04刚体转动习题
第四章作业解析
直悬挂时质心为重力势能零点。
初态机械能
E0
1 2
J 棒 2
1 6
Ml 22
末态机械能 E Mg l 2
系统机械能守恒,即 E E0
l2
C
则有 1 Ml22 l Mg
6
2
v0 C v0 2
可得 3g
l
带入(1)式
v0
4M 3m
l,可得
v0
4M 3m
3gl
三 计算题
1.一砂轮直径为1m、质量为50kg,以900r/min
小球这一系统
(A) 只有机械能守恒.(B) 只有动量守恒.
(C) 只有对转轴O的角动量守恒.
(D) 机械能、动量和角动量均守恒.[ C ]
解:将杆、小球与作为一个系统
o
系统不受外力矩作用,因此系统
对转轴O的角动量守恒,故选C。
注:小球与杆的外力矩为零,系统角动
量守恒;为非弹性碰撞,机械能不守恒。
二 填空题
统的角动量守恒。
v0 v0 2
将整个过程分为两个阶段:
第一阶段角动量守恒;第二阶段能量守恒
初态角动量(子弹射击棒前的角动量)
L0
J0
1 2
lmv0
m(
l 2
)2
0
m( l )2 2
v0 l2
末态角动量 L L1 L2
射击棒后子弹的角动量
C
l2
v0 C v0 2
L1
J
m( l )2 2
v0 l
空气的摩擦,当两球都滑至杆端时,杆的角速度
为
(A) 20 (C)0 2
(B) 0 (D)0 4
o
d ld
(完整版)刚体的转动习题
17-4图18-4 图F F ρ-O 04 第四章 刚体力学一、选择题:1、如图4-18所示,一圆盘绕通过盘心且与盘面垂直的轴o 以角速度ω针转动。
今将两大小相等、方向相反、但不在同一条直线上的力F 和F -盘面同时作用到圆盘上,则圆盘的角速度:[ ] (A )必然减少 (B )必然增大(C )不会变化 (D )如何变化,不能确定 2、如图4-17所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B端置于粗糙的水平地面上而静止,杆身与竖直方向成θ角,则A 端对墙壁的压力大小为:[ ](A )θcos 41mg (B )θmgtg 21 (C )θsin mg (D )不能唯一确定 3、某转轮直径m d 4.0=,以角量表示的转动方程为t t t 4323+-=θ(SI ),则:[ ](A )从s t 2=到s t 4=这段时间内,其平均角加速度为2.6-s rad ;(B )从s t 2=到s t 4=这段时间内,其平均角加速度为2.12-s rad ;(C )在s t 2=时,轮缘上一点的加速度大小等于2.42.3-s m ;(D )在s t 2=时,轮缘上一点的加速度大小等于2.84.6-s m 。
4、如图4-2所示,一倔强系数为k 轮(转动惯量为J ),下端连接一质量为m 的物体,问物体在运动过程中,下列哪个方程能成立?[ ] (A )ky mg = (B )02=-T mg(C )my T mg =-1 (D )y R J J βR T T ''⋅==-)(21 5、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]7、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .1-4 图5-4图19-4 图 (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]8、一力N j i F )53(ϖϖϖ+=,其作用点的矢径为m j i r )34(ϖϖϖ-=,则该力对坐标原点的力矩为:[ ] (A )m N k ⋅-ϖ3 (B )m N k ⋅ϖ29 (C )m N k ⋅ϖ19 (D )m N k ⋅ϖ39、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ]10、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]11、如图4-19所示P 、Q 、R 、S l RS QR PQ ===,则系统对o o '轴的转动惯量为:[ ](A )250ml (B )214ml(C )210ml (D )29ml12、如图4-1所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且Mg F =。
大学物理第四章 刚体的转动部分的习题及答案
第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。
二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。
第四章_刚体的转动部分习题分析与解答
h 1 at2
(4)
2
联合式(1)、(2)、(3)、(4)可解得飞轮的转动惯量为
J mR 2 ( gt2 1) 2h
解2 设根据系统的机械能守恒定律,有
mgh 1 mv2 1 J2 0
(1' )
2
2
线速度和角速度的关系为
v R
(2' )
根据重物作匀加速运动时,有
v at
(3' )
v2 2ah
a1 a2
J1 J1
m1R m2r Jm2 1Rm1Rm22r m2r 2 J2 m1R 2 m2r 2
gR gr
FT1
J1 J1
J2 J2
m2r2 m2Rr m1R 2 m2r2
m1g
FT 2
J1 J2 m1r2 m1Rr J1 J2 m1R 2 m2r2
m2g
4-12 如图示装置,定滑轮半径为r,绕转轴的转动惯量为J,滑 轮两边分别悬挂质量为m1和m2的物体A、B。A置于倾角为θ斜 面上,它和斜面间的摩擦因数为μ。若B向下作加速运动时,求 (1)其下落加速度的大小;(2)滑轮两边绳子的张力。(设 绳的质量及伸长均不计,绳与滑轮间无滑动,滑轮轴光滑)
整个矩形板对该轴的转动惯量为
J
a/2
dJ
b / 2 (x 2 y2 )dxdy
a / 2 b / 2
1 ab(a 2 b2 ) 12
4-11 质量为m1和m2的两物体A、B分别悬挂在如图所示的组合 轮两端。设两轮的半径分别为R和r,两轮ab的(转a 2动惯b量2分) 别为J1 和J2,轮与轴承间、绳索与轮间的摩1擦2力均略去不计,绳的质 量也略去不计。试求两物体的加速度和强绳的张力。
04《大学物理学》刚体部分练习题(马)
《大学物理学》刚体部分学习材料一、选择题4-1.有两个力作用在有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是:( )(A )只有(1)是正确的; (B )(1)、(2)正确,(3)、(4)错误; (C )(1)、(2)、(3)都正确,(4)错误; (D )(1)、(2)、(3)、(4)都正确。
【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】4-2.关于力矩有以下几种说法:(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零;(3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。
对上述说法,下述判断正确的是:( )(A )只有(2)是正确的; (B )(1)、(2)是正确的; (C )(2)、(3)是正确的; (D )(1)、(2)、(3)都是正确的。
【提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为零,因而不影响刚体的角加速度和角动量;(2)见上提示;(3)刚体的转动惯量与刚体的质量和大小形状有关,因而在相同力矩的作用下,它们的运动状态可能不同】3.一个力(35)F i j N =+作用于某点上,其作用点的矢径为m j i r )34(-=,则该力对坐标原点的力矩为 ( )(A )3kN m -⋅; (B )29kN m ⋅; (C )29kN m -⋅; (D )3kN m ⋅。
【提示:(43)(35)4302092935i j kM r F i j i j k k k =⨯=-⨯+=-=+=】4-3.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴 转动,如图所示。
【大题】工科物理大作业04-刚体定轴转动
【大题】工科物理大作业04-刚体定轴转动 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN0404 刚体定轴转动班号 学号 姓名 成绩一、选择题(在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内)1.某刚体绕定轴作匀变速转动,对刚体上距转轴为r 处的任一质元来说,在下列关于其法向加速度n a 和切向加速度τa 的表述中,正确的是:A .n a 、τa 的大小均随时间变化;B .n a 、τa 的大小均保持不变;C .n a 的大小变化,τa 的大小保持恒定;D .n a 的大小保持恒定,τa 大小变化。
(C )[知识点]刚体匀变速定轴转动特征,角量与线量的关系。
[分析与题解] 刚体中任一质元的法向、切向加速度分别为 r a n 2ω=,r a τβ=当β = 恒量时,t βωω+=0 ,显然r t r a n 202)(βωω+==,其大小随时间而变,ra τβ=的大小恒定不变。
2. 两个均质圆盘A 和B ,密度分别为ρA 和ρB ,且B ρρ>A ,但两圆盘的质量和厚度相同。
若两盘对通过盘心且与盘面垂直的轴的转动惯量分别为A I 和B I ,则 A .B I I >A; B. B I I <A ;C .B I I =A ; D. 不能确定A I 和B I 的相对大小。
(B )[知识点]转动惯量的计算。
[分析与题解] 设A 、B 两盘厚度为d ,半径分别为R A 和R B ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>, 所以22B A R R < 且转动惯量221mR I =,则B A I I <3.在下列关于刚体的表述中,不正确的是:A .刚体作定轴转动时,其上各点的角速度相同,线速度不同;B .刚体定轴转动的转动定律为βI M =,式中β,,I M 均对同一条固定轴而言的,否则该式不成立;C .对给定的刚体而言,它的质量和形状是一定的,则其转动惯量也是唯一确定的;D .刚体的转动动能等于刚体上各质元的动能之和。
大学物理学教程第二(马文蔚)练习册答案4第四章 刚体转动
v人地 v人盘 +v盘地 1 + R
J m0 Rv人地 0
J m0 R 1 0
m0 R J m0 R
0.0952 rad/s
J m0R m0R
第 四 章 习 题 分 析
4-21 长为 L 质量为 m 的均质杆,可绕垂直于纸面的 O 4-21 轴转动,令杆至水平位置有静止下摆,在铅直位置 与质量为0.5m的物体发生完全非弹性碰撞,碰后物 体沿摩擦因数为的水平面滑动,试求此物体滑过的 距离s ? 解:细杆下摆过程机械能守恒
m1g T1 m1a1 R r R T ' 1 B : T2 m2 g m2 a2 T2 ' 轮: T1 ' R T2 ' r J1 J 2 B T1 T2 其中: T1 ' T1 T2 ' T2 B A a r a1 R 2 a2 a1
A:
3g L m 碰撞过程角动量守恒。 J J ' v ' L v L 2 12 1 2 3g 1 2 v ' m 2 gL mL mL v ' L v ' 25 3 L 3 L 2 6L 滑动过程 1 mv '2 mgs s 25 2
1 1 1 2 2 mgL mL 2 2 3
4-13 飞轮质量为60kg,直径为0.5m,转速为1000r/min, 现用一闸瓦使其在5s内停止转动,求制动力F。设闸瓦 第 与飞轮间的摩擦因数为0.4,飞轮的质量全部分布在轮 四 缘上。 章 解: 由细杆力矩平衡
习 题 分 析
FL Nl
N
F
FL 1.25F f N 2.5F l 0.5 又飞轮与闸瓦间的摩擦力 f N F
第四章 刚体转动习题
5.在光滑的水平面上有一木杆, 其质量为m1,长为 l ,可绕通过其中点并与之垂直的轴转பைடு நூலகம்.一质量为 m2 的子弹,以 v 的速度射入杆端,其方向与杆及轴正交,若子弹陷入杆中,求所得到的角速度.
6.质量为m, 长为l的均匀细棒, 可绕垂直于棒的一端的水平轴转动, 如将此棒放在水平位置, 然后任其落下, 求 (1)开始转动时棒的角加速度; (2)棒下落到竖直位置时的动能;(3)下落到竖直位置时的角速度.
第四章刚体转动 课后练习七
1.我国第一颗人造卫星绕地球作椭圆运动,地球中心为椭圆的一个焦点.在运行过程中,下列叙述中正确的是 ( )
1.如图所示,一质量为m的匀质细杆AB,A端靠在光滑的竖直墙壁上,B端置于粗糙水平地面上而静止,杆身与竖直方向成θ角,则A端对墙壁的压力为
2.两个均质圆盘 A和B的密度分别为ρA和ρB , 若ρA﹥ρB但两圆盘的质量与厚度相同, 如果两盘对通过盘心垂直于盘面轴的转动惯量各为JA和JB , 则( )
3.一电唱机的转盘以 n =78 转/分的转速匀速转动,则与转轴相距 r =15cm 的转盘上的一点P的线速度 v = ,法向加速度an= .在电唱机断电后, 转盘在恒定的阻力矩作用下减速, 并在 t =15s内停止转动,则转盘在停止转动前的角加速度a= ,转过的圈数N= .
(A)动量守恒 (B)动能守恒
(C)角动量守恒 (D)以上均不守恒.
2.一半径为 R 的水平圆转台,可饶通过其中心的竖直固定光滑轴转动,转动惯量为 J,开始时转台以匀角速度ω0 转动,此时有一质量为 m 的人站在转台中心,随后人沿半径向外走去,当人到达转台边缘时,转台的角速度为 ( )
[分享]第四章刚体的转动问题与习题解答
第四章 刚体的转动 问题与习题解答问题:4-2、4-5、4-94-2如果一个刚体所受合外力为零,其合力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否也一定为零?答:一个刚体所受合外力为零,其合力矩不一定为零,如图a 所示。
刚体所受合外力矩为零,其合外力不一定为零,例如图b 所示情形。
4-5为什么质点系动能的改变不仅与外力有关,而且也与内力有关,而刚体绕定轴转动动能的改变只与外力矩有关,而与内力矩无关?答:因为合外力对质点所作的功,等于质点动能的增量;而质点系中内力一般也做功,故内力对质点系的动能的增量有贡献。
而在刚体作定轴转动时,任何一对内力对转轴的力矩皆为一对大小相等、方向相反的力矩,且因定轴转动时刚体转过的角度d θ都一样,故其一对内力矩所作的功()0inij ij ji ij ji W M d M d M M d θθθ=+=+=,其内力功总和也为零,因而根据刚体定轴转动的动能定理可知:内力矩对其转动动能的增量无贡献。
4-9一人坐在角速度为0ω的转台上,手持一个旋转的飞轮,其转轴垂直地面,角速度为ω'。
如果突然使飞轮的转轴倒转,将会发生什么情况?设转台和人的转动惯量为J ,飞轮的转动惯量为J '。
答:(假设人坐在转台中央,且飞轮的转轴与转台的转轴重合)视转台、人和飞轮为同一系统。
(1)如开始时飞轮的转向与转台相同,则系统相对于中心轴的角动量为:10L J J ωω''=+飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的角动量为:21L J J ωω''=-在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''-=+即 102J Jωωω''=+,转台的转速变大了。
(2)如开始时飞轮的转向与转台相反,则系统相对于中心轴的角动量为:10L J J ωω''=-飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的F 1F 3ab角动量为:21L J J ωω''=+在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''+=-即 102J Jωωω''=-,转台的转速变慢了。
大学物理第四章-刚体的转动-习题及答案
1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法 向加速度的大小是否随时间变化?
答:当刚体作匀变速转动时,角加速度 不变。刚体上任一点都作匀变速圆周运动,因此该点速
率在均匀变化,v l ,所以一定有切向加速度 at l ,其大小不变。又因该点速度的方向变化,
ω dr
(1)圆盘上半径为r、宽度为dr的同心圆环所受的摩擦力矩
为
dM
m
(
R2
2 rdr)grBiblioteka 2r 2 mgdr/
R2
负号表示摩擦力矩为阻力矩。对上式沿径向积分得圆盘所受
r dF
的总摩擦力矩大小为
M dM R 2r2mgdrdr 2 mgR
0
R2
3
(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量 I 1 mr2 ,由角动量定理可得圆盘停止的 2
度.
解:碰撞过程满足角动量守恒:
2 3
mv0l
1 2
mv0
2 3
l
I
而
I m( 2 l)2 2m(1 l)2 2 ml2
3
33
所以
mv0l
2 3
ml 2
由此得到: 3v0 2l
2m
1 3
l
O⅓l
1 2
v
0
2 3
l
m
⅓l m v0
⅓l
15. 如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 JA=10 kg·m2 和 JB
2
2
22
2
2
1 16
( Ld14
1 2
ad24
第四章刚体的转动习题
第四章 刚体的转动1. 一质量为m 0 ,长为l 的棒能绕通过O 点的水平轴自由转动.一质量为m ,速率为v 0的子弹从水平方向飞来,击中棒的中点且留在棒内,如图所示。
则棒中点的速度为( ). A .00m m mv +; B .00433m m mv +;C .0023m mv ; D .043m mv 。
2。
一根长为l ,质量为m 的均匀细棒在地上竖立着。
如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时速率应为( )。
A .gl 6;B .gl 3;C .gl 2;D .lg23. 3. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一个是正确的?( ) A .角速度从小到大,角加速度从大到小 B .角速度从小到大,角加速度从小到大 C .角速度从大到小,角加速度从大到小 D .角速度从大到小,角加速度从小到大4。
一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度ω( ) A .增大 B .不变 C .减小 D .不能确定5。
一静止的均匀细棒,长为L ,质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML 。
一质量为m 速率为v 的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为( )A .ML mvB .ML mv 23C .ML mv 35D .ML mv 476. 在某一瞬时,物体在力矩作用下,则有( )A 、角速度ω可以为零,角加速度α也可以为零;B 、角速度ω不能为零,角加速度α可以为零;C 、角速度ω可以为零,角加速度α不能为零;D 、角速度ω与角加速度α均不能为零。
刚体的转动习题
17-4图18-4 图F FO 04 第四章 刚体力学一、选择题:1、如图4-18所示,一圆盘绕通过盘心且与盘面垂直的轴o 以角速度ω针转动。
今将两大小相等、方向相反、但不在同一条直线上的力F 和F -盘面同时作用到圆盘上,则圆盘的角速度:[ ] (A )必然减少 (B )必然增大(C )不会变化 (D )如何变化,不能确定 2、如图4-17所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B端置于粗糙的水平地面上而静止,杆身与竖直方向成θ角,则A 端对墙壁的压力大小为:[ ](A )θcos 41mg (B )θmgtg 21 (C )θsin mg (D )不能唯一确定 3、某转轮直径m d 4.0=,以角量表示的转动方程为t t t 4323+-=θ(SI ),则:[ ](A )从s t 2=到s t 4=这段时间内,其平均角加速度为2.6-s rad ;(B )从s t 2=到s t 4=这段时间内,其平均角加速度为2.12-s rad ;(C )在s t 2=时,轮缘上一点的加速度大小等于2.42.3-s m ;(D )在s t 2=时,轮缘上一点的加速度大小等于2.84.6-s m 。
4、如图4-2所示,一倔强系数为k 轮(转动惯量为J ),下端连接一质量为m 的物体,问物体在运动过程中,下列哪个方程能成立?[ ] (A )ky mg = (B )02=-T mg(C )my T mg =-1 (D )y R J J βR T T ''⋅==-)(21 5、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]7、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .1-4 图5-4图19-4 图 (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]8、一力N j i F )53( +=,其作用点的矢径为m j i r )34( -=,则该力对坐标原点的力矩为:[ ] (A )m N k ⋅- 3 (B )m N k ⋅ 29 (C )m N k ⋅ 19 (D )m N k ⋅ 39、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ]10、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]11、如图4-19所示P 、Q 、R 、S l RS QR PQ ===,则系统对o o '轴的转动惯量为:[ ](A )250ml (B )214ml(C )210ml (D )29ml12、如图4-1所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且Mg F =。
大学物理-刚体的定轴转动-习题和答案
第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。
刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。
又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。
()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。
既 z M I β=。
所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。
3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。
(完整版)刚体定轴转动习题
刚体定轴转动一、选择题(每题3分)1、个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的( )(A)机械能守恒,角动量守恒; (B)机械能守恒,角动量不守恒,(C)机械能不守恒,角动量守恒; (D)机械能不守恒,角动量不守恒.2、一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为( ) (A) L 不变,ω增大 (B) 两者均不变(C) L不变,ω减小 (D) 两者均不确定3、有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零在上述说法中,正确的是()(A)只有(1)是正确的(B)只有(1)、(2)正确(C)只有(4)是错误的(D)全正确4、以下说法中正确的是()(A)作用在定轴转动刚体上的力越大,刚体转动的角加速度越大。
(B)作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大。
(C)作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大。
(D)作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零。
5、一质量为m的均质杆长为l,绕铅直轴o o'成θ角转动,其转动惯量为()6、一物体正在绕固定光滑轴自由转动()(A) 它受热膨胀或遇冷收缩时,角速度不变.(B) 它受热时角速度变小,它遇冷时角速度变大.(C)它受热或遇冷时,角速度均变大.(D) 它受热时角速度变大,它遇冷时角速度变小.O7、关于刚体对轴的转动惯量,下列说法中正确的是( )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.(C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.8、两个均质圆盘A 和B 的密度分别为A ρ和B ρ,若A ρ﹥B ρ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面的转动惯量各为J A 和J B ,则( )(A )J A >J B (B )J B >J A(C )J A = J B (D )J A 、 J B 哪个大,不能确定9、某转轮直径d =40cm ,以角量表示的运动方程为θ=3t -3.02t +4.0t ,式中θ的单位为rad,t 的单位为s,则t =2.0s 到t =4.0s 这段时间内,平均角加速度为( )(A)212-⋅srad (B)26-⋅s rad(C)218-⋅s rad (C)212-⋅s m10、 轮圈半径为R ,其质量M 均匀分布在轮缘上,长为R 、质量为m 的均质辐条固定在轮心和轮缘间,辐条共有2N 根。
刚体定轴转动练习题及答案
刚体定轴转动练习题一、选择题1、一刚体以每分钟60转绕Z 轴做匀速转动(ωϖ沿Z 轴正方向)。
设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( ) A υϖ=94.2i ϖ+125.6j ϖ+157.0k ϖ; B υϖ=34.4k ϖ; C υϖ=-25.1i ϖ+18.8j ϖ; D υϖ=-25.1i ϖ-18.8j ϖ;2、一均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?( )A 角速度从小到大,角加速度从大到小。
B 角速度从小到大,角加速度从小到大。
C 角速度从大到小,角加速度从大到小。
D 角速度从大到小,角加速度从小到大。
3、刚体角动量守恒的充分而必要的条件是:( )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变4、某刚体绕定轴做匀变速转动时,对于刚体上距转轴为r 出的任一质元m ∆来说,它的法向加速度和切向加速度分别用n a 和t a 来表示,则下列表述中正确的是 ( )(A )n a 、t a 的大小均随时间变化。
(B )n a 、t a 的大小均保持不变。
(C )n a 的大小变化, t a 的大小恒定不变。
(D )n a 的大小恒定不变, t a 的大小变化。
5、有两个力作用在一个有固定转轴的刚体:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(1) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。
A 只有(1)是正确的。
B (1),(2)正确,(3),(4)错误。
第4章刚体的转动习题
第四章刚体的转动习题(一)教材外习题一、选择题:1.关于刚体对轴的转动惯量,下列说法中正确的是(A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C)取决于刚体的质量、质量的空间分布和轴的位置。
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
()2.两个均质圆盘A和B的密度分别为ρA和ρB,若ρA>ρB,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A和J B,则(A)J A>J B(B)J B>J A(C)J A=J B(D)J A、J B哪个大,不能确定()3.花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,转动惯量为J0角速度为ω0,然后她将两臂收回,使转动惯量减少J0/3。
这时她转动的角速度变为(A)ω0/3 (B)(1/3)ω0(C)3ω0(D)3ω0()4.如图所示,一水平刚性轻杆,质量不计,杆长l =20cm,其上穿有两个小球。
初始时,两小球相对杆中心O对称放置,与O的距离d=5cm,二者之间用细线拉紧。
现在让细杆绕通过中心O的竖直固定轴作匀角速的转动,转速为ω0,再烧断细线让两球向杆的两端滑动。
不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为(A)ω0 (B)2ω0(C)ω0/2 (D)ω0/4()二、填空题:1.半径为r =1.5m的飞轮,初角速度ω0=10rad·s-1,角加速度β = -5rad·s-2,则在t=_______ _________时角位移为零,而此时边缘上点的线速度v= _______________________。
2.半径为30cm的飞轮,从静止开始以0.50rad·s-2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240︒时的切向加速度a t =______________,法向加速度a n =_______________。
大学物理习题册及解答(第二版)第四章-刚体的定轴转动
上环可以自由在纸面内外摆动。求此时圆环摆的转动惯量。 O
(*)(3)求两种小摆动的周期。哪种摆动的周期较长?
R C
解:(1)圆环放在刀口上O,以环中 心的平衡位置C点的为坐标原点。Z轴
J zc MR2
O
P
ŷ
P΄
x
指向读者。圆环绕Z轴的转动惯量为
Z
R
由平行轴定理,关于刀口的转动惯量为 J zo J zc MR 2 2MR 2
m(l a) J
杆摆动过程机械能守恒
J 1 Ml2 3
1 J 2 Mg l (1 cos )
2
2
解得小球碰前速率为 Ml
2gl sin
m(l a) 3 2
5.一轻绳绕过一半径R,质量为M/4的滑轮。质量为M的人抓住绳 子的一端,而绳子另一端系一质量为M/2的重物,如图。求当人相 对于绳匀速上爬时,重物上升的加速度是多少?
解:选人、滑轮、与重物为系统,系统所受对滑轮轴的
外力矩为
1 MgR
人
物2
设u为人相对绳的匀速度,为重物上升的
速度。则该系统对滑轮轴的角动量为
L M R M (u )R (1 M R2 ) 13 MR MRu
2
24
8
据转动定律
du 0 dt
dL dt
a
即 1 MgR d (13 MR MRu)
6. 一飞轮以角速度0绕光滑固定轴旋转,飞轮对轴的转动惯 量为J1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转 轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系
统的角速度 / 3 0
7.一长为l,质量可以忽略的直杆,可绕通过其一端的 水平光滑轴在竖直平面内作定轴转动,在杆的另一端固 定着一质量为m的小球,如图所示.现将杆由水平位置 无初转速地释放.则杆刚被释放时的角加速度a0 _ , 杆与水平方向夹角为60°时的角加速度a_
刚体转动习题课选讲例题
at a
rr
0.4 0.8 (rad s2 )
0.5
刚体的转动习题课选讲例题
求:(2) t = 5 s 时角速度及转过旳圈数;
0.8rad s2 t 4 rad s1
1 t 2 10 rad
2
n 1.6
2π
求(3)t = 1 s 时轮缘上一点旳加速度.
m0 m
R
顺时针方向
2m0 2π
2m0 m
刚体转动
解 盘和人为系统, 角动量守恒 .
设:0、 分别为人和盘相对地
旳角速度, 顺时针为正向 .
1 2
mR 2
m0 R20
0
1 mR2 2
d
dt
m0 R2
d 0
dt
0
1 mR2d
2
m0R2
2π
0 d0
刚体的转动习题课选讲例题
例 一质量为 m' ,半径为 R 旳圆盘,可绕一垂直
FT1
FN
PmA AO
FT1
x
FT1
FC
C
mC FT2
mB B
FT2
O
解 (1)隔离物体分 别对物体A、B 及滑轮作 受力分析, 取坐标如图所 示, 利用牛顿第二定律 、 转动定律列方程 .
FT1 mAa
mB g FT2 mBa
PC
FT2
mB
PB y
RFT2 RFT1 J
Mf
FT
mg
y
a1 0.015 6 m/s2 a2 0.006 4 m/s2
m1g FT1 m1a1 m2 g FT2 m2a2
FT1R M f
大学物理习题参考解答物理习题参考解答刚体基本运动_转动定律_动能定理
选择题_03图示单元四 刚体基本运动 转动动能 1一 选择题01. 一刚体以每分钟60转绕z 轴做匀速转动(ω沿转轴正方向)。
设某时刻刚体上点P 的位置矢量为345r i j k =++,单位210m -,以210/m s -为速度单位,则该时刻P 点的速度为: 【 B 】(A) 94.2125.6157.0v i j k =++;(B) 25.118.8v i j =-+;(C) 25.118.8v i j =--;(D) 31.4v k =。
02. 轮圈半径为R ,其质量M 均匀布在轮缘上,长为R ,质量为m 的均质辐条固定在轮心和轮缘间,辐条共有2N 根。
今若将辐条数减少N 根但保持轮对通过轮心,垂直于轮平面轴的转动惯量保持不变,则轮圈的质量为 【 D 】(A)12N m M +; (B) 6N m M +; (C) 23N m M +; (D) 3Nm M +。
03. 如图所示,一质量为m 的均质杆长为l ,绕铅直轴OO '成θ角转动,其转动惯量为 【 C 】(A)2112ml ;(B) 221sin 4ml θ;(C) 221sin 3ml θ; (D) 213ml 。
04. 关于刚体对轴的转动惯量,下列说法中正确的是 【 C 】 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关; (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关; (C) 取决于刚体的质量、质量的空间分布和轴的位置;(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
05. 两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若A B ρρ>,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 【 B 】(A) A B J J >; (B) B A J J >;(C) A B J J =; (D) A J 和B J 哪个大,不能确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
闸瓦
d
ω
结束 目录
解: J = mR 2= 60×(0.25)2 3.75kg.m2 =
N l1 l2
F
f 1000 t = 0 ω0 = 2 n = 2 × π π N 60 =104.7 r/s f t =5 ω =0 ω ω0 0 104.7 20.9 r/s2 α= = = t 5 F ( l 1 + l 2) N l 1= 0 Jα NR N= f R=Jα= R l1 J α F= R = 314N l1 + l2 结束 目录
结束 目录
4-7 绕有电缆的大木轴,质量为 1000kg,绕 绕有电缆的大木轴, , 如图所示: 中心轴 0 的转动惯量为 300 kgm2.如图所示: R1=1.00m,R2=0.40m.假定大木轴与地面间无 . 相对滑动, 相对滑动,当用 F = 9800 N的水平力拉电缆的一 的水平力拉电缆的一 端时, 端时,问: (1)轮子将怎样运动? )轮子将怎样运动? 的加速度是多大? (2)轴心 0 的加速度是多大? ) (3)摩擦力是多大? )摩擦力是多大? R1 (4)摩擦系数至少为多 ) R2 大时才能保证无相对滑动? 大时才能保证无相对滑动? 0
结束 目录
解;由转动动能定理 A = 1 J ( 2 ω02 ) = ω 2 = 1 Jω 2 0 2
1× 2 3.75× ( 104.7 ) 2
-2.05×104 J =
结束 目录
4-6 某冲床上飞轮的转动惯量为 某冲床上飞轮的转动惯量为4.00× 103kgm2.当它的转速达到 30 r/min时, 时 它的转动动能是多少?每冲一次, 它的转动动能是多少?每冲一次,其转速降 为10 r/min转.求每冲一次飞轮对外所作 转 的功. 的功.
解:(1)
N f
T2
T1
(2) = 0 m 1g a=m m J r2 1+ 2+ m 1g (m 2+ J r 2 ) T1 = m 1+ m 2 + J r 2 m 1m 2g T2 = m 1+ m 2 + J r 2
结束 目录
4-4 电动机带动一个转动惯量为 = 50 电动机带动一个转动惯量为J kgm2 的系统作定轴转动.在 0.5s 内由静 的系统作定轴转动. 的转速. 止开始最后达到 120 r/min的转速.假定 的转速 在这一过程中转速是均匀增加的,求电动机 在这一过程中转速是均匀增加的, 对转动系统施加的力矩. 对转动系统施加的力矩.
o mg N
θ
F
结束 目录
4-8 有质量为 mA与 mB,的两圆盘同心 地粘在一起, 地粘在一起,半径分别为 rA与 rB .小圆盘 边缘绕有绳子,上端固定在天花板上, 边缘绕有绳子,上端固定在天花板上,大圆 盘边缘也绕有绳子,下端挂一物体, 盘边缘也绕有绳子,下端挂一物体,质量为 mC(见图)试求: 见图)试求: (1)要使圆盘向上加速, )要使圆盘向上加速, 向下加速, 向下加速,静止或匀速运 rA O 动的条件; 动的条件; rB (2)在静止情形下,两 )在静止情形下, 段绳子中的张力. 段绳子中的张力. mc
结束 目录
解得: 解得:
T T 1 (mA+ mB)g = 0 T 1r A T r B = ( J A+ J B )α = J α m Cg T 1Байду номын сангаас= m Ca a =r Aα
m Cg J m C(mA+ mB) r A r B T1 = 2 m Cr A m Cr A r B + J T = T 1 + (mA+ mB)g
4-16 4-17 4-23 4-24 4-30 4-31
习题总目录
4 -1 一飞轮直径为 一飞轮直径为0.30m,质量为 ,质量为5.00 kg,边缘绕有绳子,现用恒力拉绳子的一端, ,边缘绕有绳子,现用恒力拉绳子的一端, 使其由静止均匀地加速 ,经 0.50 s 转速达 10r/3.假定飞轮可看作实心圆柱体,求: .假定飞轮可看作实心圆柱体, (1)飞轮的角加速度及在这段时间内转过 ) 的转数; 的转数; (2)拉力及拉力所作的功; )拉力及拉力所作的功; (3)从拉动后经 t =10s时飞轮的角速度及 ) 时飞轮的角速度及 轮边缘上一点的速度和加速度. 轮边缘上一点的速度和加速度.
F
结束 目录
与水平方向夹角为θ (5)如果力 F与水平方向夹角为 (<π/2) 见 ) 与水平方向夹角为 而仍要使木轴向前加速且与地面无相对滑动, 图,而仍要使木轴向前加速且与地面无相对滑动, 最大不能超过多少? 问θ最大不能超过多少? 最大不能超过多少
F
θ
结束 目录
解:(1)当轮子与地 当轮子与地 o R2 面无相对滑动时, 面无相对滑动时, mg F 作纯滚动. 作纯滚动. f N M A = F (R 1 R 2) = JAα 2 JA = J 0 + mR 1 = 1.3×103 kg.m2 M A F (R 1 R 2) α= = JA JA 9800 × 0.6 4.52 rad/s2 = 1.3×103 = 的加速度为: 轴心O 的加速度为: a 0 = R 1α = 1× 4.52 = 4.52 m/s2
m Cg J m C(mA+ mB) r A r B + (mA+ mB)g = 2 m Cr A m Cr A r B + J
结束 目录
4-9 密度均匀,半径为 ,质量为 m 的 密度均匀,半径为b 小球在与水平面的夹角为β的斜面上无滑动 小球在与水平面的夹角为 的斜面上无滑动 的圆形轨道, 地滚下并进入一半径为 a 的圆形轨道,如图 所示. 所示.假定小球由高度为 h 的顶部从静止滚 下. (1)求小球到达斜面底部时的角速度 ) 和质心的速度; 和质心的速度; r=b (2)证明:如果 )证明: C A b << a ,要使小球 h a 不脱离圆轨道而达 β 到 A点,则 h 应满 点 B 足: ≥ 27a h 10
结束 目录
(1) 解: T T 1 (mA+ mB)g = (mA+ mB)a 0 T 1r A T r B = ( J A+ J B )α = J α m Cg T 1 = m Ca a 0 =rB α
T
a0 rA rB α (mA+ mB)g T1
T1
a =r Aα a 0 =r Aα r B α m g 解得: 解得: ( r A r B )m Cg r B (mA+ mB)g a0 = 2 J (r A r B ) r B (mA+ mB)g + r + r B m C 结束 目录 B
2
ω
θ
结束 目录
(2)
M = J α =F R
J α 5.6×10-2×1.26×102 47N F= = = R 0.15 A =M θ =FR θ = 47×0.15×5π=111J
结束 目录
(3) ω =α t =1.26×102×10=1.26×103 1/s v = R = 0.15×1.26×103 ω 1.89×102 m/s = a n = R 2 = 0.15×(1.26×103)2 ω 2.38×105 m/s2 = a t = R α = 0.15×1.26×102 =18.9m/s2
结束 目录
解:
5 × ( 0.15 ) 5.2×10-2 kg.m2 1 2 = J = 2 MR = 2 (1) ω = 2 n =α t π 2 n 2×3.14×10 π= α= t = t 0.5 =1.26×102 1/s2 1 α t 2 1 ×1.26 102 (0.5)2 = 5π × × θ= =2 2 N = 2 = 2.5rev π
(5)设轮子向右运动 设轮子向右运动 F cos θ f = ma 0 = m R 1α f R 1 F R 2 = J 0α 解式(1)(2)得: 解式 得 F (R 1cos θ R 2) α= 2 J 0 +m R 1
≥
(1) (2)
0
f R 1cos θ R 2 ≥ 0 R 2 0.4 cos θ ≥ ≥ = 0.4 R1 1
结束 目录
4-2 飞轮的质量为60kg,直径为0.50m, 飞轮的质量为 ,直径为 , 转速为1000r/min,现要求在 5s内使其制 转速为 , 内使其制 动,求制动力 F ,假定闸瓦与飞轮之间的摩擦 假定闸瓦与飞轮之间的摩擦 系数= 0.4,飞轮的质量全部分布在轮的外 系数 , 周上.尺寸如图所示. 周上.尺寸如图所示.
4-3 如图所示,两物体 和2的质量分别 如图所示,两物体1和 的质量分别 滑轮的转动惯量为J,半径为 为m1与m2,滑轮的转动惯量为 半径为 r . 与桌面间的摩擦系数为, (1)如物体 与桌面间的摩擦系数为 , )如物体2与桌面间的摩擦系数为 求系统的加速度 a 及绳中的张力 T2 与 T2 设绳子与滑轮间无相对猾动); (设绳子与滑轮间无相对猾动); 与桌面间为光滑接触, (2)如物体 与桌面间为光滑接触,求系 )如物体2与桌面间为光滑接触 统的加速度 a 及绳 T2 中的张力 T1与 T2. m 2 T1 m1
R1
结束 目录
(3)
F f=ma0 f=F ma0 9800 4.52× 1000 = 5.28×103 N = (4) 根据牛顿第二定律 F f=ma f=F ma 轮子只滚不滑的条件是: 轮子只滚不滑的条件是: f ≤ f 静max max 即: f = F m a ≤ N 只滚不滑时 a = R 1α 而 f = N = m g m g ≤ F R 1α ≥ F R 1α = 0.54 mg 结束 目录
C
a
r B (mA+ mB)g a0 = 2 J (r A r B ) r B (mA+ mB)g + r + rB m C B 若:上升 a 0 > 0 要求: 要求: 要求: 要求: 若:静止 a 0= 0 要求: 要求: ( r A r B )m Cg = r B (mA+ mB)g 结束 目录 ( r A r B )m Cg > r B (mA+ mB)g ( r A r B )m Cg < r B (mA+ mB)g 若:下降 a 0< 0