinePrint pdfFactory Pro trial version
0.3 µA 左右,此时芯片内只有充电检测器在工作。待机时 COUT 和 DOUT 均为低电平。 DOUT 脚的输出类型为 CMOS。高电平电压值接近 VDD,低电平电压值接近 Vss。
VD3/过电流检测器,短路保护器
当两个 MOSFET 的状态都在“接通”状态时,过电流检测器和短路保护器的功能都会启动。 当 V-端发生大于 VDET3 情况时,COUT 与 DOUT 均输出低电平,关闭外接的两个 MOSFET。 随 V-端的电压增加,立即关断 MOSFET,以进行短路保护。 V-端内部有与 Vss 相连的下拉电阻,典型值为 100 千欧。 在过电流和短路保护被检测到后,排除引起过电流和外部短路的因素,V-脚的电平通过内 部下拉电阻(100 千欧)降到 Vss 值,外部用作过充电控制的 MOS 管将自动的回复到“开通” 的状态。 如果 VDD 的电压值比 VDET2 的电压值高,当过电流被检测到后 D01 不会进入待机状态, 万一 VDD 的电压值比 VDET2 的电压值低,将会导致进入待机状态。 在 D01 完成短路检测后将不会进入待机状态。休眠时 COUT 与 DOUT 均输出低电平关闭 外接的两个 MOSFET。