高中数学人教B版必修5习题第3章不等式综合素质检测

合集下载

新人教A版必修5高中数学第三章不等式章末检测(A)

新人教A版必修5高中数学第三章不等式章末检测(A)

第三章 不等式章末检测(A )新人教A 版必修5一、选择题(本大题共12小题,每小题5分,共60分) 1.原点和点(1,1)在直线x +y =a 两侧,则a 的取值范围是( )A .a <0或a >2B .0<a <2C .a =0或a =2D .0≤a ≤2答案 B2.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <-14,则a +b 等于( )A .-18B .8C .-13D .1 答案 C解析 ∵-2和-14是ax 2+bx -2=0的两根.∴⎩⎪⎨⎪⎧-2+⎝ ⎛⎭⎪⎫-14=-b a -⎝ ⎛⎭⎪⎫-14=-2a ,∴⎩⎪⎨⎪⎧a =-4b =-9.∴a +b =-13.3.如果a ∈R ,且a 2+a <0,那么a ,a 2,-a ,-a 2的大小关系是( )A .a 2>a >-a 2>-aB .-a >a 2>-a 2>aC .-a >a 2>a >-a 2D .a 2>-a >a >-a 2 答案 B解析 ∵a 2+a <0,∴a (a +1)<0,∴-1<a <0.取a =-12,可知-a >a 2>-a 2>a .4.不等式1x <12的解集是( )A .(-∞,2)B .(2,+∞)C .(0,2)D .(-∞,0)∪(2,+∞) 答案 D解析 1x <12⇔1x -12<0⇔2-x 2x <0⇔x -22x>0⇔x <0或x >2.5.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤3,x -y ≥-1,y ≥1,则目标函数z=4x +2y 的最大值为( )A .12B .10C .8D .2 答案B解析 画出可行域如图中阴影部分所示,目标函数z =4x +2y 可转化为y =-2x +z2,作出直线y =-2x 并平移,显然当其过点A 时纵截距z2最大.解方程组⎩⎪⎨⎪⎧x +y =3,y =1得A (2,1),∴z max =10.6.已知a 、b 、c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( )A .ab >acB .c (b -a )>0C .ab 2>cb 2D .ac (a -c )<0答案 C解析 ∵c <b <a ,且ac <0,∴a >0,c <0.而b 与0的大小不确定,在选项C 中,若b =0,则ab 2>cb 2不成立.7.已知集合M ={x |x 2-3x -28≤0},N ={x |x 2-x -6>0},则M ∩N 为( )A .{x |-4≤x <-2或3<x ≤7}B .{x |-4<x ≤-2或3≤x <7}C .{x |x ≤-2或x >3}D .{x |x <-2或x ≥3} 答案 A解析 ∵M ={x |x 2-3x -28≤0}={x |-4≤x ≤7}, N ={x |x 2-x -6>0}={x |x <-2或x >3}, ∴M ∩N ={x |-4≤x <-2或3<x ≤7}. 8.在R 上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗(x +a )<1对任意实数x 成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12答案 C解析 (x -a )⊗(x +a )=(x -a )(1-x -a )<1⇔-x 2+x +(a 2-a -1)<0恒成立⇔Δ=1+4(a 2-a -1)<0⇔-12<a <32.9.在下列各函数中,最小值等于2的函数是( )A .y =x +1xB .y =cos x +1cos x (0<x <π2)C .y =x 2+3x 2+2D .y =e x+4ex -2答案 D解析 选项A 中,x >0时,y ≥2,x <0时,y ≤-2; 选项B 中,cos x ≠1,故最小值不等于2;选项C 中,x 2+3x 2+2=x 2+2+1x 2+2=x 2+2+1x 2+2,当x =0时,y min =322.选项D 中,e x +4e x -2>2e x·4ex -2=2,当且仅当e x =2,即x =ln 2时,y min =2,适合.10.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1x -y ≥-12x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( )A .(-1,2)B .(-4,2)C .(-4,0]D .(-2,4)答案 B解析 作出可行域如图所示,直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,即-4<a <2. 11.若x ,y ∈R +,且2x +8y -xy =0,则x +y 的最小值为( ) A .12 B .14 C .16 D .18 答案 D解析 由2x +8y -xy =0,得y (x -8)=2x ,∵x >0,y >0,∴x -8>0,得到y =2xx -8,则μ=x +y =x +2x x -8=x +x -+16x -8=(x -8)+16x -8+10≥2x -16x -8+10=18,当且仅当x -8=16x -8,即x =12,y =6时取“=”.12.若实数x ,y满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,则y x -1的取值范围是( )A .(-1,1)B .(-∞,-1)∪(1,+∞)C .(-∞,-1)D .[1,+∞) 答案 B解析 可行域如图阴影,yx -1的几何意义是区域内点与(1,0)连线的斜率,易求得yx -1>1或yx -1<-1.二、填空题(本大题共4小题,每小题4分,共16分)13.若A =(x +3)(x +7),B =(x +4)(x +6),则A 、B 的大小关系为________.答案 A<B14.不等式x -1x 2-x -30>0的解集是________________________________________________________________________.答案 {x |-5<x <1或x >6}15.如果a >b ,给出下列不等式: ①1a <1b ;②a 3>b 3;③a 2>b 2;④2ac 2>2bc 2;⑤ab>1;⑥a 2+b 2+1>ab +a +b . 其中一定成立的不等式的序号是________. 答案 ②⑥解析 ①若a >0,b <0,则1a >1b,故①不成立;②∵y =x 3在x ∈R 上单调递增,且a >b . ∴a 3>b 3,故②成立;③取a =0,b =-1,知③不成立;④当c =0时,ac 2=bc 2=0,2ac 2=2bc 2, 故④不成立;⑤取a =1,b =-1,知⑤不成立; ⑥∵a 2+b 2+1-(ab +a +b ) =12[(a -b )2+(a -1)2+(b -1)2]>0, ∴a 2+b 2+1>ab +a +b ,故⑥成立.16.一批货物随17列货车从A 市以v 千米/小时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于⎝ ⎛⎭⎪⎫v 202千米,那么这批货物全部运到B 市,最快需要________小时.答案 8解析 这批货物从A 市全部运到B 市的时间为t ,则t =400+16⎝ ⎛⎭⎪⎫v 202v =400v +16v 400≥2 400v ×16v400=8(小时),当且仅当400v =16v400,即v =100时等号成立,此时t =8小时.三、解答题(本大题共6小题,共74分)17.(12分)若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R .解 (1)由题意知1-a <0且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎪⎨⎪⎧1-a <041-a=-261-a=-3,解得a =3.∴不等式2x 2+(2-a )x -a >0即为2x 2-x -3>0,解得x <-1或x >32.∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >32.(2)ax 2+bx +3≥0,即为3x 2+bx +3≥0,若此不等式解集为R ,则b 2-4×3×3≤0,∴-6≤b ≤6. 18.(12分)解关于x 的不等式56x 2+ax -a 2<0. 解 原不等式可化为(7x +a )(8x -a )<0,即⎝⎛⎭⎪⎫x +a 7⎝ ⎛⎭⎪⎫x -a 8<0.①当-a 7<a 8,即a >0时,-a 7<x <a8; ②当-a 7=a 8,即a =0时,原不等式解集为∅; ③当-a 7>a8,即a <0时,a 8<x <-a7.综上知,当a >0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-a 7<x <a 8;当a =0时,原不等式的解集为∅;当a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x |a 8<x <-a 7.19.(12分)证明不等式:a ,b ,c ∈R ,a 4+b 4+c 4≥abc (a +b +c ).证明 ∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2, c 4+a 4≥2c 2a 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2) 即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又a 2b 2+b 2c 2≥2ab 2c ,b 2c 2+c 2a 2≥2abc 2, c 2a 2+a 2b 2≥2a 2bc .∴2(a 2b 2+b 2c 2+c 2a 2)≥2(ab 2c +abc 2+a 2bc ), 即a 2b 2+b 2c 2+c 2a 2≥abc (a +b +c ). ∴a 4+b 4+c 4≥abc (a +b +c ).20.(12分)某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?解 设投资人分别用x 万元、y 万元投资甲、乙两个项目,由题意知⎩⎪⎨⎪⎧x +y ≤10,0.3x +0.1y ≤1.8,x ≥0,y ≥0.目标函数z =x +0.5y.上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域.作直线l 0:x +0.5y =0,并作平行于直线l 0的一组直线x +0.5y =z ,z ∈R ,与可行域相交,其中有一条直线经过可行域上的M 点,且与直线x +0.5y =0的距离最大,这里M 点是直线x +y =10和0.3x +0.1y =1.8的交点.解方程组⎩⎪⎨⎪⎧x +y =10,0.3x +0.1y =1.8,得x =4,y =6,此时z =1×4+0.5×6=7(万元).∵7>0,∴当x =4,y =6时,z 取得最大值.答 投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.21.(12分)设a ∈R ,关于x 的一元二次方程7x 2-(a +13)x +a 2-a -2=0有两实根x 1,x 2,且0<x 1<1<x 2<2,求a 的取值范围.解 设f (x )=7x 2-(a +13)x +a 2-a -2. 因为x 1,x 2是方程f (x )=0的两个实根, 且0<x 1<1,1<x 2<2,所以⎩⎪⎨⎪⎧ f,f,f⇒⎩⎪⎨⎪⎧a 2-a -2>0,7-a ++a 2-a -2<0,28-a ++a 2-a -2>0⇒⎩⎪⎨⎪⎧a 2-a -2>0,a 2-2a -8<0,a 2-3a >0⇒⎩⎪⎨⎪⎧a <-1或a >2,-2<a <4,a <0或a >3⇒-2<a <-1或3<a <4.所以a 的取值范围是{a |-2<a <-1或3<a <4}.22.(14分)某商店预备在一个月内分批购买每张价值为20元的书桌共36台,每批都购入x 台(x 是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.(1)求该月需用去的运费和保管费的总费用f (x );(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.解 (1)设题中比例系数为k ,若每批购入x 台,则共需分36x批,每批价值20x .由题意f (x )=36x·4+k ·20x ,由x =4时,y =52,得k =1680=15.∴f (x )=144x+4x (0<x ≤36,x ∈N *).(2)由(1)知f (x )=144x+4x (0<x ≤36,x ∈N *).∴f (x )≥2144x·4x =48(元).当且仅当144x=4x ,即x =6时,上式等号成立.故只需每批购入6张书桌,可以使资金够用.。

(典型题)高中数学必修五第三章《不等式》检测(有答案解析)(1)

(典型题)高中数学必修五第三章《不等式》检测(有答案解析)(1)

一、选择题1.设x ,y R +∈,1x y +=,求14x y +的最小值为( ). A .2 B .4 C .8 D .92.不等式20ax bx c -+>的解集为{}|21x x -<<,则函数2y ax bx c =++的图像大致为( )A .B .C .D .3.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( ) A .5 B .4 C .2 D 24.已知实数,x y 满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩,则241z x y =++的最小值是( )A .14-B .1C .5-D .9-5.若直线l :()200,0ax by a b -+=>>被圆222410x y x y ++-+=截得的弦长为4,则21a b +的最小值为( ) A .2 B .4 C 2 D .226.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( ) A .2B .32C .6D .8 7.已知实数x 、y 满足约束条件22x y a x y ≤⎧⎪≤⎨⎪+≥⎩,且32x y +的最大值为10,则a =( )A .1B .2C .3D .48.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m =n B .m <nC .m >nD .不确定9.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b =+,则m n +的最小值是( )A .3B .4C .5D .6 10.函数()21f x nx x =+- (0,)bx a b a R +>∈的图像在点()(),b f b 处的切线斜率的最小值是( )A.BC .1D .2 11.已知直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点,则124123a b +++的最小值为( ) A.720+B.720- CD.720-12.已知正数x ,y 满足x +y =1,且2211x y y x +++≥m ,则m 的最大值为( ) A .163 B .13 C .2 D .4二、填空题13.正实数,x y 满足1x y +=,则12y x y++的最小值为________. 14.已知110,0,1x y x y >>+=,则2236x y y xy++的最小值是_________. 15.已知变量x ,y 满足430401x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则点(),x y 对应的区域的222x y xy +的最大值为______.16.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________.17.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______.18.满足关于x 的不等式()()20ax b x -->的解集为1{|2}2x x <<,则满足条件的一组有序实数对(),a b 的值可以是______.19.已知0m >,0n >,且111223m n +=++,则2m n +的最小值为________. 20.设x 、y 满足约束条件22010240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则2z x y =+的最大值是__________.三、解答题21.定义两个函数的关系:函数()m x ,()n x 的定义域为A ,B ,若对任意的1x A ∈,总存在2x B ∈,使得()()12m x n x =,我们就称函数()m x 为()n x 的“子函数”.设,0a b >,已知函数()f x=23(1)b a b +--,22||11()1822||x g x x a a x x =+-++. (1)当1a =时,求函数()f x 的单调区间;(2)若函数()f x 是()g x 的“子函数”,求22a b ab+的最大值. 22.现有甲、乙两个项目,对甲项目每投资10万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为111623,,;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p (0<p <1),设乙项目产品价格在一年内进行两次独立的调整.记乙项目产品价格在一年内的下降次数为X ,对乙项目每投资10万元,X 取0、1、2时,一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量X 1、X 2分别表示对甲、乙两项目各投资10万元一年后的利润.(1)求X 1,X 2的概率分布和均值E (X 1),E (X 2);(2)当E (X 1)<E (X 2)时,求p 的取值范围.23.小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)24.已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设该公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且24006,040()740040000,40x x R x x xx -<⎧⎪=⎨->⎪⎩, (1)写出年利润W (万美元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.25.已知函数2()3f x x ax a =-++.(1)当7a =时,解不等式()0f x >;(2)当x ∈R 时,()0f x ≥恒成立,求a 的取值范围.26.解关于x 的不等式:()2230x a a x a -++>.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由“1”有代换利用基本不等式可得最小值.【详解】因为x ,y R +∈,1x y +=,所以14144()559x y x y x y x y y x ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4x y y x =,即12,33x y ==时,等号成立. 故选:D .【点睛】易错点睛:本题考查用基本不等式求最小值.解题关键是利用“1”的代换凑配出定值.用基本不等式求最值必须满足三个条件:一正二定三相等.特别是相等这个条件常常会不满足,因此就不能用基本不等式求得最值.2.C解析:C【分析】根据一元二次不等式的解集与一元二次方程的解求出,,a b c 的关系,然后再判断二次函数的图象.【详解】∵不等式20ax bx c ++>的解集为{}|21x x -<<,∴2121bacaa⎧-+=⎪⎪⎪-⨯=⎨⎪<⎪⎪⎩,∴2b ac aa=-⎧⎪=-⎨⎪<⎩,2222(2)y ax bx c ax ax a a x x=++=--=--,图象开口向下,两个零点为2,1-.故选:C.【点睛】关键点点睛:本题考查一元二次不等式的解集,二次函数的图象,解题关键是掌握一元二次不等式的解集与一元二次方程的解、二次函数的图象之间的关系.3.C解析:C【分析】由不等式组作出可行域,如图,目标函数22x y+可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y+=的距离平方,根据点到直线的距离公式可得选项.【详解】由不等式组做出可行域如图,目标函数22x y+可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y+=的距离的平方,由点到直线的距离公式可知,原点到直线2x y+=的距离为22d==,所以所求最小值为2.故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C++≥转化为y kx b≤+(或y kx b≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.4.A【分析】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.【详解】解:作出不等式组5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩表示的平面区域,如图所示的阴影部分由241z x y =++可得11244z y x =-+-, 则144z -表示直线11244z y x =-+-在y 轴上的截距,截距越小,z 越小, 由题意可得,当11244z y x =-+-经过点A 时,z 最小, 由500x y x y ++=⎧⎨-=⎩可得5522A ⎛⎫-- ⎪⎝⎭,, 此时552411422z =-⨯-⨯+=-, 故选:A.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题. 5.B解析:B求出圆的圆心与半径,可得圆心在直线20(0,0)ax by a b -+=>>上,推出22a b +=,利用基本不等式转化求解21a b+取最小值. 【详解】解:圆222410x y x y ++-+=,即22(1)(2)4x y ++-=, 表示以2()1,M -为圆心,以2为半径的圆,由题意可得圆心在直线20(0,0)ax by a b -+=>>上,故220a b --+=,即22a b +=, ∴2212222112242a ba b b a b a b a b a b a +++=+=++++,当且仅当22b a a b=,即2a b =时,等号成立, 故选:B .【点睛】 本题考查直线与圆的方程的综合应用,基本不等式的应用,考查转化思想以及计算能力,属于中档题. 6.D解析:D【分析】运用基本不等式2422x y+≥= 【详解】因为20,40x y >>,所以224228x y x y ++≥===,(当且仅当24x y =时取“=”).故答案为D.【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.7.B解析:B【分析】作出不等式组所表示的可行域,平移直线32z x y =+,找出使得目标函数32z x y =+取得最大值时对应的最优解,代入目标函数可得出关于实数a 的等式,由此可解得实数a 的值.【详解】不等式组所表示的可行域如下图所示:易知点()2,A a ,由题意可知,点A 在直线2x y +=上或其上方,则22a +≥,可得0a ≥,令32z x y =+,平移直线32z x y =+,当直线32z x y =+经过点A 时,直线32z x y =+在y 轴上的截距最大,此时,z 取得最大值,即max 3226210z a a =⨯+=+=,解得2a =.故选:B.【点睛】本题考查利用线性目标函数的最值求参数,考查数形结合思想的应用,属于中等题. 8.C解析:C【解析】因为a >2,所以a -2>0,所以()112222m a a a a =+=-++≥-- ()12242a a +-⋅=-,当且仅当a =3时取等号,故[4m ∈,)+∞.由b ≠0得b 2>0,所以2-b 2<2,所以222b -<4,即n <4,故()0,4n ∈.综上可得m >n ,故选C .9.B解析:B【分析】由等比中项定义得1ab = ,再由基本不等式求最值.【详解】,a b 的等比中项是1,∴1ab =,∴m +n=1ba++1a b +=a b a b ab +++ = 2()a b + ≥ 44ab = .当且仅当1a b == 时,等号成立.故选B .【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.10.D解析:D【分析】先求导数,根据导数几何意义得切线斜率,再根据基本不等式求最值.【详解】11()2()2f x x b k f b b x b ''=+-∴==+≥= ,当且仅当1b =时取等号,因此切线斜率的最小值是2,选D.【点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.11.C解析:C【分析】由题意可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5),将所求式子化为b 的关系式,由基本不等式可得所求最小值.【详解】直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点,可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5), 则1216412311696a b b b+=+++-+ 120=[(11﹣6b )+(9+6b )](1611696b b+-+)120=(7()61169611696b b b b -+++-+)≥,当且仅当()61169611696b b b b -+=-+时,即b =,a =720+, 故选:C .【点评】本题考查基本不等式的运用:求最值,考查变形能力和化简运算能力,属于中档题. 12.B解析:B【分析】根据题意2211x y y x +++=22(1)(1)11--+++y x y x =(4411+++y x )﹣5,由基本不等式的性质求出4411+++y x =13(4411+++y x )[(x +1)+(y +1)]的最小值,即可得2211x y y x +++的最小值,据此分析可得答案.【详解】根据题意,正数x ,y 满足x +y =1, 则2211x y y x +++=22(1)(1)11--+++y x y x =(y +1)+41+y ﹣4+(x +1)+41x +﹣4=(4411+++y x )﹣5, 又由4411+++y x =13(4411+++y x ) [(x +1)+(y +1)], =13 [8+4(1)4(1)11+++++x y y x ]≥163, 当且仅当x =y =12时等号成立, 所以2211x y y x +++=(4411+++y x )﹣5163≥﹣5=13, 即2211x y y x +++的最小值为13, 所以3m ≤,则m 的最大值为13; 故选:B .【点睛】本题主要考查基本不等式的性质以及应用,还考查了转化求解问题的能力,属于中档题. 二、填空题13.【分析】根据题中条件由展开后利用基本不等式即可求出结果【详解】因为正实数xy 满足所以当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三 解析:7【分析】 根据题中条件,由1222()2212y x y x y y x x y x y x y++++=+=+++,展开后,利用基本不等式,即可求出结果.【详解】因为正实数x ,y 满足1x y +=,所以1222()221237y x y x y y x x y x y x y ++++=+=+++≥+=, 当且仅当y x x y =,即1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立. 故答案为:7.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】由题得化简整理得再利用基本不等式可得解【详解】由得则当且仅当时等号成立此时或;则的最小值是故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一 解析:11【分析】 由题得1x y x y xy xy+=⇒+=,化简整理得()2223636361xy xy x y y xy xy xy xy-+++==+-再利用基本不等式可得解. 【详解】 由110,0,1x y x y>>+=, 得1x y x y xy xy+=⇒+=, 则()2223636x y x y x y y xy xy+++++= ()2223636x y xy x xy y xy xy +-++++== ()236361111xy xy xy xy xy -+==+-≥=, 当且仅当6xy =时等号成立,此时3333 xy⎧=+⎪⎨=-⎪⎩或3333xy⎧=-⎪⎨=+⎪⎩;则2236x y yxy++的最小值是11.故答案为:11.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】作出可行域令所以利用函数的单调性即可求最值【详解】由解得:所以由解得:所以表示可行域内的点与原点连线的斜率所以令所以在单调递减在单调递增当时当时所以的最大值为故答案为:【点睛】思路点睛:非线解析:53【分析】作出可行域,令ytx=,OA OByk kx≤≤,所以7,313t⎡⎤∈⎢⎥⎣⎦,22111222x y x ytxy y x t⎛⎫+⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭,利用函数的单调性即可求最值.【详解】由43040x yx y-+=⎧⎨+-=⎩解得:13575xy⎧=⎪⎪⎨⎪=⎪⎩,所以137,55A⎛⎫⎪⎝⎭,由140x x y =⎧⎨+-=⎩解得:13x y =⎧⎨=⎩,所以()1,3B , y x 表示可行域内的点与原点连线的斜率,所以OA OB y k k x≤≤, 7075131305OA k -==-,30310OB k -==-,令7,313y t x ⎡⎤=∈⎢⎥⎣⎦, 所以22111222x y x y t xy y x t ⎛⎫+⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, 1y t t =+在7,113⎡⎤⎢⎥⎣⎦单调递减,在[]1,3单调递增, 当3t =时,1713109213791y ⎛⎫=+= ⎪⎝⎭, 当75t =时,1153233y ⎛⎫=+= ⎪⎝⎭, 所以222x y xy +的最大值为53, 故答案为:53. 【点睛】思路点睛:非线性目标函数的常见类型及解题思路: 1.斜率型:()0by ay b a a z ac d cx d c x c++==⋅≠++表示的是可行域内的点(),x y 与点,d b c a ⎛⎫-- ⎪⎝⎭连线所在直线的斜率的a c 倍; 2.距离型:(1)()()22z x a y b =-+-表示的是可行域内的点(),x y 与(),a b 之间距离的平方;(2)z Ax By C =++=(),x y 到直线0Ax By C ++=倍.16.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得解析:12【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值.【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦,∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+,∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立,∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =, ∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan C A C C A C C C A C C C-==++++-, 又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当23tan tan C C ==,即tan C =等号成立, ∴ ()tan tan tan tan tan tan 1tan =21123A C A C C C A C -≤++-=.【点睛】 本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.17.2【分析】据题意由于MN 为平面区域内的两个动点则不等式组表示的为三角形区域根据向量的数量积由于(当且仅当与共线同向时等号成立)从而求得最大值【详解】由作出可行域如图由条件可得由图知不等式组表示的为三解析:2【分析】据题意,由于M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,则不等式组表示的为三角形区域,根据向量的数量积,由于MN a MNa ⋅≤(当且仅当MN 与a 共线同向时等号成立)从而求得最大值.【详解】由0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩作出可行域,如图 由条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩可得()()()1,1,2,2,3,1A B C由图知,不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a MN ⋅≤=(当且仅当MN 与a 共线同向时等号成立),即当MN 所在直线平行于=(1,0)a 所在直线且方向相同的时候得到大值,MN 的最大长度为直线=0x y -与1y =的交点(1,1)与直线4=0x y +-和1y =的交点(3,1)的距离. 22(31)(11)2-+-=,故答案为:2【点睛】解决的关键是对于不等式区域的准确表示,同时能利用向量的数量积来表示得到目标函数,利用a b a b ⋅≤(当且仅当b 与a 共线同向时等号成立)得到结论.属于中档题. 18.【分析】根据题意知不等式对应方程的实数根由此求出写出满足条件的一组有序实数对即可【详解】不等式的解集为方程的实数根为和2且即则满足条件的一组有序实数对的值可以是故答案为【点睛】本题考查了一元二次不等 解析:()2,1--【分析】根据题意知,不等式对应方程的实数根,由此求出20a b =<,写出满足条件的一组有序实数对即可.【详解】不等式()()20ax b x -->的解集为1{|2}2x x <<, ∴方程()()20ax b x --=的实数根为12和2,且012a b a <⎧⎪⎨=⎪⎩, 即20a b =<,则满足条件的一组有序实数对(),a b 的值可以是()2,1--.故答案为()2,1--.【点睛】本题考查了一元二次不等式与对应方程的关系应用问题,是基础题.19.【分析】先换元令则;再采用乘1法求出的最小值即可得解【详解】解:令则且而当且仅当即时等号成立的最小值为故答案为:【点睛】本题考查利用基本不等式求最值采用换元法和乘1法是解题的关键考查学生的转化思想分解析:3+【分析】先换元,令2s m =+,2t n =+,则1113s t +=,226m n s t +=+-;再采用“乘1法”,求出2s t +的最小值即可得解.【详解】解:令2s m =+,2t n =+,则2s >,2t >,且1113s t +=, 2(2)2(2)26m n s t s t ∴+=-+-=+-, 而112223(2)()3(12)3(32)3(322)s ts t s t s t s t t s t s+=++=+++⨯+=+,当且仅当2s t t s=,即s =时,等号成立. 2s t ∴+的最小值为3(3+,2263(322)63m n s t ∴+=+-+-=+故答案为:3+【点睛】本题考查利用基本不等式求最值,采用换元法和“乘1法”是解题的关键,考查学生的转化思想、分析能力和运算能力,属于中档题.20.16【分析】作出不等式组表示的平面区域由可得则表示直线在轴上的截距截距越大越大结合图象即可求解的最大值【详解】作出满足约束条件表示的平面区域如图所示:由可得则表示直线在轴上的截距截距越大越大作直线然 解析:16【分析】作出不等式组表示的平面区域,由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大,结合图象即可求解z 的最大值.【详解】作出x 、y 满足约束条件22010240x y x y x y +-⎧⎪-+⎨⎪--⎩表示的平面区域,如图所示:由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大作直线20x y +=,然后把该直线向可行域平移,当直线经过A 时,z 最大由10240x y x y -+=⎧⎨--=⎩可得(5,6)A ,此时16z =. 故答案为:16.【点睛】本题主要考查了线性规划知识的应用,求解的关键是明确目标函数中z 的几何意义.属于中档题.三、解答题21.(1)减区间为(],1-∞,增区间为[3,)+∞;(2)18.【分析】(1)根据函数的解析式有意义,求得函数的定义域,再结合二次函数的性质和复合函数的单调性的判定方法,即可求解;(2)先求得函数()f x 的值域为233,b a b ⎡⎫+--+∞⎪⎢⎣⎭,利用基本不等式,求得函数()g x 的值域为116,)[a -+∞,根据题意,得到2331,[),[16)b a b a+--+∞⊆-+∞,结合基本不等式,即可求解.【详解】(1)由题意,函数233()1b f x b +=-有意义, 则满足2430x x -+≥,解得1x ≤或3x ≥,即定义域为{|1x x ≤或3}x ≥,又由函数243y x x =-+在减区间为(],1-∞,增区间为[3,)+∞,根据复合函数的单调性的判定方法,可得()f x 的减区间为(],1-∞,增区间为[3,)+∞.(2)由函数233()1b f x b +=--,可得()f x 的值域为233,b a b ⎡⎫+--+∞⎪⎢⎣⎭, 211111()||||20422016||2||2g x x x x a x a a ⎛⎫⎛⎫=+++-≥+⨯-=- ⎪ ⎪⎝⎭⎝⎭, 当且仅当1||||x x =时,即1x =±,等号成立, 所以()g x 的值域为116,)[a-+∞, 因为()f x 是()g x 的“子函数,所以2331,[),[16)b a b a+--+∞⊆-+∞, 所以233116b a b a+--≥-,即13316a b a b +++≤, 又13(3)()103()b a a b a b a b++=++,221331316(3)6422a b a b a b a b ⎛⎫+++ ⎪⎛⎫⎛⎫++≤≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭, 当且仅当1338a b a b+=+=时取“=”,即a =b =或a =,b = 所以103()64b a a b ++≤,即2218a b b a ab a b+=+≤ 所以22a b ab+的最大值为18. 【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.22.(1)见解析(2)0<p <0.3【解析】分析:(1)由题意可得随机变量X 1的分布列和期望;结合X ~B (2,p )可得随机变量X 2的分布列和期望.(2)由E (X 1)<E (X 2)可得关于p 的不等式,解不等式可得所求. 详解:(1)由题意得X 1的分布列为∴E (X 1)=1.2×6+1.18×2+1.17×3=1.18. 由题设得X ~B (2,p ),即X 的分布列为22=1.3×(1-2p +p 2)+2.5×(p -p 2)+0.2×p 2=-p 2-0.1p +1.3.(2)由E (X 1)<E (X 2),得-p 2-0.1p +1.3>1.18,整理得(p +0.4)(p -0.3)<0,解得-0.4<p <0.3.因为0<p <1,所以0<p <0.3.即当E (X 1)<E (X 2)时,p 的取值范围是()0,0.3.点睛:(1)求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.(2)求解离散型随机变量X 的均值与方差时,只要在求解分布列的前提下,根据均值、方差的定义求EX ,DX 即可.23.(1)3.(2)5.【解析】试题分析:(1)求出第年年底,该车运输累计收入与总支出的差,令其大于0,即可得到结论; (2)利用利润=累计收入+销售收入-总支出,可得平均利润,利用基本不等式,可得结论.试题(1)设大货车运输到第年年底,该车运输累计收入与总支出的差为万元, 则由,可得 ∵,故从第3年,该车运输累计收入超过总支出;(2)∵利润=累计收入+销售收入−总支出,∴二手车出售后,小张的年平均利润为, 当且仅当时,等号成立 ∴小张应当在第5年将大货车出售,能使小张获得的年平均利润最大.考点:根据实际问题选择函数类型, 基本不等式24.(1)2638440,04040000167360,40x x x W x x x ⎧-+-<⎪=⎨--+>⎪⎩;(2)当x =32时,W 取得最大值为6104万美元.【分析】(1)利用利润等于收入减去成本,可得分段函数解析式;(2)分段求出函数的最大值,比较可得结论.【详解】(1)利用利润等于收入减去成本,可得当040x <时,2()(1640)638440W xR x x x x =-+=-+-;当40x >时,40000()(1640)167360W xR x x x x =-+=--+2638440,04040000167360,40x x x W x x x ⎧-+-<⎪∴=⎨--+>⎪⎩; (2)当040x <时,226384406(32)6104W x x x =-+-=--+,32x ∴=时,(32)6104max W W ==;当40x >时,400004000016736027360W x x x =--+-, 当且仅当4000016x x=,即50x =时,(50)5760max W W == 61045760>32x ∴=时,W 的最大值为6104万美元.【点睛】本题考查分段函数模型的构建,考查利用均值不等式求最值,考查学生分析问题解决问题的能力,属于中档题.25.(1)(,2)(5,)-∞⋃+∞;(2)[2,6]-.【分析】(1)当7a =是,解一元二次不等式求得不等式()0f x >的解集.(2)利用判别式列不等式,解不等式求得a 的取值范围.【详解】(1)当7a =时,不等式为27100x x -+>,即(2)(5)0x x -->,∴该不等式解集为(,2)(5,)-∞⋃+∞ .(2)由已知得,若x ∈R 时,230+++≥x ax a 恒成立,24(3)0a a ∴∆=-+≤,即(2)(6)0a a +-≤,∴a 的取值范围为[2,6]-.【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题. 26.见解析【分析】由题意,将不等式()2230x a a x a -++>变形为2(0)()x a x a -->,分三种情况讨论,分别求解不等式的解集,即可得到答案.【详解】将不等式()2230x a a x a -++>变形为()()20x a x a -->.当a <0或1a >时,有a < a 2,所以不等式的解集为{|x x a <或2}x a >;当a =0或1a =时,a = a 2=0,所以不等式的解集为{|,x x R ∈且}x a ≠;当0< a <1时,有a > a 2,所以不等式的解集为2{|x x a <或}x a >;【点睛】本题主要考查了含参数的一元二次不等式的求解问题,其中解含参数的一元二次不等式的步骤:(1)若二次项含有参数,应先讨论参数是等于0、小于0,还是大于0,然后整理不等式;(2)当二次项系数不为0时,讨论判别式与0的关系,判断方程的根的个数;(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集的形式.。

高二数学必修5(人教B版)第三章同步检测3-4

高二数学必修5(人教B版)第三章同步检测3-4

3.4 不等式的实际应用基础巩固一、选择题1.将进货单价为80元的商品按90元一个售出时,能卖出400个,每涨价1元,其销售量就减少20个,为获得最大利润,售价应定在( )A .每个95元B .每个100元C .每个105元D .每个110元[答案] A[解析] 设每个涨价x 元,则利润y =(x +10)(400-20x )=-20x 2+200x +4000,∴当x =20040=5时,y 取得最大值.故每个售价为95元时利润最大.2.在面积为S (S 为定值)的扇形中,当扇形中心角为θ,半径为r 时,扇形周长最小,这时θ、r 的值分别是( )A .θ=1,r =SB .θ=2,r =4S C .θ=2,r =3S D .θ=2,r =S[答案] D[解析] S =12θr 2⇒θ=2Sr2,又扇形周长P =2r +θr =2⎝ ⎛⎭⎪⎫r +S r ≥4S , 当P 最小时,r =Sr ⇒r =S ,此时θ=2.3.设计用32m 2的材料制造某种长方体车厢(无盖),按交通规定车厢宽为2m,则车厢的最大容积是()A.(38-373)m3B.16m3C.42m3D.14m3[答案] B[解析]设长方体长为a m,高为h m,则有2a+2(2h)+2(ah)=32,即a+2h+ah=16,∴16≥22ah+ah,即(ah)2+22·ah-16≤0,解得0<ah≤22,∴ah≤8,∴V=2ah≤16.4.做一个面积为1m2,形状为直角三角形的铁架框,在下面四种长度的铁管中,最合理(够用,又浪费最少)的是() A.4.6m B.4.8mC.5m D.5.2m[答案] C[解析]设直角三角形两直角边长分别为x,y,则12xy=1,即xy=2.周长l=x+y+x2+y2≥2xy+2xy=(1+2)×2≈4.83,当且仅当x=y时取等号.考虑到实际问题,故选C.二、填空题5.光线透过一块玻璃,其强度要减弱110.要使光线的强度减弱到原来的13以下,至少需这样的玻璃板________块.(参考数据:lg2=0.3010,lg3=0.4771)[答案]11[解析]设至少需要经过这样的n块玻璃板,则,(1-110)n<13,即n·lg910<lg13∴n>lg 1 3lg 910=-lg32lg3-1=-0.47712×0.4771-1≈10.45.又∵n∈N+,∴n=11.6.建造一个容积为8m3,深为2m的长方形无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低造价为__________元.[答案]1760[解析]设水池的底面长、宽分别为x m,y m,则2xy=8,xy=4.水池造价为z元.则z=120xy+2(2x+2y)×80=480+320(x+y)≥480+320×4=1760.三、解答题7.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧用砖墙,每米长造价45元,顶部每平方米造价20元.计算:(1)仓库底面积S的最大允许值是多少?(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?[解析](1)设正面铁栅长x m,侧面长为y m,总造价为z元,则z=40x+2×45y+20xy=40x+90y+20xy,仓库面积S=yx.由条件知z≤3 200,即4x+9y+2xy≤320.∵x>0,y>0,∴4x+9y≥24x·9y=12xy.∴6S +S ≤160,即(S )2+6S -160≤0. ∴0<S ≤10,∴0<S ≤100. 故S 的最大允许值为100m 2.(2)当S =100m 2时,4x =9y ,且xy =100. 解之得x =15(m),y =203(m).答:仓库面积S 的最大允许值是100m 2,此时正面铁栅长15m. 8.某企业生产一种机器的固定成本(即固定投入)为0.5万元,但每生产1百台时又需可变成本(即需另增加投入)0.25万元,市场对此商品的需求量为5百台,销售的收入函数为R (x )=5x -12x 2(万元),(0≤x ≤5),其中x 是产品生产并售出的数量.(单位:百台)(1)把利润表示为年产量的函数.(2)年产量为多少时,企业所得利润最大? (3)年产量多少时,企业才不亏本.(不赔钱)? [解析] (1)设利润为y .则y =⎩⎪⎨⎪⎧R (x )-0.5-0.25x (0≤x ≤5)R (5)-0.5-0.25x (x >5),∴y =⎩⎨⎧-12x 2+4.75 x -0.5(0≤x ≤5)12-0.25x (x >5).(2)y =-12(x -4.75)2+10.78125∴x =4.75时即年产量为475台时企业所得利润最大.(3)要使企业不亏本,须y >0即⎩⎨⎧0≤x <5-12x 2+4.75 x -0.5>0或⎩⎪⎨⎪⎧12-0.25x >0x ≥5. 2.65<x <5或5≤x <48,即2.65<x <48. ∴年产量在265台至4800台时,企业才会不亏本.能力提升一、选择题1.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下:的就业情况,则根据表中数据,就业形势一定是( )A .计算机行业好于化工行业B .建筑行业好于物流行业C .机械行业最紧张D .营销行业比贸易行业紧张 [答案] B[解析] 就业情况=应聘人数招聘人数,计算机就业形式=215830124620>1,化工业就业形式=应聘人数70436<6528070436<1,则A 不合适.同理,建筑行业就业形式=应聘人数76516<6528076516<1,物流业就业形式=74570招聘人数>7457070436>1.2.某公司从2006年起每人的年工资主要由三个项目组成并按下表规定实施:基础工资的25%,到2008年底这位职工的工龄至少是() A.2年B.3年C.4年D.5年[答案] C[解析]设这位职工工龄至少为x年,400x+1600>10000·(1+10%)2×25%,即400x+1600>3025,即x>3.5625,所以至少为4年.二、填空题3.现有含盐7%的食盐水200克,生产上需要含盐5%以上、6%以下的食盐水,设需要加入含盐4%的食盐水为x克,则x的取值范围是__________.[答案]100<x<400[解析]由题意可列式5%<7%×200+4%×x 200+x <6%,即5<1400+4x 200+x <6解得100<x <400.4.周长为2的直角三角形的面积的最大值为________. [答案] 3-2 2[解析] 设直角三角形的两直角边分别为a 、b ,斜边为c ,则直角三角形的面积S =12ab .由已知,得a +b +c =2,∴a +b +a 2+b 2=2, ∴2=a +b +a 2+b 2≥2ab +2ab =(2+2)ab , ∴ab ≤22+2=2-2,∴ab ≤(2-2)2=6-42, ∴S =12ab ≤3-22,当且仅当a =b =2-2时,S 取最大值3-2 2.三、解答题5.假设国家收购某种农副产品的价格是120元/担,其中征税标准是每100元征税8元(叫做税率是8个百分点,即8%),计划收购m 万担,为了减轻农民负担,决定税率降低x 个百分点,预计收购量可增加2x 个百分点,要使此项税收在税率降低后不低于原计划的78%,试确定x 的取值范围.[解析] 税率降低后是(8-x )%,收购量为m (1+2x %)万担,税收为120m(1+2x %)(8-x )%万元,原来的税收为120m·8%万元.根据题意可得120m(1+2x %)(8-x )%≥120m·8%·78% 即x 2+42x -88≤0解之得-44≤x ≤2,又x >0,∴0<x ≤2 ∴x 的取值范围是(0,2].6.某单位用木料制作如图所示的框架,框架的下部是边长分别为x 、y (单位:m)的矩形.上部是等腰直角三角形.要求框架围成的总面积8cm 2.问x 、y 分别为多少时用料最省?(精确到0.001m)[解析] 由题意得xy +14x 2=8,∴y =8-x 24x =8x -x4(0<x <42).于是,框架用料长度为l =2x +2y +2(22x ) =(32+2)x +16x ≥46+4 2. 当(32+2)x =16x ,即x =8-42时等号成立. 此时,x ≈2.343,y =22≈2.828.故当x 为2.343m ,y 为2.828m 时,用料最省.7.某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用为12万元,以后每年增加4万元,每年捕鱼收益50万元.(1)问第几年开始获利?(2)若干年后,有两种处理方案:①年平均获利最大时,以26万元出售该渔船;②总纯收入获利最大时,以8万元出售该渔船.问哪种方案最合算?[解析] 由题设知每年的费用是以12为首项,4为公差的等差数列.设纯收入与年数的关系为f(n),则f(n)=50n-[12+16+…+(8+4n)]-98=40n-2n2-98.(1)由f(n)>0得,n2-20n+49<0,∴10-51<n<10+51,又∵n∈N,∴n=3,4, (17)即从第3年开始获利;(2)①年平均收入=f(n)n=40-2(n+49n)≤40-2×14=12,当且仅当n=7时,渔船总收益为12×7+26=110(万元).②f(n)=-2(n-10)2+102.因此当n=10时,f(n)max=102,总收益为102+8=110万元,但7<10,所以第一种方案更合算.。

【精品专区】高中数学必修5第三章不等式练习题_高一数学

【精品专区】高中数学必修5第三章不等式练习题_高一数学

不等式题组训练一、选择题(六个小题,每题5分,共30分)1.若02522>-+-x x ,则221442-++-x x x 等于 ( )A .54-xB .3-C .3D .x 45- 2.函数y =log21(x +11x --1) (x > 1)取得最大值时x 是 ( )A .-2B .2C .-3D .33.不等式xx --213≥1的解集是 ( )A .{x|43≤x ≤2} B .{x|43≤x <2} C .{x|x >2或x ≤43} D .{x|x <2}4.设a >1>b >-1,则下列不等式中恒成立的是 ( ) A .ba 11< B .ba11>C .a >b 2D .a 2>2b5.如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( ) A .最小值21和最大值1 B .最大值1和最小值43 C .最小值43而无最大值 D .最大值1而无最小值6.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小,则a 的取值范围是 ( ) A .-3<a <1 B .-2<a <0 C .-1<a <0 D .0<a <2 二、填空题(五个小题,每题6分,共30分) 1.不等式0212<-+xx 的解集是__________________.2.如果33log log m n +≥4,那么m n +的最小值是__________________.3.已知正项等差数列{}n a 的前10项和为50,则56.a a 的最大值是__________________.4.配制A 、B 两种药剂,需要甲、乙两种原料,已知配一剂A 种药需甲料3毫克,乙料5毫克,配一剂B 种药 需甲料5毫克,乙料4毫克.今有甲料20毫克,乙料25毫克,若A 、B 两种药至少各配一剂,应满足的条件 是__________________.5. 0≤x, 0≤y 及x y +≤4所围成的平面区域的面积是__________________. 三、解答题(四个小题,每题10分,共40分) 1.解223log (3)0x x -->2.求y x z +=2的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y3.求证:ca bc ab c b a ++≥++2224.某单位决定投资3200元建一仓库(长方形状),高度很定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌转,每米长造价45元,顶部每平方米造价20元.试求: (1)仓库面积的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计多长?[综合训练B 组]一、选择题(六个小题,每题5分,共30分) 1.一元二次不等式ax 2+bx +2>0的解集是(-21,31),则a +b 的值是_____。

新课标人教版必修5高中第3章不等式单元检测试卷及答案解析(原始打印版)

新课标人教版必修5高中第3章不等式单元检测试卷及答案解析(原始打印版)

新课标人教版必修5高中数学 第3章 不等式单元检测试卷1.设a b <,c d <,则下列不等式中一定成立的是 ( )A .d b c a ->-B .bd ac >C .d b c a +>+D .c b d a +>+2. “0>>b a ”是“222b a ab +<”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.不等式b ax >的解集不可能是 ( )A .φB .RC .),(+∞a bD .),(ab --∞ 4.不等式022>++bx ax 的解集是)31,21(-,则b a -的值等于 ( ) A .-14 B .14 C .-10 D .105.不等式||x x x <的解集是 ( ) A .{|01}x x <<B .{|11}x x -<<C .{|01x x <<或1}x <-D .{|10,1}x x x -<<> 6.若011<<ba ,则下列结论不正确的是 ( ) A .22b a < B .2b ab < C .2>+ba ab D .||||||b a b a +>+7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为 ( )A .)()(x g x f >B .)()(x g x f =C .)()(x g x f <D .随x 值变化而变化 8.下列各式中最小值是2的是 ( )A .y x +x yB .4522++x x C .tan x +cot x D . x x -+229.下列各组不等式中,同解的一组是 ( )A .02>x 与0>xB .01)2)(1(<-+-x x x 与02<+xC .0)23(log 21>+x 与123<+x D .112≤--x x 与112≤--x x 10.如果a x x >+++|9||1|对任意实数x 总成立,则a 的取值范围是 ( )A. }8|{<a aB. }8|{>a aC. }8|{≥a aD. }8|{≤a a 11.若+∈R b a ,,则b a 11+与ba +1的大小关系是 .12.函数121lg+-=x xy 的定义域是 . 13.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.14. 已知0()1,0x x f x x ≥⎧=⎨-<⎩,, 则不等式3)2(≤+x f 的解集___ _ ____.15.已知()f x 是奇函数,且在(-∞,0)上是增函数,(2)0f =,则不等式()0xf x <的解集是___ _ ____. 16.解不等式:21582≥+-x x x17.已知1<a ,解关于x 的不等式12>-x ax.18.已知0=++c b a ,求证:0≤++ca bc ab 。

人教B版必修5第三章不等式 统考题

人教B版必修5第三章不等式 统考题

不等式 历年统考题1.不等式2(24)60x m m y --++>表示的平面区域是以直线2(24)60x m m y --++= 为界的两个平面区域中的一个,且点(1,1)在这个区域内,则实数m 的取值范围是( )A.(,1)(3,)-∞-+∞B. (,1][3,)-∞-+∞C.[1,3]-D. (1,3)-2.已知 x 、y 为正实数,且lg 2lg8lg 4xy+=,则 13x y+ 的最小值是( )A.4B.8C.12D.163.已知b a ,为实数,则“0>+b a 且0>ab ”是“0>a 且0>b ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要4.函数),0(32)(2<+-=x xx x x f 取得最大值为( ) A.232-- B.322- C.232- D.232+ 5.已知y x ,满足5030x y x x y -+≥⎧⎪≤⎨⎪+≥⎩,则y x z 24+=的最小值为( ) A.6- B.6 C.5 D.5-6.实数1a <是11a>的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件7.设,x y 满足约束条件2602600,0.x y x y x y +-≥⎧⎪+-≤⎨⎪≥≥⎩,则目标函数3z x y =+的最大值是( )A. 8B. 6C. 5D.38.已知正项等比数列{}n a 满足:5672a a a +=,若存在两项n m a a ,12a =, 则nm 41+的最小值为 ( ) A.23 B. 52 C. 92 D.949.若关于x 的不等式24x x mx -+>的解集为}{|02x x <<,则实数m 的值为( )A.2-B. 2C. 6-D.610.已知点(,)P x y 满足条件0290y y x x y ≥⎧⎪≤⎨⎪+-≤⎩,则y x z 3-=的最小值为( )A.9B.6-C. -9D. 611.已知等比数列123,,a a a 的和为定值3(0)m m >,且公比为(0)q q >,令123t a a a =,则t 的取值范围为( ) A.3(0,]m B. 3[,)m +∞C.30,()3m ⎛⎤ ⎥⎝⎦ D. 3(),3m ⎡⎫+∞⎪⎢⎣⎭12.关于x 的不等式0>+b ax 的解集为)1,(-∞,则关于x 的不等式02>+-x abx 的解集为 .13.不等式6|2||12|≤--+x x 的解集为14.不等式|1|2x x +>的解集为 .15.不等式211x x -≥+的解集为 .16.已知命题P :不等式01)3(2>+--x m mx 的解集为R ;命题Q :方程0132=++mx x 有两个不相等的负根.若P Q ∨是真命题,P Q ∧是假命题,求实数m 的取值范围.18.已知命题p :方程2227510x mx m +++=的两个实数根中一个比2大,一个比2小;命题q :关于x的不等式()2310mx m x -+-≤对于任意实数x 均成立.若q p ∨为真,求实数m 的取值范围.17.(满分12分)若a 为实数,解关于x 的不等式02)2(2<--+x a ax19.( 12分)已知函数bax x x f +=2)((,a b 为常数)且方程()60f x x --=有两个实根12x =, 23x =.(Ⅰ)求函数()f x 的解析式;(理)(Ⅱ)设12k >,解关于x 的不等式:(21)()1k x kf x x +->-. (文)(Ⅱ)设12k <,解关于x 的不等式:2221()1x kx f x x -+>-20.(本小题满分12分)设a 为正实数,函数2()2()||f x x x a x a =+--. (Ⅰ)若(0)1f ≤-,求a 的取值范围;(Ⅱ)求()f x 的最小值;(Ⅲ) 若(,)x a ∈+∞,求不等式()1f x ≥的解集.21.(本小题满分12分)已知函数2()2(22)f x x ax a =--+ (Ⅰ)解关于x 的不等式()f x x >;(Ⅱ)若()30f x +≥在区间(1,)-+∞上恒成立,求实数a 的取值范围.。

高中数学 第三章 不等式 3.3 一元二次不等式及其解法同步训练 新人教B版必修5-新人教B版高二必

高中数学 第三章 不等式 3.3 一元二次不等式及其解法同步训练 新人教B版必修5-新人教B版高二必

3.3一元二次不等式及其解法5分钟训练(预习类训练,可用于课前)1.已知2a+1<0,关于x 的不等式x 2-4ax-5a 2>0的解集是( ) A.{x|x >5a 或x <-a} B.{x|x <5a 或x >-a} C.{x|-a <x <5a} D.{x|5a <x <-a} 解析:x 2-4ax-5a 2>0⇒(x-5a )(x+a )>0.∵a<21-,∴5a<-a.∴x>-a 或x <5a.故选B.答案:B2.不等式x 2-x-2<0的解集是___________.解析:原不等式可以变化为(x+1)(x-2)<0,可知方程x 2-x-2=0的解为-1和2,所以,解集为:{x|-1<x <2}. 答案:{x|-1<x <2}3.不等式423--x x≤1的解集是___________.解析:423--x x ≤1,即423--x x -1≤0,4237--x x≤0.因为两实数的积与商是同号的,所以上述不等式同解于如下的不等式组:⎩⎨⎧≤--≠-.0)2)(37(,042x x x即⎪⎩⎪⎨⎧≥--≠.0)2)(37(,2x x x 所以,原不等式的解集为{x|x <2或x≥37}. 答案:{x|x <2或x≥37} 4.)1(-x x <0的解集为____________.解析:根据条件有⎩⎨⎧<->.01,0x x 即0<x <1,解集为:{x|0<x <1}.答案:{x|0<x <1}10分钟训练(强化类训练,可用于课中)1.已知不等式ax 2+bx+c >0的解集为{x|31-<x <2},则不等式cx 2+bx+a <0的解集为( ) A.{x|-3<x <21} B.{x|x <-3或x >21}C.{x|-2<x <31}D.{x|x <-2或x >31}解法一:ax 2+bx+c >0的解集为{x|31-<x <2}⇔3x 2-5x-2<0⇔-3x 2+5x+2>0.设a=-3k ,b=5k ,c=2k (k >0),则cx 2+bx+a <0⇔2kx 2+5kx-3k <0⇔2x 2+5x-3<0⇔-3<x <21,故选A.解法二:由题意知a <0,且a b -=(31-)+2,a c =(31-)×2,即a b =35-,a c =32-,而cx 2+bx+a <0⇔a c x 2+a b x+1>0⇔32-x 235-x+1>0⇔2x 2+5x-3<0⇔-3<x <21,所以应该选A.答案:A2.下列不等式中,解集是R 的是( )A.x 2+2x+1>0 B.2x >0C.(31)x +1>0 D.xx 121<- 解析:因为x 2+2x+1=(x+1)2≥0,所以A 不正确,又2x =|x|≥0,所以B 也不正确,而(31)x>0,所以(31)x+1>1>0(x∈R ). 答案:C3.不等式21-+x x >0的解集是______________. 解析:21-+x x >0⇔(x+1)(x-2)>0⇔x <-1或x >2.答案:{x|x <-1或x >2} 4.解下列不等式(1)x 2-x-2>0(2)-2x 2+x+3>0解:(1)∵Δ>0,对应方程x 2-x-2=0的根分别为-1,2.∴不等式x 2-x-2>0的解集:{x|x <-1 或x >2};(2)原不等式可以变为2x 2-x-3<0. ∴对应方程2x 2-x-3=0的根分别为-1,23. ∴原不等式的解集为{x|-1<x <23}. 5.解关于x 的不等式(m+3)x 2+2mx+m-2>0(m∈R ).解:(1)当m+3=0,即m=-3时,原不等式可化为-6x-3-2>0,即x <65-; (2)当m+3>0,即m >-3时,Δ=4m 2-4(m+3)(m-2)=4(6-m). 当Δ≥0,即-3<m≤6时,原不等式的解为:x <36+---m m m 或x >36+-+-m mm ;当Δ<0,即m >6时,原不等式的解集为R ; (3)当m+3<0,即m <-3时,Δ=4(6-m)>0所以,解为:36+-+-m m m <x <36+---m mm .综上所述,当m <-3时,不等式的解集为:{x|36+-+-m m m <x <36+---m mm };m=-3时,不等式的解集为{x|x <65-};当-3<m≤6时,不等式的解集为{x|x <36+---m m m }或x >36+-+-m mm .6.已知a >1,P :a (x-2)+1>0,Q :(x-1)2>a (x-2)+1.试寻求使得P 、Q 都成立的x 的集合.解:由题意得⎪⎩⎪⎨⎧>--->⇒⎪⎩⎪⎨⎧>++-->⇒⎩⎨⎧+->->+-0)2)((1202)2(121)2()1(01)2(22x a x a x a x a x a x x a x x a 若1<a <2,则有⎪⎩⎪⎨⎧<>->,2,12a x x ax 或而a-(2-a 1)=a+a 1-2>0,所以a >2-a 1.故x∈{x|x>2或2-a1<x <a}. 若a=2,则有x∈{x|x>21且x≠2}. 若a >2,则有⎪⎩⎪⎨⎧<>->.2,12x a x ax 或 故x∈{x|x>a 或2-a1<x <2}. 30分钟训练(巩固类训练,可用于课后) 1.函数f (x )=⎩⎨⎧≤->,1,1,1,x x x 则不等式xf (x )-x≤2的解集为( )A.[-2,2]B.[-2,-1]∪[1,2]C.[1,2]D.[-1,2] 解法一:(排除法)∵x=0时,xf (x )-x=0≤2成立,而B 、C 中均不含有0,故排除B 、C.只需验证x=-2即可,当x=-2时,xf (x )-x=(-2)·(-1)+2=4>2,∴排除A 而选D.解法二:(直接法)①当x >1时,xf (x )-x≤2可化为x 2-x≤2,即x 2-x-2≤0,解得-1≤x≤2.又x >1,∴1<x≤2.②当x≤1时,xf (x )-x≤2可化为-2x≤2,∴x≥-1.此时有-1≤x≤1,故适合原不等式的解集为①②两部分的并集,为[-1,2]. 答案:D2.不等式11-x >x+1的解集为( ) A.{x|x <-3} B.{x|x >1} C.{x|x <2-|∪{x|1<x <2}D.{x|34<x <2} 解析:原不等式可以化为11-x -(x+1)>0,即122--x x >0,即(x+2)(x 2-)(x-1)<0,由高次不等式的标根法可得C 正确.答案:C3.已知集合M={x|x 2-3x-28≤0},N={x|x 2-x-6>0},则M∩N 为( ) A.{x|-4≤x<-2或3<x≤7} B.{x|-4<x≤-2或3≤x<7} C.{x|x≤-2或x >3} D.{x|x <-2或x≥3}解析:M={x|-4≤x≤7},N={x|x<-2或x >3},再把M 、N 两个集合对应的范围在数轴上表示出来即可看出答案. 答案:A4.二次函数y=ax 2+bx+c 的图象开口向上,对称轴为x=1,图象与x 轴的两个交点中,一个交点的横坐标x 1∈(2,3),则有( )A.a-b-c >0B.a+b+c <0C.a+c <bD.3b <2c解析:由题意知另一交点必在(-1,0)之间,且f (-1)>0,即a-b+c >0(*).又知ab2-=1,得a=2b -,代入(*)式得21-b-b+c >0,即3b <2c.故选D. 答案:D5.若x 1、x 2是方程x 2-2kx+1-k 2=0的两个实根,则x 12+x 22的最小值是( ) A.-2 B.0 C.1 D.2解析:由题意得⎪⎩⎪⎨⎧-==+≥---=∆)3(1)2(2)1()1(4)2(2212122kx x kx x k k ∴x 12+x 22=(x 1+x 2)2-2x 1x 2=4k 2-2(1-k 2)=6k 2-2.由①式得k 2≥21, ∴6k 2-2≥6×21-2=1.∴x 12+x 22的最小值为1. 答案:C2x -3 -2 -1 0 1 2 3 4 y 6-4-6-6-46则不等式ax 2+bx+c >0的解集是___________________.解析:根据所给数表中函数的单调性可以看出a >0,且方程ax 2+bx+c=0的两个解分别为-2和3.答案:(-∞,-2)∪(3,+∞)7.某大楼共有20层,有19人在第一层上了电梯,他们分别要去第二至第二十层,每层1人,而电梯只允许停1次,只可使1人满意,其余18人都要步行上楼或下楼,假定乘客每向下走1层的不满意度为1,每向上走1层的不满意度为2,所有人的不满意度的和为S ,为使S 最小,电梯应当停在第_______________层. 解析:设电梯停在第x 层(2≤x≤20),则 S=[1+2+…+(x-3)+(x-2)]×1+[1+2+…+(19-x )+(20-x )]×2 =2)20(12)2(2)2(1x x x -+⨯++-+×(20-x ) =)2485421()685(2342128523222-+-=+-x x x .∵x 取正整数,∴取x=14即可. 答案:148.据气象部门预报,在距离某码头南偏东45°方向600 km 处的热带风暴中心正以20 km/h 的速度向正北方向移动,距风暴中心450 km 以内的地区都受到影响(见右图).从现在小时__________后,该码头将受到热带风暴的影响,影响时间大约为__________.解析:设风暴中心坐标为(a ,b ),则a=3002,所以22)2300(b +<450,即-150<b <150.而20300),122(215201502300-=-=15.所以经过215(22-1)小时码头将受到风暴的影响,影响时间为15小时. 答案:215(22-1) 15小时9.已知函数f(x)=bax x +2(a ,b 为常数)且方程f(x)-x+12=0有两个实根为x 1=3, x 2=4.(1)求函数f(x)的解析式;(2)设k >1,解关于x 的不等式: f(x)<xkx k --+2)1(.解:(1)将x 1=3,x 2=4分别代入方程b ax x +2-x+12=0得⎪⎪⎩⎪⎪⎨⎧-=+-=+.8416,939ba ba解得⎩⎨⎧=-=.2,1b a 所以f(x)=x x -22(x≠2).(2)不等式即为x k x k x x --+<-2)1(22,可化为xk x k x -++-2)1(2<0, 即(x-2)(x-1)(x-k)>0.①当1<k <2,解集为x∈(1,k)∪(2+∞).②当k=2时,不等式为(x-2)2(x-1)>0解集为x∈(1,2)∪(2,+∞). ③当k >2时,解集为x∈(1,2)∪(k,+∞). 10.若不等式23+>ax x 的解集为(4,b ),求实数a 、b 的值. 解法一:(换元法)设u=x (u≥0),则原不等式可化为u >232+au , 即au 2-u+23<0. ∵原不等式的解集为(4,b ),∴方程au 2-u+23=0的两根分别为2、b . 由韦达定理知⎪⎪⎩⎪⎪⎨⎧==+.232,12a b ab解得⎪⎩⎪⎨⎧==.36,81b a解法二:(图象法)设y 1=x ,y 2=23+ax (x≥0),其图象如上图所示,不等式x >ax+23的解是当y 1=x 的图象在y 2=ax+23(x≥0)的图象上方时相应的x 的取值范围.由于不等式的解集为(4,b ),故方程x =ax+23有一个解x=4,将x=4代入得2344+=a ,∴a=81,再求方程x =2381+x 的另一个解得x=36,即b=36.。

高中数学人教版必修5课时练习:第三章 不等式3-2 一元二次不等式及其解法

高中数学人教版必修5课时练习:第三章 不等式3-2 一元二次不等式及其解法

∴M∩N={x|0≤x≤2},故选 D.
3.若{x|2<x<3}为 x2+ax+b<0 的解集,则 bx2+ax+1>0 的解集为( )
A.{x|x<2 或 x>3}
B.{x|2<x<3}
C.{x|31<x<12}
D.{x|x<31或 x>21}
[答案] D
[解析] 由 x2+ax+b<0 的解集为{x|2<x<3},知方程 x2+ax+b=0 的根分别为 x1=2,x2 =3.
则不等式 ax2+bx+c>0 的解集是________.
[答案] {x|x<-2 或 x>3}
[解析] 由表知 x=-2 时 y=0,x=3 时,y=0. ∴二次函数 y=ax2+bx+c 可化为 y=a(x+2)(x-3),又当 x=1 时,y=-6,∴a=1. ∴不等式 ax2+bx+c>0 的解集为{x|x<-2 或 x>3}. 三、解答题
<x<1},选 D.
2.设集合 M={x|0≤x≤2},N={x|x2-2x-3<0},则 M∩N 等于( )
A.{x|0≤x<1}
B.{x|0≤x≤2}
C.{x|0≤x≤1}
D.{x|0≤x≤2}
[答案] D
[解析] ∵N={x|x2-2x-3<0}={x|-1<x<3},M={x|0≤x≤2},
C.{x|x<1t 或 x>t}
D.{x|t<x<1t }
[答案] D
[解析] 化为(x-t)(x-1t )<0,
∵0<t<1,∴1t >1>t,∴t<x<1t .
6.已知不等式 x2+ax+4<0 的解集为空集,则 a 的取值范围是( )

高中数学 第三章 不等式 课时作业17 均值不等式 新人教B版必修5

高中数学 第三章 不等式 课时作业17 均值不等式 新人教B版必修5
解析:∵m>0,n>0,由log3m+log3n=log3mn=4,
∴mn=81.∴m+n≥2 =18.
答案:D
3.已知第一象限的点(a,b)在直线2x-3y-1=0上,则 + 的最小值为()
A.24 B.25
C.26 D.27
解析:因为第一象限的点(a,b)在直线2x+3y-1=0上,
所以有2a+3b-1=0,a>0,b>0,即2a+3b=1,
当且仅当 = ,即x=2y时取“=”.
答案:C
5.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则()
A.a<v< B.v=
C. <v< D.v=
解析:v= = < = .
因为 -a= = > =0,所以 >a,即v>a.故选A.
答案:A
6.已知函数y=x-4+ (x>-1),当x=a时,y取得最小值b,则a+b=()
A. B.
C. D.
解析:∵0<x<1,∴1-x>0,
则x(3-3x)=3[x(1-x)]≤3× 2= ,当且仅当x=1-x,即x= 时取等号.
答案:A
4.若正数x,y满足x+3y=5xy,则3x+4y的最小值是()
A. B.
C.5 D.6
解析:∵x+3y=5xy,∴ + =1.
∴3x+4y=(3x+4y) = + + + ≥ +2 = + =5.
解:设阴影部分的高为xdm,则宽为 dm,四周空白部分的面积是ydm2.由题意,得y=(x+4) -72=8+2 ≥8+2×2 =56.当且仅当x= 即x=12时等号成立.
A.-3 B.2
C.3 D.8

【精品】人教B版高中数学必修五第三章不等式3.2均值不等式20171206411

【精品】人教B版高中数学必修五第三章不等式3.2均值不等式20171206411

(3)若实数
a,b
满足1
������
+
2 ������
=
������������,则 ab 的最小值为 2 2. (
)
(4)当 a>0,b>0 时,有不等式1������+21������ ≤
������������

������+������ 2

������2+2 ������2成立.
()
答案:(1)× (2)× (3) (4)
3.2 均值不等式
-1-
1.1.1 正弦定理
首首页页
课标阐释
思维脉络
1.了解均值不等式的证明过程,理 解均值不等式成立的条件,等号 成立的条件及几何意义. 2.会运用均值不等式解决最值、 范围、不等式证明等相关问题. 3.掌握运用均值不等式a+2b ≥
ab(a,b>0)求最值的常用方法及 需注意的问题.
课前篇 自主预习
课堂篇 合作学习
-2-
1.1.1 正弦定理



首页
课课前前篇篇 自自主主预预习习
一、重要不等式
【问题思考】
1.填空: 对于任意实数a,b,有a2+b2≥2ab,当且仅当a=b时,等号成立. 2.怎样比较 a2+b2,(������+2������)2,2ab 三者的大小关系?
提示:a2+b2≥(������+2������)2≥2ab,当且仅当 a=b 时等号成立.利用作差 法即可证明.
探究三
探究四
探究五
首页 思维辨析
课前篇 自主预习
当堂检测
课堂篇 合作学习

【高中数学新人教B版必修5】第三章《不等式》测试

【高中数学新人教B版必修5】第三章《不等式》测试

《不等式》专项训练1.设a b <,c d <,则下列不等式中一定成立的是 ( ) A .d b c a ->- B .bd ac > C .d b c a +>+ D .c b d a +>+ 2.不等式b ax >的解集不可能是 ( )A .φB .RC .),(+∞a bD .),(ab --∞ 3.不等式022>++bx ax 的解集是)31,21(-,则b a -的值等于 ( ) A .-14 B .14 C .-10 D .104.不等式||x x x <的解集是 ( ) A .{|01}x x <<B .{|11}x x -<<C .{|01x x <<或1}x <-D .{|10,1}x x x -<<> 5.若011<<ba ,则下列结论不正确的是 ( ) A .22b a < B .2b ab < C .2>+ba ab D .||||||b a b a +>+6.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为 ( )A .)()(x g x f >B .)()(x g x f =C .)()(x g x f <D .随x 值变化而变化 7.下列各式中最小值是2的是 ( )A .y x +x yB .4522++x x C .tan x +cot x D . xx -+228.如果a x x >+++|9||1|对任意实数x 总成立,则a 的取值范围是 ( )A . }8|{<a aB . }8|{>a aC . }8|{≥a aD . }8|{≤a a9.若+∈R b a ,,则b a 11+与b a +1的大小关系是 . 10.函数121lg +-=x xy 的定义域是 .11.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.12. 已知0()1,0x x f x x ≥⎧=⎨-<⎩,, 则不等式3)2(≤+x f 的解集___ _ ____.13.已知()f x 是奇函数,且在(-∞,0)上是增函数,(2)0f =,则不等式()0xf x <的解集是___ _ ____. 14.解不等式:21582≥+-x x x15.已知1<a ,解关于x 的不等式12>-x ax.16.已知0=++c b a ,求证:0≤++ca bc ab .17.对任意]1,1[-∈a ,函数a x a x x f 24)4()(2-+-+=的值恒大于零,求x 的取值范围.18.已知函数b ax x x f ++=2)(.(1)若对任意的实数x ,都有a x x f +≥2)(,求b 的取值范围; (2)当]1,1[-∈x 时,)(x f 的最大值为M ,求证:1+≥b M ;参考答案一、选择题1.C ; 2.D ; 3.C ; 4.C ; 5.D ; 6.A ; 7.D ; 8.A . 二、填空题 9.b a b a +>+111; 10.)21,1(-; 11. 20 ; 12. ]1,(-∞;13. {|20,}x x -<<或0<x<2 三、解答题14.解:原不等式等价于:0158301720158301720215822222≤+-+-⇔≥+--+-⇔≥-+-x x x x x x x x x x x3250)5)(3()52)(6(<≤⇔≤----⇔x x x x x 或65≤<x ∴原不等式的解集为]6,5()3,25[15.解:不等式12>-x ax 可化为022)1(>-+-x x a . ∵1<a ,∴01<-a ,则原不等式可化为0212<---x a x , 故当10<<a 时,原不等式的解集为}122|{ax x -<<; 当0=a 时,原不等式的解集为φ; 当0<a 时,原不等式的解集为}212|{<<-x ax . 16.证明:法一(综合法)0=++c b a , 0)(2=++∴c b a展开并移项得:02222≤++-=++c b a ca bc ab 0≤++∴ca bc ab法二(分析法)要证0≤++ca bc ab ,0=++c b a ,故只要证2)(c b a ca bc ab ++≤++ 即证0222≥+++++ca bc ab c b a ,也就是证0])()()[(21222≥+++++a c c b b a ,而此式显然成立,由于以上相应各步均可逆,∴原不等式成立. 法三:0=++c b a ,b a c +=-∴222223()()[()]024b b ab bc ca ab b a c ab a b a b ab a ∴++=++=-+=---=-++≤ 0≤++∴ca bc ab法四:,222ab b a ≥+ bc c b 222≥+,ca a c 222≥+ ∴由三式相加得:ca bc ab c b a ++≥++222两边同时加上)(2ca bc ab ++得:)(3)(2ca bc ab c b a ++≥++ 0=++c b a , ∴0≤++ca bc ab17.解:设22)2()2(24)4()(-+-=-+-+=x a x a x a x a g ,则)(a g 的图象为一直线,在]1,1[-∈a 上恒大于0,故有⎩⎨⎧>>-0)1(0)1(g g ,即⎩⎨⎧>+->+-02306522x x x x ,解得:1<x 或3>x ∴x 的取值范围是),3()1,(+∞⋃-∞18. 解:(1)对任意的R x ∈,都有⇔+≥a x x f 2)(对任意的R x ∈,0)()2(2≥-+-+a b x a x 0)(4)2(2≤---=∆⇔a b a)(1412R a b a b ∈≥⇔+≥⇔ ∴),1[+∞∈b .(2)证明:∵,1)1(M b a f ≤++=,1)1(M b a f ≤+-=-∴222+≥b M ,即1+≥b M .(3)证明:由210<<a 得,0241<-<-a ∴)(x f 在]2,1[a --上是减函数,在]1,2[a-上是增函数.∴当1||≤x 时,)(x f 在2ax -=时取得最小值42a b -,在1=x 时取得最大值b a ++1.故对任意的]1,1[-∈x ,.1414111|)(|22a b a a b b a x f -≤≤-⇔⎪⎩⎪⎨⎧-≥-≤++⇔≤。

人教B版人教B版高中数学必修五第3章不等式+本章练测()

人教B版人教B版高中数学必修五第3章不等式+本章练测()

-cos -1=-
2 sin(
+ π)-1. 4
∴ - ( x+y) = max 2 -1.
∵ x+y+c≥ 0 恒成立,故 c≥ - ( x+y ) = max 2 -1 ,故选 C.
信达
------------------------------------------------------------------- 奋斗没有终点任何时候都是一个起点
-----------------------------------------------------
第 3 章不等式(数学人教 B版必修 5)
参考答案
一、选择题 1. D解析: ∵是增函数,而 0< b< a< 1,∴ . 2.D 解析: ∵ t-s=a+2b-a-b 2-1=- ( b-1 ) 2≤ 0,∴ t ≤ s. 3.C 解析: 不等式组表示的平面区域如图所示,
x 3y 4,

得交点 A 的坐标为( 1,1),
3x y 4
4
又 B,C 两点的坐标分别为( 0, 4), (0 , ) ,
3
14
4
故 S△ = ABC (4- ) × 1= .
23
3
4.B 解析: 特殊值法 . 令 a=7, b=3, c=1,满足 a> b> c>0,
∴ log2 (1
1)

log2 (3
获得的盈利,而且要考虑可能出现的亏损
. 某投资
人打算投资甲、乙两个项目,根据预测,甲、乙两
个项目可能的最大盈利率分别为 100%和 50%,可能
的最大亏损率分别为 30%和 10%,投资人计划投资
金额不超过 10 万元,要求确保可能的资金亏损不

人教新课标版数学高二B版必修5 第3章不等式 综合检测

人教新课标版数学高二B版必修5 第3章不等式 综合检测

(时间:120分钟;满分:150分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题中正确的是( )A .a >b ⇒ac 2>bc 2B .a >b ⇒a 2>b 2C .a >b ⇒a 3>b 3D .a 2>b 2⇒a >b解析:选C.A 中,当c =0时,ac 2=bc 2,所以A 不正确;B 中,当a =0>b =-1时,a 2=0<b 2=1,所以B 不正确;D 中,当(-2)2>(-1)2时,-2<-1,所以D 不正确.很明显C 正确.2.设M =2a (a -2)+3,N =(a -1)(a -3),a ∈R ,则有( )A .M >NB .M ≥NC .M <ND .M ≤N解析:选B.M -N =2a (a -2)+3-(a -1)(a -3)=a 2≥0.3.当|x |≤1时,函数y =ax +2a +1的值有正也有负,则实数a 的取值范围是( )A .a ≥-13B .a ≤-1C .-1<a <-13D .-1≤a ≤-13解析:选C.y =ax +2a +1可以看成关于x 的一次函数,在上具有单调性,因此只需当x =-1和x =1时的函数值互为相反数,即(a +2a +1)(-a +2a +1)<0,解这个关于a 的一元二次不等式,得-1<a <-13. 4.二次不等式ax 2+bx +1>0的解集为{x |-1<x <13},则ab 的值为( ) A .-6 B .6C .-5D .5解析:选B.由题意a <0,-1,13是方程ax 2+bx +1=0的两根, ∴⎩⎨⎧-1+13=-b a -1×13=1a , ∴a =-3,b =-2.∴ab =6.5.已知全集U =R ,且A ={x ||x -1|>2},B ={x |x 2-6x +8<0},则(∁U A )∩B 等于( )A . D .(-1,4)解析:选C.A ={x |x >3或x <-1},B ={x |2<x <4},∴∁U A ={x |-1≤x ≤3},则(∁U A )∩B ={x |2<x ≤3}.6.函数y =3x x 2+x +1(x <0)的值域是( ) A .(-1,0) B .-3,110,+∞) D .(1,10-2,+∞)B .(-∞,-2)C .D .B .(a -1)x +113,213,213,2-83,32-83,32成立,求a 的取值范围. 解:法一:若-a 2≥12,即a ≤-1时,则f (x )在(0,120,12内单调递增,所以g (x )在(0,120,+∞),若g (x )图象上的点都位于直线y =14的上方,求实数m 的取值范围. 解:(1)证明:由条件知:f (2)=4a +2b +c ≥2恒成立.又因取x =2时,f (2)=4a +2b +c ≤18(2+2)2=2恒成立,∴f (2)=2. (2)因⎩⎪⎨⎪⎧ 4a +2b +c =24a -2b +c =0, ∴4a +c =2b =1.∴b =12,c =1-4a . 又f (x )≥x 恒成立,即ax 2+(b -1)x +c ≥0恒成立.∴a >0.Δ=(12-1)2-4a (1-4a )≤0, 解出:a =18,b =12,c =12. ∴f (x )=18x 2+12x +12. (3)由分析条件知道,只要f (x )图象(在y 轴右侧)总在直线y =m 2x +14上方即可,也就是直线的斜率m 2小于直线与抛物线相切时的斜率位置, 于是:⎩⎨⎧y =18x 2+12x +12,y =m 2x +14. 利用相切时Δ=0,解出m =1+22, ∴m ∈(-∞,1+22). 另解:g (x )=18x 2+(12-m 2)x +12>14在x ∈0,+∞)恒成立, ①Δ<0,即2-8<0.解得:1-22<m <1+22. ②⎩⎨⎧ Δ≥0,-2(1-m )≤0,f (0)>0.解得:m ≤1-22, 综上m ∈(-∞,1+22).。

2021_2022版高中数学第三章不等式3.1.2不等式的性质素养评价检测含解析新人教A版必修5

2021_2022版高中数学第三章不等式3.1.2不等式的性质素养评价检测含解析新人教A版必修5

不等式的性质(20分钟35分)1.如果-1<a<b<0,则有( )A.<<b2<a2B.<<a2<b2C.<<b2<a2D.<<a2<b2【解析】选A.取a=-,b=-,分别计算出=-3,=-2,b2=,a2=,由此能够判断出,,b2,a2的大小.2.若<<0,则下列结论正确的是( )A.a2>b2B.1>>C.+<2D.ae b>be a(e≈2.718 28…)【解析】选D.因为<<0,所以b<a<0,所以-b>-a>0,所以(-b)2>(-a)2,所以a2<b2,故A错误;又y=在R上是减函数,所以>>1,故B错误;又+-2==>0,所以+>2,故C错误;又0<<1,0<<1,所以·<1,又b·e a<0,所以ae b>be a,故D正确.3.已知-<α<β<,则不属于的区间是( )A.(-π,π)B.C.(-π,0)D.(0,π)【解析】选D.因为-<α<β<,所以<0且-π<α-β<π,所以-<<0,所以不属于区间(0,π).4.若a>b>c,则下列不等式成立的是( )A.>B.<C.ac>bcD.ac<bc【解析】选B.因为a>b>c,所以a-c>b-c>0.所以<.【补偿训练】若a>b,x>y,下列不等式不正确的是( ) A.a+x>b+y B.y-a<x-bC.|a|x>|a|yD.(a-b)x>(a-b)y【解析】选C.当a≠0时,|a|>0,|a|x>|a|y,当a=0时,|a|x=|a|y,故|a|x≥|a|y.5.若8<x<10,2<y<4,则的取值范围是.【解析】因为2<y<4,所以<<.因为8<x<10,所以2<<5.答案:(2,5)【补偿训练】设α∈,β∈,则2α-的范围是( ) A. B.C.(0,π)D.【解析】选D.0<2α<π,0≤≤,所以-≤-≤0,得到-<2α-<π.6.已知a>b>c,求证:++>0.【证明】原不等式变形为:+>.又因为a>b>c,所以a-c>a-b>0,所以>,又>0,所以+>,即++>0.(30分钟60分)一、选择题(每小题5分,共25分)1.设x<a<0,则下列不等式一定成立的是( )A.x2<ax<a2B.x2>ax>a2C.x2<a2<axD.x2>a2>ax【解析】选B.因为x<a<0,所以ax>a2,x2>ax,所以x2>ax>a2.2.已知x>y>z,且x+y+z=1,则下列不等式中成立的是( )A.xy>yzB.xy>xzC.xz>yxD.x|y|>z|y|【解析】选B.因为x>y>z,且x+y+z=1,所以x>0,所以xy>xz.3.已知a>b>0,c>0且c≠1,则下列不等式一定成立的是( )A.log c a>log c bB.c a>c bC.ac>bcD.>【解析】选C.因为a>b>0,所以当0<c<1时,log c a<log c b,c a<c b,当c>1时log c a>log c b,c a>c b,所以ac>bc,<.4.已知a,b,c为实数,则下列结论正确的是( )A.若ac>bc>0,则a>bB.若a>b>0,则ac>bcC.若a>b,c>0,则ac>bcD.若a>b,则ac2>bc2【解析】选C.对于A,当c<0时,不等式不成立,故A不正确;对于B,当c<0时,不等式不成立,故B不正确;对于C,因为a>b,c>0,所以ac>bc,故C正确;对于D,当c=0时,不等式不成立,故D不正确.5.若x∈(e-1,1),a=ln x,b=2ln x,c=ln3x,则( )A.a<b<cB.c<a<bC.b<a<cD.b<c<a【解析】选C.因为<x<1,所以-1<ln x<0.令t=ln x,则-1<t<0.所以a-b=t-2t=-t>0,所以a>b.c-a=t3-t=t(t2-1)=t(t+1)(t-1),又因为-1<t<0,所以0<t+1<1,-2<t-1<-1,所以c-a>0,所以c>a,所以c>a>b.【补偿训练】设0<a<b,c∈R,则下列不等式中不成立的是( ) A.< B.-c>-cC.>D.ac2<bc2【解析】选D.因为y=在(0,+∞)上是增函数,所以<,因为y=-c在(0,+∞)上是减函数,所以-c>-c,因为-=>0,所以>,当c=0时,ac2=bc2,所以D不成立.二、填空题(每小题5分,共15分)6.若-1<x<y<0,则,,x2,y2的大小关系为.【解析】因为-1<x<y<0,所以1>-x>-y>0,xy>0,所以x2>y2,>.因为y2>0,<0,所以x2>y2>>.答案:x2>y2>>【补偿训练】若a>b>c>0,则,,,c从小到大的顺序是. 【解析】=,=,=,因为a>b>c>0,所以>>,因为<<<,所以c<<<.答案:c<<<7.已知-1<2x-1<1,则-1的取值范围是.【解析】-1<2x-1<1⇒0<x<1⇒>1⇒>2⇒-1>1.答案:(1,+∞)【补偿训练】已知2b<a<-b,则的取值范围为.【解析】因为2b<a<-b,所以2b<-b,所以b<0.所以<<,即-1<<2.答案:-1<<28.已知-1<a+b<3且2<a-b<4,则2a+3b的取值范围是. 【解析】设2a+3b=m(a+b)+n(a-b)=(m+n)a+(m-n)b,所以所以m=,n=-.所以2a+3b=(a+b)-(a-b).因为-1<a+b<3,2<a-b<4,所以-<(a+b)<,-2<-(a-b)<-1,所以-<(a+b)-(a-b)<,即-<2a+3b<.答案:-<2a+3b<三、解答题(每小题10分,共20分)9.已知a>b,<,求证:ab>0.【证明】因为<,所以-<0,即<0,而a>b,所以b-a<0,所以ab>0.10.已知函数f(x)=ax2-c,-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围. 【解析】因为f(x)=ax2-c,所以即解得所以f(3)=9a-c=f(2)-f(1).又因为-4≤f(1)≤-1,-1≤f(2)≤5,所以≤-f(1)≤,-≤f(2)≤,所以-1≤f(2)-f(1)≤20,即-1≤f(3)≤20.【补偿训练】已知x,y为正实数,且1≤lg(xy)≤2,3≤lg ≤4,求lg(x4y2)的取值范围. 【解析】由题意,设a=lg x,b=lg y,所以lg(xy)=a+b,lg=a-b,lg(x4y2)=4a+2b.设4a+2b=m(a+b)+n(a-b)=(m+n)a+(m-n)b,所以解得又因为3≤3(a+b)≤6,3≤a-b≤4,所以6≤4a+2b≤10,所以lg(x4y2)的取值范围为[6,10].1.已知三个不等式①ab>0;②>;③bc>ad.若以其中的两个作为条件,余下的一个作为结论,则可以组成个正确命题.【解析】①②⇒③,③①⇒②.(证明略).②③⇒①:由②得>0,又由③得bc-ad>0.所以ab>0⇒①.所以可以组成3个正确命题.答案:32.设a≥b≥c,且1是一元二次方程ax2+bx+c=0的一个实根,求的取值范围.【解析】因为1是一元二次方程ax2+bx+c=0的一个实根,所以a+b+c=0,因为a≥b≥c,所以a>0得b=-a-c,因为a≥b≥c,即a≥-a-c≥c,即得,因为a>0,则不等式等价为, 即,得-2≤≤-,综上,的取值范围为-2≤≤-.。

最新人教版高中数学必修5第三章《一元二次不等式的解法的应用》习题详解

最新人教版高中数学必修5第三章《一元二次不等式的解法的应用》习题详解

习题详解(课本第90页习题3.2)A 组1.(1)解:整理化简得4x 2-4x-15>0.因为Δ>0,方程3x 2-15x+12=0的解是 231-=x ,252=x ,所以不等式的解集是{x|x <23-或x >25}. (2)解:整理化简得4x 2-13<0.因为Δ>0,方程4x 2-13=0的解是2131=x ,2132=x ,所以不等式的解集是{x|213-<x <2132}. (3)解:整理化简得x 2-3x-10>0.因为Δ>0,方程x 2-3x-10=0的解是x 1 =-2,x 2=5,所以不等式的解集是{x|x <-2或x >5}.(4)解:整理化简得x 2-9x <0.因为Δ>0,方程x 2-9x=0的解是x 1=0,x 2=9,所以不等式的解集是{x|0<x <9}.2.(1)解x 2-4x+9≥0,因为Δ=-20<0,方程x 2-4x+9=0无实数根,所以不等式的解集是R.所以y=x 2-4x+9的定义域是R.(2)解-2x 2+12x-18≥0,即(x-3)2≤0,所以x=3.所以y=-2x 2+12x-18的定义域是{x|x=3}.3.{m|m <-3-22或m >-3+22}.4.R.5.解:设能够在2米以上的位置最多停留t 秒. 依题意,2212>gtvt -,即12t-4.9t 2>2.这里t >0,所以最大为2(精确到秒). 答:能够在2米以上的位置最多停留2秒.6.解:设每盏台灯售价x 元,则⎩⎨⎧--≥,400)]15(230[,15>x x x , 即15≤x <202152********=- (22-1),1520300=,所以售价满足15≤x <20. 第91页 习题3.2 B 组第4题解:设风暴中心坐标为(a ,b ),则a =3002,所以(3002)2+b 2<450,即-150<b <150,而2152********=- (22-1), 1520300=,所以经过215 (22-1)小时码头将受到风暴的影响,影响时间为15小时.B 组1.(1)4x 2-20x <25解集为∅.(2)(x-3)(x-7)<0解集为{x|-3<x <7}.(3)-3x 2+5x-4>0解集为∅.(4)x(1-x)>x(2x-3)+1解集为{x|31<x <1}. 2.由Δ=(1-m)2-4m 2<0,整理得3m 2+2m-1>0,因为方程3m 2+2m-1=0有两个实数根-1和31,所以m 1<-1或m 2>31,m 的取值范围是{m|m <-1或m >31}. 3.使函数f(x)=21 x 2-3x-43的值大于0的解集为{x|x <3-242或x >3+242}. 4.略.。

高中数学 第三章 不等式 3.3 一元二次不等式及其解法练习(含解析)新人教B版必修5-新人教B版高

高中数学 第三章 不等式 3.3 一元二次不等式及其解法练习(含解析)新人教B版必修5-新人教B版高

3.3 一元二次不等式及其解法课时过关·能力提升1下列不等式中,解集是R的是()A.x2+2x+1>0B.√x2>0C.(13)x+1>0D.1x -2<1xx2+2x+1=(x+1)2≥0,所以选项A不正确;因为√x2=|x|≥0,所以选项B不正确;选项D中x≠0;因为(13)x>0,所以(13)x+1>1>0,x∈R,故选C.2已知2a+1<0,则关于x的不等式x2-4ax-5a2>0的解集是()A.{x|x>5a或x<-a}B.{x|x<5a或x>-a}C.{x|-a<x<5a}D.{x|5a<x<-a}2-4ax-5a2>0⇒(x-5a)(x+a)>0.∵a<-12,∴5a<-a.∴x>-a或x<5a.故选B.3已知不等式ax2+bx+c>0的解集为{x|-13<x<2},则不等式cx2+bx+a<0的解集为()A.{x|-3<x<12} B.{x|x<-3或x>12}C.{x|-2<x<13} D.{x|x<-2或x>13}:ax2+bx+c>0的解集为{x|-13<x<2}⇔3x2-5x-2<0⇔-3x2+5x+2>0.设a=-3k,b=5k,c=2k(k>0),则cx2+bx+a<0⇔2kx2+5kx-3k<0⇔2x2+5x-3<0⇔-3<x<12,故选A.方法二:由题意知a<0,且-x x =(-13)+2,x x =(-13)×2,即x x =-53,x x =-23,而cx 2+bx+a<0⇔x x x 2+x x x+1>0⇔-23x 2-53x+1>0⇔2x 2+5x-3<0⇔-3<x<12,故选A .4设f (x )={2e x -1,x <2,log 3(x 2-1),x ≥2,则不等式f (x )>2的解集为()A.(1,2)∪(3,+∞)B.(√10,+∞)C.(1,2)∪(√10,+∞)D.(1,2)x<2时,令2e x-1>2,解得1<x<2.当x ≥2时,令log 3(x 2-1)>2,解得x ∈(√10,+∞).故x ∈(1,2)∪(√10,+∞).★5关于x 的方程x 2+(a 2-1)x+a-2=0的一根比1小,且另一根比1大的充要条件是()A.-1<a<1 B .a<-1或a>1 C.-2<a<1D.a<-2或a>1f (x )=x 2+(a 2-1)x+a-2,则它是开口向上的二次函数,方程的根即是函数与x 轴的交点的横坐标,因此只需f (1)<0,即1+a 2-1+a-2<0,故-2<a<1.6已知函数f (x )=√xx 2-6xx +(x +8)的定义域为R ,则实数k 的取值X 围为.2-6kx+(k+8)≥0恒成立,当k=0时,满足. 当k ≠0时,{x >0,x =(-6x )2-4x (x +8)≤0⇒0<k ≤1. ∴0≤k ≤1.7已知三个不等式①x 2-4x+3<0,②x 2-6x+8<0,③2x 2-9x+m<0,要使同时满足①和②的所有x 都满足③,则实数m 的取值X 围是.:由{x 2-4x +3<0,x 2-6x +8<0,解得2<x<3.③对于2<x<3恒成立,即m<-2x 2+9x 对x ∈(2,3)恒成立,所以m 只需满足小于函数-2x 2+9x 在区间(2,3)上的最小值,即当x=3时,最小值为9,但取不到最小值.所以m ≤9.方法二:{x 2-4x +3<0x 2-6x +8<0⇒{1<x <32<x <4⇒2<x<3.设f (x )=2x 2-9x+m.当x ∈(2,3)时,f (x )<0恒成立. 由二次函数的图象与性质,得{x (2)≤0,x (3)≤0,即{8-18+x ≤0,18-27+x ≤0,解得m ≤9.-∞,9]8已知f (x )是定义在R 上的奇函数,当x>0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为.f (x )为奇函数,且当x>0时,f (x )=x 2-4x ,所以f (x )={x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0,所以原不等式等价于{x >0,x 2-4x >x 或{x <0,-x 2-4x >x .由此可解得x>5或-5<x<0. 用区间表示为(-5,0)∪(5,+∞).-5,0)∪(5,+∞) ★9定义在(-3,3)内的奇函数f (x ),已知f (x )在其定义域内单调递减,且f (2-a )+f (1-a-a 2)>0,则实数a 的取值X 围是.f (x )为奇函数,∴f (2-a )>-f (1-a-a 2)=f (a 2+a-1). 又f (x )在(-3,3)上单调递减,∴{-3<2-x <3,-3<1-x -x 2<3,2-x <x 2+x -1,即{-1<x <5,-1-√172<x <-1+√172,x >1或x <-3.解得1<a<√17-12, 故实数a 的取值X 围为1<a<√17-12.1,√17-12) 10解关于x 的不等式ax 2-(a+1)x+1<0.当a=0时,原不等式化为-x+1<0,所以不等式的解集是{x|x>1}.(2)当a ≠0时,原不等式可化为a (x-1)(x -1x )<0. 若a<0,则(x-1)(x -1x )>0. 因为1x <1,所以原不等式的解集为{x |x <1x 或x >1};若a>0,原不等式化为(x-1)(x -1x )<0.①当1x <1,即a>1时,不等式的解集为{x |1x<x <1}.②当1x =1,即a=1时,不等式即为(x-1)2<0,显然不等式的解集为⌀. ③当1x>1,即0<a<1时,不等式的解集为{x |1<x <1x}.综上,原不等式的解集如下:当a<0时,解集为{x |x <1x 或x >1}; 当a=0时,解集为{x|x>1};当0<a<1时,解集为{x|1<x<1x};当a=1时,解集为⌀;当a>1时,解集为{x|1x<x<1}.11设0<α<β,已知不等式ax2+bx+c>0的解集为(α,β),求不等式(a+c-b)x2+(b-2a)x+a>0的解集.,得a<0,α+β=-xx >0,αβ=xx>0.∴a<0,c<0,b>0,从而a+c-b<0.设(a+c-b)x2+(b-2a)x+a=0的两根为α',β',则有α'+β'=2x-xx+x-x =2x+x(x+x)x+xxx+x(x+x)=(x+1)+(x+1) (x+1)(x+1)=1x+1+1x+1,α'β'=xx+x-x =xx+xxx+x(x+x)=1x+1·1x+1.∴(a+c-b)x2+(b-2a)x+a=0的两根为1x+1,1 x+1.∵0<α<β,∴1x+1>1x+1>0.∴不等式(a+c-b)x2+(b-2a)x+a>0的解集为(1x+1,1x+1).★12若关于x的不等式4x+xx2-2x+3<2对任意实数x恒成立,某某数m的取值X围.:因为x2-2x+3=(x-1)2+2>0,所以不等式4x+xx2-2x+3<2同解于4x+m<2x2-4x+6,即2x2-8x+6-m>0.要使原不等式对任意实数x恒成立,只要2x2-8x+6-m>0对任意实数x恒成立.所以需要Δ<0,即64-8(6-m)<0.整理并解得m<-2.所以实数m的取值X围是(-∞,-2).方法二:由方法一,知要使4x+xx2-2x+3<2对任意实数x恒成立,只要2x2-8x+6-m>0恒成立即可.变形为m<2x2-8x+6.设h(x)=2x2-8x+6,要使m<2x2-8x+6恒成立,只要m<h(x)min.而h(x)=2x2-8x+6=2(x-2)2-2≥-2, 所以h(x)min=-2.所以m<-2.所以实数m的取值X围是(-∞,-2).。

【高中数学新人教B版必修5】3.5.1《二元一次不等式(组)与简单的线性规划问题》测试

【高中数学新人教B版必修5】3.5.1《二元一次不等式(组)与简单的线性规划问题》测试

【高中数学新人教B 版必修5】3.5.1《二元一次不等式(组)与简单的线性规划问题》测试一、选择题1.下列命题正确的是 ( )A .线性规划中最优解指的是使目标函数取得最大值或最小值的变量x 或y 的值B .线性规划中最优解指的是使目标函数的最大值或最小值C .线性规划中最优解指的是使目标函数取得最大值或最小值的可行域D .线性规划中最优解指的是使目标函数取得最大值或最小值的可行解2.如右图所示的阴影部分﹙包括边界﹚对应的二元一次不等式组为 ( )A .⎪⎩⎪⎨⎧≥+-≤≤≤022010y x x y B .⎪⎩⎪⎨⎧≤+-≤≤02201y x x y C .⎩⎨⎧≤+-≤≤02210y x y D .⎩⎨⎧≤+-≤0221y x y 3.已知x 、y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z=2x+4y 的最小值为 ( )A .5B .-6C .10D .-104.某电脑用户计划用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( )A .5种B .6种C .7种D .8种二、填空题5.已知1≤x ≤3, -1≤y ≤4,则3x+2y 的取值范围是 。

6.已知10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩且u=x 2+y 2-4x -4y+8,则u 的最小值是 . 7.非负实数x 、y 满足y x y x y x 3,03042+⎩⎨⎧≤-+≤-+则的最大值为 .三、解答题8.求满足不等式组⎪⎩⎪⎨⎧>++<++<016340440y x y x x 的整数解(x,y )9.设f(x)=ax 2+bx ,且-1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围。

10.某集团准备兴办一所中学,投资1200万用于硬件建设.为了考虑社会效益和经济利益 对该地区教育市场进行调查,得出一组数据列表(以班为单位)如下:根据有关规定,除书本费、办公费外,初中生每年可收取学费600元,高中生每年可收取学费1500元.因生源和环境等条件限制,办学规模以20至30个班为宜. 初、高中的教育周期均为三年.根据以上情况,请你合理规划办学规模使年利润最大,最大利润多少万元?参考答案一、选择题1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章综合素质检测(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每个小题5分,共60分,每小题给出的四个备选答案中,有且仅有一个是符合题目要求的)1.设M =2a (a -2)+7,N =(a -2)(a -3),则有( ) A .M >N B .M ≥N C .M <N D .M ≤N[答案] A[解析] M -N =(2a 2-4a +7)-(a 2-5a +6)=a 2+a +1=(a +12)2+34>0,∴M >N .2.不等式x 2-2x -5>2x 的解集是( ) A .{x |x ≥5或x ≤-1} B .{x |x >5或x <-1} C .{x |-1<x <5} D .{x |-1≤x ≤5} [答案] B[解析] 不等式化为x 2-4x -5>0, ∴(x -5)(x +1)>0,∴x <-1或x >5.3.(x -2y +1)(x +y -3)<0表示的平面区域为( )[答案] C[解析] 将点(0,0)代入不等式中,不等式成立,否定A 、B ,将(0,4)点代入不等式中,不等式成立,否定D ,故选C .4.设b >a >0,a +b =1,则下列四个数12,2ab ,a 2+b 2,b 中,最大的数是( )A .12B .bC .2abD .a 2+b 2[答案] B[解析] 因为b >a >0,a +b =1, 所以0<a <12<b <1,a 2+b 2>2ab .又因为a 2+b 2-b =a 2+b (b -1)=a 2-ab =a (a -b )<0. 所以a 2+b 2<b ,故四个数中最大的数是b .5.若a <b ,d <c ,并且(c -a )(c -b )<0,(d -a )(d -b )>0,则a 、b 、c 、d 的大小关系是( ) A .d <a <c <b B .a <c <b <d C .a <d <b <c D .a <d <c <b[答案] A[解析] ∵a <b ,(c -a )(c -b )<0, ∴c -a >0,c -b <0, ∴a <c <b .又∵d <c ,∴d <b ,∴d -b <0. 又∵(d -a )(d -b )>0,∴d -a <0, ∴d <a . ∴d <a <c <b .6.设M =a +1a -2(2<a <3),N =log 0.5(x 2+116)(x ∈R )那么M 、N 的大小关系是( )A .M >NB .M =NC .M <ND .不能确定 [答案] A[解析] ∵2<a <3,∴a -2>0. M =a +1a -2=a -2+1a -2+2>4, N =log 0.5(x 2+116)≤log 0.5116=4,∴M >N .7.若不等式组⎩⎪⎨⎪⎧x -y ≥02x +y ≤2y ≥0x +y ≤a 表示的平面区域是一个三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43[答案] D[解析] 由图形知,要使平面区域为三角形,只需直线l :x +y =a 在l 1、l 2之间或在l 3上方.∴0<a ≤1或a ≥43.8.若不等式x 2+ax +1≥0对一切x ∈(0,12]成立,则a 的最小值为( )A .0B .-2C .-52D .-3[答案] C[解析] ∵x ∈(0,12],∴a ≥-x 2-1x =-x -1x.由于函数y =x +1x 在(0,12]上单调递减,∴在x =12处取得最小值52.∴-(x +1x )≤-52.∴a ≥-52.9.已知a >0,b >0,a 、b 的等差中项是12,且α=a +1a ,β=b +1b 则α+β的最小值是( )A .3B .4C .5D .6[答案] C[解析] 由题意a +b =1,则α+β=a +1a +b +1b=1+1ab ≥1+1(a +b 2)2=5.10.若x 、y 满足条件⎩⎪⎨⎪⎧x ≥y x +y ≤1y ≥-1,则z =-2x +y 的最大值为( )A .1B .-12C .2D .-5[答案] A[解析] 作出可行域如下图,当直线y =2x +z 平移到经过可行域上点A (-1,-1)时,z 取最大值,∴z max =1.11.已知向量a =(3,-2),b =(x ,y -1),若a ∥b ,则4x +8y 的最小值为( ) A .2 B .42 C .22 D .2[答案] B[解析] ∵a ∥b ,∴3(y -1)-(-2)x =0, ∴2x +3y =3.故4x +8y =22x +23y ≥222x+3y=223=42,当且仅当2x =3y ,即x =34,y =12时等号成立.12.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆至多只运一次,则该厂所花的最少运输费用为( )A .2 000元B .2 200元C .2 400元D .2 800元[答案] B[解析] 设需甲型货车x 辆,乙型货车y 辆,由题意知⎩⎪⎨⎪⎧x ≤4,x ∈N *y ≤8,y ∈N *20x +10y ≥100,作出其可行域如图所示.可知目标函数z =400x +300y 在点A 处取最小值,z =400×4+300×2=2 200(元). 二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上) 13.不等式x +1x ≤3的解集是________.[答案] {x |x ≥12或x <0}[解析] 原不等式等价于x +1x -3≤0⇔1-2x x ≤0⇔2x -1x ≥0⇔x (2x -1)≥0,且x ≠0,解得x ≥12或x <0. 14.若关于x 的不等式ax 2-6x +a 2<0的解集是(1,m ),则m =________. [答案] 2[解析] 由题意知a >0且1是方程ax 2-6x +a 2=0的一个根,∴a =2, ∴不等式为2x 2-6x +4<0,即x 2-3x +2<0, ∴1<x <2,∴m =2.15.若a ≥0,b ≥0,a 2+b 2=1,则a 1+b 2的最大值为________. [答案] 1[解析] ∵a ≥0,b ≥0, ∴a1+b 2≤a 2+1+b 22=1, 当且仅当a =1+b 2,即a =1,b =0时取等号. 16.若不等式组⎩⎪⎨⎪⎧x ≥0x +3y ≥43x +y ≤4,所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是________.[答案] 73[解析] 不等式组⎩⎪⎨⎪⎧x ≥0x +3y ≥43x +y ≤4,表示的区域如图所示.直线y =kx +43经过三角形的顶点C ,要想平分面积,只需要经过AB 的中点D 即可.解相应的方程组可得A (1,1)、B (0,4)、C (0,43),则D (12,52),k =52-4312-0=73.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)设x 1、x 2是关于x 的一元二次方程x 2-2kx +1-k 2=0的两个实根,求x 21+x 22的最小值.[解析] 由题意,得x 1+x 2=2k , x 1x 2=1-k 2.Δ=4k 2-4(1-k 2)≥0, ∴k 2≥12.∴x 21+x 22=(x 1+x 2)2-2x 1x 2=4k 2-2(1-k 2) =6k 2-2≥6×12-2=1.∴x 21+x 22的最小值为1. 18.(本题满分12分)若a <1,解关于x 的不等式ax x -2<1 .[解析] a =0时,x ∈R 且x ≠2; a ≠0时,axx -2<1⇔(a -1)x +2x -2>0 ⇔[(a -1)x +2](x -2)>0. ∵a <1,∴a -1<0. ∴化为(x -21-a)(x -2)<0,当0<a <1时,21-a >2,∴不等式的解为2<x <21-a; 当a <0时,1-a >1,∴21-a <2,∴不等式解为21-a<x <2,∴当0<a <1时,不等式解集为⎩⎨⎧⎭⎬⎫x |2<x <21-a ;当a <0时,不等式解集为⎩⎨⎧⎭⎬⎫x |21-a <x <2;当a =0时,解集为{x ∈R |x ≠2}.19.(本题满分12分)已知x 、y 都是正数. (1)若3x +2y =12,求xy 的最大值; (2)若x +2y =3,求1x +1y 的最小值.[解析] (1)xy =16·3x ·2y ≤16⎝⎛⎭⎫3x +2y 22=6.当且仅当⎩⎪⎨⎪⎧ 3x =2y ,3x +2y =12,即⎩⎪⎨⎪⎧x =2y =3时取“=”号.所以当x =2,y =3时,xy 取得最大值6. (2)1x +1y =13(x +2y )⎝⎛⎭⎫1x +1y =13⎝⎛⎭⎫3+x y +2y x ≥13⎝⎛⎭⎫3+2x y ·2y x =1+223.当且仅当⎩⎪⎨⎪⎧ x y =2y xx +2y =3即⎩⎪⎨⎪⎧x =-3+32y =3-322时,取“=”号. 所以,当x =-3+32,y =3-322时,1x +1y 取得最小值1+223. 20.(本题满分12分)不等式(m 2-2m -3)x 2-(m -3)x -1<0对一切x ∈R 恒成立,求实数m 的取值范围.[解析] 由m 2-2m -3=0,得m =-1或m =3. 当m =3时,原不等式化为-1<0恒成立; 当m =-1时,原不等式化为4x -1<0, ∴x <14,故m =-1不满足题意.当m 2-2m -3≠0时,由题意,得⎩⎪⎨⎪⎧m 2-2m -3<0Δ=[-(m -3)]2+4(m 2-2m -3)<0, 即⎩⎪⎨⎪⎧-1<m <3-15<m <3,∴-15<m <3.综上可知,实数m 的取值范围是-15<m ≤3.21.(本题满分12分)已知函数f (x )=x 2ax +b (a 、b 为常数),且方程f (x )-x +12=0有两个实根为x 1=3,x 2=4.(1)求函数f (x )的解析式;(2)设k >1,解关于x 的不等式f (x )<(k +1)x -k2-x.[解析] (1)将x 1=3,x 2=4分别代入方程x 2ax +b-x +12=0,得⎩⎨⎧93a +b =-9164a +b =-8,解得⎩⎪⎨⎪⎧a =-1b =2.∴f (x )=x 22-x(x ≠2).(2)原不等式即为x 22-x <(k +1)x -k2-x ,可化为x 2-(k +1)x +k 2-x <0.即(x -2)(x -1)(x -k )>0. ①当1<k <2时,1<x <k 或x >2; ②当k =2时,x >1且x ≠2; ③当k >2时,1<x <2或x >k .综上所述,当1<k <2时,原不等式的解集为{x |1<x <k 或x >2}; 当k =2时,原不等式的解集为{x |x >1且x ≠2}; 当k >2时,原不等式的解集为{x |1<x <2或x >k }. 22.(本题满分14分)已知x 、y 满足条件⎩⎪⎨⎪⎧x -2y +7≥04x -3y -12≤0x +2y -3≥0,求z =x 2+y 2的最大值与最小值.[解析] 在同一直角坐标系中,作直线x -2y +7=0,4x -3y -12=0和x +2y -3=0,再根据不等式组确定可行域为△ABC (如图所示),把x 2+y 2看作点(x ,y )到原点(0,0)的距离的平方.由⎩⎪⎨⎪⎧x -2y +7=04x -3y -12=0,解得点A 的坐标(9,8).所以(x 2+y 2)max =|OA |2=92+82=145.因为原点O 到直线BC 的距离为|0+0-3|5=35,所以(x 2+y 2)min =95.。

相关文档
最新文档