高中数学选修2-3知识点总结

合集下载

最新人教版高中数学选修2-3《正态分布》知识讲解

最新人教版高中数学选修2-3《正态分布》知识讲解

2.4 正态分布1.正态曲线(1)函数______________,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数.我们称φμ,σ(x )的图象为正态分布密度曲线,简称________.(2)随机变量X 落在区间(a ,b ]的概率为P (a <X ≤b )≈__________,即由正态曲线,过点(a,0)和点(b,0)的两条x 轴的垂线,及x 轴所围成的平面图形的面积,就是X 落在区间(a ,b ]的概率的近似值.预习交流1(1)正态曲线φμ,σ(x )中参数μ,σ的意义是什么?(2)设随机变量X 的正态分布密度函数φμ,σ(x )=12πe -(x +3)24,x ∈(-∞,+∞),则参数μ,σ的值分别是( ).A .μ=3,σ=2B .μ=-3,σ=2C .μ=3,σ= 2D .μ=-3,σ= 22.正态分布一般地,如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=__________,则称X 服从________.正态分布完全由参数μ和σ确定,因此正态分布常记作________,如果随机变量X 服从正态分布,则记为________.3.正态曲线的特点(1)曲线位于x轴____,与x轴______;(2)曲线是单峰的,它关于直线____对称;(3)曲线在____处达到峰值______;(4)曲线与x轴之间的面积为__;(5)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图①;(6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“____”,表示总体的分布越集中;σ越大,曲线越“____”,表示总体的分布越分散,如图②.预习交流2设随机变量X~N(μ,σ2),且P(X≤C)=P(X>C),则C=().A.0B.σC.-μD.μ4.正态总体在三个特殊区间内取值的概率若X~N(μ,σ2),则对于任何实数a>0,概率P(μ-a<X≤μ+a)=__________.特别地有P(μ-σ<X≤μ+σ)=______,P(μ-2σ<X≤μ+2σ)=______,P(μ-3σ<X≤μ+3σ)=______.5.3σ原则正态变量在(-∞,+∞)内的取值的概率为1,正态总体几乎总取值于区间(μ-3σ,μ+3σ)之内,而在此区间以外取值的概率只有0.002 6,通常认为这种情况在一次试验中几乎不可能发生,因此在实际应用中通常认为服从于正态分布N(μ,σ2)的随机变量X只取(μ-3σ,μ+3σ)之间的值,简称为________.预习交流3(1)如何求服从正态分布的随机变量X在某区间内取值的概率?(2)正态总体N(4,4)在区间(2,6]内取值的概率为__________.答案:1.(1)φμ,σ(x)=12πσ22()2exμσ--正态曲线(2)∫b aφμ,σ(x)d x预习交流1:(1)提示:参数μ反映随机变量取值的平均水平的特征数,即若X~N(μ,σ2),则E(X)=μ.同理,参数σ是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.(2)提示:写成标准式φμ,σ(x)=12π2 e∴μ=-3,σ= 2.2.∫b aφμ,σ(x)d x正态分布N(μ,σ2)X~N(μ,σ2)3.(1)上方不相交(2)x=μ(3)x=μ1σ2π(4)1(6)瘦高矮胖预习交流2:提示:正态分布在x=μ对称的区间上概率相等,则C=μ.4.∫μ+aμ-aφμ,σ(x)d x0.682 60.954 40.997 45.3σ原则预习交流3:(1)提示:首先找出服从正态分布时μ,σ的值,再利用3σ原则求某一个区间上的概率,最后利用在关于x=μ对称的区间上概率相等求得结果.(2)提示:由题意知μ=4,σ=2,∴P(μ-σ<X≤μ+σ)=P(2<X≤6)=0.682 6.一、正态曲线的图象应用如图所示的是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机变量的期望和方差.思路分析:给出一个正态曲线就给出了该曲线的对称轴和最大值,从而就能求出总体随机变量的期望、标准差以及解析式.如图是正态分布N(μ,σ21),N(μ,σ22),N(μ,σ23)(σ1,σ2,σ3>0)相应的曲线,那么σ1,σ2,σ3的大小关系是().A.σ1>σ2>σ3 B.σ3>σ2>σ1 C.σ1>σ3>σ2D.σ2>σ1>σ3(1)用待定系数法求正态变量概率密度曲线的函数表达式,关键是确定参数μ和σ的值,并注意函数的形式.(2)当x=μ时,正态分布的概率密度函数取得最大值,即f(μ)=12πσ为最大值,并注意该式在解题中的应用.二、利用正态曲线的对称性求概率已知随机变量X服从正态分布N(2,σ2),P(X<4)=0.84,则P(X≤0)=().A.0.16 B.0.32 C.0.68 D.0.84思路分析:画出正态曲线,结合其意义及特点求解.若随机变量ξ服从正态分布N(0,1),已知P(ξ<-1.96)=0.025,则P(|ξ|<1.96)=().A.0.025 B.0.050 C.0.950 D.0.975充分利用正态曲线的对称性及面积为1的性质求解.①熟记正态曲线关于直线x=μ对称,从而在关于x=μ对称的区间上概率相等.②P(X<a)=1-P(X≥a);P(X<μ-a)=P(X>μ+a).三、正态分布的应用在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~N(90,100).(1)试求考试成绩ξ位于区间(70,110]内的概率是多少?(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100]间的考生大约有多少人?思路分析:正态分布已经确定,则总体的期望μ和标准差σ就可以求出,这样就可以根据正态分布在三个常见的区间上取值的概率进行求解.为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(μ,22),且正态分布密度曲线如图所示.若体重大于58.5 kg小于等于62.5 kg属于正常情况,则这1 000名男生中属于正常情况的人数是().A.997 B.954 C.819 D.683求正态变量X在某区间内取值的概率的基本方法:(1)根据题目中给出的条件确定μ,σ的值;(2)将待求问题向(μ-σ,μ+σ],(μ-2σ,μ+2σ],(μ-3σ,μ+3σ]这三个区间进行转化;(3)利用上述区间求出相应的概率.答案:活动与探究1:解:从给出的正态曲线可知该正态曲线关于直线x=20对称,最大值是12π,所以μ=20,12πσ=12π,则σ= 2.所以概率密度函数的解析式是f(x)=12π2(20)4ex--,x∈(-∞,+∞).总体随机变量的期望是μ=20,方差是σ2=(2)2=2.迁移与应用:A活动与探究2:A解析:由X~N(2,σ2),可知其正态曲线如图所示,对称轴为x=2,则P(X≤0)=P(X≥4)=1-P(X<4)=1-0.84=0.16.迁移与应用:C解析:由已知正态曲线的对称轴为x=μ=0,∴P(ξ<-1.96)=P(ξ>1.96)=0.025.∴P(|ξ|<1.96)=1-P(ξ≥1.96)-P(ξ≤-1.96)=0.950.活动与探究3:解:∵ξ~N(90,100),∴μ=90,σ=100=10.(1)由于正态变量在区间(μ-2σ,μ+2σ]内取值的概率是0.954 4,而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,于是考试成绩ξ位于区间(70,110]内的概率就是0.954 4.(2)由μ=90,σ=10得μ-σ=80,μ+σ=100.由于正态变量在区间(μ-σ,μ+σ]内取值的概率是0.682 6,所以考试成绩ξ位于区间(80,100]内的概率是0.682 6.一共有2 000名考生,所以考试成绩在(80,100]间的考生大约有2 000×0.682 6≈1 365(人).迁移与应用:D解析:由题意,可知μ=60.5,σ=2,故P(58.5<X≤62.5)=P(μ-σ<X≤μ+σ)=0.682 6,从而属于正常情况的人数是1 000×0.682 6≈683.1.正态曲线关于y轴对称,则它所对应的正态总体的均值为().A.1 B.-1 C.0 D.不确定2.设随机变量X ~N (1,22),则D ⎝⎛⎭⎫12X =( ).A .4B .2 C.12D .1 3.已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( ).A .0.447B .0.628C .0.954D .0.9774.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为__________.5.一批灯泡的使用时间X (单位:小时)服从正态分布N (10 000,4002),则这批灯泡使用时间在(9 200,10 800]内的概率是__________.答案:1.C 解析:由正态曲线关于y 轴对称,∴μ=0,均值为0.2.D 解析:因为X ~N (1,22),所以D (X )=4,所以D ⎝⎛⎭⎫12X =14D (X )=1.3.C 解析:∵随机变量ξ服从标准正态分布N (0,σ2),∴正态曲线关于x =0对称.又P (ξ>2)=0.023,∴P (ξ<-2)=0.023.∴P (-2≤ξ≤2)=1-2×0.023=0.954.4.0.8 解析:易得P (0<ξ<1)=P (1<ξ<2),故P (0<ξ<2)=2P (0<ξ<1)=2×0.4=0.8.5.0.954 4 解析:μ=10 000,σ=400,P (9 200<X ≤10 800)=P (10 000-2×400<X ≤10 000+2×400)=0.954 4.。

高中数学选修2-3

高中数学选修2-3

高中数学选修2-3基础知识一.基本原理111111111111.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同元素中取出个元素的一个组合,所有组合个数记为m C n m .1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!!10=n C 规定:组合数性质:.2 nn n n n m n m nm n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++= 注:若12mm1212m =m m +m n n n C C ==则或 四.处理排列组合应用题1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

高二数学(选修2-3人教B版)-计数原理全章总结

高二数学(选修2-3人教B版)-计数原理全章总结
解:(1)第三项的二项式系数 C52 10 .
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和. 解:(2)由通项可知,展开式的第三项是
T3 C52 13 (2x)2 40x2
所以,第三项的系数为40.
例6、求 (1 2x)5的展开式的:
表示?
(a b)n (a b)(a b) (a b)
n个a b
Tr1 Cnr anr br
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
解:首先将A、B、C、D排成一排,共有 A44 种排法,每一种
排法都会产生五个“空”,在这五个“空”中任选一个,将E
放入,共有 C51 种方法;其次,E中的两个元素可以交换,有 A22
种方法.
所以,共有 A44 C51 A22 240 种不同的排法.
问题4 (a b)n 的展开式中的系数为什么可以用组合数的形式

Cm n1
ቤተ መጻሕፍቲ ባይዱ
Cmn
Cm1 n
)?
作业: 1.一个集合由8个元素组成,这个集合含有3个元素的子集有多 少个? 2.将6名应届大学毕业生分配到两个用人单位,每个单位至少 两人,一共有多少种不同的分配方案? 3.求 (9x 1 )18 展开式的常数项,并说明它是展开式的第几项.
3x
入,共有 A43 种排法. 所以,一共有A33 A43 144 种不同的排法.
例5、有6位同学站成一排,符合下列各题要求的不同排法有多 少种? (2)甲、乙相邻. 解:(2) 设除甲、乙之外的另外四个同学为A、B、C、D. 因为甲、乙要相邻,所以可以把甲、乙“绑”在一起看作一个 元素(记为E).

人教版高中数学选修2-3知识点汇总

人教版高中数学选修2-3知识点汇总

人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。

分类要做到“不重不漏”。

分步乘法计数原理:完成一件事需要两个步骤。

做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。

分步要做到“步骤完整”。

n元集合A={a1,a2⋯,a n}的不同子集有2n个。

1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。

从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。

排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。

从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。

组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。

1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。

(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。

高中数学选修2-3 二项式

高中数学选修2-3 二项式

1、二项式定理: nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110)( 2、通项公式: 3、特例: (1)对称性: 二项式系数的性质与首末两端“等距离”的两个二项式系数相等. (2)增减性与最大值:从第一项起至中间项,二项式系数逐渐增大,随后又逐渐减小.因此,当n 为偶数时,中间一项的二项式系数取得最大值;当n 为奇数时,中间两项的二项式系数 、 相等且同时取得最大值(3)各二项式系数的和例1:在二项式(2x-3y )9的展开式中,求: (1)二项式系数之和; (2)各项系数之和; (3)所有奇数项系数之和; (4)系数绝对值的和。

解:设(2x-3y )9=a 0x 9+a 1x 8y+a 2x 7y 2+…+a 9y 9,1(0,1,2,)r n r rr n T C a br n -+==L n n n r r n n n n xC x C x C x C x ++++++=+ΛΛ22111)(m n mn nC C -=0122r nnn n n n n C C C C C ++++++=L L 131202-=⋅⋅⋅++=⋅⋅⋅++n n n n n C C C C(1)二项式系数之和为;(2)各项系数之和为a0+a1+a2+…+a9,令x=1,y=1,∴a0+a1+a2+…+a9=(2-3)9=-1;(3)由(2)知a0+a1+a2+…+a9=-1,令x=1,y=-1,可得:a0-a1+a2-…-a9=59,将两式相加除以2可得:a0+a2+a4+a6+a8=,即为所有奇数项系数之和;(4)|a0|+|a1|+|a2|+…+|a9|=a0-a1+a2-a3+…-a9,令x=1,y=-1,则|a0|+|a1|+|a2|+…+|a9|=a0-a1+a2-a3+…-a9=59。

1、已知(2x+1)10=a0x10+ a1x9+ a2x8+……+a9x+ a10, (1)求a0+ a1+ a2+…… +a9+ a10的值(2)求a0+ a2+ a4+…… + a10的值答案 :1结论:3.( 1﹣x ) 13 的展开式中系数最小的项是 ( ) C (A)第六项 (B)第七项 (C )第八项 (D)第九项求n的值。

高中数学选修2-3知识点汇编

高中数学选修2-3知识点汇编

高中数学必修2知识点第3章 直线与方程 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k 表示。

即tan k α=。

斜率反映直线与轴的倾斜程度。

当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当90=α时,k 不存在。

②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。

②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。

⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如:平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系 (ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。

高中数学选修2-2,2-3知识点、考点、典型例题

高中数学选修2-2,2-3知识点、考点、典型例题

高中数学选修2-2,2-3知识点、考点、典型例题高中数学选修2-2,2-3知识点、考点、典型例题一、2-2数列的概念、数列的通项公式及递推公式1. 数列的概念数列是按照一定规律排列的一系列数,一般用字母 an 表示第n 个数。

2. 数列的通项公式数列的通项公式是指通过数列的位置 n,直接求出该位置上的数 an 的公式。

通项公式可以是一个数学式子,也可以是一个算法。

3. 数列的递推公式数列的递推公式是指通过数列前一项或前几项的值,推导出数列下一项的公式。

递推公式是数列中相邻两项之间的关系式。

4. 常见数列的通项公式和递推公式- 等差数列:an = a1 + (n-1)d (通项公式),an = an-1 + d (递推公式)- 等比数列:an = a1 * q^(n-1) (通项公式),an = an-1 * q (递推公式)- 斐波那契数列:an = an-1 + an-2 (递推公式)二、2-3数列的求和、数列的性质及应用1. 数列的求和- 等差数列的前 n 项和:Sn = (a1 + an) * n / 2- 等比数列的前 n 项和(q ≠ 1):Sn = a1 * (1 - q^n) / (1 - q) - 斐波那契数列的前 n 项和:Sn = Fn+2 - 12. 数列的性质- 常数列:数列中的每一项都是一个常数。

- 奇数列:数列中的每一项都是奇数。

- 偶数列:数列中的每一项都是偶数。

- 单调递增数列:数列中的每一项都比前一项大。

- 单调递减数列:数列中的每一项都比前一项小。

- 正项数列:数列中的每一项都是正数。

- 负项数列:数列中的每一项都是负数。

3. 数列的应用- 利用数列的递推关系,求解实际问题中的特定数值。

- 利用数列的性质,进行数学推理和证明。

- 利用数列的规律,设计算法解决问题。

典型例题:1. 已知等差数列的前三项分别为 1,5,9,求数列的通项公式和第 n 项的值。

解:设数列的首项为 a,公差为 d,则有以下等差数列的递推公式:a2 = a1 + d = 1 + da3 = a2 + d = (1 + d) + d = 1 + 2d将 a1,a2,a3 分别代入等差数列的通项公式,可得:a1 = a = 1a2 = a + d = 1 + d = 5 --> d = 4a3 = a1 + 2d = 1 + 2(4) = 9所以该等差数列的通项公式为 an = a + (n-1)d = 1 + 4(n-1) = 4n - 3第 n 项的值为:an = 4n - 32. 求等差数列 3,6,9,...,101 的前 n 项和。

高中数学选修2-3题型总结

高中数学选修2-3题型总结

高中数学选修2-3题型总结(重点)本书重点:排列组合、概率第一章 计数原理 第二章 概率 一、基础知识1.加法原理:做一件事有n 类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,……,在第n 类办法中有mn 种不同的方法,那么完成这件事一共有N=m1+m2+…+mn 种不同的方法。

2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m1种不同的方法,第2步有m2种不同的方法,……,第n 步有mn 种不同的方法,那么完成这件事共有N=m1×m2×…×mn 种不同的方法。

3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m nA =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m≤n, 注:一般地nA =1,0!=1,nn A =n!。

4.N 个不同元素的圆周排列数为n A nn =(n-1)!。

5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。

从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mnC 表示:.)!(!!!)1()1(m n m n m m n n n C m n -=+--=6.【了解】组合数的基本性质:(1)m n n mnCC -=;(2)11--+=n n m nm n CC C;(3)kn k n C C k n =--11;(4)n nk kn n nnnC C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)kn mn m k k n C C C --=。

人教A版高中数学选修2-3三角函数的基本性质总结。

人教A版高中数学选修2-3三角函数的基本性质总结。

人教A版高中数学选修2-3三角函数的基
本性质总结。

人教A版高中数学选修2-3三角函数的基本性质总结
三角函数是高中数学中的重要内容,选修2-3课程主要讲授了三角函数的基本性质。

以下是对这些基本性质进行的总结:
正弦函数的基本性质:
- 定义域为全体实数;
- 值域为闭区间[-1, 1];
- 周期为2π,即sin(x + 2π) = sin(x);
- 奇函数,即sin(-x) = -sin(x);
- 单调递增函数。

余弦函数的基本性质:
- 定义域为全体实数;
- 值域为闭区间[-1, 1];
- 周期为2π,即cos(x + 2π) = cos(x);
- 偶函数,即cos(-x) = cos(x);
- 单调递减函数。

正切函数的基本性质:
- 定义域为实数集去除所有cot(x) = 0的点;
- 值域为全体实数;
- 周期为π,即tan(x + π) = tan(x);
- 奇函数,即tan(-x) = -tan(x);
- 周期性比较复杂,在特定区间上单调增加或减少。

余切函数的基本性质:
- 定义域为实数集去除所有tan(x) = 0的点;
- 值域为全体实数;
- 周期为π,即cot(x + π) = cot(x);
- 奇函数,即cot(-x) = -cot(x);
- 周期性比较复杂,在特定区间上单调增加或减少。

以上是人教A版高中数学选修2-3三角函数的基本性质的总结。

掌握这些性质可以帮助我们更好地理解和应用三角函数在数学中的
各种问题和计算中。

高中数学选修2-3排列组合

高中数学选修2-3排列组合

计数原理【知识要点】一、分类加法原理与分布乘法计数原理1.加法原理:完成一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。

种不同的方法。

2.乘法原理:完成一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。

种不同的方法。

二、排列与组合1.排列与排列数:从n 个不同元素中,任取m(m m(m≤≤n)n)个元素,按照一定顺序排成一列,叫做从个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m (m≤≤n)n)元素的所有排列个元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用mn A 表示,表示,mn A =n(n-1)=n(n-1)……(n-m+1)=)!(!m n n -,其中m,n m,n∈∈N,m N,m≤≤n,注:一般地0n A =1,0!=1,n n A =n! 。

2.组合与组合数:一般地,从n 个不同元素中,任取m(m m(m≤≤n)n)个元素并成一组,叫做从个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。

从n 个不同元素中取出m(m m(m≤≤n)n)个元素的所有组合的个数,叫做从个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:表示:.)!(!!!)1()1(m n m n m m n n n C mn -=+--=规定:1C 0=n组合数的基本性质:(1)mn n m n C C -=;(2)11--+=n n m n m n C C C ;解决排列与组合的应用题的一般方法有:解决排列与组合的应用题的一般方法有:(1)特殊元素(位置)法)特殊元素(位置)法 (2)相邻问题的“捆绑法”)相邻问题的“捆绑法” (3)不相邻问题“插空法”)不相邻问题“插空法” (4)正难则反)正难则反 “排除法”“排除法”一、两个计数原理1、某人计划按“石家庄—青岛—广州”的路线旅游,从石家庄到青岛可乘坐汽车、火车、飞机3种交通工具,从青岛到广东可以乘坐汽车、火车、飞机、轮船4种交通工具,文此人可选择的旅行方式有 ()选择的旅行方式有A、7 种B、8 种C、10 种D、12种2、从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b 组成复数a+bi,其中虚数有其中虚数有 ()A、30个B、36个C、42个D、35个3、(07全国)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一人参加,则不同的选派方法有 ()天,要求星期五有2人参加,星期六、星期日各1人参加,则不同的选派方法有A、40种B、60种C、100 种D、120种4、有4部机床,需要加工3个不同的零件,其不同的安排方法有个不同的零件,其不同的安排方法有 ()A、43B、34C、3A D、4445、有一项活动,需在3名老师,8名男同学和5名女同学中选人参加。

高中数学选修2-3知识点总结

高中数学选修2-3知识点总结

高中数学选修2-3知识点总结Mathematics Elective 2-3 Chapter 1 Counting Principles Must-Know1.What is the principle of n n counting?Answer: To do something。

there are n ways to complete it。

In the first way。

there are m1 different methods。

in the second way。

there are m2 different methods。

in the nth way。

there are mn different methods。

Then there are N=m1+m2+。

+mn different ways to XXX.2.What is the principle of step-by-step n counting?Answer: To do something。

it requires n steps。

There are m1 different methods for the first step。

m2 different methods for the second step。

and mn different methods for the nth step。

Then there are N=m1×m2×。

×mn different ways to XXX.3.What is the n of n?Answer: Generally。

taking m (m≤n) different elements from n different elements。

XXX order。

is called a n of taking m elements from n different XXX.4.What is the n of n?Answer: Generally。

高中数学选修2-3(人教B版)第二章随机变量及其分布2.2知识点总结含..

高中数学选修2-3(人教B版)第二章随机变量及其分布2.2知识点总结含..

描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第二章 随机变量及其分布 2.2 条件概率与事件的独立性一、学习任务1. 了解条件概率的定义及计算公式,并会利用条件概率解决一些简单的实际问题.2. 能通过实例理解相互独立事件的定义及概率乘法公式,并能综合利用互斥事件的概率加法公式及独立事件的概率乘法公式.3. 理解独立重复试验的概率及意义,理解事件在 次独立重复试验中恰好发生 次的概率公式,并能利用 次独立重复试验的模型模拟 次独立重复试验.二、知识清单事件的独立性与条件概率独立重复试验与二项分布三、知识讲解1.事件的独立性与条件概率条件概率的概念一般地,设 ,为两个事件,且 ,称为在事件 发生的条件下,事件 发生的条件概率(conditional probability).读作 发生的条件下 发生的概率.条件概率的性质①条件概率具有概率的性质,任何事件的条件概率都在 和 之间,即.②如果 和 是两个互斥事件,则相互独立事件的概念设 ,为两个事件,若 ,则称事件 与事件 相互独立(mutually independent).相互独立事件同时发生的概率:如果事件 ,,, 相互独立,那么这 个事件同时发生的概率等于每个事件发生概率的积,即n k n n A B P (A )>0P (B |A )=P (AB )P (A )A B P (B |A )A B 0 1 0≤P (B|A)≤1 B CP (B ∪C |A )=P (B |A )+P (C |A ).A B P (AB )=P (A )P (B )A B A 1A 2⋯A n n P (⋯)=P ()P ()⋯P ().A 1A 2A n A 1A 2A n 甲、乙两地都位于长江下游,根据一百多年气象记录,知道甲、乙两地一年中雨天占的比例分别20%18%12%为 和 ,两地同时下雨的比例为 ,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?解:设“甲地为雨天”, “ 乙地为雨天”,则根据题意有(1)乙地为雨天时甲地也为雨天的概率(2)甲地为雨天时乙地也为雨天的概率是20%18%12%A =B =P (A )=0.20,P (B )=0.18,P (AB )=0.12.P (A |B )==≈0.67.P (AB )P (B )0.120.18P (B |A )===0.60.P (AB )P (A )0.120.20如图,四边形 是以 为圆心,半径 的圆内接正方形,将一颗豆子随机地扔到该圆内,用 表示事件“豆子落在正方形 内”, 表示事件“豆子落在扇形 (阴影部分)内”,则(1)______;(2)______.解:;圆 的面积是,正方形 的面积是 ,扇形 的面积是 ,由几何概型概率公式得 ,由条件概率公式得EFGH O 1A EFGH B OHE P (A )=P (B |A )=2π14O πEF GH 2OHE π4P (A )=2πP (B |A)===.P (AB )P (A)12π2π14掷一枚正方体骰子一次,设事件 :“出现偶数点”,事件 :“出现 点或 点”,则事件 , 的关系是( )A.互斥但不相互独立 B.相互独立但不互斥 C.互斥且相互独立 D.既不相互独立也不互斥解:B事件 ,事件 ,事件 ,基本事件空间 .所以,,,即 ,因此,事件 与 相互独立.当“出现 点”,事件 , 同时发生,所以 , 不是互斥事件.A B 36A B A ={2,4,6}B ={3,6}AB ={6}Ω={1,2,3,4,5,6}P (A )==3612P (B )==2613P (AB )==×161213P (AB )=P (A )P (B )A B 6A B A B 甲、乙两人在罚球线投球命中的概率分别为与 .(1)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(2)甲、乙两人在罚球线各投球二次,求这四次投球均不命中的概率.解:记“甲投一次命中”为事件 ,“乙投一次命中”为事件 ,则 ,1225A B P (A )=12213,,.(1)恰好命中一次的概率为(2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为 ,则2P (B )=25P ()=A ¯¯¯12P ()=B ¯¯¯35P =P (A ⋅)+P (⋅B )B ¯¯¯A ¯¯¯=P (A )⋅P ()+P ()⋅P (B )B ¯¯¯A ¯¯¯=×+×12351225=.12P 1P 1=P (∩∩∩)A ¯¯¯A ¯¯¯B ¯¯¯B ¯¯¯=P ()⋅P ()⋅P ()⋅P ()A ¯¯¯A ¯¯¯B ¯¯¯B ¯¯¯=(1−(1−12)225)2=9100在一个选拔项目中,每个选手都需要进行 轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为,,,,且各轮问题能否正确回答互不影响.(1)求该选手进入第三轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率;解:设事件 ( ,,, )表示“该选手能正确回答第 轮问题”,由已知得,,,.(1)设事件 表示“该选手进入第三轮才被淘汰”,则(2)设事件 表示“该选手至多进入第三轮考核”,则456453413A i i =1234i P ()=A 156P ()=A 245P ()=A 334P ()=A 413B P (B )=P ()A 1A 2A ¯¯¯3=P ()P ()P ()A 1A 2A ¯¯¯3=××(1−)564534=.16C P (C )=P (++)A ¯¯¯1A 1A ¯¯¯2A 1A 2A ¯¯¯3=P ()+P ()+P ()A ¯¯¯1A 1A ¯¯¯2A 1A 2A ¯¯¯3=+×+××(1−)165615564534=.12描述:例题:2.独立重复试验与二项分布独立重复试验一般地,在相同条件下重复做的 次试验,称为次独立重复试验(independent andrepeated trials).二项分布一般地,在 次独立重复试验中,用表示事件发生的次数,设每次试验中事件发生的概率为,则此时称随机变量服从二项分布(binnomial distribution),记作 ),并称为成功概率.n n n X A A p P (X =k )=(1−p ,k=0,1,2,⋯,n .C kn pk )n −k X X ∼B (n ,p ) p 下列随机变量 的分布列不属于二项分布的是( )A.投掷一枚均匀的骰子 次, 表示点数 出现的次数B.某射手射中目标的概率为 ,设每次射击是相互独立的, 为从开始射击到击中目标所需要的射击次数C.实力相等的甲、乙两选手举行了 局乒乓球比赛, 表示甲获胜的次数D.某星期内,每次下载某网站数据后被病毒感染的概率为 , 表示下载 次数据后电脑被病毒感染的次数解:B选项 A,试验出现的结果只有两个:点数为 和点数不为 ,且点数为 的概率在每一次试验都为 ,每一次试验都是独立的,故随机变量 服从二项分布;选项 B,,故随机变量 不服从二项分布;选项 C,甲、乙的获胜率都相等,举行 次比赛,相当于进行了 次独立重复试验,故 服从二项分布;选项 D,由二项分布的定义可知,被感染次数 .X 5X 6p X 5X 0.3X n 66616X P (X =1)=p ,P (X =2)=(1−p )p ,P (X =k )=(1−p p )(k −1)X 55X X ∼B (n ,0.3)口袋中有 个白色乒乓球, 个黄色乒乓球,从中选取 次,每次取 个后又放回,则 次中恰有 次取到白球的概率是( )A. B. C. D . 解:D任意取球 次,取得白球 次的概率是5551531235C 35C 510⋅C 350.5553P (X =3)=(1−0.5=⋅C 350.53)5−3C 350.55甲、乙两名同学进行三分球投篮比赛,甲每次投中的概率为 ,乙每次投中的概率为 ,每人分别进行三次投篮.(1)设甲投中的次数为 ,求 的分布列;(2)求乙至多投中 次的概率;(3)求乙恰好比甲多投中 次的概率.1312ξξ221四、课后作业 (查看更多本章节同步练习题,请到快乐学)解:(1), 的可能取值为 ,,,. 的分布列为:(2)设“乙至多投中 次”为事件 ,则(3)设“乙比甲多投中 次”为事件 ,“乙恰投中 次且甲恰投中 次”为事件,“乙恰投中 次且甲恰投中 次”为事件 ,则 ,, 为互斥事件,则所以乙恰好比甲多投中 次的概率为.ξ∼B (3,)13ξ0123P(ξ=0)=(=,C 0323)3827P (ξ=1)=()(=,C 131323)249P (ξ=2)=(()=,C 2313)22329P (ξ=3)=(=.C 3313)3127ξξP082714922931272A P (A )=1−(=.C 3312)3782A 120B 131B 2=∪A 1B 1B 2B 1B 2P (A )=P ()+P ()=×+×=.B 1B 282738491816216答案:解析:1. 某一批花生种子,如果每 粒发芽的概率为 ,那么播下 粒种子恰有 粒发芽的概率是 A .B .C .D .B 概率为 .14542()1662596625192625256625=C 24()452(1−)45296625答案:2. 某地区空气质量监测资料表明,一天的空气质量为优良的概率是 ,连续两天为优良的概率是,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 A .B .C .D .A0.750.6()0.80.750.60.453. 某厂生产电子元件,其产品的次品率为 ,现从一批产品中任意地连续取出 件,其中次品数 的5%2ξ高考不提分,赔付1万元,关注快乐学了解详情。

高中数学选修2-1、2-2、2-3知识总结

高中数学选修2-1、2-2、2-3知识总结

mn1C
m n
C
m n1
8、二项式定理: ( a b ) n C 0 n a n C 1 n a n 1 b C 2 n a n 2 b 2 … C n r a n r b r … C n n b n
二 项 9展 、开 二式 项的 式通 通项 项公 公式 式: T r 1 C n r a n r b r ( r 0 , 1 … … n )
② 解不等式 f '(x) 0或f '(x) 0 ;
③ 确定并指出函数的单调区间(区间形式,不要写范围形式),区间之间用“,”★隔开,不能 用“ ”连结。
8. 极值与最值
对于可导函数 f (x) ,在 x a 处取得极值,则 f '(a) 0 .
最值定理:连续函数在闭区间上一定有最大最小值.
若 f (x) 在开区间 (a, b) 有唯一的极值点,则是最值点。
求极值步骤:
① 确定函数 y f (x) 的定义域(不可或缺,否则易致错);
② 解不等式 f '(x)=0 ;
③ 检验 f '(x)=0 的根的两侧的 f '(x) 符号(一般通过列表)
求最值时,步骤在求极值的基础上,将各极值与端点处的函数值进行比较大小,切忌直接说某某 就是最大或者最小。
4、排列数:从 n 个不同元素中取出 m(m≤n)个元素排成一列,称为从 n 个不同元素中取出 m 个元素的
一个排列. 从 n 个不同元素中取出 m 个元素的一个排列数,用符号 Anm 表示。
Am n(n 1)(n m 1) n! (m n, n, m N) (n m)!
5、公式 Anm nAnm11
(答:(1)a=-3,b=4;(2) c (, 1) (9, ) )

高中数学选修2-3(人教A版)第一章计数原理1.2知识点总结含同步练习及答案

高中数学选修2-3(人教A版)第一章计数原理1.2知识点总结含同步练习及答案

1 6 7 12 C0 12 < C12 < ⋯ < C12 > C12 > ⋯ > C12 ,所以 2x − 3 ⩾ 5 且 2x ⩽ 12 解得 4 ⩽ x ⩽ 6.
高考不提分,赔付1万元,关注快乐学了解详情。
− A5 9
= =
8 × 7 × 6 × 5 × (8 + 7) 8 × 7 × 6 × 5 × (24 − 9) = 1.
2×8×7×6×5×4+7×8×7×6×5 8×7×6×5×4×3×2×1−9×8×7×6×5
(3)根据原方程,可得
3x(x − 1)(x − 2) = 2(x + 1)x + 6x(x − 1).
0 10 (1)计算:C5 10 ⋅ C10 − C10 ; m−1 (2)证明:mCm n = nCn−1 .
解:(1)原式= (2)证明:因为
10 × 9 × 8 × 7 × 6 × 1 − 1 = 252 − 1 = 251 ; 5×4×3×2×1
Cm n =
n! , m!(n − m)! (n − 1)! n(n − 1)! n m−1 n n! ⋅ = = . Cn−1 = m m (m − 1)!(n − m)! m ⋅ (m − 1)!(n − m)! m!(n − m)!
正整数 1 到 n 的连乘积,叫做 n 的阶乘,用 n! 表示.另外,我们规定 0! = 1 .所以排列数公 式还可以写成
Am n =
(n − m)!
n!
.
组合的定义 一般地,从 n 个不同元素中取出 m (m ⩽ n )个元素合成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合(combination). 组合数及组合数的公式 从 n 个不同元素中取出 m (m ⩽ n )个元素的所有不同组合的个数,叫做从 n 个不同元素中取 出 m 个元素的组合数,用符号 Cm n 表示.

(名师精编)高中数学选修2-3知识点清单

(名师精编)高中数学选修2-3知识点清单

一般地,设 A,B 为两个事件,且 P(A)>0,称
P(B|A)
=
P(AB) P(A)
为在事件 A 发生的条件下,事件 B 发生的条件概率(conditional probability)。
如果 B 和 C 是两个互斥事件,则
P(B ∪ C|A) = P(B|A) + P(C|A)
2.2.2 事件的相互独立性
(4) 二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:
(5) 一般地,
Cn0 + Cn2 + Cn4 + ⋯ = Cn1 + Cn3 + Cn5 + ⋯
Crr + Crr+1 + Crr+2 + ⋯ + Cnr−1 = Cnr+1 (n > ������)
第二章 随机变量及其分布
2.1 离散型随机变量及其分布
另一方面,b̂和â为斜率和截距的估计值,它们与真实值 a 和 b 之间也存在误 差,这种误差是引起预报值ŷ与真实值 y 之间存在误差的另一个原因。
由于随机误差 e = y − (bx + a),所以ê = y − ŷ是 e 的估计量。 对于样本点
它们的随机误差为
(x1,y1),(x2,y2), ⋯ ,(xn,yn)
1.3.2 “杨辉三角”与二项式系数的性质 *表现形式的变化有时能帮助我们发现某些规律! (1) 对称性
(2) 当 n 是偶数时,共有奇数项,中间的一项Cnn2+1取得最大值;
n−1
n+1
当 n 是奇数时,共有偶数项,中间的两项Cn2 ,Cn2 同时取得最大值。
(3) 各二项式系数的和为 2n = Cn0 + Cn1 + Cn2 + ⋯ + Cnk + ⋯ + Cnn

高中数学选修2-3(人教B版)第一章计数原理1.4知识点总结含同步练习题及答案

高中数学选修2-3(人教B版)第一章计数原理1.4知识点总结含同步练习题及答案

描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第一章 计数原理 1.3计数模型(补充)一、学习任务掌握计数的几种模型,并能处理一些简单的实际问题.二、知识清单数字组成模型 条件排列模型 分组分配模型染色模型计数杂题三、知识讲解1.数字组成模型与顺序相关的数字问题,通常是计算满足某些特征的数字的个数.常见特征比如各个数位的数字不同、四位数、奇数、比某数大的数、某个数位满足某种条件的数等等,其中各个数位数字可以相同的问题通常借助乘法原理分步解决,各个数位数字不相同通常是与排列相关的问题.由 、、、、 这五个数字可组成多少个无重复数字的五位数?解:首位不能是 ,有 种,后四位数有 种排列,所以这五个数可以组成 个无重复的五位数.012340C 14A 44=96C 14A 44用数字 、 组成四位数,且数字 、 至少都出现一次,这样的四位数共有______个(用数字作答).解:因为四位数的每个数位上都有两种可能性,其中四个数字全是 或 的情况不合题意,所以符合题意的四位数有 个.23231423−2=1424从 , 中选一个数字,从 、、 中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A. B. C. D.解:B当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,剩余 个数字排在首位,共有 种方法;当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,其余 个数字全排列,共有 种方法.依分类加法计数原理知共有 个奇数.02135241812601352C 2321C 121=6C 23C 1221352C 2321C 122=12C 23C 12A 226+12=18用 , ,, , , 这 个数字,可以组成______个大于 且小于 的012345630005421描述:例题:2.条件排列模型计算满足某些限制条件的排列的个数,常见的如相邻问题、不相邻问题、某位置不能排某人、某人只能或不能排在某些位置的问题等等.不重复的四位数.解:分四类:①千位数字为 , 之一时,百十个位数只要不重复即可,有 (个);②千位数字为 ,百位数字为 ,,, 之一时,共有 (个);③千位数字是 ,百位数字是 ,十位数字是 , 之一时,共有 (个);④最后还有 也满足条件.所以,所求四位数共有 (个).175342=120A 3550123=48A 14A 245401=6A 12A 135420120+48+6+1=175 名男生, 名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,男生必须排在一起;(3)全体站成一排,甲、乙不能相邻.解:(1)先考虑甲的位置,有 种方法,再考虑其余 人的位置,有 种方法.故有种方法;(2)(捆绑法)男生必须站在一起,即把 名男生进行全排列,有 种排法,与 名女生组成 个元素全排列,故有 种不同的排法;(3)(插空法)甲、乙不能相邻,先把剩余的 名同学全排列,有 种排法,然后将甲、乙分别插到 个空中,有 种排法,故有 种不同的排法.34A 136A 66=2160A 13A 663A 3345=720A 33A 555A 556A 26=3600A 55A 26有甲、乙、丙在内的 个人排成一排照相,其中甲和乙必须相邻,丙不排在两头,则这样的排法共有______种.解:甲和乙必须相邻,可将甲、乙捆绑,看成一个元素,与丙除外的另三个元素构成四个元素,自由排列,有 种方法;丙不排在两头,可对丙插空,插四个元素生成的中间的三个空中的任何一个,有 种方法;最后甲、乙两人的排法有 种方法.综上,总共有 种排法.6144A 44A 13A 22=144A 44A 13A 22 把椅子摆成一排, 人随机就座,任何两人不相邻的坐法种数为( )A. B. C. D.解:D“不相邻”应该用“插空法”,三个空椅子,形成 个空,三个坐人的椅子插入空中,因为人不同,所以需排序,所以有 种不同坐法.6314412072244=24A 34某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同课程的排法?解:法一: 门课程总的排法是 种,其中不符合要求的可分为:体育排在第一节有 种排法,数学排在最后一节有 种排法,但这两种方法,都包括体育在第一节,数学排在最后一节,这种情况有 种排法,因此符合条件的排法应是: 种.法二:① 体育、数学即不排在第一节也不排在最后一节,这种情况有 种排法;② 数学6A 66A 55A 55A 44−2+=504A 66A 55A 44⋅A 24A 44⋅144种颜色可供选择,则不同的着色方法共有______种.(以数字作答)72种花,且相邻的96高考不提分,赔付1万元,关注快乐学了解详情。

高中数学选修2-3知识点、考点、附典型例题

高中数学选修2-3知识点、考点、附典型例题

高中数学 选修2-3知识点第一章 计数原理知识点:1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。

2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。

3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4、排列数:从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示。

),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--= 5、公式:11--=m n m n nA A6、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

7、公式:)!(!!!)1()1(m n m n C m m n n n A A C m nm mm n mn-=+--== )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==;mn n m n C C -=m n m n m n C C C 11+-=+8、二项式定理:()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n+=++++++---011222…… 9、二项式通项公式展开式的通项公式:,……T C a b r n r nr n r r+-==101() 考点:1、排列组合的运用2、二项式定理的应用m n A第二章 随机变量及其分布知识点:1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。

高中数学选修2-3数列和数学归纳法的应用总结。

高中数学选修2-3数列和数学归纳法的应用总结。

高中数学选修2-3数列和数学归纳法的应用总结。

高中数学选修2-3数列和数学归纳法的应用总结引言数学归纳法是数学中一种重要的证明方法,它在解决数列问题中具有广泛的应用。

本文主要总结了高中数学选修2-3中数列和数学归纳法的应用。

数列的概念数列是按照一定规律排列的一组数,其中每个数叫作数列的项。

数列可以分为等差数列、等比数列等。

- 等差数列:数列中相邻的两项之差恒定。

- 等比数列:数列中相邻的两项之比恒定。

数列的性质数列中的项具有一定的性质,包括:- 通项公式:通过找出数列中的规律,可以得到一个用自变量表示的一般公式。

- 前n项和公式:可以通过求前n项的和,进一步研究数列的性质和规律。

数学归纳法的基本思想数学归纳法通过证明两个命题成立来推断第n+1个命题成立的方法。

数学归纳法的基本思想可以概括为以下三步:1. 证明当n=1时命题成立。

2. 假设当n=k时命题成立。

3. 证明当n=k+1时命题也成立。

数学归纳法的应用数学归纳法在数列问题中的应用广泛,主要包括:- 证明数列的通项公式:通过利用归纳法可以推导出数列的通项公式,从而方便计算和研究数列的性质。

- 证明数列的前n项和公式:通过数学归纳法可以得到数列的前n项和公式,进一步研究数列的性质和规律。

结论数学归纳法是解决数列问题中常用的证明方法,通过归纳法可以得到数列的通项公式和前n项和公式,进一步研究数列的性质和规律。

在高中数学选修2-3中,数列和数学归纳法的应用是重要的内容,通过学习数列和数学归纳法,可以提高我们解决数学问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学选修
2-3 知识点
第一章 计数原理 知识点:
1、分类加法计数原理
:做一件事情,完成它有
N 类办法,在第一类办法中有
M 1 种不同
的方法,在第二类办法中有 M 2 种不同的方法, ⋯⋯ ,在第 N 类办法中有 M N 种不同的方
法,那么完成这件事情共有
M 1+M 2+⋯⋯ +M N 种不同的方法。

2、分步乘法计数原理 :做一件事,完成它需要分成 N 个步骤,做第一 步有 m1 种不同的
方法,做第二步有
M 2不同的方法, ⋯⋯ ,做第 N 步有 M N 不同的方法 .那么完成这件事共
有 N=M 1M 2 ...M N 种不同的方法。

3、排列 :从 n 个不同的元素中任取
m(m ≤n)个元素,按照一定顺序
排成一列,叫做从 n 个
......
不同元素中取出 m 个元素的一个排列
4、排列数 : A m
n(n
1) ( n m 1)
(n n! (m n, n, m N )
m)!
5、组合 :从 n 个不同的元素中任取 m ( m ≤n ) 个元素并成一组, 叫做从 n 个不同元素中取出
m 个元素的一个组合。

m m A m n m
n( n 1)
1) (n m m
1)
m m
n! n!
6、组合数:C n A n
n( n
(n 1)
C n
C n
A m m
m!
C n
m! (n
m)!
m
m!
m! (n
m)!
A m
C m n C
n m
n ;
C
m 1 m
m
n
C
n
C
n 1
n
0 n
1 n 1
2 n 2 2

r
n r r

n n
7、二项式定理:
( a b)
C n a
C n a
b C n a
b
C n a
b
C n b
展开8、式二的项式通通项项公式 : T r
1
C n r a n r b r (r 0, 1⋯⋯ n)
第二章 随机变量及其分布
知识点:
1、随机变量 :如果随机试验可能出现的结果可以用一个变量 X 来表示,并且 X 是随着试
验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母
X 、Y 等
或希腊字母 ξ、η 等表示。

2、离散型随机变量:
在上面的射击、产品检验等例子中,对于随机变量
X 可能取的值,
我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.
3、离散型随机变量的分布列 :一般的 ,设离散型随机变量 X 可能取的值为 x 1,x 2,..... ,x i ,......,x n
X 取每一个值 x
(i=1,2,...... )的概率 P(ξ =x
)= P ,则称表为离散型随机变量 X 的概率分
i
i
i
布,简称分布列
4、分布列性质① p i≥ 0, i =1,2,⋯;②p1 + p 2 +⋯ +p n= 1.
5、二点分布:如果随机变量X 的分布列为:
其中 0<p<1, q=1-p,则称离散型随机变量X 服从参数 p 的二点分布
6、超几何分布:一般地 , 设总数为 N 件的两类物品,其中一类有M 件,从所有物品中任取 n(n≤N) 件 ,这 n 件中所含这类物品件数X 是一个离散型随机变量,
kn k
则它取值为 k 时的概率为(
k )C M C N M(
k
0,1,2,
L
,
m
) ,
P X C
N
n
其中 m min M , n ,且n≤N ,M≤N ,n,M ,N N *
7、条件概率:对任意事件 A 和事件 B ,在已知事件 A 发生的条件下事件 B 发生的概率,叫做条件概率 .记作 P(B|A) ,读作 A 发生的条件下 B 的概率
8、公式:
P(B | A)P( AB),P(A)0.
P( A)
9、相互独立事件:事件 A( 或 B) 是否发生对事件B( 或 A) 发生的概率没有影响,这样的两个事件叫做相互独立事件。

P( A B )P( A) P(B)
10、 n 次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验
11、二项分布:设在 n 次独立重复试验中某个事件 A 发生的次数, A 发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p,事件 A 不发生的概率为q=1-p,那么在 n 次独立重复试验中P(k )C n k p k q n k(其中k=0,1,⋯⋯ ,n, q=1-p)
于是可得随机变量ξ的概率分布如下:
这样的随机变量ξ服从二项分布,记作ξ~ B(n , p) ,其中 n,p 为参数
12、数学期望:一般地,若离散型随机变量ξ的概率分布为
则称 Eξ= x1p1+x2p2+⋯+ xnpn+⋯为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。

13、方差 :D( ξ)=(x 1-Eξ )2· P1+(x2-Eξ )2·P2 +......+ ( x n-Eξ)2·P n叫随机变量ξ的均方
差,简称方差。

14、集中分布的期望与方差一览:
期望方差
两点分布Eξ=p Dξ=pq, q=1-p
二项分布,ξ ~ B (n,p )Eξ=np Dξ=qEξ=npq,(q=1-p )
15、正态分布:若概率密度曲线就是或近似地是函数
( x) 2
12
2
f ( x )e, x(,)
2
的图像,其中解析式中的实数、(0) 是参数,分别表示总体的平均数与标准差.则其分布叫正态分布记作: N ( ,) ,f( x )的图象称为正态曲线。

16、基本性质:
①曲线在x 轴的上方,与x 轴不相交.
②曲线关于直线 x= 对称,且在x=时位于最高点 .
③当时x
,曲线上升;当时x,曲线下降.并且当曲线向左、右两边无限延伸时,
以 x 轴为渐近线,向它无限靠近.
④当一定时,曲线的形状由确定.越大,曲线越“矮胖” ,表示总体的分布越分散;
越小,曲线越“瘦高” ,表示总体的分布越集中.
⑤当σ相同时 ,正态分布曲线的位置由期望值μ来决定.
⑥正态曲线下的总面积等于1.
17、 3原则:
从上表看到,正态总体在(2 ,2 )
以外取值的概率只有 4.6%, 在
( 3 , 3 ) 以外取值的概率只有0.3%由于这些概率很小,通常称这些情况发生为
小概率事件 .也就是说 ,通常认为这些情况在一次试验中几乎是不可能发生的.
第三章统计案例
知识点:
1、独立性检验
假设有两个分类变量X 和 Y ,它们的值域分另为{x 1, x2} 和 {y 1, y2} ,其样本频数列联表为:y1y 2总计
x1a b a+b
x2c d c+d
总计a+c b+d a+b+c+d
若要推断的论述为 H 1:“X与 Y 有关系”,可以利用独立性检验来考察两个变量是否有
关系,并且能较精确地给出这种判断的可靠程度。

具体的做法是,由表中的数据算出随机
变量 K^2 的值(即 K 的平方)K 2 = n (ad - bc) 2 / [(a+b)(c+d)(a+c)(b+d)] ,其中 n=a+b+c+d 为样本容量, K2的值越大,说明“X与 Y 有关系”成立的可能性越大。

K 2≤3.841 时, X 与 Y 无关;K 2>3.841 时, X 与 Y 有 95%可能性有关; K 2>6.635 时 X 与 Y 有 99%可能性有关
2、回归分析
、回归直线方程?
1y a bx
xy 1
x y( x x)( y y)SP
n a y bx
其中 b2,
SS x
x21x2)( x x)
(
n
2、 r 检验性质:( 1)︱ r ︳≤ 1,︱ r ︳并且越接近于1,线性相关程度越强,
︱r ︳越接近于 0,线性相关程度越弱;( 2)︱r ︳>r 0.05,表明有 95% 的把握认
为 x 与 Y 之间具有线性相关关系;︱ r ︳≤ r 0.05,我们没有理由拒绝原来的假设,这是寻找回归直线方程毫无意义!。

相关文档
最新文档