电化学发光的基本原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电化学发光的基本原理

电化学发光免疫测定(ECLI)是一种在电极表面由电化学引发

的特异性发光反应,包括电化学和化学发光两个部分。分析中应用

的标记物为电化学发光的底物三联吡啶钌或其衍生N-羟基琥珀酰胺(NHS)酯,可通过化学反应与抗体或不同化学结构抗原分子结合,制成标记的抗体或抗原。ECLL的测定模式与ELISA相似。

基本原理:发光底物二价的三联吡啶钉及反应参与物三丙胺在

电极表面失去电子而被氧化。氧化的三丙胺失去一个H+而成为强还原剂,将氧化型的三价钌还原为激发态的二价钌,随即释放光子而

恢复为基态的发光底物。医学教育网搜|集整理这一过程在电极表面

周而复始地进行,不断地发出光子而常保持底物浓度的恒定。

电化学发光是化学发光方法与电化学方法相互结合的产物,是

指通过电化学方法来产生一些特殊的物质,然后这些电生的物质之

间或电生物质与其它物质之间进一步反应而产生的一种发光现象。

电化学发光保留了化学发光方法所具有的灵敏度高、线性范围宽、观察方便和仪器简单等优点;同物时具有许多化学发光方法无

法比拟的优点,如重现性好、试剂稳定、控制容易和一些试剂可以

重复使用等优点,广泛地应用于生物、医学、药学、临床、环境、

食品、免疫和核酸杂交分析和工业分析等领域。在21世纪中必将继

续为解决人类面临的各种重大问题发挥更加显著的作用。因此有必

要对电化学发光在分析中的应用有更加全面的了解。

电化学发光的应用

1、电极表面活性分布的表征

利用电化学发光成像法可以很好地观察电极表面电化学发光强度的分布情况,而电化学发光强度对电极表面的活性具有很大的依赖性,因此利用电化学发光成像法可以直观地反映电极表面活性分布。

该方法是由Engstrom等于1987年提出的,他们观察到在新抛光的玻碳电极上电化学发光强度分布十分均匀,而在环氧树脂浸渍过的网状玻碳电极上,电化学发光强度的分布不均匀,通过与其它方法相对照,发现电化学发光强度分布能够很好地反映出电极表面活性分布,并且具有微米级的空间分辨能力。在此基础上,他们把电化学发光成像法用于研究碳糊电极表面活性点的分布,观察到碳糊电极表面存在。着活性区域和非活性区域,对于了解碳糊电极的电化学行为具有一定的意义。

由于电化学发光成像法具有直观和简单等优点,许多科学工作者先后将该方法用于表征化学修饰电极表面的活性分布。如Hopper 等用该方法研究了电极表面的电荷对电子转移性质的影响;Pantano 等用该方法研究了电极表面羧基的分布对电子转移性质的影响;ShuItz等用该方法研究了聚合物在电极上的附着情况。从上面的文献可以看出,电化学发光成像法对于了解电极表面的活性分布及其与电极性能之间的关系,进而制备出具有特定功能的电极具有较好的参考价值。

2、电极表面粗糙度的表征

1998年Bard研究组研究了工作电极与对电极之间的距离对电化学发光强度的影响,发现电化学发光强度与电极之间的距离在一定范围内呈线性关系。基于该实验结果,他们提出了利用电化学发光方法来表征电极表面粗糙度的新方法。该方法是通过精密的仪器控制超微电极在所研究的电极上扫描,并记录电化学发光强度与电极所处位置的关系,根据电化学发光强度变化的情况间接地反映出电极表面的粗糙度。可能是由于该方法还很不成熟,还存在着许多尚待克服的困难,如由于激发态的电化学发光试剂在溶液中扩散所造成的空间分辨能力相对较差等问题,目前还未见其它的文献报道。

3、流体动力学研究

由于电化学发光试剂是在电极上产生的,因此通过电化学发光成像法对电化学发光过程进行跟踪,了解电化学发光强度分布随时间变化的情况,就可以在一定程度上推断出在电极上产生的试剂的走向,为考察微区中溶液的流动情况提供一种简单的新方法。

例如采用电化学发光方法可以观察两个靠得很近的电极施加电位时两电极间溶液的流动情况。实验中发现薄层池中电极上的电化学发光强度并不象在溶液体积较大的常规电化学发光池中所观察到的那样均匀地分布,而是按明暗相间的顺序有规则地排列。据此他们认为这是由于两电极靠的很近,限制了溶液的流动,当施加一定的电位时,在电场的作用下溶液被迫发生流动,而两电极之间流动的空间又很小,当溶液沿着平行于电极方向流动时要受到很大的阻力,因此溶液很难沿下图中A的方式分成一个个微区循环流动。

当在两电极上施加足够的电位时,化,产生带正电荷的自由基R+,该自由基和四丁基胺阳离子在电场的作用下向电位较负的电极移动,当碰到电位较负的电极时,带正电荷的自由基R+被还原,产生电化学发光。同样地,当红荧烯在电位较负的电极上被还原,产生带负电荷的自由基R,该自由基和六氟磷酸根阴离子在电场的作用下向电产生电化学发光。位较正的电极移动,当碰到电位较正的电极时,带负电荷的自由基R-被氧化,

4、固态电子传输研究

当一个电极上产生的红莹烯离子流到另一个电极上时产生电化学发光在固态电子传输研究中,通过电化学发光成像法可以直观地了解电子的传输过程。可采用电化学发光来研究固体电解质中的导电行为,他们根据不同电位下电化学发光情况的不同认为电。当电压大于2.6V时,电流较大,同时在两个电极之间还有一个电化学发光区,是通过二价的吡啶钌与三价的吡啶钌之间的电子跳跃、二价的吡啶钌与一价的吡啶钌之间的电子跳跃和一价的吡啶钌与三价的吡啶钌之间的电子转移反应导电的。

5、反应动力学研究

将电化学发光用于研究电化学发光反应动力学是由Nieman研究组提出的。一种方法是通过对电化学发光强度与时间之间的暂态关系曲线进行拟合,计算出反应的速率常数。第二种方法是通过观察电化学发光强度与时间之间的暂态关系曲线的形状来初步估计反应的快慢。一般情况下,达到最大电化学发光强度的时间越短,电化学发光强度与时间之间的暂态关系曲线越尖锐,电化学发光反应的速率就越大。

第三种方法是通过电化学发光成像法与流动注射相结合的办法来初步反映电化学发光反应的快慢。通常在流速一定的条件下,电化学发光的区域越小,电化学发光反应就越快。比如,吡啶钌与草酸反应产生的电化学发光图象,图像有一个较小的尾巴。而吡啶钌与三丙胺反应产生的电化学发光图像如图3B所示,图像有一个较长的尾巴。据此,可以推断前者反应较慢,而后者反应相对较快。

相关文档
最新文档