利用导数研究函数的极值与最值 (共31张PPT)
3.3.3函数的最大(小)值与导数 课件
函数最值的逆向问题 例 2 已知函数 f(x)=ax3-6ax2+b,问是否存在实数 a、 b,使 f(x)在[-1,2]上取得最大值 3,最小值-29?若存在, 求出 a,b 的值;若不存在,请说明理由.
[分析] 函数最值的逆向问题,通常是已知函数的最值 求函数关系式中字母的值的问题.解决时应利用函数的极 值与最值相比较,综合运用求极值、最值的方法确定系数 的方程(组),解之即可.
所以 f(x)在(0,12),(2,+∞)内是增函数,在(-∞,0),(12,
2)内是减函数.
(2)由条件 a∈[-2,2]可知 Δ=9a2-64<0,从而 4x2+3ax +4>0 恒成立.
当 x<0 时,f′(x)<0;当 x>0 时,f′(x)>0. 因此函数 f(x)在[-1,1]上的最大值是 f(1)与 f(-1)两者中 的较大者.
2.函数 y=|x-1|,下列结论正确的是( ) A.y 有极小值 0,且 0 也是最小值 B.y 有最小值 0,但 0 不是极小值 C.y 有极小值 0,但 0 不是最小值 D.因为 y 在 x=1 处不可导,所以 0 既非最小值也非极 值
解析:最小值与极小值定义的应用.故选 A. 答案:A
3.函数 f(x)=x(1-x2)在[0,1]上的最大值为( )
当 a=-130时,f′(x)=x(4x2-10x+4)=2x(2x-1)(x-2).
令 f′(x)=0,解得 x1=0,x2=12,x3=2.
当 x 变化时,f′(x),f(x)的变化情况如下表:
x (-∞,0)
0
(0,12)
1 2
(12,2)
2
(2,+∞)
f′(x) -
0
2020版数学(理)人教A版新设计大一轮课件:第三章 第2节 第2课时 利用导数研究函数的极值、最值
(2)由(1)知,函数的定义域为(0,+∞),f′(x)=1x-a=1-xax(x>0). 当a≤0时,f′(x)>0在(0,+∞)上恒成立, 即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当 a>0 时,当 x∈0,1a时,f′(x)>0, 当 x∈1a,+∞时,f′(x)<0,故函数在 x=1a处有极大值. 综上可知,当a≤0时,函数f(x)无极值点, 当 a>0 时,函数 y=f(x)有一个极大值点,且为 x=1a.
解 (1)当 a=12时,f(x)=ln x-12x,函数的定义域为(0,+∞)且 f′(x)=1x-12=2
令f′(x)=0,得x=2, 于是当x变化时,f′(x),f(x)的变化情况如下表.
x
(0,2)
2
(2,+∞)
f′(x)
+
0
-
f(x)
ln 2-1
故f(x)在定义域上的极大值为f(x)极大值=f(2)=ln 2-1,无极小值.
当 0<v<103 2时,y′<0,函数单调递减;
当 v>103 2时,y′>0,函数单调递增.
若 c<103 2 ,函数在(c,103 2)上单调递减,在(103 2,15)上单调递增, ∴当 v=103 2时,总用氧量最少. 若 c≥103 2,则 y 在[c,15]上单调递增, ∴当v=c时,这时总用氧量最少.
综上可知,a 的取值范围是12,+∞.
考点二 利用导数求函数的最值 【例2】 (2019·广东五校联考)已知函数f(x)=ax+ln x,其中a为常数.
(1)当a=-1时,求f(x)的最大值; (2)若f(x)在区间(0,e]上的最大值为-3,求a的值. 解 (1)易知f(x)的定义域为(0,+∞), 当 a=-1 时,f(x)=-x+ln x,f′(x)=-1+1x=1-x x, 令f′(x)=0,得x=1. 当0<x<1时,f′(x)>0;当x>1时,f′(x)<0. ∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f(x)max=f(1)=-1.∴当a=-1时,函数f(x)在(0,+∞)上的最大值为-1.
高考数学复习知识点讲解课件39---函数的极值、最值
例2 (1)函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为
-29(a>0),则a,b的值为
A.a=2,b=-29
B.a=3,b=2
√C.a=2,b=3
D.以上都不对
解析 函数f(x)的导数f′(x)=3ax2-12ax=3ax(x-4), 因为a>0,所以由f′(x)<0,计算得出0<x<4,此时函数单调递减, 由f′(x)>0,计算得出x>4或x<0,此时函数单调递增, 即函数在[-1,0]上单调递增,在[0,2]上单调递减, 即函数在x=0处取得极大值同时也是最大值, 则f(0)=b=3, 则f(x)=ax3-6ax2+3, f(-1)=-7a+3,f(2)=-16a+3, 则f(-1)>f(2), 即函数的最小值为f(2)=-16a+3=-29, 计算得出a=2,b=3.
e-2b+12(a-1)2=e-a+12(2b-1)2 化为12(a-1)2-e-a=12(2b-1)2-e-2b, 即f(a)=f(2b)⇒a=2b.
方法三 当a>0时,根据题意画出函数f(x)
的大致图象,如图3所示,观察可知b>a.
当a<0时,根据题意画出函数f(x)的大致
图象,如图4所示,观察可知a>b.
综上,可知必有ab>a2成立.
图3
图2 图4
(2)(2021·湘潭模拟)已知函数 f(x)=ex-ax2+2ax 有两个极值点,则 a 的
画出该函数的图象如图1所示,可知x=1为函数f(x)
的极大值点,满足题意.
从而,根据a=1,b=2可判断选项B,C错误;
图1
当a=-1,b=-2时,函数f(x)=-(x+1)2(x+2), 画出该函数的图象如图2所示,可知x=-1为函数 f(x)的极大值点,满足题意. 从而,根据a=-1,b=-2可判断选项A错误.
高中数学(新课标)选修2课件1.3.2函数的极值与导数
知识点一 极值点与极值
1.极小值与极小值点 如图,若函数 y=f(x)在点 x=a 的函数值 f(a)比它在点 x=a 附 近其他点的函数值都小,f′(a)=0;而且在点 x=a 附近的左侧 _f_′__(x_)_<_0_,右侧_f′__(_x_)>__0_,则把点 a 叫做函数 y=f(x)的极小值点, f(a)叫做函数 y=f(x)的极小值.
类型三 函数极值的综合应用
例 3 已知函数 f(x)=13x3-12ax2,a∈R. (1)当 a=2 时,求曲线 y=f(x)在点(3,f(3))处的切线方程; (2)讨论 f(x)的单调性并判断有无极值,有极值时求出极值.
【解析】 (1)由题意 f′(x)=x2-ax, 所以,当 a=2 时,f(3)=0,f′(x)=x2-2x, 所以 f′(3)=3, 因此,曲线 y=f(x)在点(3,f(3))处的切线方程是 y=3(x-3), 即 3x-y-9=0.
∴f′(x)=32x2-32.
由题意知,x=±1 是 f′(x)=0 的根.
根据 x=±1 列表分析 f′(x)的符号,f(x)的单调性和极值点.
x (-∞,-1) -1 (-1,1)
1
(1,+∞)
f′(x)
+
0
-
0
+
f(x)
极大值 1
极小值-1
由上表可以看出,
当 x=-1 时,函数有极大值,且 f(-1)=1;
解析:由极小值点的定义,知极小值点左右两侧的导函数值是 左负右正,又函数 f(x),x∈R 有唯一的极值点,所以当 x∈(-∞, 1)时,f′(x)≤0;当 x∈(1,+∞)时,f′(x)≥0.
答案:C
2.下图是函数 y=f(x)的导函数 y=f′(x)的图象,给出下列命 题:
高二数学(人教B版)选修1-1全册课件1、3-3-2利用导数研究函数的极值
人 教 B 版 数 学
第三章 导数及其应用
(选修1-1)
a 3 (2010· 北京文,18)设函数 f(x)=3x +bx2+cx+d(a>0), 且方程 f′(x)-9x=0 的两个根分别为 1,4. (1)当 a=3 且曲线 y=f′(x)过原点时,求 f(x)的解析式; (2)若 f(x)在(-∞,+∞)内无极值点,求 a 的取值范围.
人 教 B 版 数 学
f(x0)是极小值.
第三章 导数及其应用
(选修1-1)
求函数f(x)=x3-3x2-9x+5的极值. [解析] f′(x)=3x2-6x-9. 解方程3x2-6x-9=0,得x1=-1,x2=3. 当x变化时,f′(x)与f(x)的变化情况如下表:
x f′(x) f(x) (-∞,-1) + 单调递增 -1 0 10 (-1,3) - 单调递减 3 0 -22 (3,+∞) + 单调递增
人 教 B 版 数 学
(2)由(1)可知,f(x)=2x3-9x2+12x+8c, f′(x)=6x2-18x+12=6(x-1)(x-2). 当 x∈(0,1)时,f′(x)>0; 当 x∈(1,2)时,f′(x)<0;
第三章 导数及其应用
(选修1-1)
当x∈(2,3)时,f′(x)>0.
所以当x=1时,f(x)取得极大值f(1)=5+8c, 又f(0)=8c,f(3)=9+8c. 则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c, 因为对于任意的x∈[0,3],有f(x)<c2恒成立,
人 教 B 版 数 学
得.
第三章 导数及其应用
(选修1-1)
导数与函数的极值、最值(课件)高考数学大一轮复习核心题型讲与练+易错重难点专项突破(新高考版)
例4 [2022全国卷乙]函数 f ( x )= cos x +( x +1) sin x +1在区间[0,2π]的最小值、最
大值分别为( D
)
A.
π π
- ,
2 2
B. - ,
C.
π π
- , +2
2 2
D. - , +2
3π
2
π
2
3π
2
π
2
[解析] 由 f ( x )= cos x +( x +1) sin x +1, x ∈[0,2π],
2
1 2 > 0,
− > 0,
2 + 8 > 0,
所以 > 0,
故B,C,D正确.因为 ab >0, ac <0,所以 bc <0,A错误,
< 0.
故选BCD.
(2)[2022全国卷乙]已知 x = x 1和 x = x 2分别是函数 f ( x )=2 ax -e x 2( a
2
2
2
2
角度2
已知函数的最值求参数
例5 [全国卷Ⅲ]已知函数 f ( x )=2 x 3- ax 2+ b .
(1)讨论 f ( x )的单调性.
[解析] (1)对 f ( x )=2 x 3- ax 2+ b 求导,得 f '( x )=6 x 2-2 ax =2 x (3 x - a ).
令 f '( x )=0,得 x =0或 x = .
的图象可能是( D
A
)
B
C
D
[解析] 根据题意,已知导函数的图象与 x 轴有三个交点,且每个交点的两边
2019-2020学年人教A版选修1-1 导数与函数的单调性、极值、最值问题 课件(40张)
4.x2+2ax6的展开式的中间项系数为 20,如 图阴影部分是由曲线 y=x2 和圆 x2+y2=a 及 x 轴围成的封闭图形,则封闭图形的面积 S= ________.
于是 m=-2a73+2,M=42- ,a2, ≤0a<<3a.<2,
所以 M-m=22a7-3,a2+≤2a7a3,<30. <a<2, 当 0<a<2 时,可知 y=2-a+2a73单调递减, 所以 M-m 的取值范围是287,2. 当 2≤a<3 时,y=2a73单调递增,
所以曲线在点(π,-1)处的切线方程为 y-(-1)=- 2(x-π),即 2x+y-2π+1=0.
答案:C
2.(2017·全国卷Ⅱ)若 x=-2 是函数 f(x)=(x2+ax
-1)·ex-1 的极值点,则 f(x)的极小值为( )
A.-1 B.-2e-3
C.5e-3 D.1
解析:f′(x)=[x2+(a+2)x+a-1]·ex-1,
所以 f′(x)=2-xb2+1x=2x2+x2x-b. 因为 x=1 是 f(x)=2x+bx+ln x 的一个极值点, 所以 f′(1)=0,即 2-b+1=0. 解得 b=3,经检验,适合题意,所以 b=3. 所以 f′(x)=2-x32+1x=2x2+x2x-3, 令 f′(x)<0,得 0<x<1. 所以函数 f(x)的单调递减区间为(0,1).
则 f′(-2)=[4-2(a+2)+a-1]·e-3=0⇒a=-1,
则 f(x)=(x2-x-1)·ex-1,f′(x)=(x2+x-2)·ex-1,
2024年高考数学一轮复习课件(新高考版) 第3章 §3.3 导数与函数的极值、最值
2024年高考数学一轮复习课件(新高考版)第三章 一元函数的导数及其应用§3.3 导数与函数的极值、最值考试要求1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.掌握利用导数研究函数最值的方法.4.会用导数研究生活中的最优化问题.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.函数的极值(1)函数的极小值函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点处的函数值f′(x)<0f′(x)>0都小,f′(a)=0;而且在点x=a附近的左侧,右侧,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y =f (x )在点x =b 处的函数值f (b )比它在点x =b 附近其他点处的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧,右侧 ,则b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.(3)极小值点、极大值点统称为,极小值和极大值统称为 .f ′(x )>0f ′(x )<0极值点极值2.函数的最大(小)值(1)函数f (x )在区间[a ,b ]上有最值的条件:如果在区间[a ,b ]上函数y =f (x )的图象是一条 的曲线,那么它必有最大值和最小值.(2)求函数y =f (x )在区间[a ,b ]上的最大(小)值的步骤:①求函数y =f (x )在区间(a ,b )内的 ;②将函数y =f (x )的各极值与 比较,其中最大的一个是最大值,最小的一个是最小值.连续不断极值端点处的函数值f (a ),f (b )常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的极值可能不止一个,也可能没有.( )(2)函数的极小值一定小于函数的极大值.( )(3)函数的极小值一定是函数的最小值.( )(4)函数的极大值一定不是函数的最小值.( )√××√1.如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为√A.1B.2C.3D.4由题意知,只有在x=-1处,f′(-1)=0,且其两侧导数符号为左负右正,故f(x)的极小值点只有1个.2.函数f(x)=x3-ax2+2x-1有极值,则实数a的取值范围是_____________ _____________.f′(x)=3x2-2ax+2,由题意知f′(x)有变号零点,∴Δ=(-2a)2-4×3×2>0,43.若函数f(x)=x3-4x+m在[0,3]上的最大值为4,则m=____.f′(x)=x2-4,x∈[0,3],当x∈[0,2)时,f′(x)<0,当x∈(2,3]时,f′(x)>0,所以f(x)在[0,2)上单调递减,在(2,3]上单调递增.又f(0)=m,f(3)=-3+m,所以在[0,3]上,f(x)max=f(0)=4,所以m=4.第二部分命题点1 根据函数图象判断极值例1 (多选)(2023·华南师大附中模拟)如图是y =f (x )的导函数f ′(x )的图象,对于下列四个判断,其中正确的判断是A.当x =-1时,f (x )取得极小值B. f (x )在[-2,1]上单调递增C.当x =2时,f (x )取得极大值D. f (x )在[-1,2]上不具备单调性√√由导函数f′(x)的图象可知,当-2<x<-1时,f′(x)<0,则f(x)单调递减;当x=-1时,f′(x) =0;当-1<x<2时,f′(x)>0,则f(x)单调递增;当x=2时,f′(x)=0;当2<x<4时,f′(x)<0,则f(x)单调递减;当x=4时,f′(x)=0,所以当x=-1时,f(x)取得极小值,故选项A正确;f(x)在[-2,1]上有减有增,故选项B错误;当x=2时,f(x)取得极大值,故选项C正确;f(x)在[-1,2]上单调递增,故选项D错误.命题点2 求已知函数的极值例2 (2022·西南大学附中模拟)已知函数f(x)=ln x+2ax2+2(a+1)x(a≠0),讨论函数f(x)的极值.因为f(x)=ln x+2ax2+2(a+1)x,若a>0,则当x∈(0,+∞)时,f′(x)>0恒成立,故函数f(x)在(0,+∞)上单调递增,无极值.当a>0时,f(x)无极值.命题点3 已知极值(点)求参数例3 (1)(2023·福州质检)已知函数f(x)=x(x-c)2在x=2处有极小值,则c的值为√A.2B.4C.6D.2或6由题意,f′(x)=(x-c)2+2x(x-c)=(x-c)·(3x-c),则f′(2)=(2-c)(6-c)=0,所以c=2或c=6.若c=2,则f′(x)=(x-2)(3x-2),当x∈(2,+∞)时,f′(x)>0,f(x)单调递增,函数f(x)在x=2处有极小值,满足题意;若c=6,则f′(x)=(x-6)(3x-6),当x∈(-∞,2)时,f′(x)>0,f(x)单调递增;当x∈(2,6)时,f′(x)<0,f(x)单调递减;当x∈(6,+∞)时,f′(x)>0,f(x)单调递增,函数f(x)在x=2处有极大值,不符合题意.综上,c=2.(2)(2023·威海模拟)若函数f(x)=e x-ax2-2ax有两个极值点,则实数a的取值范围为√由f(x)=e x-ax2-2ax,得f′(x)=e x-2ax-2a.因为函数f(x)=e x-ax2-2ax有两个极值点,所以f′(x)=e x-2ax-2a有两个变号零点,当x>0时,g′(x)<0;当x<0时,g′(x)>0,所以g(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减.思维升华根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.跟踪训练1 (1)已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则a+b的值为A.-1或3B.1或-3√C.3D.-1因为f(x)=x3+ax2+bx-a2-7a,所以f′(x)=3x2+2ax+b,因为函数f(x)在x=1处取得极大值10,所以f′(1)=3+2a+b=0,①f(1)=1+a+b-a2-7a=10,②联立①②,解得a=-2,b=1或a=-6,b=9.当a=-6,b=9时,f′(x)=3x2-12x+9=(x-1)(3x-9),f(x)在(-∞,1)和(3,+∞)上单调递增,在(1,3)上单调递减,故f(x)在x=1处取得极大值10,符合题意.综上可得,a=-6,b=9.则a+b=3.√∴φ(x)在(0,2)上单调递减,在(2,+∞)上单调递增,又当x→+∞时,φ(x)→+∞,命题点1 不含参函数的最值例4 (2022·全国乙卷)函数f(x)=cos x+(x+1)sin x+1在区间[0,2π]的最小值、最大值分别为√f(x)=cos x+(x+1)sin x+1,x∈[0,2π],则f′(x)=-sin x+sin x+(x +1)·cos x=(x+1)cos x,x∈[0,2π].又f(0)=cos 0+(0+1)sin 0+1=2,f(2π)=cos 2π+(2π+1)sin 2π+1=2,命题点2 含参函数的最值例5 已知函数f(x)=-ln x(a∈R).(1)讨论f(x)的单调性;①若a≤0,则f′(x)<0在(0,+∞)上恒成立,所以f(x)在(0,+∞)上单调递减;②若a>0,则当x>a时,f′(x)<0;当0<x<a时,f′(x)>0,所以f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.所以f(x)max=f(a)=-ln a;思维升华求含有参数的函数的最值,需先求函数的定义域、导函数,通过对参数分类讨论,判断函数的单调性,从而得到函数f(x)的最值.跟踪训练2 (1)(2021·新高考全国Ⅰ)函数f(x)=|2x-1|-2ln x的最小值1为_____.函数f(x)=|2x-1|-2ln x的定义域为(0,+∞).当x>1时,f′(x)>0,所以f(x)min=f(1)=2-1-2ln 1=1;综上,f(x)min=1.(2)已知函数h(x)=x-a ln x+ (a∈R)在区间[1,e]上的最小值小于零,求a的取值范围.①当a+1≤0,即a≤-1时,h′(x)>0恒成立,即h(x)在(0,+∞)上单调递增,则h(x)在[1,e]上单调递增,故h(x)min=h(1)=2+a<0,解得a<-2;②当a+1>0,即a>-1时,在(0,a+1)上,h′(x)<0,在(a+1,+∞)上,h′(x)>0,所以h(x)在(0,a+1)上单调递减,在(a+1,+∞)上单调递增,若a+1≤1,求得h(x)min>1,不合题意;若1<a+1<e,即0<a<e-1,则h(x)在(1,a+1)上单调递减,在(a+1,e)上单调递增,故h(x)min=h(a+1)=2+a[1-ln(a+1)]>2,不合题意;若a+1≥e,即a≥e-1,则h(x)在[1,e]上单调递减,第三部分1.(多选)已知函数f(x)的导函数f′(x)的图象如图所示,则下列结论中正确的是A.f(x)在区间(-2,3)上有2个极值点B.f′(x)在x=-1处取得极小值C.f(x)在区间(-2,3)上单调递减D.f(x)在x=0处的切线斜率小于0√√√根据f′(x)的图象可得,在(-2,3)上,f′(x)≤0,∴f(x)在(-2,3)上单调递减,∴f(x)在区间(-2,3)上没有极值点,故A错误,C正确;由f′(x)的图象易知B正确;根据f′(x)的图象可得f′(0)<0,即f(x)在x=0处的切线斜率小于0,故D正确.√。
(新课标)高中数学《3.3.2-函数的极值与导数》课件-新人教A版选修1-1
规律方法 已知函数极值情况,逆向应用确定函数的解析式, 进而研究函数性质时注意两点: (1)常根据极值点处导数为 0 和极值两个条件列方程组,利用待 定系数法求解. (2)因为导数值等于零不是此点为极值点的充要条件,所以利用 待定系数法求解后必须验证根的合理性.
第18页,共29页。
第22页,共29页。
如图(1),此时曲线 f(x)与 x 轴恰有两个交点,即方程 f(x)=0 恰 好有两个实数根,所以 a+2=0,a=-2.(10 分) 如图(2),当极小值等于 0 时,有极大值大于 0,此时曲线 f(x) 与 x 轴恰有两个交点,即方程 f(x)=0 恰好有两个实数根,所以 a-2=0,a=2.综上,当 a=2,或 a=-2 时方程恰有两个实数 根.(12 分)
第8页,共29页。
2.极值点与导数的关系 (1)可导函数的极值点一定是导数为 0 的点,但导数为 0 的点不 一定是函数的极值点. (2)导数为 0 的点可能是函数的极值点,如 y=x2,y′(0)=0,x =0 是极小值.导数为 0 的点也可能不是函数的极值点,如 y =x3,y′(0)=0,x=0 不是极值点.
第23页,共29页。
【题后反思】 用求导的方法确定方程根的个数是一种很有效的 方法,它是通过函数的变化情况,运用数形结合的思想来确定 函数的图象与 x 轴的交点个数.
第24页,共29页。
【变式 3】 设函数 f(x)=x3-6x+5,x∈R. (1)求函数 f(x)的单调区间和极值; (2)若关于 x 的方程 f(x)=a 有三个不同的实数根,求实数 a 的取 值范围. 解 (1)f′(x)=3x2-6,令 f′(x)=0, 解得 x=- 2或 x= 2. 因为当 x> 2或 x<- 2时,f′(x)>0; 当- 2<x< 2时,f′(x)<0, 所以 f(x)的单调递增区间为(-∞,- 2),( 2,+∞); 单调递减区间为(- 2, 2).
高三一轮复习理科数学导数与函数的极值最值 PPT
b=-4
经检验 a=3,b=-4 符合题意.
所以当 f(x)在 x=3 处取得极值 2 时,a=3,b=-4.
2·已知函数 f(x)=-x3+ax2+b(a,b∈R) (1)当 a<0 时,若函数极大值为 1,极小值为-3,试求 y=f(x)的解
析式;
解:(2)∵f′(x)=-3x2+2ax=x(-3x+2a),
考点技法 ·全面突破
利用导数解决函数得极值问题(☆☆☆☆)
[典例 1] (2011·安徽高考)设 f(x)=1+exax2,其中 a 为正实数. (1)当 a=43时,求 f(x)的极值点;(节选)
大家学习辛苦了,还是要坚持
继续保持安静
[自主解答] 对f(x)求导得 f′(x)=ex1+1a+x2a-x222ax,① (1)当a=43时,若f′(x)=0,则4x2-8x+3=0, 解得x1=32,x2=12,
[典例3] 已知a∈R,函数f(x)=ax-ln x,x∈(0,e](其中e 是自然对数的底数).
(1)当a=1时,求函数f(x)的极值; (2)求函数f(x)在区间(0,e]上的最小值.
解:(1)当a=1时,f(x)=x-ln
x,所以f′(x)=1-
1 x
=
x-x 1,(x>0)
故当0<x<1时,f′(x)<0,f(x)单调递减;
二、函数得最值与导数
3、求函数y=f(x)在[a,b]上得最大值与最小值得步骤
(1)求函数y=f(x)在(a,b)内得
;
极值
(2)将函数y=f(x)得各极值与
比
较,其中最大得一个就是最大值,最端小点得处一得个函就数是值最f小(a值)、f(b)
1、判断下面结论就是否正确(请在括号中打“√”或“×”) (1)函数在某区间上得极大值就是唯一得、( ) (2)函数得极大值不一定比极小值大、( ) (3对可导函数f(x),若f′(x0)=0,则x0一定为极值点、( ) (4)函数得最大值不一定就是极大值,函数得最小值也不一定就 是极小值、( )
第3讲导数与函数的极值最值课件共83张PPT
2.导数与函数的最值 (1)函数 f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数 y=f(x)的图象是一条 07 ___连__续__不__断___的曲线, 那么它必有最大值和最小值. (2)求 y=f(x)在[a,b]上的最大(小)值的步骤 ①求函数 y=f(x)在(a,b)上的 08 _极__值___. ②将函数 y=f(x)的各极值与 09 __端__点__处__的__函__数__值__f(_a_)_,__f(_b_)_比较,其中 10 __最__大__的一个是最大值, 11 _最__小___的一个是最小值.
即 2x+y-13=0.
解
(2)显然 t≠0,因为 y=f(x)在点(t,12-t2)处的切线方程为 y-(12-t2)=
-2t(x-t),
令
x=0,得
y=t2+12,令
y=0,得
t2+12 x= 2t ,
所以 S(t)=12×(t2+12)·t2+2|t1| 2.
不妨设 t>0(t<0 时,结果一样),
例 1 (2021·南昌摸底考试)设函数 f(x)在 R 上可导,其导函数为 f′(x), 且函数 y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数 f(x)有极大值 f(2)和极小值 f(1) B.函数 f(x)有极大值 f(-2)和极小值 f(1) C.函数 f(x)有极大值 f(2)和极小值 f(-2) D.函数 f(x)有极大值 f(-2)和极小值 f(2)
单调递减,所以 x=1 是 f(x)的极大值点.②若 a<0,由 f′(x)=0,得 x=1
或 x=-1a.因为 x=1 是 f(x)的极大值点,所以-1a>1,解得-1<a<0.综合①②
函数的极值ppt课件
●
四 、不含参数的函数求极值
变式训练 求下列函数的极值:
(1)f(x)=x²e-×;
[解析](1)函数f(X) 的定义域为R,
f(x)=2xe-×+x²·e-×.(-x)'=2xe-×-x²e-×=x(2-x)e-×.
令f'(x)=0,得x(2-x)e-×=0,解得x=0 或x=2. 当x变化时,f'(x),f(x) 的变化情况如表所示:
2.对极值概念的再理解 (1 )极值是一个局部概念,极值只是某个点的函数值,与它附近点的函数值比较它是 最大值或最小值,但并不意味着它在函数的整个定义域内是最大值或最小值;
(2 ) 一个函数在某区间上或定义域内的极大值或极小值可以不止一个; (3)函数的极大值与极小值之间无确定的大小关系; (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点; (5)单调函数一定没有极值.
e
f'(x)
十
0
f(x)
1
e
故当- 时,函数(x)取得极大值,且极大值为
●
(e,+0)
《
3求含参函数的极值
例2 已知函数f(x)=x-aln x(a∈R) ,求函数f(x)的极值.
①当a ≤0时,f(x)>0, 函数f(x)为(0,+0)上的增函数,函数f(x)无极值; ②当a>0 时,令f'(x)=0, 解得x=a,
课堂小结
y
f'(x₀)=0
f'(x)>0
f'(x)<0
y
f'(x <0
f'(x,)=0 f(x)
>0
a Xo b
高考数学总复习函数的极值与导数PPT课件
互动 2 函数 y=f(x)在给定区间(a,b)内一定有极值点吗? 【解析】 不一定.若函数 y=f(x)在区间(a,b)内是单调函数, 就没有极值点.
(3)已知函数 y=|x2-2|x|-3|的图像如图所示,由图像指出该 函数的极值.
【解析】 由图像可知:当 x=±3 时,函数取极小值 0;当 x =0 时,函数取极小值 3;当 x=±1 时,函数取极大值 4.
注:这个函数有五个极值点,其中三个极小值点处的导数均不 存在.
题型二 利用导数求极值
令 f′(x)=0,得 cosx=12或 cosx=-1.
π
5π
当 0<x<2π时,x1= 3 ,x2=π,x3= 3 .
当 x 在区间(0,2π)内变化时,f′(x),f(x)的变化情况如下表:
x f′(x)
f(x)
π (0, 3 )
+
π 3
0 极大值
33 4
π ( 3 ,π)
-
π
5π (π, 3 )
要点 2 极大值:(对可导函数) 如图,若 b 为极大值点,f(b)为极大值,则必须满足: ①f(b)≥f(x0)(f(x0)表示 f(x)在 x=b 附近的函数值); ②f′(b)=0; ③在 x=b 附近的左侧,f′(x)>0,函数单调递增; 在 x=b 附近的右侧,f′(x)<0,函数单调递减.
题型一 根据图像求极值
例 1 如图观察,函数 y=f(x)在 d、e、f、g、h、i 等点处的 函数值与这些点附近的函数值有什么关系?y=f(x)在这些点处 的导数值是多少?在这些点附近,y=f(x)的导数的符号有什么规 律?
用导数研究函数的性质 第2课时极值与最值课件高二下学期数学北师大版(2019)选择性必修第二册
高中数学
选择性必修第二册
北师大版
新知学习
新知引入
在用导数研究函数的单调性时,我们发现利用导数的正负可以判断函数的增减.如果函数在某些点的导数
为0,那么在这些点处函数有什么性质呢?
观察下图,我们发现当 = 时,高台跳水运动员距水面的高度最大,那么函数ℎ()在此点处的导数是多
少?此点附件的函数图象有什么特点?相应地,导数的正负有什么变化规律?
(1)求出函数 的定义域;
(2)求导数()′ 及函数()′ 的零点;
(3)用零点将 的定义域为若干个区间,列表给出()′ 在各个区间上的正负,并得出 单调性与极值;
(4)确定 图象经过的一些特殊点,以及图象的变化趋势;
解 (1)函数的定义域为 ∈ ,
因为 ′ = + 1 ′ e + + 1 (e )′ = e + + 1 e = + 2 e ,
令 ′ =0,解得: = −2. ′ 、 的变化情况如表所示
(−∞, −)
-2
(−, +∞)
′
-
+
单调递减
端点处取得.
高中数学
选择性必修第二册
北师大版
即时训练
求下列各函数的最值.
π π
(1)f (x)=3x3-9x+5,x∈[-2,2];(2)f (x)=sin 2x-x,x∈[− 2 , 2 ].
解 (1)f ′(x)=9x2-9=9(x+1)(x-1),令f ′(x)=0得x=-1或x=1.
当x变化时,f ′(x),f (x)变化状态如下表:
由(1)及图可得,当 = −2时,有最小值 −2 = −
课件12:1.3.2 利用导数研究函数的极值(一)
或 即 k<-4 或 k>4.∴k 的取值范围是(-∞,-4)∪(4,+∞).
当堂检测
1.“函数y=f(x)在一点的导数值为0”是“函数y=
f(x)在这点取得极值”的
(B )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】对于f(x)=x3,f′(x)=3x2,f′(0)=0, 不能推出f(x)在x=0处取极值,反之成立.故选B.
解:(1)∵f(x)=aln x+bx2+x,∴f′(x)=ax+2bx+1. 由极值点的必要条件可知:f′(1)=f′(2)=0,
∴a+2b+1=0 且2a+4b+1=0, 解方程组得,a=-23,b=-61.
(2)由(1)可知 f(x)=-32ln x-16x2+x. f′(x)=-23x-1-13x+1=-(x-13)(xx-2). 当 x∈(0,1)时,f′(x)<0;当 x∈(1,2)时,f′(x)>0; 当 x∈(2,+∞)时,f′(x)<0;
【解析】y′=ex+a,由y′=0得x=ln(-a). 由题意知ln(-a)>0,∴a<-1.
5.直线y=a与函数y=x3-3x的图象有三个相异的交点, 则a的取值范围是_-__2_<_a_<_2_.
【解析】f′(x)=3x2-3, 令f′(x)=0可以得到x=1或x=-1, ∵f(1)=-2,f(-1)=2,∴-2<a<2.
本节内容结束 更多精彩内容请登录:
跟踪训练 1 求函数 f(x)=3x+3ln x 的极值. 解:函数 f(x)=3x+3ln x 的定义域为(0,+∞), f′(x)=-x32+3x=3(xx-2 1).令 f′(x)=0,得 x=1.
江苏省高考数学二轮复习第16讲利用导数研究函数的单调性极值与最值课件 (1)
题型一
导数与函数的单调性
例1 (2018盐城高三模拟)若对任意实数k,b都有函数y=f(x)+kx+b的图象与直 线y=kx+b相切,则称函数f(x)为“恒切函数”.设函数g(x)=aex-x-pa,a,p∈R.
(1)讨论函数g(x)的单调性;
(2)已知函数g(x)为“恒切函数”. ①求实数p的取值范围;
因为h(x)在(0,+∞)上存在单调递减区间,
1 所以当x∈(0,+∞)时, -ax-2<0有解, x 1 2 即存在x∈(0,+∞),使得a> . 2 - x x 1 2 设G(x)= - (x∈(0,+∞)),所以只要a>G(x)min即可. x2 x
1 -1,所以当x∈(0,+∞)时,G(x) =-1, 而G(x)= min 1 x
x g'(x) g(x) (-∞,1) + ↗ 1 0 极大值 (1,+∞) ↘
1 1 故g(x)max=g(1)= ,所以b> . e e
( x 1)(ae x x) 1 (2)f(x)的定义域为(0,+∞),其导函数为f '(x)= ,当a= 时, f '(x)= 2 x e ( x 1)(e x1 x) 2 , x 1 x x-1 由(1)知 ≤ , 即 e -x≥0,当且仅当x=1时取等号, x e e
1 1 2 1 ( x0 1) + =- x0(x0+2)=- , 4 4 4 1 3 3 3 3 2 1 2, 上递增,r(-2)=0,r = 函数r(x)=- (x+1) + 在 ,故0<m< .综上所 4 4 16 2 2 16 3 述,0≤m< . 16
【数学】1.3.2《利用导数研究函数的极值》课件2(新人教B版选修2-2)
下 分 种 况 论 面 两 情 讨 :
'
(1当 (x) >0即 >2或 <− 时 ) f , x , x 2 ; (2)当' (x) <0即 2<x<2时 f , − . 当变 时 ' (x),f(x)的 化 况 下 : x 化 ,f 变 情 如 表 x (− ∞,−2) − 2 (− 2,2) 2 (2,+∞ ) f ' (x ) + 0 0 − + 28 4 f (x ) 单调递增 单调递减 − 单调递增
我们把点 a叫做函数 y = f (x )的极小值点 , f (a )叫做函数 y = f (x ) 的极 值 小 ; 点b叫做函数 y = f (x ) 的极大值点 , f (b )叫做 函数y = f (x )的极 值 大 ;
y
y = f (x )
a
o b
x
图1.3 − 10
极小值点、 极小值点、极大值点统 称为极 点.极大值和 值 极小值统称极 (extreme value ). 值
3 3
因此,当x = −2时, f (x )有极大 28 值, 并且极大值为f (− 2) = ; 3 当x = 2时, f (x )有极小值, 并且 [
y
1 3 f (x ) = x − 4 x + 4 3
o
−2
2
x
极小值为f (2) = − . 图1.3 − 12 3 1 3 函数f (x ) = x − 4 x + 4的图象如图1.3 − 12所示. 3
极 值 定 于 小吗 大 一 大 极 极?
果 用 数 方 出 述 数 极 值 ?试 试 较 下 有 么 会 吗 一! 比 一 ,你 什 体 ?
导数与函数的极值最值课件-2025届高三数学一轮复习
解析 若在上无极值点,则在上单调,即或 恒成立. 当时, ,显然不满足题意; 当时,,则或 恒成立的充要条件是,即,解得 . 故实数的取值范围是 .
已知函数极值点或极值求参数的两个关键点
列式
根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解
A
;②函数在处取得极小值,在 处取得极大值;③函数在处取得极大值,在 处取得极小值;④函数的最小值为 .A.③ B.①② C.③④ D.④
解析 由的图象可得,当时,,单调递增;当 时,,单调递减;当时,, 单调递增. 由题意可得 ,所以①不正确. 由题意得函数在处取得极大值,在 处取得极小值,故②不正确,③正确. ,故④不正确.故选A.
验证
因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性
1.(2024 · 北京质检)已知函数的导函数 的大致图象如图所示,则下列结论正确的是( ) .
D
A.曲线在点 处的切线斜率小于零B.函数在区间 上单调递增C.函数在 处取得极大值D.函数在区间 内最多有两个零点
解析 (1)当时,,则 , 令,解得 . 当时,,此时 单调递减; 当时,,此时 单调递增. 故函数在处取得极小值,极小值为 .(2)由题意知,函数的定义域为, , 则方程在 上有两个不同的根, 即方程在 上有两个不同的根, 即方程在 上有两个不同的根,
令,,则 , 则当时,,当时, , 则函数在上单调递增,在 上单调递减, 所以 , 因为,当时,,当时,,当 时, , 所以实数的取值范围为, .
A. B. C. D.
解析 因为,所以,因为函数 既有极大值又有极小值,所以函数在上有两个变号零点,且 ,所以方程有两个不等的正根,,则即 ,即.故选 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)可导函数在极值点处导数必为零.
‹日期/时间›
二、知识清单
2.函数的最大值与最小值
(1)在闭区间a,b上连续的函数 f (x) ,在 a,b上必有
最大值和最小值;但在开区间 (a,b)上连续的函数 f (x) 不一定有最大值和最小值.
‹日期/时间›
四、命题特点
3、以研究函数的单调性、单调区间、极值 (最值)等问题为主,与不等式、函数方程、 函数的图像等相结合,具有综合化更强的趋 势; 4、适度关注生活中的优化问题(2015江苏文 15)
‹日期/时间›
五、备考重点
1、熟练掌握导数公式及导数的四则运算法则 是基础; 2、熟练掌握利用导数研究函数单调性、极值 (最值)的基本方法,灵活应用数形结合思 想、分类讨论思想、整合思想、化归与转化 思想、函数方程等思想分析和解决问题。
(2)设函数 f (x)在a,b 上连续,在 (a,b)上可导,求 f (x) 在 a, b上的最大值和最小值的步骤如下:
①求 f (x) 在 (a,b)内的极值; ②将f (x)的各极值与 f (a)、f (b)比较,其中最大的
一个是最大值,最小的一个是最小值.
‹日期/时间›
三、近五年来命题情况‹日期/时间›Fra bibliotek 七、考题示例
例1.(2017全国2理.11)
若 x 2 是函数 f (x) (x2 ax 1)ex1 的极值点,则f (x)
的极小值为 ( )
A. -1 B. - 2e3 C.5e3 D. 1
解: f (x) x2 (a 2)x a 1 ex,由题意得 f (2)
结论:设 右侧 f (
f(
x)
x)0在,那x0么处f连(x续0 ) ,是(1极)如大果值在;(2x)0 附如近果的在x左0侧附近f (的x)左 0侧,
f (x) 0 ,右侧 f (x) 0,那么f (x0 )是极小值;(3)如果在 x0 附近,
左右两侧导数值同号,那么 f (x0 ) 不是极值.
常考问题归类
最值问题 1、求连续函数在某一闭区间内的最值; 2、已知最值或不等式恒成立求参数取值范围 的问题。可通过参变分离将问题转化为
f (x) g(a), f (x) g(a), f (x) g(a), f (x) g(a),
即 fmax(x) g(a), f (x)max g(a),
利用导数研究函数的极值与最值
一、考纲要求
1、了解函数在某点取得极值的必要条件和充 分条件
2、会用导数求函数的极大值、极小值(其中 多项式函数一般不超过三次);会求闭区 间上函数的最大值、最小值(其中多项式 函数一般不超过三次)
‹日期/时间›
二、知识清单
1.函数的极值与导数
定义:设函数 f (x) 在 x0 附近有定义,如果对 x0 附近的所有
点,都有 f (x) f (x0 ) ,则称 f (x0 )为 f (x) 的一个极大值,记作
f (x)极大值 f (x0 ) ;如果对 x0 附近的所有点,都有 f (x) f (x0 ) ,则
称 f (x0 ) 为 f (x) 的 一个极小值,记作 f (x)极小值 f (x0 ) .极大 值和极小值统称为极值.
(a 1)e3 0 ,解得 a 1 ,所以 f (x) (x2 x 2)ex1
(x 2)(x 1)ex1 ,可以求得 x 1 时,f (x) 取得极小
利用导数求函数极值的步骤:(1)求 f (x) ;(2)求方程 f (x) 0
的根;(3)判断 f (x)在方程根左右两侧的符号;(4)利用结论
写‹出日期极/时间值› .
二、知识清单
注意: (1)在函数的整个定义域内,函数的极值不一定唯一, 在整个定义域内可能有多个极大值和极小值; (2)极大值和极小值没有必然联系,极大值可能比极 小值还小; (3)导数等于零的点不一定是极值点(例如: f (x) x3
2、已知极值求参数。先求导,在根据导数在极值点 处的值为零,列出关于参数的方程,解出参数的值, 注意导数为零是函数取得极值的必要不充分条件, 故需进行检验。
3、已知三次多项式函数有极值求参数的取值范围。 先求导,导函数对应的一元二次方程有两不相等实 根‹日,期/判时间别› 式大于零,求出参数的取值范围。
‹日期/时间›
六、复习资料及使用
1、我们选用的是“五年高考三年模拟”,并且还订 了一些试卷,如“伯乐马”、“衡水金卷”等.第一 轮复习以“5+3”为主.二轮复习以做试卷和分析讲 解试题为主. 2、(一轮)课前要求学生对上课所涉及专题预习、填 好知识清单并做相关资料的习题(教师预选);上课 先带学生一起看考纲内容,归纳知识点,后讲解高 考题(必讲)和模拟题(选讲).学生觉得困难的重 点讲,讲了也不理解的不讲. 3、高三一开始就抽时间对近五年全国卷的考题进行 测试并精讲.
‹日期/时间›
三、近五年来命题情况
2015年 陕西(文15),全国2(文21),北京(文 19),浙江(文20),安徽(文21,理 21),山东(理21),陕西(理12),重 庆(理21)
2014年 天津(文19),北京(文20)
‹日期/时间›
常考问题归类
函数的极值问题
1、求函数的极值。先求导函数,令导函数为零,解 出导函数的零点,并判断在对应零点左右两侧导数 值符号是否改变,以确定函数在该处是否取得极值, 若是求出该极值;
fmin(x) g(a), fmin(x) g(a),
这样此问题就转化为求最值的问题。
‹日期/时间›
四、命题特点
1、单独考查利用导数研究函数的某一性质以 小题呈现 ,综合研究函数的性质以大题呈现; 2、利用导数求函数的单调区间和极值(最 值)、结合单调性与不等式成立的情况求参 数的范围是高考命题的热点;
2018年 全国1(文21,理21),全国3(理21), 北京(文19,理18),江苏(文11),
2017年 北京(文20,理19),全国2(理11,21), 山东(理20),江苏(理20)
2016年 全国2(理21),全国3(理21),北京 (理14),四川(文6),山东(文20), 天津(文20,理20),浙江(理18)