实数经典测试题附答案
实数单元测试题(含答案)
实数测试题一、选择题(每题4分,共32分)1.(易错易混点)4的算术平方根是( ) A .2±B .2C .2±D .22、下列实数中,无理数是( )A.4B.2πC.13D.123.(易错易混点)下列运算正确的是( ) A 、39±= B 、33-=- C 、39-=- D 、932=-4、327-的绝对值是( ) A .3 B .3-C . 13D .13-5、若使式子2x -在实数范围内有意义...,则x 的取值范围是 A . 2x ≥ B . 2x > C .2x < D .2x ≤6、若x y ,为实数,且220x y ++-=,则2011x y ⎛⎫⎪⎝⎭的值为( )A .1B .1-C .2D .2-7、有一个数值转换器,原理如图,当输入的x 为64时,输出的y 是( )A 、8B 、22C 、32D 、23 8.设02a =,2(3)b =-,39c =-11()2d -=,则a b c d ,,,按由小到大的顺序排列正确的是( ) A .c a d b <<< B .b d a c <<<C .a c d b <<<D .b c a d <<<二、填空题(每题4分,共32分)9、9的平方根是 .10、在3,0,2-,2四个数中,最小的数是11、(易错易混点)若2(3)3a a -=-,则a 与3的大小关系是 12、请写出一个比5小的整数 .13、计算:=---0123)( 。
14、如图2,数轴上表示数3的点是 .15、化简:32583-的结果为 。
16、对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =ba ba -+,如3※2=52323=-+.那么12※4= . 三、计算题17、(1)计算:0133163⎛⎫- ⎪⎝⎭.(2)计算:1021|2|(π2)9(1)3-⎛⎫-+⨯- ⎪⎝⎭(每题8分)18、将下列各数填入相应的集合内。
实数测试题及答案解析
↗(人教版.第6章.实数.2分)1.8的平方根是()A.4B.±4C.2D.考点:平方根.专题:计算题.分析:直接根据平方根的定义进行解答即可解决问题.解答:,∴8的平方根是.故选:D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.↗(人教版.第6章.实数.2分)2.的平方根是()A.±3B.3C.±9D.9考点:平方根;算术平方根.专题:计算题.分析:根据平方运算,可得平方根、算术平方根.解答:解:∴,9的平方根是±3,故选:A.点评:本题考查了算术平方根,平方运算是求平方根的关键.↗(人教版.第6章.实数.2分)3.已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的一个解C.a是8的算术平方根D.a满足不等式组考点:算术平方根;无理数;解一元二次方程-直接开平方法;解一元一次不等式组.专题:数与式分析:首先根据正方形的面积公式求得a的值,然后根据算术平方根以及方程的解的定义即可作出判断.解答:解:a==2,则a是无理数,a是方程x2﹣8=0的一个解,是8的算术平方根都正确;解不等式组,得:3<a<4,而2<3,故错误.故选:D.点评:此题主要考查了算术平方根的定义,方程的解的定义,以及无理数估计大小的方法.↗(人教版.第6章.实数.2分)4.化简得()A.100B.10C.D.±10考点:算术平方根.专题:数与式分析:运用算术平方根的求法化简.解答:解:=10,故答案为:B.点评:本题主要考查算术平方根用二次根式的性质和化简的知识点,本题是基础题,比较简单.↗(人教版.第6章.实数.2分)5.若实数x、y满足=0,则x+y的值等于()A.1B.C.2D.考点:非负数的性质:算术平方根;非负数的性质:偶次方.专题:分类讨论.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:由题意得,2x﹣1=0,y﹣1=0,解得x=,y=1,所以,x+y=+1=.故选:B.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.↗↗(人教版.第6章.实数.2分)6.下列实数中是无理数的是()A.B.2﹣2C.5.D.sin45°考点:无理数.专题:常规题型.分析:根据无理数是无限不循环小数,可得答案.解答:解:A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D.点评:本题考查了无理数,无理数是无限不循环小数.↗↗(人教版.第6章.实数.2分)7.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个考点:无理数.专题:数与式分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:据无理数定义得有,π和是无理数.故选:B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.↗(人教版.第6章.实数.2分)8.4的平方根是±2.考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∴(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.↗(人教版.第6章.实数.2分)9.计算:=3.考点:算术平方根.专题:计算题.分析:根据算术平方根的定义计算即可.解答:解:∴32=9,∴=3.故答案为:3.点评:本题较简单,主要考查了学生开平方的运算能力(人教版.第6章.实数.2分)10.的算术平方根为.考点:算术平方根.专题:计算题.分析:首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.解答:解:∴=2,∴的算术平方根为.故答案为:.点评:此题考查了算术平方根的定义,解题的关键是知道=2,实际上这个题是求2的算术平方根.注意这里的双重概念.。
人教版初中七年级数学下册第六单元《实数》经典测试题(含答案解析)(1)
一、选择题1.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .10D 解析:D【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D .【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.2.下列各数中无理数共有( )①–0.21211211121111,②3π,③227, A .1个B .2个C .3个D .4个C 解析:C【分析】根据无理数的概念确定无理数的个数即可解答.【详解】解:无理数有3π3个. 故答案为C .【点睛】本题主要考查了无理数的定义,无理数主要有以下三种①带根号且开不尽方才是无理数,②无限不循环小数为无理数,③π的倍数.3.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015B .2014C .20152014D .2015×2014A解析:A【分析】根据题意列出实数混合运算的式子,进而可得出结论;【详解】∵ 1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1⋅⋅⋅⋅⋅⋅,∴ 可得规律为:()()12!321n n n n =⨯-⨯-⨯⋅⋅⋅⨯⨯⨯,∴2015!2014!=201520142013120152014201320121⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯⋅⋅⋅⨯ , 故选:A .【点睛】 本题考查了实数的混合运算,熟知实数混合运算的法则是解答此题的关键.4.已知实数a 的一个平方根是2-,则此实数的算术平方根是( )A .2±B .2-C .2D .4C解析:C【分析】根据平方根的概念从而得出a 的值,再利用算术平方根的定义求解即可.【详解】∵-2是实数a 的一个平方根,∴4a =,∴4的算术平方根是2,故选:C .【点睛】本题主要考查了平方根以及算术平方根,在解题时要注意一个正数有两个平方根,它们互为相反数.一个正数的算术平方根是它的正的平方根.5.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★a b b ;若a b <,则a ★b b a.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b +<★ A .①B .②C .①②D .①②③A 解析:A【分析】 ①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立;③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】解:①a b ≥时,a ab b ★,b a a b★, ∴=a b b a ★★;a b <时,a b ba ★,b b a a★, ∴=a b b a ★★;∴①符合题意.②由①,可得:=a b b a ★★,当a b ≥时,∴()()()()22a b b a a b aa a ab b b ba b ====★★★★, ∴()()a b b a ★★不一定等于1, 当a b <时, ∴()()()()22a b b a a b bb b b aa a aa b ====★★★★, ∴()()a b b a ★★不一定等于1, ∴()()1a b b a =★★不一定成立,∴②不符合题意. ③当a b ≥时,0a >,0b>,∴1a b≥,∴(12a b a b a b b a ab ab ++===+=≥≥★★,当a b <时,∴(12a b a b a b ab ++====≥≥★★,∴12a b a b+<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A .【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.6.下列实数31,7π-,3.14,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( )A .5个B .4个C .3个D .2个C 解析:C【分析】根据无理数的定义、算术平方根与立方根逐个判断即可得.【详解】31 4.4285717=小数点后的428571是无限循环的,属于有理数,3=-属于有理数,=则无理数为π-⋯,共有3个,故选:C .【点睛】本题考查了无理数、算术平方根与立方根,熟记各定义是解题关键.7.下列说法中,错误的是()A .实数与数轴上的点一一对应B .1π+是无理数C .2是分数 D C 解析:C【分析】根根据有理数和无理数的定义可对C 、B 、D 进行判断;根据实数与数轴上点的关系可对A 进行判断.【详解】解:A. 实数与数轴上的点是一一对应的,此说法正确,不符合题意;B.1π+是无理数,此说法正确,不符合题意;C.2是无理数,原说法错误,符合题意;是无限不循环小数,此说法正确,不符合题意.故选:C .本题考查了实数的有关概念:有理数和无理数统称为实数;整数和分数统称为有理数;无限不循环小数叫无理数;实数与数轴上的点是一一对应的.8.下列选项中,属于无理数的是( )A .πB .227-C .4D .0A 解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】 解:A.π是无理数;B.227-是分数,属于有理数; C.4=2是整数,属于有理数;D.0是整数,属于有理数.故选:A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.9.估计50的立方根在哪两个整数之间( )A .2与3B .3与4C .4与5D .5与6B 解析:B【分析】根据327<350<364,可得答案.【详解】解:由327<350<364,得3<350<4,所以,50的立方根在3与4之间故选:B .【点睛】本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系. 10.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( ) A .-27B .-47C .-58D .-68C 解析:C【分析】根据新定义法则判断35-<,65≥,根据新定义内容分别代入计算即可.当5x =时,∵35-<,∴3- 5=()33527532--=--=-, ∵65≥,∴625625361026=-⨯=-=,则(3-)(6x -)x =322658--=-.故选:C .【点睛】本题考查新定义运算,掌握新定义运算技巧,理解题意为解题关键.二、填空题11.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.(1)a=-8;(2)1或9【分析】(1)根据平方运算可得(1-a )的值求解可得答案;(2)根据题意可知相等或互为相反数列式求解可得a 的值根据平方运算可得答案【详解】解:(1)∵x 的算术平方根是3∴解析:(1)a=-8;(2)1或9.【分析】(1)根据平方运算,可得(1-a )的值,求解可得答案;(2)根据题意可知x y ,相等或互为相反数,列式求解可得a 的值,根据平方运算,可得答案.【详解】解:(1)∵x 的算术平方根是3,∴1-a=9,∴a=-8;(2)x ,y 都是同一个数的平方根,∴1-a=2a-5或1-a+(2a-5)=0,解得a=2,或a=4,当a=2时,(1-a )=(1-2)2=1,当a=4时,(1-a )=(1-4)2=9,答:这个数是1或9.【点睛】本题考查了平方根和算术平方根,注意第(2)问符合条件的答案有两个,小心漏解. 12.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b +2a-c 【分析】根据数轴得到a<b<0<c 由此得到a-c<0a+b<0依此化简各式再合并同类项即可【详解】由数轴得a<b<0<c ∴a-c<0a+b<0∴=-b-(c-a )+(a+b)=-b-c+a+解析:2a-c【分析】根据数轴得到a<b<0<c ,由此得到a-c<0,a+b<0,依此化简各式,再合并同类项即可.【详解】由数轴得a<b<0<c ,∴a-c<0,a+b<0, ∴()323|-|b a c a b -+=-b-(c-a )+(a+b)=-b-c+a+a+b=2a-c.【点睛】此题考查数轴上的点表示数,利用数轴比较数的大小,绝对值的性质,立方根的化简,整式的加减法计算法则,解题的关键是依据数轴确定各式子的符号由此化简各式. 13.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键 解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=,∴223141(log 16)log 811617333+=+=,故答案为:3;1173. 【点睛】 本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.14.()220y -=,则xy =_________.-1【分析】由非负数的性质可知x=-y=2然后求得xy 的值即可【详解】解:∵|+(y-2)2=0∴2x+1=0y-2=0∴x=-y=2∴xy=-×2=-1故答案为:-1【点睛】本题考查了非负数的性质解析:-1【分析】由非负数的性质可知x=-12,y=2,然后求得xy 的值即可. 【详解】解:∵(y-2)2=0,∴2x+1=0,y-2=0,∴x=-12,y=2. ∴xy=-12×2=-1. 故答案为:-1.【点睛】本题考查了非负数的性质,掌握非负数的性质是解题的关键.15的相反数是________的数是________【分析】直接利用相反数的定义以及绝对值的性质分析得出答案【详解】的相反数是;绝对值等于的数是故答案为:;【点睛】本题主要考查了绝对值以及相反数正确掌握相关定义是解题关键【分析】直接利用相反数的定义以及绝对值的性质分析得出答案.【详解】;【点睛】本题主要考查了绝对值以及相反数,正确掌握相关定义是解题关键.16.已知(25|50x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.(1);(2)【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值再根据算术平方根的定义求解【详解】解:(1)解得:;(2)的算术平方根为【点睛】本题考查了非负数的性质以及算术平方根的定义根解析:(1)5x =-5y =2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.17.若4<5,则满足条件的整数 a 分别是_________________.18192021222324【分析】求出a 的范围是16<a <25求出16和25之间的整数即可【详解】解:∵4<<5a 为整数∴<<∴整数a 有1718192021222324共8个数故答案为:17181解析:18、19、20、21、22、23、24.【分析】求出a 的范围是16<a <25,求出16和25之间的整数即可.【详解】解:∵4<5,a 为整数, ∴∴整数a 有17、18、19、20、21、22、23、24,共8个数,故答案为:17、18、19、20、21、22、23、24.【点睛】本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.18.设a ,b a b <<,是,则a b =____.9【分析】求出的范围求出ab 的值代入求出即可【详解】∵2<<3∴a =2b =3∴ba =32=9故答案为:9【点睛】本题考查了估算无理数的大小的应用关键是求出ab的值解析:9【分析】a、b的值,代入求出即可.【详解】∵23,∴a=2,b=3,∴b a=32=9.故答案为:9.【点睛】本题考查了估算无理数的大小的应用,关键是求出a、b的值.a-的平方根是2±,则a的值为_______.5【分析】根据平方根的定义求19.已知1解即可【详解】的平方根是a-1=4a=5故答案为:5【点睛】此题考查了平方根的定义一个整数的平方根有两个它们互为相反数解析:5【分析】根据平方根的定义求解即可.【详解】a-的平方根是2±,1∴a-1=4,∴a=5.故答案为:5【点睛】此题考查了平方根的定义,一个整数的平方根有两个,它们互为相反数.20.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).515【分析】由已知条件可得:①中各数都符合2n的形式②中各数比①中对应数字大3按此规律即可求得①②中第8个数的值再求和即可【详解】根据题意可知①中第8个数为28=256;②第8个数为28+3=25解析:515【分析】由已知条件可得:①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8个数为28+3=259,故它们的和为256+259=515,故答案为:515.【点睛】考查了要求学生通过观察,分析、归纳发现其中的规律,解题关键是找出①②中各数间的规律.三、解答题21.计算:(1)7|2|--(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭解析:(1)2;(2)5【分析】(1)先计算绝对值及开立方,再计算加减法;(2)先计算括号中的减法及乘方,再按顺序计算乘除法.【详解】解:(1)7|2|--=7-2-3=2; (2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭=15144⨯÷ =5.【点睛】 此题考查实数的混合运算,掌握运算法则及运算顺序是解题的关键.22.已知(25|50x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.解析:(1)5x =-5y =2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.23.1解析:1【分析】先根据开方的意义,绝对值的意义进行化简,最后计算即可求解.【详解】解:原式123122=-+++⨯1=+ 【点睛】本题考查了实数的混合运算,理解开方的意义,能正确去绝对值是解题关键.24.求下列各式中x 的值.(1)4(x ﹣3)2=9;(2)(x +10)3+125=0.解析:(1)x =92或32;(2)x =﹣15 【分析】(1)利用平方根解方程即可;(2)利用立方根解方程即可.【详解】解:(1)4(x ﹣3)2=9,(x ﹣3)2=94, x ﹣3=32±, x ﹣3=32或x ﹣3=32-, 解得:x =92或32; (2)(x +10)3+125=0,(x +10)3=﹣125,x +10x +10=﹣5,解得x =﹣15.【点睛】本题主要考查利用平方根解方程、利用立方根解方程,熟练掌握解方程的方法和步骤是解答的关键,注意平方根有两个.25.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-< ∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +4d +∴240c d d ++=∴2040c d d +=⎧⎨+=⎩ ∴24c d =⎧⎨=-⎩ ∴()23223416c d -=⨯-⨯-=∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.26.求满足条件的x 值:(1)()23112x -=(2)235x -=解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.27.1=,31a b +-的平方根是±2,C 的整数部分,求-+b a c 的平方根.解析:±3【分析】结合平方根的定义以及估算无理数大小的方法得出a ,b ,c 的值,进而得出答案.【详解】解::由题意,得: 2a−1=1,解得:a=1,3a+b−1=4,解得:b=2,c=8,所以b ﹣a +c =2﹣1+8=9∴9的平方根是±3故答案为:±3【点睛】本题考查了算术平方根的意义,平方根的意义,无理数的估算,熟练掌握算术平方根的意义、平方根的意义、夹逼法估算无理数的值是解答本题的关键.28.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.解析:(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。
人教版初中数学实数经典测试题附答案
人教版初中数学实数经典测试题附答案一、选择题1.已知3y =,则y x 的值为()n n A .43 B .43- C .34 D .34- 【答案】C【解析】由题意得,4−x ⩾0,x−4⩾0,解得x=4,则y=3,则y x =34, 故选:C.2.把-( )AB .C .D 【答案】A【解析】【分析】由二次根式-a 是负数,根据平方根的定义将a 移到根号内是2a ,再化简根号内的因式即可.【详解】 ∵10a-≥,且0a ≠, ∴a<0,∴-,∴-= 故选:A. 【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a 的取值范围是解题的关键.3.在-2,3.14,5π,这6个数中,无理数共有( ) A .4个 B .3个 C .2个 D .1个【解析】-2,42=, 3.14, 3273-=-是有理数;2,5π是无理数; 故选C. 点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,如3 ,35 等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个).4.-2的绝对值是( )A .B .C .D .1 【答案】A【解析】【分析】根据差的绝对值是大数减小数,可得答案.【详解】-2的绝对值是2-. 故选A .【点睛】本题考查了实数的性质,差的绝对值是大数减小数.5.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.6.25的平方根是( )A .±5B .5C .﹣5D .±25【答案】A【解析】【分析】如果一个数 x 的平方是a ,则x 是a 的平方根,根据此定义求解即可.【详解】∵(±5)2=25,∴25的立方根是±5,故选A .【点睛】本题考查了求一个数的平方根,解题的关键是掌握一个正数的平方根有两个,这两个互为相反数.7.下列说法中,正确的是( )A .-(-3)2=9B .|-3|=-3C ±3D【答案】D【解析】【分析】根据绝对值的意义,乘方、平方根、立方根的概念逐项进行计算即可得.【详解】A. -(-3)2=-9,故A 选项错误;B. |-3|=3,故B 选项错误;3,故C 选项错误;D. 4,=-4,故D 选项正确,故选D.【点睛】本题考查了绝对值的意义,乘方运算、平方根、立方根的运算,熟练掌握各运算的运算法则是解题的关键.8.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.9.如图,M 、N 、P 、Q 是数轴上的四个点,这四个点中最适合表示15﹣1的点是( )A .点MB .点NC .点PD .点Q【答案】D【解析】【分析】 15151的范围,即可得出答案.【详解】解:∵3.5154<<,∴2.51513<<,151的点是Q 点,故选D .【点睛】本题考查估算无理数的大小,实数与数轴.一般用夹逼法估算无理数.10.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,【点睛】本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.11.设2a =.则a 在两个相邻整数之间,那么这两个整数是( ) A .1和2B .2和3C .3和4D .4和5 【答案】C【解析】【分析】<<56<<,进而可得出a 的范围,即可求得答案.【详解】<<∴56<<∴52262-<<-,即324<<,∴a 在3和4之间,故选:C .【点睛】此题主要考查了估算无理数的大小,利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.12.用“☆”定义一种新运算:对于任意有理数x 和y ,21x y a x ay =++☆(a 为常数),如:2223231231a a a a =⋅+⋅+=++☆.若123=☆,则48☆的值为( )A .7B .8C .9D .10 【答案】C【解析】【分析】先根据123=☆计算出a 的值,进而再计算48☆的值即可. 【详解】因为212a 2a 13=++=☆,所以2a 2a 2+=,则()224a 8a 14a 2a 1421948=++=++=⨯+=☆,故选:C .【点睛】此题考查了定义新运算以及代数式求值.熟练运用整体代入思想是解本题的关键.13.实数,a b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .a b <B .a b <C .0a b +>D .0a b -> 【答案】A【解析】【分析】根据数轴得a<0<b ,且a b >,再根据实数的加法法则,减法法则依次判断即可.【详解】由数轴得a<0<b ,且a b >,∴a+b<0,a-b<0,故A 正确,B 、C 、D 错误,故选:A.【点睛】此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则.14.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.15.下列说法正确的是( )A .无限小数都是无理数B.1125-没有立方根C.正数的两个平方根互为相反数D.(13)--没有平方根【答案】C【解析】【分析】根据无理数、立方根、平方根的定义解答即可.【详解】A、无限循环小数是有理数,故不符合题意;B、1125-有立方根是15-,故不符合题意;C、正数的两个平方根互为相反数,正确,故符合题意;D、﹣(﹣13)=13有平方根,故不符合题意,故选:C.【点睛】本题考查了无理数、立方根、平方根,掌握无理数、立方根、平方根的定义是解题的关键.16.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.17.下列命题中,真命题的个数有()①带根号的数都是无理数;②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根;④有且只有一条直线与已知直线垂直A.0个B.1个C.2个D.3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;18.14的算术平方根为( ) A .116 B .12± C .12- D .12【答案】D【解析】【分析】根据算术平方根的定义求解即可.【详解】∵21()2=14, ∴14的算术平方根是12, 故选:D .【点睛】本题考查了算术平方根的定义,熟记概念是解题的关键.19.如图,表示8的点在数轴上表示时,所在哪两个字母之间( )A .C 与DB .A 与BC .A 与CD .B 与C【答案】A【解析】【分析】确定出88的范围,即可得到结果.【详解】解:∵6.25<8<9, ∴2.583<<8的点在数轴上表示时,所在C 和D 两个字母之间.故选:A .【点睛】此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.20.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.。
完整版)实数练习题基础篇附答案
完整版)实数练习题基础篇附答案实数练题一、判断题(1分×8=8分)1.3不是9的算术平方根。
(×)2.2的平方根是根号2,它的算术平方根也是根号2.(√)3.-2没有实数平方根。
(×)4.-0.5不是0.25的一个平方根。
(×)5.2的平方根是a。
(×)6.6根是4.(√)7.-10不是1000的一个立方根。
(×)8.-7是-343的立方根。
(√)9.无理数可以用数轴上的点表示出来。
(√)10.有理数和无理数统称实数。
(√)二、选择题(3分×5=15分)11.列说法正确的是(B)A、1是0.5的一个平方根B、正数有两个平方根,且这两个平方根之和等于它们的和C、7的平方根是7D、负数有一个平方根12.如果y=0.25,那么y的值是(C)A、0.0625B、-0.5C、0.5D、±0.513.如果x是a的立方根,则下列说法正确的是(A)A、-x也是a的立方根B、-x是-a的立方根C、x是-a的立方根D、x等于a14.√3、22/7、-3、3343、3.1416都是无理数,它们的个数是(C)A、1个B、2个C、3个D、4个15.与数轴上的点建立一一对应的是(C)A、全体有理数B、全体无理数C、全体实数D、全体整数16.如果一个实数的平方根与它的立方根相等,则这个数是(A)A、0B、正实数且等于1C、负实数且等于-1D、1三、填空题(1分×30=30分)2.100的平方根是10,10的算术平方根是3.3.±3是√9的平方根,-3是√9的平方根;(-2)^2的算术平方根是2.4.正数有两个平方根,它们分别是正数和负数;负数没有实数平方根。
5.-125的立方根是-5,±8的立方根是2,27的立方根是3.6.正数的立方根是正数;负数的立方根是负数;0的立方根是0.7.2的相反数是-2,-π≈-3.14.8.比较下列各组数大小:⑴ <⑵ 3-64=2.5>1.5⑶ π≈3.14<3.5⑷ 2322>2000四、解下列各题。
实数单元测试题(附答案解析)
WORD 格式整理版实数单元测试题一、选择题(每题 3 分,共 24 分) 1.(易错易混点) 4 的算术平方根是() A . 2B .2C .2D .22、下列实数中 ,无理数是 ()A.4B.C. 21 3D. 1 23.(易错易混点) 下列运算正确的是()2A 、9 3B 、3 3C 、9 3D 、3 94、3 27 的绝对值是()A .3B . 3C .13D .1 35、若使式子x 2在实数范围内有意.义..,则 x 的取值范围是 ()A . x 2B . x 2C . x 2D . x 22011x6、若 x ,y 为实数,且 x 2y 2 0,则的值为()yA .1B . 1C .2D . 27、有一个数值转换器,原理如图,当输入的x 为 64 时,输出的 y 是()A 、8B 、 2 2C 、 2 3D 、 3 28.设a2 ,2b(3) ,39c,11d( ) ,则 a ,b ,c ,d 按由小到大的顺序排列 2正确的是( )A . c a d bB . b d a cC . a c dbD . b c a d二、填空题(每题 3 分,共 24 分) 9、9的平方根是.学习好帮手WORD格式整理版10、在3,0, 2 , 2 四个数中,最小的数是11、(易错易混点)若 2(a3) 3 a ,则a与3 的大小关系是12、请写出一个比5小的整数.13、计算:03 ( 2 1)。
14、如图2,数轴上表示数 3 的点是.15、化简:3 8 5 32 的结果为。
16 、对于任意不相等的两个数 a ,b ,定义一种运算※如下:a※b=aabb,如3 23※2= 53 2.那么12※4= .三、计算(17-20题每题4分,21题12分)117(1)计算:3 3 16 .3(2)计算:110 2 | 2|(π2) 9 ( 1) 318、将下列各数填入相应的集合内。
学习好帮手-7,0.32, 13,0,8 ,12,3 125 ,,0.1010010001 ⋯①有理数集合{⋯}②无理数集合{⋯}③负实数集合{⋯}19、求下列各式中的x2 (1)x2 121= 17;(2)x49= 0。
初一下册实数练习题及答案
初一下册实数练习题及答案姓名_____________ 成绩_____________、精心选一选无理数就是开方开不尽的数;无理数包括正无理数、零、负无理数;无理数是无限不循环小数;无理数都可以用数轴上的点来表示。
其中正确的说法的个数是 A.1 B. C.3D.42.如果一个实数的平方根与它的立方根相等,则这个数是 A. 0 B.正整数 C. 0和1D. 1.能与数轴上的点一一对应的是A 整数B 有理数C 无理数D 实数4. 下列各数中,不是无理数的是A. B. 0.5C.?D. 0.151151115?2??4,③3?1??3④116?125?14?15?920A. 1个B. 个 C. 个 D. 个9. 若a2?25,b?3,则a?b的值为A.? B.±C.± D.±8或±、细心填一填10.在数轴上表示。
设面积为5的正方形的边长为x ,那么x=11. 的算术平方根是;的立方根是 . 12.5?2的相反数是,49的平方根是,127的立方根是 , -1252?3= ;113. 2?3?; 14. 比较大小:;5?123?8.0.5;15. 要使2x?6有意义,x 16.已知a?1?b?5?0,则的平方根是________;17.若?10.1; 18. 一个正数x的平方根是2a?3与5?a,则a=________;19.一个圆它的面积是半径为3cm的圆的面积的25倍,则这个圆的半径为_______. 、用心做一做将下列各数填入相应的集合内。
-7,0.32, ,31?125,?,0.1010010001?①有理数集合{? }②无理数集合{? }③负实数集合{? }21.化简①+32—5② 2?217-7)1422.求下列各式中的x4x2?121 3?12523.比较下列各组数的大少与6√3与2√224.一个正数a的平方根是3x―4与2―x,则a是多25.已知a是根号8的整数部分,b是根号8的小数部分,求3+2的值326.求值、已知a、b满足2a?8?b?3?0,解关于x的方程?a?2?x?b2?a?1。
初中数学实数经典测试题附答案
【解析】
【分析】
根据4.84<5<5.29,可得答案.
【详解】
∵4.84<5<5.29,
∴2.2< <2.3,
∴1.2< -1<1.3,
故选B.
【点睛】
本题考查了估算无理数的大小,利用 ≈2.236是解题关键.
6.下列各式中,正确的是()
A. B. C. D.
【答案】C
【案.
20.如图所示,数轴上表示3、 的对应点分别为C、B,点C是AB的中点,则点A表示的数是( )
A.- B.3- C.6- D. -3
【答案】C
【解析】
点C是AB的中点,设A表示的数是c,则 ,解得:c=6- .故选C.
点睛:本题考查了实数与数轴的对应关系,注意利用“数形结合”的数学思想解决问题.
【详解】
A. ,原选项错误,不符合题意;
B. ,原选项错误,不符合题意;
C. ,原选项正确,符合题意;
D. ,原选项错误,不符合题意.
故选:C
【点睛】
本题考查平方根、算术平方根、立方根的计算,重点是掌握平方根、算术平方根、立方根的性质.
7. 的算术平方根为()
A. B. C. D.
【答案】B
【解析】
B选项中,因为 ,所以B中计算错误;
C选项中,因为 ,所以C中计算错误;
D选项中,因为 ,所以D中计算正确;
故选D.
14.如图,已知x2=3,那么在数轴上与实数x对应的点可能是()
A.P1B.P4
C.P2或P3D.P1或P4
【答案】D
【解析】
试题解析:
∵x2=3,
∴x=± ,
根据实数在数轴上表示的方法可得
实数测试题及答案
实数测试题及答案一、选择题(每题2分,共10分)1. 实数集R中,最小的正整数是:A. 0B. 1C. 2D. 3答案:B2. 下列哪个数不是实数?A. πB. -√2C. √4D. 0.33333(无限循环)答案:无3. 若a, b, c是实数,且a > b,则下列哪个不等式一定成立?A. a + c > b + cB. a - c > b - cC. a × c > b × cD. a ÷ c > b ÷ c答案:A4. 实数x满足|x - 1| < 2,则x的取值范围是:A. -1 < x < 3B. -2 < x < 0C. 0 < x < 2D. 1 < x < 3答案:A5. 若实数x满足x² - 4x + 4 = 0,则x的值为:A. 2B. -2C. 0D. 4答案:A二、填空题(每题2分,共10分)1. 一个实数的绝对值等于它本身,那么这个实数一定是______。
答案:非负数2. 若实数x满足x² = 1,则x的值是______。
答案:±13. 实数-3的相反数是______。
答案:34. 若实数a和b满足a² + b² = 0,则a和b的值分别是______。
答案:05. 一个实数的平方根是它本身,那么这个实数只能是______。
答案:1或0三、解答题(每题10分,共20分)1. 已知实数a和b满足a² - 4a + 4 = 0,求a的值。
答案:由于(a - 2)² = 0,所以a = 2。
2. 证明:对于任意实数x,x² ≥ 0。
答案:设x² = y,由于平方总是非负的,所以y ≥ 0,即x² ≥0。
四、综合题(每题15分,共30分)1. 已知实数x和y满足x² + y² = 1,求证x + y ≤ √2。
实数测试题及答案
实数测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是实数?A. √2B. √-1C. 0.1010010001…D. 2+3i答案:A2. 以下哪个选项是正确的?A. 0是最小的实数B. 没有最大的实数C. 所有实数都是有理数D. 所有有理数都是实数答案:D3. 计算下列哪个表达式的结果是一个正实数?A. (-3)^2B. -(-2)^3C. √(-4)D. 1/0答案:A4. 以下哪个数是无理数?A. 1/3B. √4C. πD. 0.5答案:C5. 以下哪个数是实数集合的元素?A. 2B. √2C. 2+3iD. 1/0答案:B6. 以下哪个数是虚数?A. 3B. √2C. 2+3iD. -5答案:C7. 以下哪个数是纯虚数?A. 3+iB. -iC. √(-1)D. 2i答案:D8. 以下哪个数是复数?A. 3B. √2C. 2+3iD. -5答案:C9. 以下哪个数是实数?A. √9B. √(-9)C. 0.33333…D. 2/3答案:A10. 以下哪个数是实数?A. 3.14B. √3C. 2+3iD. 0.1010010001…答案:A二、填空题(每题4分,共20分)1. √9 = ________。
答案:32. √(-1) = ________。
答案:i3. 2π是实数集合中的一个元素,其值为 ________。
答案:6.284. 如果x是实数,那么x^2 ________ 0。
答案:≥5. 一个数的绝对值总是 ________。
答案:非负三、解答题(每题10分,共50分)1. 计算:(√3 + √2)^2。
答案:7 + 4√62. 证明:√2是一个无理数。
答案:假设√2是有理数,设√2 = a/b,其中a和b是互质的整数。
那么2 = a^2 / b^2,即2b^2 = a^2。
这意味着a^2是偶数,所以a必须是偶数。
设a = 2k,则2b^2 = (2k)^2,所以b^2 = 2k^2,这意味着b也是偶数。
实数的试题及答案
实数的试题及答案1. 判断题:实数包括有理数和无理数。
答案:正确。
2. 选择题:下列哪个数是有理数?A. πB. √2C. 0.5D. 0.33333(循环)答案:C。
3. 填空题:若a是实数,且a² = 4,则a的值可以是______。
答案:±2。
4. 计算题:计算下列表达式的值:(1) √9(2) √(-4)²答案:(1) 3(2) 45. 应用题:一个直角三角形的两条直角边长分别为3和4,求斜边的长度。
答案:斜边长度为5。
6. 简答题:请解释什么是无理数,并给出一个例子。
答案:无理数是不能表示为两个整数比的实数,即无法写成分数形式的数。
例如,π就是一个无理数。
7. 证明题:证明√2是一个无理数。
答案:假设√2是有理数,那么存在整数p和q(q≠0),使得√2 = p/q。
通过平方两边,得到2 = p²/q²,即2q² = p²。
这意味着p²是偶数,因此p也是偶数。
设p = 2k,则2q² = (2k)² = 4k²,所以q² = 2k²,这意味着q也是偶数。
但这与p和q互质的假设矛盾,因此√2必须是无理数。
8. 多选题:下列哪些数是实数?A. 1/3B. √3C. 0.1010010001...(每两个1之间0的个数依次递增)D. -2答案:A、B、C、D。
9. 综合题:已知一个数x满足方程x² - 5x + 6 = 0,求x的值。
答案:x = 2 或 x = 3。
10. 探索题:如果一个数的平方是正数,那么这个数是实数吗?答案:是的,因为任何实数的平方都是非负数,而正数是实数的一个子集。
实数简单练习题及答案
实数简单练习题及答案一.选择题1.下列说法不正确的是A.1是1的平方根 B.-1是1的平方根 C.±1是1的平方根D.1的平方根是1 .9的平方根是A.±B.±3C.9D.3.4的算术平方根是A.± B. C.±D.24.下列各数:π,2,-∣-3∣,-,π-3.14,2,0,-1,其中有平方根的有A.3个B.4个C.5个 D.6个.下列几种说法:①任何数的平方根都有两个②只有正数才有平方根;③因为负数没有平方根,所以平方根不可能为负;④不是正数的数都没有平方根. 其中正确的有A.3个B.2个C.1个 D.0个.下列计算正确的是A.2=B.0.1?0.01 C.5=?5D.?2??2.一个正整数的算术平方根是a,则比这个正整数大2的数的算术平方根是A.a+2B. a2? C. a2?D. a?2.已知?n是正整数,则整数n的最大值为 A.1 B.11 C.D.319.下列各数中,-2,0.3,,72,-π,无理数的个数是A.2个B.3个 C.4个D.5个10.下列说法正确的是 A.无理数都是实数,实数都是无理数B.无限小数都是无理数; C.无理数是无限小数 D.两个无理数的和一定是无理数二.填空题1.平方根等于本身的数是,算术平方根等于本身的数是 .立方根等于它本身的数是.2.一个数的平方是49,这个数是,它叫做49的 .2=992开平方的结果是,的平方根是,64643.13是m的一个平方根,则m的另一个平方根是,m= ..的整数部分为,小数部分为 ..若x+1是36的算术平方根,那么x=..∣?517∣的平方根是2的算术平方根是1697.绝对值最小的实数是,a和它的相反数的差是 ..若无理数a满足2 1.求下列各数的平方根: 1412 10.062416-0.001383.计算:??5.027??π?23?四.问答题1.某农场有一块长30米,宽为20米的场地,要在这块场地上建一个鱼池为正方形,使它的面积为场地面积的一半,问能否建成?若能建成,鱼池的边长为多少?2.若球的半径为R,则球的体积V与R的关系式为V=4πR.已知一个足球的体积为31;223.6280cm3,试计算足球的半径.3.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截取8个大小相同的小正方体,使截后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?答案; 一、选择题1、D; 、B; 、B; 、D; 、D; 、A; 、B; 、B; 、A; 10、C;二、填空题1.0; 0,1; 0,1,-1;3932、①、±7;平方根;②、2=;±;③、±5;86483、-13;169;、5;-5;、5或﹣7;956、±;;437、0;2a;、;4;、a=3;b=4; 10、371三、1①、=±12;②=±;③.0625=0.25;④;0.1;⑤;-4;24⑥;﹣9;⑦;±5;⑧;0; 162、①、﹣0.1;②、1.5;③、﹣64;、计算:1、10;2、≈11.5;3、4;实数练习题二一.选择题11.下列说法不正确的是A.0是整数 B.0是有理数 C.0是无理数 D.0是实数 512.?,?2,?,-π/2四个数中,最大的数是3A.? B.-2C.?D.-π/13.下列说法正确的是 A.带根号的数是无理数53B.无限小数是无理数 C.分数都不是无理数D.不能在数轴上表示的数是无理数 14.2的相反数是A. B.-6C. D.-15.设?a,则下列结论正确的是A.4.5 16.下列四个结论:①绝对值等于它本身的实数只有零;②相反数等于它本身的实数只有零;③算术平方根等于它本身的实数只有1;④倒数等于它本身的实数只有1.其中正确的有A.0个 B.1个 C.2个 D.3个 17.下列说法正确的是A.一个数的立方根有两个,它们互为相反数B.负数没有立方根 D.一个数有立方根,它也有平方根 D.立方根的符号与被开立方数的符号相同 18.下列计算不正确的是A.2?? B.33??C..001?0.1 D.3??19.下列说法正确的是A.一个数总大于它的立方根 B.非负数才有立方根C.任何数和它的立方根的符号相同 D.任何数都有两个立方根0.下列各式:3?,?3??27,31?1,64??4,计算正确的有 82644实数练习题一、判断题1.是9的算术平方根. 0的平方根是0,0的算术平方根也是023.的平方根是? . -0.5是0.25的一个平方根. a是a的算术平方根6.4的立方根是?4. -10是1000的一个立方根. -7是-343的立方根.无理数也可以用数轴上的点表示出来10.有理数和无理数统称实数二、选择题 11.列说法正确的是 A 、1是0.5的一个平方根 B、正数有两个平方根,且这两个平方根之和等于02C、的平方根是D、负数有一个平方根 12.如果y?0.25,那么y的值是A、 0.062B、 ?0.5C、 0.5D、?0.13.如果x是a 的立方根,则下列说法正确的是 A、?x也是a的立方根 B、?x 是?a的立方根 C、x是?a的立方根 D、等于a 14.?、322?可,无理数的个数是、?、、3.1416、0.37A 、1个 B、个 C、个 D、个 15.与数轴上的点建立一一对应的是 A、0 B、正实数 C、0和1 D 、1三、填空题2.100的平方根是,10的算术平方根是。
最新初中数学实数经典测试题附答案解析(1)
最新初中数学实数经典测试题附答案解析(1)一、选择题1.16的算术平方根是()A.±4 B.-4 C.4 D.±8【答案】C【解析】【分析】根据算术平方根的定义求解即可求得答案.【详解】2Q,4=1616的算术平方根是4.所以C选项是正确的.【点睛】此题主要考查了算术平方根的定义,解决本题的关键是明确一个正数的算术平方根就是其正的平方根.2.+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】B【解析】分析:直接利用2<3,进而得出答案.详解:∵23,∴3+1<4,故选B.的取值范围是解题关键.3)A.±2 B.±4 C.4 D.2【答案】D【解析】【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【详解】∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选D.本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义.4.把-( )AB .C .D 【答案】A【解析】【分析】由二次根式-a 是负数,根据平方根的定义将a 移到根号内是2a ,再化简根号内的因式即可.【详解】 ∵10a-≥,且0a ≠, ∴a<0,∴-,∴-= 故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a 的取值范围是解题的关键.5.在3.14,237,π这几个数中,无理数有( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14,237,π中无理数有:, π,共计2个.【点睛】考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.下列各数中最小的是( )A .22-B .C .23-D 【答案】A【解析】【分析】先根据有理数的乘方、算术平方根、立方根、负整数指数幂进行计算,再比较数的大小,即可得出选项.【详解】解:224-=-,2139-=2=-, 14329-<-<-<Q , ∴最小的数是4-,故选:A .【点睛】本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.7.下列各数中比3大比4小的无理数是( )A B C .3.1 D .103【答案】A【解析】【分析】由于带根号的且开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.【详解】>4,3<4∴选项中比3大比4.故选A .【点睛】此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.8.黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间 【答案】B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴2.2<5<2.3,∴1.2<5-1<1.3,故选B .【点睛】 本题考查了估算无理数的大小,利用5≈2.236是解题关键.9.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13 D .513【答案】D【解析】【分析】【详解】解:∵|x 2-4|≥02(2)1y --,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形,22222+=②当2,3222313+=③当2为一直角边,3为斜边时,则第三边是直角,22325-=.故选D .考点:1.非负数的性质;2.勾股定理.10.4的算术平方根为()A.2±B.2C.2±D.2【答案】B【解析】分析:先求得4的值,再继续求所求数的算术平方根即可.详解:∵4=2,而2的算术平方根是2,∴4的算术平方根是2,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.11.如图,表示8的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【答案】A【解析】【分析】确定出88的范围,即可得到结果.【详解】解:∵6.25<8<9,<<∴2.5838的点在数轴上表示时,所在C和D两个字母之间.故选:A.【点睛】此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.12.王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示-1的点为圆心,正方形的对角线长为半径画弧交数轴于点A”.则数轴上点A所表示的数是()A.2-1 B.-2+1 C.2D.-2【答案】A【解析】【分析】先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式为:两点间的距离=较大的数-较小的数,便可求出-1和A之间的距离,进而可求出点A表示的数.【详解】数轴上正方形的对角线长为:22+=,由图中可知-1和A之间的距离为2.112∴点A表示的数是2-1.故选A.【点睛】本题考查的是勾股定理及两点间的距离公式,本题需注意:知道数轴上两点间的距离,求较小的数,就用较大的数减去两点间的距离.13.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D【答案】B【解析】【分析】≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.3 1.732【详解】≈-,3 1.732()---≈,1.7323 1.268()1.73220.268---≈,()---≈,1.73210.732因为0.268<0.732<1.268,-表示的点与点B最接近,所以3故选B.14.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.15.在-1.414,0,π,227,3.14, 3.212212221…,这些数中,无理数的个数为( )A .5B .2C .3D .4 【答案】C【解析】【分析】根据无理数的概念解答即可.【详解】-1.414,0,π,227,3.14,3.212212221…,这些数中,无理数有:π,3.212212221…,无理数的个数为:3个故选:C【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.16.已知3y =,则y x 的值为()n n A .43 B .43- C .34 D .34- 【答案】C【解析】由题意得,4−x ⩾0,x−4⩾0,解得x=4,则y=3,则y x =34, 故选:C.17. )A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】C【解析】【详解】解:由36<38<49,即可得67,故选C .18.实数 )A 3<<B .3<C 3<< D 3<< 【答案】D 【解析】【分析】先把3化成二次根式和三次根式的形式,再把3做比较即可得到答案.【详解】解:∵3==∴3=<3=>3<<,故D 为答案.【点睛】本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较.19.估计226⨯值应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间【答案】A 【解析】【分析】 先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】 解:22612⨯= ∵91216<< ∴91216<<∴3124<<∴估计226⨯值应在3到4之间. 故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.20.如图,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是1-,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是( )A .45B 52C 51D .35【答案】C【解析】【分析】 首先根据勾股定理算出AC 的长度,进而得到AE 的长度,再根据A 点表示的数是-1,可得E 点表示的数.【详解】∵2,1AD BC AB ===∴22521AC =+=∴AE-∵A点表示的数是1∴E1【点睛】掌握勾股定理;熟悉圆弧中半径不变性.。
实数计算题专题训练题(含答案)
专题实数计算题训练一.计算题 _ _1. |-2|-( 1+ ~) 0+ ;20PP 22. - 1 +4X(- 3) + (- 6) -(- 2)3 1 一「. 一;j-匚5. 「| 】o 26. (1) ■;;7「•"8. 「■:(精确到0.01).9 . ■- I . :■■- ■- -■■- ■■- _ _■.3 2 210. (- 2) + (- 3)H (- 4) +2] -(- 3) r-2);11|二-灵亍一斤12. - 12+ X :-213((-引* - 昭(-2)彳-听-4|+ (-1)°.214. 求G 的值:9G =121.15. 已知. ,求G P的值.16•比较大小:-2,- (要求写过程说明)217. 求G 的值:(G+10 ) =1618. . _ . — | - 4 : . . - ' - L i19. 已知m v n,求j (m [门)2 + —忌的值;20. 已知a v 0,求■+,「的值.专题一计算题训练参考答案与试题解析一.解答题(共13小题)1 计算题:2|-( 1+ 匚)0+ :解答:解:原式=2 - 1+2 ,=3.20PP 2 2.计算题:-1 +4 X (- 3) + (-6) +(- 2)解答: 解:-120PP +4 X (- 3) 2+ (- 6) - (- 2),=-1+4 X 9+3,=38.3•丁- .E | -- j-匚原式=14 - 11+2=5 ;(2)原式=逅-!+V2= - 1.点评:此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型•解决此类题目的关键是熟练掌握 二次根式、绝对值等考点的运算. 5 .计算题: 一 •丁一 ▼匚 ,一 一]考点:有理数的混合运算。
分析:首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可. 解答:解:原式=-4+8-( - 8)-( - 1)=-17=「点评:本题主要考查有理数的混合运算,乘方运算,关键在于正确的去括号,认真的进行计算即可.6.打 7. 考点:实数的运算;立方根;零指数幕;二次根式的性质与化简。
实数测试题及答案
实数测试题及答案【篇一:八年级数学《实数》综合测试题及参考答案(人教版)】txt>(满分 120分时间 90分钟)班级__________姓名_________得分___________一、精心选一选(每题3分,共30分)3.一个正方形,其面积是2,则它的边长是[](a)整数(b)分数(c)有理数(d)无理数4.|-64|的立方根是[](a)?4(b)4 (c)?8 (d)85.的大小应是[](a)在9.1~9.2之间(b)在9.2~9.3之间(c)在9.3~9.4之间(d)在9.4~9.5之间6.估计3与26的大小关系是[](a)3>26 (b)3=26(c)3<26 (d)无法判断7.若一个自然数的算术平方根是m,则此自然数的下一个自然数(即相邻且更大的自然数)的算术平方根是[](a)8.若a?m2?1(b)m2?1 (c) m?1 (d)m?1b=0,则a与b的关系是[]1b(a)a?b?0 (b)a?b (c)a?b?0 (d)a?9.下列式子中,一定成立的是[]2233(a)2?(?2) (b)?2??2 (c)(?2)3?(?2)3(d)2?(?2)2210.若a2??a,则实数a在数轴上的对应点一定在[](a)原点左侧(b)原点右侧(c)原点或原点左侧(d)原点或原点右侧二、细心填一填(每小题3分,共24分)11.?27的相反数是______,倒数是________.12.一个正数a的两个平方根分别是m?1和m?3,则m=_____,a=_____.13.若?5是m的一个平方根,则m?20的算术平方根是_____.14.计算:(5?2)2007?(5?2)2008?_______.15.m是的整数部分,n是的小数部分,则m?n的值是______.16. 1,4,9,232,? 符合这个规律的第五个数是_____.?417.有四个实数分别是|?3|,,9,,请你计算其中有理数的和与无理数的积的差,其2?计算结果是_____. 18.实数a,b在数轴上的位置如图1所示,则化简a?b?三、耐心解一解(共66分)19.(8分)把下列各数填入相应的大括号内: ?17(b?a)2?_____.图1,,?3,64,(??3.14)0,3.14159265,-|-25|,1.103030030003?(两个3之间依次多个0)①有理数集合{?};②无理数集合{ ?};③正实数集合{?};④负实数集合{ ?}. 20.计算下列各题(每小题4分,共8分)(1)(3221.(8分)若m是(?4)的立方根,n是81的算术平方根,求m?2n的值.1327?128)(3?2) (2)(?2)?|253?5223?4222.(8分)一个正方体的表面积是5400cm,则这个正方体的体积是多少?23.(8分)我们知道,数轴上的点并不都表示有理数.请你画一个图形说明这个结论是正确的.24.(8分)如图2所示是一个正方体纸盒的展开图,在其中的三个正方形a,b,c内分别填入适当的数,使得折成正方体后相对的面上的两个数满足下列条件:a面上的数与它对面上的数互为倒数,b面上的数是它对面上的数的绝对值,c面上的数与它对面上的数互为相反数,则a+b+c的值是多少?图225.(8分)定义一种叫做“@”的运算,对于任意两个实数m,n,有m@n=m2?n2,请你解方程:x@(-1)= 4@2.26.(10分)如图3所示,△oa1a2、△oa2a3、△oa3a4、△oa4a5??都是直角三角形,请细心观察图形,并认真分析下列各式,然后解答问题.()?1?2,s1=222;(2)?1?3,s2=222;(3)?1?4,s3=32;??(1)请用含有n(n是正整数)的等式表示上述变化规律; a1 a31(2)推算出oa10的长度; s4 s3? s2a2 (3)求出s2+s2+s2+?+s2的值.1210图3s11oa1八年级数学《实数》综合测试题参考答案一、1.b;2.c;3.d;4.b;5.c;6.c;7.a;8.c;9.d;10.a. 二、11. 3,?三、19.①-1713; 12.1,4;13.5; 14.5?2; 15.8?;16.325;17. 4;18.?2a.?,64,(??3.14)0,3.14159265,-|-25|;②,1.103030030003?.; 3③,?3,64,(??3.14)0,3.14159265, 1.103030030003?;④?17,-|-25|.20.(1)原式=(23?32)(23?32)?(23)2?(32)2?12?18??6;5632(2)原式=4???4?4?5.21. 8.由题意,得m??4,n?3,故m2?2n?(?4)2?2?3?10.22.设这个正方体的边长为a,则其表面积为6a2cm,故依题意,得6a2=5400,即a2=900,3故a?30或a?-30(不合题意,舍去),故这个正方体的体积是a3?303?27000(cm).223. 略. 24.由题意,得a=12?22,b=0,c=?34,故a+b+c=?0?(?4)?22?4.2222225.由题意,得x?(?1)?4?2,故x?1?12,故x??.226.(1)(n)?1?n?1,sn?n22;(2)oa10?;(3)s12+s22+s32+?+s102=(554)?(222)?(232)?????(22)=21?2?????104=.【篇二:实数练习题基础篇附答案】1. 3是9的算术平方根() 2. 0的平方根是0,0的算术平方根也是0()23.(-2)的平方根是?2 () 4. -0.5是0.25的一个平方根()5.a是a的算术平方根( )1是0.5的一个平方根 b、正数有两个平方根,且这两个平方根之和等于0 42c、 7的平方根是7d、负数有一个平方根 12.如果y?0.25,那么y的值是()a、 0.0625b、 ?0.5c、 0.5d、?0.5 13.如果x是a的立方根,则下列说法正确的是() a、?x也是a的立方根 b、?x是?a的立方根c、x是?a的立方根 d、等于a 14.?、322?可,无理数的个数是()、?、、3.1416、0.37a 、1个 b、 2个 c、 3个 d、 4个 15.与数轴上的点建立一一对应的是()(a、全体有理数b、全体无理数c、全体实数d、全体整数 16.如果一个实数的平方根与它的立方根相等,则这个数是() a、0 b、正实数 c、0和1 d 、12.100的平方根是,10的算术平方根是。
华南师范大学附属中学七年级数学下册第六章【实数】经典测试卷(含答案)
一、选择题1.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( )A .②④⑤B .①③⑥C .④⑤⑥D .③④⑤ 2.若2x -+|y+1|=0,则x+y 的值为( )A .-3B .3C .-1D .13.有下列说法:①在1和2之间的无理数有且只有2,3这两个;②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④ B .①②④ C .②④ D .②4.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >> 5.下列各数中无理数共有( )①–0.21211211121111,②3π,③227,④8,⑤39. A .1个 B .2个C .3个D .4个 6.下列说法中,正确的是 ( )A .64的平方根是8B .16的平方根是4和-4C .()23-没有平方根D .4的平方根是2和-27.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+8.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3-B .7C .11D .139.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n10.设,A B 均为实数,且33,3A m B m =-=-,则,A B 的大小关系是( ) A .A B > B .A B =C .A B <D .A B ≥ 11.下列有关叙述错误的是( )A .2是正数B .2是2的平方根C .122<<D .22是分数 二、填空题12.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324)(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.13.解方程:(1)24(1)90--=x(2)31(1)7x +-=-14.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 15.已知52a +的立方根是3,31a b +-的算术平方根是4,c 11的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.16.将1236按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(15,7)表示的数是____.1737-的相反数是________3的数是________18.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.19.计算:(1)37|2|27---(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭20.已知290x ,310y +=,求x y +的值.21.已知实数,x y 满足()2380x y -+=,求xy -的平方根.三、解答题22.已知(253|530x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.23.求下列各式中的x :(1)29(1)25x -=(2)3548x += 24.求满足条件的x 值:(1)()23112x -=(2)235x -=25.计算:(12(2)22(2)8x -=一、选择题1.在实数:20192020,π,9,3,2π,38,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52-,49中,无理数的个数为( ) A .4 B .5 C .6 D .72.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .103.若15的整数部分为a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158- 4.实数a ,b 在数轴上的位置如图所示,那么化简33a b a b ++-+的结果为( )A .2a -B .22b a -C .0D .2b5.若23a =-2b =--,()332c =-,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >> 6.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .4077.81的平方根是( )A .9B .-9C .9和9-D .818.下列实数中,属于无理数的是( )A .3.14B .227C 4D .π 9.若53a =,则a 在( )A .3-和2-之间B .2-和1-之间C .1-和0之间D .0和1之间10.下列实数是无理数的是( ) A . 5.1- B .0 C .1D .π 11.下列各数中是无理数的是( )A .227B .1.2012001C .2πD 二、填空题 12.计算(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ (2)1110623⎛⎫÷-⨯ ⎪⎝⎭(3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭(4+13.求满足条件的x 值:(1)()23112x -=(2)235x -=14.求下列各式中x 的值:(1)()214x -=;(2)3381x =-.15.求满足下列条件的x 的值:(1)3(3)27x +=-; (2)2(1)218x -+=.16.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________. 17.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是_____.若点B 表示 3.14-,则点B 在点A 的______边(填“左”或“右”).18.请你写出一个比3大且比4小的无理数,该无理数可以是:____.19.把下列各数填入相应的集合里:﹣3,|﹣5|,+(13-),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34,﹣|45-|,3π 正数集合:{_____________…};整数集合:{_____________…};负分数集合:{_____________…};无理数集合:{_____________…}.20.3331.5115.10.1510.5325===31510的值是______________________.21.31-___________12 三、解答题22.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:a b = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.23.计算:(182(22)-+(2()238272-24.求下列各式中x 的值.(1)4(x ﹣3)2=9;(2)(x +10)3+125=0.25.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=一、选择题1.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上 2.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是( )A .2B .4C .6D .83.下列各数中比3-小的数是( )A .2-B .1-C .12-D .04.81的算术平方根是( )A .3B .﹣3C .±3D .65.估算481的值( )A .在7和8之间B .在6和7之间C .在5和6之间D .在4和5之间6.实数a 、b 在数轴上的位置如图所示,且||||b a >,则化简233||()a a b b -++-的结果是( )A .2aB .2bC .22a b +D .07.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .3±8.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( )A .-27B .-47C .-58D .-689.在下列实数3,0.31,3π,27-,9,12-,38,1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( )A .1B .2C .3D .410.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±9 11.在0,3π,5,227,9-,6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ).A .1个B .2个C .3个D .4个 二、填空题12.阅读下列材料,并回答问题:我们把单位“”平均分成若干份,表示其中一份的数叫“单位分数”.单位分数又叫埃及分数,在很早以前,埃及人就研究如何把一个单位分数表示成两个或几个单位分数的和或差.今天我们来研究如何拆分一个单位分数.请观察下列各式:111162323==-⨯;1111123434==-⨯, 1111204545==-⨯,1111305656==-⨯. (1)由此可推测156= ; (2)请用简便方法计算:11111612203042++++; (3)请你猜想出拆分一个单位分数的一般规律,并用含字母m 的等式表示出来(m 表示正整数);(4)仔细观察下面的式子,并用(3)中的规律计算:()()()()()()121231312x x x x x x -+------13.“*”是规定的一种运算法则:a*b=a 2-3b .(1)求2*5的值为 ;(2)若(-3)*x=6,求x 的值;14.已知a 是10b 10的小数部分,求代数式(1b 10a --的平方根. 15.﹣816_____.16.定义新运算:对于任意实数a ,b ,都有()1a b a a b ⊕=-+,等式右边是通常的加法、减法及乘法运算,比如:252(25)12(3)1615⊕=⨯-+=⨯-+=-+=-,则(2)3-⊕=________.17.对于实数x ,规定[x ]表示不大于x 的最大整数,如[4]=4,[3]=1,如[﹣2.5]=﹣3,现对82进行如下操作:82−−−→第一次[82]=9−−−→第二次[9]=3−−−→第三次[3]=1,这样对82只需进行3次操作后变为1,类似地,按照以上操作,只需进行3次操作后变为2的所有正整数中,最大的正整数是__.18.把下列各数填在相应的横线里:3,0,10%,﹣112,﹣|﹣12|,﹣(﹣5),2π,0.6,127,0.101001000… 整数集合:{_____________…};分数集合:{_____________…};无理数集合:{_____________…};非负有理数集合{_____________…}.19.若x ﹣1与2x ﹣3是数A 的两个平方根,则A =_______.20.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).21.已知a 是56-的整数部分,b 是56-的小数部分.则2=ab _____.三、解答题22.(1)求x 的值:2490x -=;(2)计算:()2325227+--23.已知31a +的算数平方根是4,421c b +-的立方根是3,c 是13的整数部分.求22a b c +-的平方根.24.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.25.求下列各式中x 的值: (1)()214x -=; (2)3381x =-.。
人教版第六章实数测试卷1(含答案)
第六章实数测试卷一、单选题1 ( )A .B .C .±3D .32.下列实数中的无理数是( )A B C D .2273.下列各组数中,两个数相等的是 ( )A .-2B .-2与-12C .-2D .|-2|与-2 4.8的相反数的立方根是( )A .2B .12C .﹣2D .12-5.比较2的大小,正确的是( )A .2<B .2<C 2<D 26.实数a 在数轴上的位置如图所示,则下列说法不正确的是( )A .a 的相反数大于2B .a 的相反数是2C .|a|>2D .2a <07.有一个数值转换器原理如下:当输入x =16时,输出的数是 ( )A .8B .2C D8是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间9 ( )A .4至5之间B .5至6之间C .6至7之间D .4至6之间10.计算:12-的结果是( ) A .1B .2C .0D .-1 第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.____.12122-+-=______.132(1)-=_______.14.______,|1=_______________.15a ,小数部分为b ,则a -b =____.16.观察分析下列数据,寻找规律:0,3…,那么第13个数据是______.三、解答题17.已知数-34,-1.••42,π,3.1416,23,0,42,(-1)2,-1.424224222…. (1)写出所有有理数;(2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.18.求下列各式的值.15(3)|a -π|+-a a <π).(精确到0.01)19.如图所示,在△ABC 中,∠B =90°,AB ,BC 边足够长,点P 从点B 开始沿BA 边向点A 以1厘米/秒的速度移动,同时,点Q 也从点B 开始沿BC 边向点C 以2厘米/秒的速度移动,几秒后,△BPQ 的面积为36平方厘米?20.已知2a-1的算术平方根是3,3a+b+4的立方根是2,求3a+b的平方根.21.求下列各式中x的值:(1)2x2-32=0;(2)(x+4)3+64=0.22.(1)已知2a-1的平方根是±3,2是3a+b-1的立方根,求a+2b的值.(2)设x,y,试求x,y的值与x-1的算术平方根.23.已知实数a,b|2b+1|=0,求的值.24.某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:t2=3900d,其中d(km)是雷雨区域的直径.(1)如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是多少(结果精确到0.1km)?参考答案:1.D【解析】【详解】∠33=27,3=.故选D.2.C【解析】【详解】分析: 分别根据无理数、有理数的定义即可判定选择项.详解:,,227是有理数,是无理数,故选C.点睛:此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.3.C【解析】【分析】根据算术平方根的定义,立方根的定义以及绝对值的性质对各选项分析后利用排除法求解.【详解】解:A、,∠-2B、-2与-12不相等,故本选项错误;C、,∠-2D、∠|-2|=2,∠|-2|与-2不相等,故本选项错误.故选C.【点睛】本题主要考查了算术平方根,立方根的定义,对各选项正确化简是解题的关键.4.C【解析】【详解】【分析】根据相反数的定义、立方根的概念计算即可.【详解】8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选C .【点睛】本题考查了实数的性质,掌握相反数的定义、立方根的概念是解题的关键. 5.C【解析】【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【详解】解:∠26=64,362125⎡⎤==⎢⎥⎣⎦,26349⎡⎤==⎢⎥⎣⎦,而49<64<125∠6662<<2<故选C .【点睛】此题考查的是无理数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.6.B【解析】【详解】试题分析:由数轴可知,a <-2,A 、a 的相反数>2,故本选项正确,不符合题意;B 、a 的相反数≠2,故本选项错误,符合题意;C 、a 的绝对值>2,故本选项正确,不符合题意;D 、2a <0,故本选项正确,不符合题意.故选B .考点:实数与数轴.7.D【解析】【分析】把16代入数值转换器,根据要求进行计算,得到输出的数值.【详解】解:,4是有理数,∠继续转换,=2,2是有理数,∠继续转换,∠2,是无理数,∠符合题意,故选D.【点睛】本题考查的是算术平方根的概念和性质,掌握一个正数的正的平方根是这个数的算术平方根是解题的关键,注意有理数和无理数的区别.8.B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∠4.84<5<5.29,,,故选B.【点睛】是解题关键.9.B【解析】【分析】【详解】解:∠5 ²=25,6 ²=36,25<32<36,∠56,故选B.【点睛】关键.10.C【解析】【分析】根据有理数的运算性质,先化简再求值.【详解】解:原式=12-12=0.【点睛】掌握有理数的相关运算性质是解答本题的关键. 11.3,【解析】【详解】-(∠乘积为1的数互为倒数,∠3得倒数为.12..【解析】【详解】原式=13222-+-=52,故答案为52.13.4【解析】【分析】按顺序先分别进行算术平方根和平方运算,然后再进行减法运算即可.【详解】2(1)514-=-=,故答案为:4.【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.14. 1 ±3【解析】【分析】直接利用相反数的定义得出答案;结合绝对值的定义得出答案;,再根据绝对值的性质即可求出.【详解】解:(2) |1|1;(3)∠绝对值为3的数为±3.1; ±3.【点睛】本题主要考查相反数,绝对值的定义以及立方根,关键在于熟练掌握运用相关的性质定理,认真的进行计算.15.【解析】【分析】a,b的值,进而得出答案.【详解】解:∠45,a=4,小数部分为.∠a-b=4-)故答案为【点睛】16.6【解析】【详解】被开方数依次为0,3,6,9,12,15,18,…,每两数相差3,所以第13 6.故答案为6.点睛:本题是数字规律探究题,观察题目找出规律被开方数依次增加3是解题的关键..17.(1)-34,-1.••42,3.1416,23,0,42,(-1)2.(2)π,-1.424224222…;(3)见解析.【解析】【分析】(1)按照有理数的定义解答,特别要注意无限循环小数是有理数;(2)根据无理数的定义解答,即无限不循环小数是无理数;(3)根据实数比较大小的法则把各数进行比较,并用“<”连接起来.【详解】解:(1)-34,-1.••42,3.1416,23,0,42,(-1)2.(2)π,-1.424224222….(3)-1.··42<-1.424224222…<-34<0<23<(-1)2<π<3.1416<42.【点睛】本题考查的是有理数、无理数的定义及实数的大小比较,熟知有理数、无理数的定义及实数的大小比较法则是解答此题的关键.18.(1)35;(2)-1.7;(3)1.73.【解析】【分析】(1)先把计算根号的加减运算,然后利用二次根式的性质化简后进行乘法运算;(2)首先进行二次根式的化简,然后合并即可;(3)先根据实数a的取值范围,判断出a-πa的符号,根据绝对值的性质进行解答即可.【详解】解:(1)=7×5=35.(2)13×0.6-15×30=92-0.2-6=-1.7.a<π,∠a-π<0-a<0,∠|a-π|+a|=(π-a)+(a)=π-a+a=π≈3.142-1.414=1.728≈1.73.【点睛】本题考查了二次根式的计算,实数的运算,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式,属于基础题.19.6秒【解析】【分析】设x秒钟后,△PBQ的面积等于36cm2,根据直角三角形的面积公式和路程=速度×时间进行求解即可.【详解】解:设x秒后,△BPQ的面积是36平方厘米,根据题意得PB=x厘米,QB=2x厘米,因此12x×2x=36,所以x2=36,解得x=6(x=-6舍去),所以6秒后,△BPQ的面积是36平方厘米.【点睛】此题考查了一元二次方程的应用,找到关键描述语“△PBQ的面积等于36cm2”,找到等量关系是解决问题的关键.20.3a+b的平方根为±2.【解析】【详解】试题分析:先按照题意求出a、b的值,然后再代入即可得解.试题解析:∠2a-1的算术平方根是3,∠2a-1=9 ,∠a=5 ,又∠3a+b+4的立方根是2,∠3a+b+4=8,∠3×5+b+4=8,∠b=-11,∠3a+b=4,∠3a+b的平方根为±2.21.(1)x﹦±4,(2)x﹦﹣8.【解析】【分析】(1)通过求平方根解方程;(2)通过求立方根解方程.【详解】解:(1)2x2﹣32=02x2﹦32x2﹦16x﹦±4,∠x1=4,x2=﹣4;(2)(x+4)3+64=0(x+4)3﹦﹣64x+4﹦﹣4x﹦﹣8.【点睛】本题考核知识点:运用开方知识解方程. 解题关键点:熟练进行开方运算.22.(1)-7;(2【解析】【分析】(1)根据平方根、算术平方根、立方根的定义进行运算即可;(2介于哪两个整数之间,从而找到整数部分,小数部分让原数减去整数部分,然后代入求值即可.【详解】解:(1)依题意得2a-1=9,3a+b-1=8,解得a=5,b=-6.所以a+2b=-7.(2)即所以的整数部分是4.由题意知x=4,y-2,则x-1=3,所以x-1【点睛】本题考查了实数的运算,涉及了平方根、立方根、倒数及相反数的知识,无理数的估算能力,解题关键是估算出整数部分后,然后即可得到小数部分.23.1 4 -【解析】【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:根据题意,得10,4 210, ab⎧-=⎪⎨⎪+=⎩解得1412ab⎧=⎪⎪⎨⎪=-⎪⎩,,则=1-2⎛⎫⎪⎝⎭14.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.24.(1)0.9h(2)9.7km【解析】【分析】(1)根据t2=3900d,其中d=9(km)是雷雨区域的直径,开立方,可得答案;(2)根据t2=3900d,其中t=1h是雷雨的时间,开立方,可得答案.【详解】(1)当d=9时,则t2=3900d,因此t0.9.答:如果雷雨区域的直径为9km,那么这场雷雨大约能持续0.9h.(2)当t=1时,则3900d=12,因此d答:如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是9.7km.【点睛】本题考查了立方根,注意任何数都有立方根.。
(完整版)实数经典例题及习题
1.下面几个数:0.23,1。
010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【变式3】2.设,则下列结论正确的是()A。
B。
C. D.【变式1】1)1。
25的算术平方根是__________;平方根是__________.2)—27立方根是__________. 3)___________, ___________,___________。
【变式2】求下列各式中的(1)(2)(3)3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().[变式2]已知实数、、在数轴上的位置如图所示:化简【答案】:4.化简下列各式:(1) |—1。
4| (2) |π-3.142|(3) |-| (4) |x—|x-3||(x≤3)【变式1】化简:5.已知:=0,求实数a, b的值。
【变式1】已知(x-6)2++|y+2z|=0,求(x-y)3—z3的值.【变式2】已知那么a+b-c的值为___________6.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。
【变式1】拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下的空白区域恰好是一个小正方形。
(4个长方形拼图时不重叠)(1)计算中间的小正方形的面积,聪明的你能发现什么?(2)当拼成的这个大正方形边长比中间小正方形边长多3cm时,大正方形的面积就比小正方形的面积多24cm2,求中间小正方形的边长.7.判断下列说法是否正确(1)的算术平方根是-3;(2)的平方根是±15。
实数经典测试题及解析
实数经典测试题及解析一、选择题1.下列式子中,计算正确的是( )A .- 3.6=-0.6B .2(13)-=-13C .36=±6D .-9=-3【答案】D【解析】A 选项中,因为2(0.6)0.36-=,所以0.60.36-=-,故A 中计算错误;B 选项中,因为2(13)16913-==,所以B 中计算错误;C 选项中,因为366=,所以C 中计算错误;D 选项中,因为93-=-,所以D 中计算正确;故选D.2.如图,M 、N 、P 、Q 是数轴上的四个点,这四个点中最适合表示15﹣1的点是( )A .点MB .点NC .点PD .点Q【答案】D【解析】【分析】先求出15的范围,再求出151-的范围,即可得出答案.【详解】解:∵3.5154<<,∴2.51513<-<,∴表示151-的点是Q 点,故选D .【点睛】本题考查估算无理数的大小,实数与数轴.一般用夹逼法估算无理数.3.-2的绝对值是( ) A .B .C .D .1 【答案】A【解析】【分析】根据差的绝对值是大数减小数,可得答案.-2的绝对值是2-.故选A .【点睛】本题考查了实数的性质,差的绝对值是大数减小数.4.设,a b 是不相等的实数,定义W 的一种运算;()()()2a b a b a b a b =+-+-W ,下面给出了关于这种运算的四个结论:①()6318-=-W ;②a b b a =W W ;③若0a b =W ,则0b =或0a b +=;④()a b c a b a c +=+WW W ,其中正确的是 ( ) A .②④B .②③C .①④D .①③ 【答案】D【解析】【分析】先化简()()()2a b a b a b +-+-,然后各式利用题中的新定义化简得到结果,即可作出判断.【详解】解:()()()222222222=+-+-=++-+=+a b a b a b a b a ab b a b ab b W , ①()2632(6)323361818-=⨯-⨯+⨯=-+=-W ,故①正确; ②∵222=+b a ba a W ,当a b ¹时,≠a b b a WW ,故②错误; ③∵0a b =W ,即2222()0+=+=ab b b a b ,∴2b =0或a +b =0,即0b =或0a b +=,故③正确;④∵()2222()2()22242a b c a b c b c ab ac b bc c +=+++=++++W 222222222222+=+++=+++a b a c ab b ac c ab ac b c W W∴()+≠+a b c a b a c W WW ,故④错误; 故选:D .【点睛】本题考查了整式的混合运算和定义新运算,理解定义新运算并根据运算法则进行计算是解题的关键.5.下列各式中,正确的是( )A ()233-=-B 42=±C 164=D 393=【答案】C【解析】【分析】对每个选项进行计算,即可得出答案.A. ()233-=,原选项错误,不符合题意;B. 42=,原选项错误,不符合题意;C. 164=,原选项正确,符合题意;D. 393≠,原选项错误,不符合题意.故选:C【点睛】本题考查平方根、算术平方根、立方根的计算,重点是掌握平方根、算术平方根、立方根的性质.6.如图,数轴上的点P 表示的数可能是( )A 5B .5C .-3.8D .10-【答案】B 【解析】【分析】【详解】5 2.2≈,所以P 点表示的数是5-7.在实数范围内,下列判断正确的是( )A .若212L t ,则m=nB .若22a b >,则a >bC 22()a b =,则a=bD 33a b =a=b 【答案】D【解析】【分析】根据实数的基本性质,逐个分析即可.【详解】A 、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B 、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C 、两个数可能互为相反数,如a=-3,b=3,故选项错误;D 、根据立方根的定义,显然这两个数相等,故选项正确.故选:D .【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.8.王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示-1的点为圆心,正方形的对角线长为半径画弧交数轴于点A”.则数轴上点A所表示的数是()A2-1 B2+1 C2D2【答案】A【解析】【分析】先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式为:两点间的距离=较大的数-较小的数,便可求出-1和A之间的距离,进而可求出点A表示的数.【详解】22+=-1和A2.112∴点A2.故选A.【点睛】本题考查的是勾股定理及两点间的距离公式,本题需注意:知道数轴上两点间的距离,求较小的数,就用较大的数减去两点间的距离.964)A.±2 B.±4 C.4 D.2【答案】D【解析】【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【详解】∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选D.【点睛】本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义.10.下列说法正确的是()A.任何数的平方根有两个B .只有正数才有平方根C .负数既没有平方根,也没有立方根D .一个非负数的平方根的平方就是它本身【答案】D【解析】A 、O 的平方根只有一个即0,故A 错误;B 、0也有平方根,故B 错误;C 、负数是有立方根的,比如-1的立方根为-1,故C 错误;D 、非负数的平方根的平方即为本身,故D 正确;故选D .11.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .3 【答案】D【解析】【分析】【详解】 设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有 ()x 3=31-,解得x=23+1.故选D.12.若320,a b -+=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.13.若一个正数的平方根是2a ﹣1和﹣a+2,则这个正数是( )A .1B .3C .4D .9【答案】D【解析】∵一正数的两个平方根分别是2a −1与−a +2,∴(2a −1)+(−a +2)=0,解得a =−1.∴−a +2=1+2=3,∴这个正数为32=9.故选:D.14.已知443y x x =-+-+,则y x 的值为()n n A .43 B .43- C .34 D .34- 【答案】C【解析】由题意得,4−x ⩾0,x−4⩾0,解得x=4,则y=3,则y x =34, 故选:C.15.用“☆”定义一种新运算:对于任意有理数x 和y ,21x y a x ay =++☆(a 为常数),如:2223231231a a a a =⋅+⋅+=++☆.若123=☆,则48☆的值为( )A .7B .8C .9D .10 【答案】C【解析】【分析】先根据123=☆计算出a 的值,进而再计算48☆的值即可. 【详解】因为212a 2a 13=++=☆,所以2a 2a 2+=,则()224a 8a 14a 2a 1421948=++=++=⨯+=☆,故选:C .【点睛】此题考查了定义新运算以及代数式求值.熟练运用整体代入思想是解本题的关键.16.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④ 【答案】C【解析】试题分析:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵ 7.84<8<8.41,∴2.82<8<2.92,∴2.88<2.9,③段上.故选C考点:实数与数轴的关系17.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x 的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.18.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a 、b 中的较大的数,如:max {2,4}=4,按照这个规定,方程max {x ,﹣x }=x 2﹣x ﹣1的解为( )A .或1B .1或﹣1C .1或1D .或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x 的分式方程求解,结合x 的取值范围确定方程max {x ,﹣x }=x 2﹣x ﹣1的解即可.【详解】解:①当x ≥﹣x ,即x ≥0时,∵max {x ,﹣x }=x 2﹣x ﹣1,∴x =x 2﹣x ﹣1,解得:x =(1<0,不符合舍去);②当﹣x >x ,即x <0时,﹣x =x 2﹣x ﹣1,解得:x =﹣1(1>0,不符合舍去),即方程max {x ,﹣x }=x 2﹣x ﹣1的解为1+2或﹣1, 故选:D . 【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.19.14的算术平方根为( ) A .116 B .12± C .12- D .12 【答案】D【解析】【分析】根据算术平方根的定义求解即可.【详解】∵21()2=14, ∴14的算术平方根是12, 故选:D .【点睛】本题考查了算术平方根的定义,熟记概念是解题的关键.20.如图,数轴上A ,B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )A .3B .3C .3D .3【答案】A【解析】【分析】由于A ,B 两点表示的数分别为-13OC 的长度,根据C 在原点的左侧,进而可求出C 的坐标.【详解】∵对称的两点到对称中心的距离相等,∴CA=AB ,33,∴3C 点在原点左侧,∴C表示的数为:故选A.【点睛】本题主要考查了求数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数经典测试题附答案一、选择题1.如图,数轴上的点可近似表示(4630-)6÷的值是( )A .点AB .点BC .点CD .点D 【答案】A 【解析】【分析】先化简原式得45-5545【详解】原式=45-由于25<<3,∴1<45-<2.故选:A .【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.2.一个自然数的算术平方根是x ,则它后面一个自然数的算术平方根是( ). A .x +1B .x 2+1C 1xD 21x +【答案】D【解析】一个自然数的算术平方根是x ,则这个自然数是2,x 则它后面一个数的算术平方根是21x +.故选D.3.已知一个正方体的表面积为218dm ,则这个正方体的棱长为( )A .1dmB 3dmC 6dmD .3dm【答案】B【解析】【分析】设正方体的棱长为xdm ,然后依据表面积为218dm 列方程求解即可.【详解】设正方体的棱长为xdm .根据题意得:2618(0)x x =>,解得:3x=.所以这个正方体的棱长为3dm.故选:B.【点睛】此题考查算术平方根的定义,依据题意列出方程是解题的关键.4.在2,﹣1,0,5,这四个数中,最小的实数是( )A.2B.﹣1 C.0 D.5【答案】B【解析】【分析】将四个数按照从小到大顺序排列,找出最小的实数即可.【详解】四个数大小关系为:1025-<<<,则最小的实数为1-,故选B.【点睛】此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.5.-2的绝对值是()A.B.C.D.1【答案】A【解析】【分析】根据差的绝对值是大数减小数,可得答案.【详解】-2的绝对值是2-.故选A.【点睛】本题考查了实数的性质,差的绝对值是大数减小数.6.下列实数中的无理数是()A 1.21B38-C33-D.22 7【答案】C【解析】【分析】无限不循环小数是无理数,根据定义解答.=1.1是有理数;,是有理数;是无理数; D.227是分数,属于有理数, 故选:C.【点睛】 此题考查无理数的定义,熟记定义是 解题的关键.7.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间【答案】C【解析】【分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】=,∵49<54<64,∴,∴7和8之间,故选C .【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.8.下列六个数:01,,0.13π•-中,无理数出现的频数是( ) A .3 B .4 C .5 D .6【答案】A【解析】【分析】根据无理数的定义找出无理数,根据频数的定义可得频数.【详解】因为六个数:01,,0.13π•-π 即:无理数出现的频数是3故选:A考核知识点:无理数,频数.理解无理数,频数的定义是关键.9.的值应在( ) A .2.5和3之间B .3和3.5之间C .3.5和4之间D .4和4.5之间 【答案】C【解析】【分析】直接利用二次根式乘法运算法则化简,进而估算无理数的大小即可.【详解】== ∵3.52=12.25,42=16,12.25<13.5<16,∴3.5 4.故选:C.【点睛】本题考查了估算无理数的大小,正确进行二次根式的运算是解题的关键.10.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③2a 的算术平方根是a ;④算术平方根不可能是负数;⑤()24π-的算术平方根是4π-,其中不正确的个数是( )A .2个B .3个C .4个D .5个 【答案】B【解析】【分析】根据算术平方根的定义判断即可.【详解】负数没有算术平方根,①错误;0的算术平方根是0,②错误;2a 的算术平方根是a ,③错误;算术平方根不可能是负数,④正确;()24π-的算术平方根是4-π,⑤正确.所以不正确的个数为3个,选B .【点睛】掌握算术平方根的定义.注意:0的算术平方根是0、负数没有算术平方根.11.估计2值应在( ) A .3到4之间 B .4到5之间 C .5到6之间 D .6到7之间【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】 解:226122⨯= ∵91216<< ∴91216<<∴3124<<∴估计2262⨯值应在3到4之间. 故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.12.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.13.下列各组数中互为相反数的是( )A .5B .-和(-C .D .﹣5和15【答案】B【解析】【分析】 直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A 、5,两数相等,故此选项错误;B 、和-()互为相反数,故此选项正确;C 、=-2,两数相等,故此选项错误;D 、-5和15,不互为相反数,故此选项错误. 故选B .【点睛】 本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.14.若x 2=16,则5-x 的算术平方根是( )A .±1B .±3C .1或9D .1或3【答案】D【解析】【分析】根据平方根和算术平方根的定义求解即可.【详解】∵x 2=16,∴x=±4,∴5-x=1或5-x=9,∴5-x 的算术平方根是1或3,故答案为:D.【点睛】本题考查了平方根和算术平方根的定义,解题的关键是要弄清楚算术平方根的概念与平方根的概念的区别.15.在-1.414,0,π,227,3.14, 3.212212221…,这些数中,无理数的个数为( )A .5B .2C .3D .4 【答案】C【分析】根据无理数的概念解答即可.【详解】-1.414,0,π,227,3.14,2+3,3.212212221…,这些数中,无理数有:π,2+3,3.212212221…,无理数的个数为:3个故选:C【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.16.实数a,b,c,d在数轴上的对应点的位置如图所示,则下列结论正确的是()A.|a|>|b| B.a>﹣3 C.a>﹣d D.11 c<【答案】A【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.【详解】由数轴可知,﹣4<a<﹣3,b=﹣1,0<c<1,d=3,∴|a|>|b|,A正确;a<﹣3,B错误;a<﹣d,C错误;11c>,D错误,故选A.【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义等,熟练掌握是解题的关键.17.下列说法:①36的平方根是6;②±9的平方根是3;164±;④ 0.01是0.1的平方根;⑤24的平方根是4;⑥ 81的算术平方根是±9.其中正确的说法是()A.0 B.1 C.3 D.5【答案】A【分析】依据平方根、算术平方根的定义解答即可.【详解】①36的平方根是±6;故此说法错误;②-9没有平方根,故此说法错误; ③16=4,故16=4±说法错误;④ 0. 1是0. 01的平方根,故原说法错误;⑤24的平方根是±4,故原说法错误;⑥ 81的算术平方根是9,故原说法错误.故选A.18.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④【答案】C【解析】试题分析:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵ 7.84<8<8.41,∴2.82<8<2.92,∴2.88<2.9, 8③段上.故选C 考点:实数与数轴的关系19.实数310,25 ) A 310325<<B .331025<C 310253<< D 325310<< 【答案】D 【解析】 【分析】先把3化成二次根式和三次根式的形式,再把3310,25做比较即可得到答案.【详解】解:∵33792==∴3910=<3327532=>325310<<,故D 为答案.本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较.-+的结果为()20.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简2a a bA.2a+b B.-2a+b C.b D.2a-b【答案】C【解析】试题分析:利用数轴得出a+b的符号,进而利用绝对值和二次根式的性质得出即可:∵由数轴可知,b>0>a,且 |a|>|b|,()2+=-++=.a ab a a b b故选C.考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.。