数学的理性文化(韩祥临编著)思维导图
初一七年级下册数学各章节思维导图知识点汇总,开学提前看!
初一七年级下册数学各章节思维导图知识点汇总,开学提前看!数姐说今天,给大家整理了初中数学的全部知识点、考点+详细解题技巧,大家可以根据列出来的考点进行自我检测,初三的同学可以作为复习材料,初一初二的小伙伴可以先复习学过的知识,了解还没有开始学的知识。
转给需要的人!(点击查看大图,文末可下载电子版)一、相交线两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
③对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
高中数学最全的思维导图
高中数学最全的思维导图小数老师2015-11-23 11:08很多同学一轮复习已经过半,但还不知道该怎么总结,小数老师给大家提个建议,要想总结,主要还是首先梳理出脉络来,提到某个知识点,那么关于这个知识点相关的所有知识你都要弄明白,这样你就成功了一半!下面是8张思维导图,先研究下看看吧!夷示方法元表、隼合之闾的关系集台「1f映射i I 函数三要妄性质表示定义定义域值域单调性周期性性质対称性基本初等函数分段国数运算:交、弃、补确定性、互异性、无序性解析达列表法使解析式有意义丿对应关采[」换元法求解析式JA连意应用函数的单调在求值域圏象法u函薮破个区圈MlWt减I与曲谒国直是秃亍区减占鱼乂耒冒:2,征阴尊讶*勒査『斷人导披追;儿麗舍弼戴的鱼调性亘塑」是乂填黄于旗点时歌氐L©社有盘文的奇證戳弋r如即)r的奇圈埶詡⑵二呻书⑹=£)最值—C环酩变拱)—f皑拦变彗)—{棒编变箕)亘合函数二次函巍、基本不等式、打崗(耐克)函〕数、三角函数有界性、数形结台、异数.L —次、二次函数、反比例函數一幕函数指数函数对数函数三甬函埶亘台III埶的单调性:同潸异减I哦值法、典型的函数1抽象函数函数与方程函埶的应用图象V性质和应用二分注、图象迭、二次展三次方程根的分布)空间几何体liii台区梭怪梭台L囲台Sfe-正枝{王,长方体、正方体EW.四面体、正四面体一l点在Mh±点与线纬与面一面勻面点在面內点在面外竝面岂強-直线在平窗内厂平行—相乂—f平行关系的]A 转化J i ■■-平厅J垂直曲罕的]线线1相互轉化J垂嵐L相父L平行L三视團•r直观團长对正-喜平齐卞伯隼」一刚面积.表面理体段口高—个公共点没有缺旦漫有有公扛耳------------------ 厂W T 厂直线在平面外-^―---------------- L相交亠线面- "平行「面直垂畳线面甜r-J_ -面面■乎行價耕角的畫化与糾率的变化)位臭关养相立I—C且必:-今血芒:)狂童:战距可正A可员,也可为0. J注at:栽距可正可员,也可訂oj直迭万程茹形式直迭万程茹形式两亶线的交点两亶线的交点圧意若种开式的辕化和运用范圈圧意若种开式的辕化*□运用范围不等式群三即T通项会式等比数列一1(样。
理数思维导图
十十五、平面面向量量
不不等式的基本概念
具有大大小小和方方向的量量叫做向量量
空间向量量
七、不不等式
同向不不等式与异向不不等式 同解不不等式与不不等式的同解变形
共线向量要不不等式 几几个著名不不等式 不不等式的解法
整式不不等式分式不不等式;指数不不等式;对数不不等式;含绝对值不不等式
平面面
集合的性质
两条平行行行线在同一一平面面内的射影图形是一一条直线或两条平行行行线或两点 异面面直线判定定理理:过平面面外一一点与平面面内一一点的直线和平面面内不不经过该点的直线是 异面面直线.(不不在任何一一个平面面内的两条直线) 平行行行公理理:平行行行于同一一条直线的两条直线互相平行行行 等⻆角定理理:若果一一个⻆角的两边和另一一个⻆角的两边分别平行行行并且方方向相同,那么这两个⻆角相等 相交、平行行行、在平面面内. 空间直线与平面面位置
直线与平面面平行行行、直线与平面面垂直
八八、立立体几几何
一一、集合与常 用用逻辑语言言
“或”、“且”、“非非”这些词叫做逻辑联结词;不不含有逻辑 联结词的命题是简单命题;由简单命题和逻辑联结 词“或”、“且”、“非非”构成的命题是复合命题。
平面面平行行行判定定理理:如果一一个平面面内有两条相交直线都平行行行于另一一个平面面,那么这两个平面面平行行行.(“线面面平行行行,面面面面平行行行”) 从n个不不同的元素中任取m(m≤n)个元素,按照一一 定顺序排成一一列列,叫做从n个不不同元素中取出m个 元素的一一个排列列. 如果,两个排列列相同,不不仅这两个排列列的元素必须完全相同,而而 且排列列的顺序也必须完全相同. 定义 相同排列列. 排列列数. 排列列公式 含有可重元素的排列列问题. 排列列 对排列列定义的理理解. ①棱柱的各个侧面面都是平行行行四边形,所有的侧棱都相等;直棱柱 的各个侧面面都是矩形;正棱柱的各个侧面面都是全等的矩形. ②棱柱的两个底面面与平行行行于底面面的截面面是对应边互相平行行行的全等多边形. ③过棱柱不不相邻的两条侧棱的截面面都是平行行行四边形. 棱柱具有的性质 平行行行六面面体 两个平面面平行行行的性质定理理:如果两个平面面平行行行同时和第三个平面面相交,那么它们交线平行行行.(“面面面面平行行行,线线平行行行”) 一一、两个平面面所成二二面面⻆角是直二二面面⻆角,则两个平面面垂直 二二、如果一一个平面面与一一条直线垂直,那么经过这条直线的平面面垂直于这个平面面.(“线面面垂直,面面面面垂直”) 1. 乘法原理理、加法原理理. 2. 可以有重复元素的排列列. 两个平面面垂直,那么在一一个平面面内垂直于它们交线的直线垂直于另一一个平面面。 两个原理理 两个平面面垂直的判定 两个平面面垂直性质定理理 直棱柱侧面面积 斜棱柱侧面面积
初二数学第六章思维导图
初二数学第六章思维导图【考纲要求】1.了解有理数、无理数、实数的概念;借助数轴理解相反数、绝对值的概念及意义,会比较实数的大小;2.知道实数与数轴上的点一一对应,会用科学记数法表示有理数,会求近似数和有效数字;了解乘方与开方、平方根、算术平方根、立方根的概念,并理解这两种运算之间的关系,了解整数指数幂的意义和基本性质;3.掌握实数的运算法则,并能灵活运用;4.逐步形成数形结合、分类讨论、建模思想.【知识网络思维导图】【知识点梳理】知识点一实数的分类1.按定义分类:2.按性质符合分类:有理数:整数和分数统称为有理数,或者“形如m/n(m,n是整数n≠0)”的数叫有理数.无理数:无限不循环小数叫无理数.实数:有理数和无理数统称为实数.要点诠释:常见的无理数有以下几种形式:(1)字母型:如π是无理数,π/2、π/4等都是无理数,而不是分数;(2)构造型:如2.10100100010000...(每两个1之间依次多一个0)就是一个无限不循环的小数;(3)根式型:..等都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.知识点二实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0;(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数;(3)互为相反数的两个数之和等于0.a、b互为相反数,即a+b=0. 2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.可用式子表示为:(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.用式子表示:若a是实数,则|a|≥0.3.倒数(1)实数a(a≠0)的倒数是1/a;0没有倒数;(2)乘积是1的两个数互为倒数.a、b互为倒数a·b=1.4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作±.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.5.立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;0的立方根仍是0.要点诠释:若,则a≥0;若则,则a≤0. 表示的几何意义就是在数轴上表示数a与数b的点之间的距离.知识点三实数与数轴规定了原点、正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数.要点诠释:(1)数轴的三要素:原点、正方向和单位长度.(2)实数和数轴上的点是一一对应的.知识点四实数大小的比较知识点五、实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.满足运算律:加法的交换律a+b=b+a,加法的结合律(a+b)+c=a+(b+c).2.减法减去一个数等于加上这个数的相反数.3.乘法两数相乘,同号得正,异号得负,并把绝对值相乘.几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.乘法运算的运算律:(1)乘法交换律ab=ba;(2)乘法结合律(ab)c=a(bc);(3)乘法对加法的分配律a(b+c)=ab+ac.4.除法(1)除以一个数,等于乘上这个数的倒数.(2)两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)求n个相同因数的积的运算叫做乘方,an所表示的意义是n个a相乘.正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数:a0=1(a≠0),a-p=1/ap(a≠0)要点诠释:(1)加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.(2)实数的运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc知识点六有效数字和科学记数法1.近似数一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.精确度的形式有两种:(1)精确到哪一位;(2)保留几个有效数字.2.有效数字一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.3.科学记数法把一个数用±a×10n(其中1≤<10,n为整数)的形式记数的方法叫科学记数法.要点诠释:(1)当要表示的数的绝对值大于1时,用科学记数法写成a×10n,其中1≤<10,n为正整数,其值等于原数中整数部分的数位减去1;(2)当要表示的数的绝对值小于1时,用科学记数法写成a×10n,其中1≤<10,n为负整数,其值等于原数中第一个非零数字前面所用零的个数的相反数(包括小数点前面的零).知识点七数形结合、分类讨论、建模思想1.数形结合思想实数与数轴上的点一一对应,绝对值的几何意义等,数轴在很多时候可以帮助我们更直观地分析题目,从而找到解决问题的突破口;2.分类讨论思想(算术)平方根,绝对值的化简都需要有分类讨论的思想,考虑问题要全面,做到既不重复又不遗漏;3. 从实际问题中抽象出数学模型以现实生活为背景的题目,我们要抓住问题的实质,明确该用哪一个考点来解决问题,然后有的放矢.。
看完这10张初中数学思维导图,孩子成绩轻松提高20分!
数学,作为一门对于逻辑思维和思维严密性要求较强的学科,无论是在哪一个阶段的学习中都是拉分挺大的一个学科,尤其是对于初中阶段的学生来说。
数学这一门学科在学习的过程中抽象性增强、概括性提高,部分知识枯燥、较难理解。
所以很多孩子在初中的时候数学成绩还不错,后面高中,就逐渐出现知识的落后。
数学也是一门非常注重学习方法的学科,好的学习方法是提升孩子学习效率和兴趣的关键。
对于零零散散的知识点要善于总结归类,在归纳的同时进一步加深对知识点的记忆,还方面后面的复习。
最近在微信上和我交流的孩子和家长,最为关心的问题就是,希望能从我这里学到提高成绩的方法。
鉴于孩子们在数学问题上烦恼,下面就分享给大家初中数学的思维导图。
都是考试汇总常考的内容,家长们可以收藏打印,有空拿给孩子们看看,相信经过孩子们的学习与整理多积累,一定会对后面的学习有很大的帮助。
一、初中数学知识树
二、代数式
三、一次函数与反比例函数
四、二次函数与一次二次方程
五、图形认识、相交线、平行线
六、三角形
七、四边形与圆
八、图形的全等变换
九、全等三角形与相似三角形
十、统计与概率。
七年级数学下册思维导图(超全)
七年级数学下册思维导图(超全)第一章:实数1. 实数的概念2. 实数的分类有理数整数正整数、负整数、零分数正分数、负分数无理数3. 实数的运算加法减法乘法除法乘方开方第二章:代数式1. 代数式的概念2. 代数式的分类单项式多项式3. 代数式的运算减法乘法除法乘方第三章:方程与不等式1. 方程的概念2. 一元一次方程求解方法3. 不等式的概念4. 一元一次不等式求解方法第四章:函数1. 函数的概念2. 函数的表示方法解析式法图象法3. 一次函数定义图象性质4. 二次函数定义图象第五章:几何图形1. 点、线、面2. 线段3. 角锐角、直角、钝角、平角、周角4. 三角形定义分类性质5. 四边形定义分类性质6. 圆定义性质第六章:概率与统计1. 概率的概念2. 概率的计算方法3. 统计的概念4. 数据的收集与整理5. 数据的表示方法表格法6. 数据的分析方法七年级数学下册思维导图(超全)第一章:实数1. 实数的概念实数是包括有理数和无理数在内的所有数的集合。
2. 实数的分类有理数整数正整数、负整数、零分数正分数、负分数无理数不能表示为两个整数比例的数,如根号2、π等。
3. 实数的运算加法将两个实数相加得到一个新的实数。
减法将一个实数减去另一个实数得到一个新的实数。
乘法将两个实数相乘得到一个新的实数。
除法将一个实数除以另一个非零实数得到一个新的实数。
乘方将一个实数乘以自身多次得到一个新的实数。
开方求一个实数的平方根或立方根等。
第二章:代数式1. 代数式的概念代数式是由数、字母和运算符号组成的表达式。
2. 代数式的分类单项式只有一个项的代数式。
多项式由多个项组成的代数式。
3. 代数式的运算加法将两个代数式相加得到一个新的代数式。
减法将一个代数式减去另一个代数式得到一个新的代数式。
乘法将两个代数式相乘得到一个新的代数式。
除法将一个代数式除以另一个非零代数式得到一个新的代数式。
乘方将一个代数式乘以自身多次得到一个新的代数式。
细绘数学思维导图,助力学生思维发展
42研究提起数学,总有学生叫苦连连,“听不懂”“学不会”“太枯燥”“有何用”“难不成买个橘子还需要用函数吗?”……执教多年,由于数学的学科特性如思维缜密、抽象性高等,让许多学生“谈数色变”,可数学作为基础教育学科,除了对人类的发展具有重大作用外,其本身也具有非常迷人的色彩。
如何让学生由“怕数学”到“爱数学”,是笔者一直以来不断探索并实践的课题。
思维导图是理清知识点、将零散的内容绘制到一起,形成系统性思维的重要工具,针对数学教学,我们进行了思维导图融入初中数学课堂教学案例、促进深度学习的策略研究,研究结果表明,思维导图对初中生数学思维能力有明显的提高作用,能明显增强学生的学习兴趣和深度学习。
理论学习,丰富自我内涵相关网站上有很多关于思维导图的研究,我们先后学习了曾伟、黄泳的《“思维导图”助力初中数学难点学习》,方永进的《“思维导图”是数学课本不错的“补丁”》,张冬梅的《思维导图在初中数学重难点问题教学中的应用策略》,吴志丹《协作构建思维导图在数学复习课中的应用探究》,樊雅琴、王炳皓、王伟《深度学习国内外研究综述》,马云鹏的《深度学习的理解与实践模式-以小学数学学科为例》等相关资料,加深了对思维导图的理解。
我们发现,用思维导图串联知识点、归类题型,记录题目的解题思路,可突破教学中的重难点;在复习课中使用思维导图,将广阔的知识点链接起来,变“浅学”为“博学”,“学会”为“会学”,可提高学生分析问题、解决问题的能力;思维导图的构建将知识网络化、系统化,对培养学生的逻辑思维、创造力思维、发散思维,以及提高对数学的理解具有促进作用。
设计思维导图,融入课堂教学在思维导图融入课堂教学的案例研究中,我们经过探索,最终确定了课堂引入思维导图、课堂小结思维导图的应用研究,知识发散型思维导图课堂应用实例研究,课本案例教学实例研究等一系列系统地将思维导图融入课堂教学案例的研究过程以及研究方案,并在日常教学中将思维导图融入课堂教学。
高中数学最全地思维导图
列裘法
表示
便解祈式有意义
定文域
—(「换元法貳解析式一J
值城
单调性
)
—I对称性
基本初等函教
分段国颈
亘合函救
拥象函数
函数的应用
c注意应用函数的单调性求值域
U雷Sn娱牛区应谨增図盼與址舸證佗哑血序同匕迂明孰皆世注导気;总一3-亘金關总巧上询总
]=定虫誉笑工W盘刁牡,三LC址有U卫B注凿啟一/恼=0
周期为『的奇பைடு நூலகம்数帖0
二廣匡1教'基本不等灵打$和耐克侖|、三角團数有界性、数形結合、导数丿
图急及其变撫
|~|—获、二次函藪、反比创函数 卜
吋数啊埶
三角函埶
1台旳数的单调性;同增具屎
斌情法、典型的函敎
圈象*性质
一I黝g|~U分法'醵法、二烦3:烦程根的分石
建立因数模型
高中数学最全的思维导图
很多同学一轮复习已经过半,但还不知道该怎么总结,小数老师给大家提个建议,要想总结,
主要还是首先梳理出脉络来, 提到某个知识点, 那么关于这个知识点相关的所有知识你都要弄明白,
这样你就成功了一半!下面是8张思维导图,先研究下看看吧!
性质
定义
三要表
运勒交,并、补
确定性、互异唯、无序性
高中数学必修全思维导图
调性不同,则 y f [g(x)] 是减函数。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。 5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作 函数图象。 六、函数奇偶性的常用结论:
1、如果一个奇函数在 x 0 处有定义,则 f (0) 0 ,如果一个函数 y f (x) 既是
高一数学必修 1 知识网络
集合
( 1)元素与集合的关系:属于()和不属于()
集合与元素
( 2)集合中元素的特性:确定性、互异性、无序性 ( 3)集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集 ( 4)集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法
C.
4、空集是任何集合的(真)子集。
集合
真子集:若A
B且A
B(即至少存在x0
B但x0
A),则A是B的真子集。
集合与集合
运算集并交合集集Ca相r定定性性d等(义义质质A:::::ABAAAA)BBBC且AAaArdAAxx,(,A//BxAxA) CAAa或且rAdxx(AB,B,)BB-AACarBdB(ABBBA)A,,AABBAA,, AABB
定义
按照某个对应关系f , y都有唯一确定的值和它对应。那么y就是x的函数。记作y f ( x ).
近代定义:函数是从一个数集到另一个数集的映射。
定义域 函数及其表示 函数的三要素 值域 对应法则
解析法
函数的表示方法 列表法
函数
几类不同的增长函数模型 函数模型及其应用 用已知函数模型解决问题 建立实际问题的函数模型
高中数学知识点最全思维导图(K12教育文档)
高中数学知识点最全思维导图(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学知识点最全思维导图(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学知识点最全思维导图(word版可编辑修改)的全部内容。
高中数学知识点最全思维导图思维导图又叫心智图,是表达发射性思维的有效的图形思维工具,它简单却又极其有效,是一种革命性的思维工具。
高中中数学知识点思维导图,可以帮助同学做总结梳理,事半功倍,值得反思借鉴.。
初一数学知识点思维导图高清版
初一数学知识点思维导图高清版初一数学知识点思维导图数轴概念数轴包含三要素:原点、单位长度、正方向。
所有有理数都可以用数轴上的点表示,但不是所有数轴上的点都表示有理数。
一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。
数轴比较大小在数轴上,右边的数总比左边的数大。
比较大小可以利用数轴,也可以利用数的性质比较异号两数及的大小。
利用绝对值比较两个负数的大小。
相反数的概念只有符号不同的两个数叫做互为相反数。
相反数是成对出现的,不能单独存在。
互为相反数的两个数,在数轴上分别在原点两旁且到原点距离相等。
与“+”个数无关,有奇数个“-”号结果为负,有偶数个“-”号,结果为正。
相反数的意义相反数可以用来表示借贷、温度等相反的情况。
求一个数的相反数的方法就是在这个数的前边添加“-”,如a的相反数是-b,m+n的相反数是-(m+n)。
在整体前面添负号时,要用小括号。
绝对值的概念数轴上某个数与原点的距离叫做这个数的绝对值。
互为相反数的两个数绝对值相等。
绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数。
有理数的绝对值都是非负数。
有理数的大小比较比较有理数的大小可以利用数轴,他们从左到右的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大)。
比较大小的法则是:正数都大于,负数都小于,正数大于一切负数。
两个负数比较大小,绝对值大的反而小。
有理数的减法将有理数转化为加法时,要同时改变两个符号。
在进行减法运算时,首先弄清减数的符号。
作差比较:若a-b>0,则a>b;若a-b<0,则a<b;若a-b=0,则a=b。
1.有理数的基本运算法则有理数的加减乘除运算法则是数学中的基本内容,掌握这些运算法则对于研究数学很有帮助。
其中,有理数加减法的运算法则是:异号相减,同号相加。
而有理数乘法的运算法则是:同号得正,异号得负,并将绝对值相乘。
同时,任何数同零相乘都等于零。
高中数学知识框架思维导图(整理版)
柯西不等式
第四部分
位置关系
截距
解析几何
斜率公式、倾斜角的变化与斜率的变化: = tan , =
倾斜角和斜率
重合
A1B2-A2B1=0,C1B2-C2B1=0
平行
A1B2-A2B1=0,C1B2-C2B1≠0
相交
A1B2-A2B1≠0
垂直
直线的方程
z 的几何意义:
过可行域内一点(, )
向直线 = , = 作
复合函数
函数与方程
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
基本初等函数
分段函数
, )
零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换: = () → = ( ± ), = () → = () ± ,, > 0
对称性
y=Asin(x+)+b
化简、求值、
证明(恒等变形)
)
值域
图象
对称轴(正切函数除外)经过函数图象
的最高(或低)点且垂直 x 轴的直线,
对称中心是正余弦函数图象的零点,正
切函数的对称中心为( ,0)(k∈Z).
最值
2
①图象可由正弦曲线经过平移、伸缩得到,但要注意先平移后伸缩与先伸缩后平移不同;
2.
3.
分组求和法
2
=
1
−
−1)(2+1 −1)
2 −1
+1
1 1
1
= (
2 (+2)2
(−1) ∙4
4 2
(2−1)(2+1)
1
2+1 −1
高中数学最全的思维导图
高中数学最全的思维导图
中国教育在线· 2015-11-09 06:43温馨提示商务合作QQ:1927876294小编推荐两个优秀的微信公众号:美丽的旅游(ID:mldly520)中国养生在线(ID:zg-yszx)很多同学又到一轮复习了,不知道该怎么总结,教育君给大家提个建议,要想总结,主要还是首先梳理出脉络来,提到某个知识点,那么关于这个知识点相关的所有知识你都要弄明白,这样你就成功了一半!下面是8张思维导图,先研究下看看吧!请点击标题下面:“中国教育在线”关注规则(关注后输
入数字或者汉字)我们会把相关的内容发送给您!主要不要有空格或者错误【1.正能量教育】【2.德行教育】【4.教育思维】【6.名家教育】【7.故事育人】【8.名校教育】【9.贵族教育】【14.学习行为】【15.健康心理】【16.行为教育】【17.亲情教育】【19.教育技巧】【20.教育误区】【21.名师经验】【22.明
星分享】【23.母爱】【25.教育技巧2】【28.文化教育】【29.
教育思考】【31.智慧分享】【32.开心一刻】【33.古代教育】【34.感动瞬间】【38.英语指导】【39.名家教育2】【41.生活点滴】【50.课外读物】【51.学习思维】【52.孩子叛逆】【53.名家教育3】【54.感动美文】【55.性教育】【61.单亲家庭】......更多专题,请点击菜单栏,“教育导航”微信原文微信文章为作者
独立观点,不代表微头条立场。