有理数的运算基础测试题含答案

合集下载

有理数加减乘除混合运算基础试题(含答案)

有理数加减乘除混合运算基础试题(含答案)

有理数加减乘除混合运算基础试题(含答案)1. 小明去商店买了一本书,价格为15.5元。

他还买了两包饼干,每包饼干的价格分别为3.2元和2.8元。

请计算小明的总花费。

解答:小明购买书的花费为15.5元,两包饼干的总花费为3.2元 +2.8元 = 6元。

所以小明的总花费为15.5元 + 6元 = 21.5元。

2. 小红在超市买了一条围巾,价格为25.8元。

她付了一张50元的钞票,收到了零钱后她又决定买一盒巧克力,价格为8.5元。

请问小红收到了多少零钱?解答:小红付了50元的钞票,然后购买围巾的价格为25.8元,剩下的钱为50元 - 25.8元 = 24.2元。

小红再买巧克力花费了8.5元,所以最后收到的零钱为24.2元 - 8.5元 = 15.7元。

3. 某电商网站在活动期间推出了一款手机,原价为2399元。

今天是双11,该手机享受8折优惠。

请计算该手机的最终价格。

解答:该手机原价为2399元,打8折后的价格为2399元 * 0.8 = 1919.2元。

所以该手机的最终价格为1919.2元。

4. 甲和乙两个人一起合作完成了一项工程,工程的总付款为8400元。

根据他们的实际贡献,甲应得到总付款的3/5,那么乙应得到多少钱?解答:甲应得到的付款额为8400元 * 3/5 = 5040元。

乙应得到的付款额为总付款减去甲的付款额,即8400元 - 5040元 = 3360元。

所以乙应得到3360元。

5. 一家餐馆购买了10箱鸡蛋,每箱鸡蛋有36个。

餐馆决定将这些鸡蛋平均分给4个厨师,还剩下多少个鸡蛋?解答:这家餐馆购买的鸡蛋总数为10箱 * 36个/箱 = 360个鸡蛋。

如果要平均分给4个厨师,每个厨师得到的鸡蛋数量为360个鸡蛋 / 4 = 90个鸡蛋。

所以剩下的鸡蛋数量为360个鸡蛋 - 90个鸡蛋 * 4 = 360个鸡蛋 - 360个鸡蛋 = 0个鸡蛋。

总结:以上是关于有理数加减乘除混合运算的基础试题及其答案。

有理数的加减乘除乘方混合运算专题训练(带答案)

有理数的加减乘除乘方混合运算专题训练(带答案)

1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷223 3 222113、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-35722523、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)331、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+-1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯;(3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ].(1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯.(1)36×23121)-(; (2)12.7÷)(-1980⨯;(3)6342+)(-⨯; (4))(-43×)-+(-31328;(5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯.(1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423];(5))-(8743÷)(-87; (6))+()(-654360⨯;(7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯.(1))-(-258÷)(-5; (2)-33121)(--⨯;(3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3;(7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)423; (5)18; (6)0; (7)-4.64;(8)37; (9)8; (10)-25.4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________.4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( )三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16)27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-200230.(3分)-)45()45(5222-÷-⨯⨯31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3)33.(5分)30×(21-31+53-109)五、解答题(9分)34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值.(2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里 9.32 -141 10.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C四、23.-90 24.1 25.-3 26.41 27.15 28.1 29.-2002 30.1 31.30 32.-49 33.-4 五、34.(1)2000 (2)0。

有理数的运算经典测试题附解析

有理数的运算经典测试题附解析

有理数的运算经典测试题附解析一、选择题1.设n 是自然数,则n n 1(1)(1)2+-+-的值为( ) A .0B .1C .﹣1D .1或﹣1 【答案】A【解析】试题分析:当n 为奇数时,(n +1)为偶数, n n 1(1)(1)2+-+-=(1)12-+=0; 当n 为偶数时,(n +1)为奇数,n n 1(1)(1)2+-+-=1(1)2+-=0. 故选A .点睛:本题考查有理数乘方,解答本题的关键是明确有理数乘方的计算方法,利用分类讨论的数学思想解答.2.已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是( )A .63.153610⨯B .73.153610⨯C .631.53610⨯D .80.3153610⨯ 【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将31536000用科学记数法表示为73.153610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为( )A .138.8910⨯B .128.8910⨯C .1288.910⨯D .118.8910⨯【解析】【分析】利用科学记数法的表示形式进行解答即可【详解】4.广西北部湾经济区包括南宁、北海、钦州、防城港、玉林、崇左六个市,户籍人口约2400万,该经济区户籍人口用科学记数法可表示为( )A .2.4×103B .2.4×105C .2.4×107D .2.4×109【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将2400万用科学记数法表示为:2.4×107.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.6.现在网购是人们喜爱的一种消费方式,2018年天猫“双11”全球狂欢节某网店的总交易额超过1207000元,1207000用科学记数法表示为( )A .61.20710⨯B .70.120710⨯C .512.0710⨯D .51.20710⨯【答案】A【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1207000=1.207×106,故选A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.如图是张小亮的答卷,他的得分应是( )A .40分B .60分C .80分D .100分【答案】A【解析】【分析】 根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a 与b 互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a 与b 互为相反数,故选A .【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.8.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为( )A .611610⨯B .711.610⨯C .71.1610⨯D .81.1610⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将116000000用科学记数法表示应为1.16×108.故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.10.地球上海洋面积约为361000000平方公里,361000000用科学记数法可表示为( ) A .90.36110⨯B .73.6110⨯C .83.6110⨯D .736110⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】 361000000=83.6110⨯,故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.-2的倒数是( )A.-2 B.12-C.12D.2【答案】B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握12.大量事实证明,治理垃圾污染刻不容缓.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示为()A.8.5×105 B.8.5×106C.85×105 D.85×106【答案】B【解析】【分析】根据科学记数法的表示形式:a×10n,其中1≤|a|<10,n为整数.解答即可.【详解】8500000=8.5×106,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.去年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为()A.63.0510⨯B.630.510⨯C.73.0510⨯D.83.0510⨯【答案】C【解析】【分析】根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】3050万=30500000=73.0510⨯,故选:C .【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A .61.310⨯B .413010⨯C .51310⨯D .51.310⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于130万有7位,所以可以确定n=7-1=6.【详解】130万=1 300 000=1.3×106.故选A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.15.将数47300000用科学记数法表示为( )A .547310⨯B .647.310⨯C .74.7310⨯D .54.7310⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将47300000用科学记数法表示为74.7310⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.2019年3月3日至3月15日,中国进入“两会时间”,根据数据统计显示,2019年全国两会热点传播总量达829.8万条,其中数据“829.8万”用科学记数法表示为( ) A .8.298×107 B .82.98×105 C .8.298×106 D .0.8298×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】数据“829.8万”用科学记数法表示为8.298×106.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.如果a+b >0,ab >0,那么( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0【答案】A【解析】解:因为ab >0,可知ab 同号,又因为a +b >0,可知a >0,b >0.故选A .18.2018年4月8日11-日,博鳌亚洲论坛2018年年会在海南博鳌句型,本次年会的主题为“开放创新的亚洲,繁荣发展的世界”.开幕式上,博鳌亚洲论坛副理事长周小川致辞中提到:“一带一路”区域基础设施投资缺口每年超过6000亿美元.6000亿用科学计数法可以表示为( )A .3610⨯亿B .4610⨯亿C .30.610⨯亿D .40.610⨯亿 【答案】A【解析】【分析】科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:6000亿3610=⨯⨯亿,故选A .【点睛】此题考查科学计数法的表示方法.科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.如图,是一个计算流程图.当16x =时,y 的值是( )A2B.2C.2±D.2±【答案】A【解析】【分析】观察流程图的箭头指向,根据判断语句,当结果是无理数时输出,当结果是有理数时重复上述步骤,即可得到答案.【详解】x=后,取算术平方根的结果为2,判断2不是无理数,再取2的算术平方根解:输入1622是无理数,数出结果.故A为答案.【点睛】本题主要考查流程图的知识点、无理数的基本概念(无限不循环小数)、算术平方根的基本概念,看懂流程图是做题的关键,注意算术平方根只有正数.20.x是最大的负整数,y是最小的正整数,则x-y的值为( )A.0 B.2 C.-2 D.±2【答案】C【解析】【分析】根据有理数的概念求出x、y,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】∵x是最大的负整数,y是最小的正整数,∴x=-1,y=1,∴x-y=-1-1=-2.故选C.【点睛】本题考查了有理数的减法,熟记有理数的概念求出a、b的值是解题的关键.。

有理数加减乘除混合运算基础试题(含答案)

有理数加减乘除混合运算基础试题(含答案)

有理数加减乘除混合运算基础试题(含答案)数学练(一)有理数加减法运算练一、加减法法则、运算律的复A。

同号两数相加,取相同的符号,并把绝对值相加。

例如:(–3)+(–9)=(–12),85+(+15)=100.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

例如:(–45) +(+23)=–22,(–1.35)+6.35=5.一个数同相加,仍得这个数。

例如:(–9)+ 0=–9,0 +(+15)=15.B。

加法交换律:a + b = b + a,加法结合律:(a + b) + c = a + (b + c)。

例如:(–1.76)+(–19.15)+ (–8.24)=-29.15,23+(–17)+(+7)+(–13)=0.3)+(–2)+5+(–8)=–2,(–4)+(+5)=1.C。

有理数的减法可以转化为正数来进行,转化的“桥梁”是减号(正号可以省略)或是加上被减数的相反数。

例如:a–b=a+(-b)。

即(–3)–(–5)=2,3–13–(–1)+(–5)=6.D。

加减混合运算可以统一为加法运算。

即a + b–c = a + b +(-c)。

例如:(–3)–(+5)+(–4)–(–10)=–2,1–4 + 3–5=–5,2.4 + 3.5–4.6 + 3.5=4.8,3–2+5–8=–2.二、综合提高题。

A XXX their blood pressure once a day in the afternoon。

The table below XXX blood pressure was 160 units last Sunday。

What is the XXX Friday?XXXXXX blood pressure (compared to us day) +30 units -20 units +17 units +18 units -20 unitsXXX: 160 + 30 - 20 + 17 + 18 - 20 = 185 units.Math Exercise 2: XXXA。

有理数的乘除法练习题(含答案)

有理数的乘除法练习题(含答案)

第一章有理数1.4 有理数的乘除法1.计算12–12×3的结果是A.0 B.1 C.–2 D.–1 2.若等式–2□(–2)=4成立,则“□”内的运算符号是A.+ B.–C.×D.÷3.计算1–(–2)×(–2)÷4的结果为A.2 B.54C.0 D.34-4.|–13|的倒数是A.13B.3 C.–13D.–35.–0.3的倒数是A.10.3B.−10.3C.103D.−1036.2×(–3)=__________.7.计算:523()12 1234+-⨯.8.计算:22 (7)()7-⨯-.9.计算:34(7)(2) 25-÷-⨯+.10.计算:236(3)2(4)-⨯-+⨯-.11.12()2⨯-的结果是A.–4 B.–1 C.14-D.3212.计算:740(16) 2.54÷--÷=A.–1.1 B.–1.8 C.–3.2 D.–3.9 13.下列各数中,与–2的积为1的是A.12B.–12C.2 D.–214.计算11(6)()666⨯-÷-⨯的值为A.1 B.36 C.1-D.+615.计算(1+14+56−12)×12时,下列可以使运算简便的是A.运用乘法交换律B.运用加法交换律C.运用乘法分配律D.运用乘法结合律16.在–3,–2,–1,4,5中取出三个数,把三个数相乘,所得到的最大乘积是__________.17.有三个互不相等的整数a、b、c,如果abc=9,那么a+b+c=__________.18.计算:5 (8)[7(3 1.2)]6-⨯-+-⨯.19.计算:11336()964⨯--.20.计算:11 (1)(9)()32-⨯-÷-.21.(–0.25)×(–79)×4×(–18).22.计算:12112 ()() 3031065-÷-+-.23.计算:(14+512–56)×(–60).24.阅读后回答问题:计算(–52)÷(–15)×(–115)解:原式=–52÷[(–15)×(–115)]①=–52÷1②=–52③(1)上述的解法是否正确?答:__________;若有错误,在哪一步?答:__________;(填代号)错误的原因是:__________;(2)这个计算题的正确答案应该是:25.(2018•陕西)–711的倒数是A.711B.−711C.117D.−11726.(2018•吉林)计算(–1)×(–2)的结果是A.2 B.1 C.–2 D.–3 27.(2018•遂宁)–2×(–5)的值是A.–7 B.7 C.–10 D.10 1.【答案】D【解析】111323===122222-⨯---,故选D.2.【答案】C【解析】–2×(–2)=4.故选C.3.【答案】C【解析】1–(–2)×(–2)÷4=1–4÷4=1–1=0,故选C.4.【答案】B【解析】|–13|=13,13的倒数是3,故选B.5.【答案】D【解析】–0.3=–310,故–0.3的倒数是−103.故选D.6.【答案】–6【解析】根据有理数的乘法法则可得2×(–3)=–6.9.【答案】3 5【解析】3431143(7)(2)()252755-÷-⨯+=-⨯-⨯=.10.【答案】33【解析】236(3)2(4)-⨯-+⨯-2318833=+-=.11.【答案】B【解析】2×(–12)=–(2×12)=–1.故选B.12.【答案】C【解析】原式=575242--÷=572245--⨯=2571010--=3210-=–3.2,故选C.13.【答案】B【解析】∵–2×12=–1,–2×(–12)=1,–2×2=–4,–2×(–2)=4,∴与–2的积为1的是–12.故选B.14.【答案】B【解析】首先确定积的符号,然后将除法转化为乘法再进行计算.原式=16×6×6×6=36.15.【答案】C【解析】∵算式符合乘法分配律的形式,∴运用乘法分配律可以使运算简便.故选C.16.【答案】30【解析】正数大于一切负数,同号得正,异号得负,找出乘积是正数绝对值最大的三个数相乘即可.最大乘积是:(–3)×(–2)×5=3×2×5=30.故答案为:30.19.【答案】–29【解析】11311336()363636462729 964964⨯--=⨯-⨯-⨯=--=-.20.【答案】–24【解析】114(1)(9)()9224323-⨯-÷-=-⨯⨯=-.21.【答案】【解析】原式=–(14×79×4×18)=–14.22.【答案】1 10 -【解析】原式=14114()()30661010-÷+--=151()()3062-÷-=11()()303-÷=1()330-⨯=110-.23.【答案】10【解析】原式=14×(–60)+512×(–60)–56×(–60)=–15+(–25)+50=–40+50=10.24.【答案】(1)不正确;①;运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行;(2)190.【解析】(1);不正确;错误在第①步;运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行;25.【答案】D【解析】–711的倒数是–117,故选D.26.【答案】A【解析】(–1)×(–2)=2.故选A.27.【答案】D【解析】(–2)×(–5)=+2×5=10,故选D.。

有理数基础测试题含答案

有理数基础测试题含答案

有理数基础测试题含答案一、选择题1.数轴上的A、B、C三点所表示的数分别为a、b、1,且|a﹣1|+|b﹣1|=|a﹣b|,则下列选项中,满足A、B、C三点位置关系的数轴为()A.B.C.D.【答案】A【解析】【分析】根据绝对值的意义,在四个答案中分别去掉绝对值进行化简,等式成立的即为答案;【详解】A中a<1<b,∴|a﹣1|+|b﹣1|=1﹣a+b﹣1=b﹣a,|a﹣b|=b﹣a,∴A正确;B中a<b<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=b﹣a,∴B不正确;C中b<a<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=a﹣b,∴C不正确;D中1<a<b,∴|a﹣1|+|b﹣1|=a﹣1+b﹣1=﹣2+b+a,|a﹣b|=b﹣a,∴D不正确;故选:A.【点睛】本题考查数轴和绝对值的意义;熟练掌握绝对值的意义是解题的关键.2.数轴上表示数a和数b的两点之间的距离为6,若a的相反数为2,则b为()A.4 B.4-C.8-D.4或8-【答案】D【解析】【分析】根据相反数的性质求出a的值,再根据两点距离公式求出b的值即可.【详解】∵a的相反数为2a+=∴20a=-解得2∵数轴上表示数a 和数b 的两点之间的距离为6 ∴6a b -=解得4b =或8-故答案为:D .【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.3.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:03282a +-=+,则23a +=,解得:1a =, Q 3tan 60︒=,()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.4.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.5.下列等式一定成立的是( )A .945-=B .1331-=-C .93=±D .32166--=-【答案】B【解析】【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可.【详解】A. 94321-=-=,故错误;B. 1331-=-,故正确;C. 93=, 故错误;D. ()321666--=--=,故错误;故答案为:B.【点睛】本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.6.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是( )A .B .C .D .【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答. 【详解】解:,原点在a,b的中间,如图,由图可得:,,,,,故选项A错误,故选:A.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.7.若︱2a︱=-2a,则a一定是( )A.正数B.负数C.正数或零D.负数或零【答案】D【解析】试题分析:根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数,可知a一定是一个负数或0.故选D8.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.9.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4【答案】C【解析】【分析】利用绝对值的代数意义求出a 的值即可.【详解】若a 为有理数,且|a|=2,那么a 是2或﹣2,故选C .【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.10.在-3,-1,0,3这四个数中,比-2小的数是( )A .-3B .-1C .0D .3【答案】A【解析】【分析】根据两个负数比较大小,绝对值较大的数反而小,正数比负数大,逐个判断与-2的大小关系即可.【详解】解:∵-32103<-<-<<∴比-2小的数是-3故选:A【点睛】本题考查有理数的大小比较,掌握负数比较大小的方法是关键.11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.2019的倒数的相反数是( )A .-2019B .12019-C .12019D .2019 【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是12019, 12019的相反数为12019-, 所以2019的倒数的相反数是12019-, 故选B .【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.13.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】 此题主要考查了二次根式的性质和绝对值的性质,关键是掌握2a =|a|.14.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5 【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D .【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.15.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4【答案】C【解析】【分析】首先确定原点位置,进而可得C 点对应的数.【详解】∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3,又∵BC=2,点C 在点B 的左边,∴点C 对应的数是1,故选C .【点睛】本题主要考查了数轴,关键是正确确定原点位置.16.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a、b的正负性,a、b的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a<-1,0<b<1,∴a+b<0,|a|>|b|,ab<0,a-b<0.所以只有选项D成立.故选:D.【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.17.小麦做这样一道题“计算()3-+W”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A.5 B.-5 C.11 D.-5或11【答案】D【解析】【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D.【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.18.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.19.不论a取什么值,下列代数式的值总是正数的是()A .1a +B .1a +C .2aD .2(1)a +【答案】B【解析】【分析】 直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.20.在有理数2,-1,0,-5中,最大的数是( )A .2B .C .0D .【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.。

有理数计算题单(含答案)

有理数计算题单(含答案)

有理数计算题单(含答案)篇一:50道初一数学有理数计算题含答案第二部分:有理数及其运算单元试题(含答案)有理数及其运算单元测试题全名一、判断题:1.如果a和B是对等的,那么?11ab??0()222.x+5一定比x-5大。

()3.1111? (?)? (?)? ()32234.+(―3)既是正数,又是负数.()5.数字轴上原点两侧的数字是相反的数字。

()6.任意两个有理数都可以相减.()7.有绝对值最小的数字,但没有绝对值最大的数字。

()8.a是有理数,―a一定是负数.()9.任何正数都大于其倒数10.大于0的数一定是正数,a2一定是大于0的数.()二、填空:1.、2.白天温度为零上10°C,记录为午夜温度比白天温度低15°C,因此午夜温度记录为°C3.平方得9的有理数是?4.比例?有理数1是273的倒数,小于2的数是25.5与―12的和的绝对值是6.倒数等于自身的数为7.若aA.1,然后是A0;如果a??1,则a0.8.在数字轴上,从点1.5向左移动2个单位以获得点a,然后从点a向右移动4个单位以获得点B,则点a表示的数字为,点B表示的数字为9.大于-5的负整数是,绝对值小于5而大于2的非负整数是10.? 倒数3的倒数是,倒数-5的绝对值是411.如果x<0,那么-|x|=|-x|=|-3|,那么.12.如果A2+| b-1 |=0,则3a-4b=13.若a?2b,2b?a?.14.(2a?1)?最小值1为15.已知a<2,则|a-2|=4,则a的值是2三、多项选择题:1.下列说法错误的是()(a)整数的对立面必须是整数(b)。

所有整数都有倒数(c)相反数与本身相等的数只有0(d)绝对值大于1而不大于2的整数有±22.如图所示,数字轴上的两点分别代表数字m和N,那么| m-N |是()(a)m-n(b)n-m(c)±(m-n)(d)m+n3.计算(-3)2-(-2)3-22+(-2)2,结果为()(a)17(b)-18(c)-36(d)184.如果两个有理数之和为负,那么这两个有理数()(a)都为负(b)一个为零,另一个为负(c)至少有一个为负(d)异号5.. 如果是?b、然后()33(a)a?b(b)a?b.(c)a?b?0(d)a??b.22334? (?)? (?), 结果是()4433344(a)?(b)(c)?(d)43436.计算?7.以下结论是正确的()(a)一个有理数的平方不可能为负数(b)一个有理数的平方必为正数(c)一个数字的平方等于它的绝对值。

有理数及其运算单元测试题(含答案)

有理数及其运算单元测试题(含答案)

有理数及其运算单元测试题姓名一、判断题:1.若a 、b 互为倒数,则02121=+-ab ( ) 2.x+5一定比x -5大。

( )3.31)21()21(31÷-=-÷ ( ) 4.+(—3)既是正数,又是负数. ( )5.数轴上原点两旁的数是相反数. ( )6.任意两个有理数都可以相减. ( )7.有绝对值最小的数,没有绝对值最大的数. ( )8.a 是有理数,—a 一定是负数. ( )9.任何正数都大于它的倒数. ( )10.大于0的数一定是正数,a 2一定是大于0的数. ( )二、填空题:1. 、 统称有理数.2.白天的温度是零上10°C 记作 ,午夜的温度比白天低15°,那么午夜的温度记作 °C .3.平方得9的有理数是 ,立方得271-的有理数是 . 4.比23-的倒数小2的数是 . 5.5与—12的和的绝对值是 ,它们绝对值的差是 .6.倒数与它本身相等的数是 .7.若1=a a,则a 0;若1-=a a,则a 0.8.在数轴上,从1.5的点向左移动2个单位得到点A ,再从A 点向右平移4个单位得到点B ,则点A 表示的数为 ,点B 表示的数为 .9.大于-5的负整数是 ,绝对值小于5而大于2的非负整数是 .10.43-的相反数的倒数是 ,-(-5)的倒数的绝对值是 . 11.如果x <0,那么-|x |= ,如果|-x |=|-3|,那么x= .12.如果a 2+|b -1|=0,则3a -4b = .13.若=->a b b a 2,2则 .14.112(2-+)a 的最小值是 .15.已知a <2,则|a -2|=4,则a 的值是 .三、选择题:1.下列说法错误的是( )(A ) 整数的相反数一定是整数 (B ) 所有的整数都有倒数(C ) 相反数与本身相等的数只有0 (D ) 绝对值大于1而不大于2 的整数有±22.如图所示,数轴上两点分别表示数m 、n ,则|m -n|为( )(A )m -n (B )n -m (C )±(m -n ) (D ) m +n3.计算(-3)2-(-2)3-22+(-2)2,其结果是( )(A )17 (B )-18 (C )-36 (D )184.若两个有理数的和为负,那么这两个有理数( )(A )都为负 (B )一个为零,另一个为负 (C )至少有一个为负 (D ) 异号5..若22b a =,则( )(A )b a = (B )33b a = . (C )0==b a (D )b a -= . 6.计算34()43(43-⨯-÷-,其结果是( ) (A )43- (B )43 (C )34- (D )34 7.下列结论正确的是( )(A )一个有理数的平方不可能为负数 (B ) 一个有理数的平方必为正数(C ) 一个数的平方与它的绝对值相等 (D ) 一个数的平方一定大于这个数8.若a为有理数,则下列各式的值一定为正数的是( )(A)a3+1 (B)a3 (C)a2+1 (D)(a+1)29.计算(-2)2004+(-2)2005所得的结果是( )(A )22004 (B )-22004 (C )(-2)2004 (D )-210.如果0<x <1,那么下列各式正确的是( )(A )21x x x >> (B )x x x 12>> (C )x x x >>12 (D )21x xx >> 四、把下列各数填入它相应所属的集合内:-1, (-2)2,0,-[+(-3.4)],-32, ∙-3.0,0.1010010001…,-(-5),—32,-(-2)3正整数集合{ …}; 分数集合 { …}负数集合 { …};有理数集合{ …} 五、把下列各数在数轴上表示出来,并用“<”号将各数从小到大排列起来:.4,—1+,0,—(—3.5),—211-.六、计算:1. )6.2(2.4)5.3()3(0-----+- 2.32432131+--3. )6(363528-⨯ 4.)2(8325.0-÷÷-5.911)325.0(321÷-⨯- 6.])2()6.0511(41[222-÷⨯-+---7.8)211(125.0)412(2311)32(3)211(4222⨯-⨯-⨯-÷-⨯+-⨯-七、求值:.1. 已知x =-2,y =1,z =-3,求x 4-(x 2y 2-y 2)-z 3-7的值.2. 已知|a |=3,|b|=5,|a -b|=b -a ,且ab <0,求a +b 与a -b 的值.3. 已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2 .试求代数式x 2-(a +b +cd )x +(a +b )2004+(-cd )2003的值.4. 已知a =222)31()6()3(27-÷-+-⨯+-;221223163-÷⨯-=b ; c =2)5.0()751()72(436818-+-÷--⨯;d =342)21(41])1()32(3[211-÷+---⨯-, 试确定ab —cd 的符号.5※.三个有理数0,0,,,>++<c b a abc c b a .当c cb ba ax ++=时,求x 19-92x +2的值.答案一. 判断题:1. [ √ ] 2. [ √ ] 3. [ × ] 4. [ × ] 5. [ × ] 6. [ √ ] 7. [ √ ]8. [× ] 9. [ × ] 10. [ × ]二、填空题1.[整数、分数] 2. [+10°C] 3. [±3,31-] 4. [322-] 5. [7,-7] 6. [±1] 7. [>,<=] 8. [-0.5,3.5] 9.[-4、-3、-2、-1,3、4] 10.[51,34] 11.[x ,±3] 12. [-4] 13. [a-2a] 14. [-1] 15. [-2]三、选择题:1.[B] 2.[B] 3.[A] 4.[C] 5.[A] 6.[C] 7.[A] 8.[C] 9.[B] 10.[A] 四、把下列各数填入它相应所属的集合内:[(-2)2、,-(-5),-(-2)3],[-[+(-3.4)],-32,∙-3.0],[-1,-32,—32,],[-1, (-2)2,0,-[+(-3.4)],-32, ∙-3.0,0.1010010001…,-(-5),—32,-(-2)3 ]五、把下列各数在数轴上表示出来,并用“<”号将各数从小到大排列起来:. [4)5.3(01211<--<<+-<--] 六、计算: 1. [-1.1] 2. []41- 3.[65173-] 4.[31] 5.[41] 6.[100397-] 7.[-914] 七、求值:. 5. [33]6. [2,-8]7. [当x=2时,原式=1;当x=-2时,原式=5]8. [a=-85,b=4,c=43,d=67-,原式=-81339] 5. [a 、b 、c 三数只能是二正一负,所以x=1,原式=-89]。

语法知识—有理数的基础测试题含解析

语法知识—有理数的基础测试题含解析

一、填空题1.|x +1|+|y -2|=0,则y -x -13的值是____. 2.已知关于x ,y 的方程组22{256x y ax y a -=+=-的解x ,y 互为相反数,则a =________.3.小贝认为:若a b >,则a b >.小贝的观点正确吗?___________(填“正确”或“不正确”),请说明理由___________.4.已知有理数a 、b 、c 在数轴上对应的点如图所示,则cb _____ab .(填“>”或“<”或“=”)5.已知a ,b 在数轴上的位置如图所示,则化简|a ﹣b |+|a +b |的结果是_____.6.在﹣4,23, 0,2.7这四个有理数中,整数有________. 二、解答题7.有20箱橘子,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20箱橘子中,最重的一箱比最轻的一箱多重多少干克? (2)与标准重量比较,20箱橘子总计超过或不足多少千克? (3)若橘子每千克售价2.5元,则出售这20箱橘子可卖多少元? 8.已知数轴上两点A ,B 对应的数分别为﹣4,8.(1)如图1,如果点P 和点Q 分别从点A ,B 同时出发,沿数轴负方向运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒6个单位. ①A ,B 两点之间的距离为 .②当P ,Q 两点相遇时,点P 在数轴上对应的数是 . ③求点P 出发多少秒后,与点Q 之间相距4个单位长度?(3)如图2,如果点P 从点A 出发沿数轴的正方向以每秒2个单位的速度运动,点Q 从点B 出发沿数轴的负方向以每秒6个单位的速度运动,点M 从数轴原点O 出发沿数轴的正方向以每秒1个单位的速度运动,若三个点同时出发,经过多少秒后有MP =MQ ?9.如图,已知数轴上点A 表示的数为﹣7,点B 表示的数为5,点C 到点A ,点B 的距离相等,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为t (t >0)秒. (1)点C 表示的数是 ;(2)求当t 等于多少秒时,点P 到达点B 处;(3)点P 表示的数是 (用含有t 的代数式表示); (4)求当t 等于多少秒时,PC 之间的距离为2个单位长度.10.材料阅读:已知点A 、B 在数轴上分别表示有理数a 、b ,|a ﹣b |表示A 、B 两点之间的距离.如:|1﹣2|表示数轴上1与2两点之间的距离,所以数轴上1与2两点之间的距离是|1﹣2|=1.(1)数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x 和﹣1的两点A 和B 之间的距离是 ,如果|AB |=2,那么x 为 ;(3)若x 表示一个有理数,则|x ﹣1|+|x +3|有最小值吗?若有,请求出最小值;若没有,请说明理由.三、1311.有理数a ,b 在数轴上的位置如图所示,则下列结论正确的是 ( )A .1a >-B .0a b +>C .1b <D .0ab > 12.若m 的相反数是n ,下列结论正确的是( )A .m 一定是正数B .一定是负数C .0m n +=D .m 一定大于n13.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论,其中正确的是( )①b ﹣a <0;②a +b >0;③|a |<|b |;④ab >0.A .①②B .③④C .①③D .②④14.下列各数中,绝对值最小的数是( )A .0B .1C .-3D .±115.一只小球落在数轴上的某点P 0处,第一次从P 0处向右跳1个单位到P 1处,第二次从P 1向左跳2个单位到P 2处,第三次从P 2向右跳3个单位到P 3处,第四次从P 3向左跳4个单位到P 4处…,若小球按以上规律跳了(2n+3)次时,它落在数轴上的点P 2n+3处所表示的数恰好是n ﹣3,则这只小球的初始位置点P 0所表示的数是( ) A .﹣4 B .﹣5C .n+6D .n+316.请阅读一小段约翰·斯特劳斯作品,根据乐谱中的信息,确定最后一个音符的时值长应为 ( )A .18B .12C .14D .3417.面粉厂规定某种面粉每袋的标准质量为500.2±kg ,现随机选取10袋面粉进行质量检测,结果如下表所示: 序号 1 2 3 4 5 6 7 8 9 10 质量(kg )5050.149.950.149.750.1505049.949.95A .1袋B .2袋C .3袋D .4袋18.下列各数: 0,3π,3.14,227,-0.55,8,1.121 221 222 1…(相邻两个1之间依次多一个2),其中有理数的个数是( ) A .4个 B .5个C .6个D .7个19.在6,-5,25-,3.7⋅,0,124-,1.5,19中,分数有( ) A .2 个 B .3 个C .4 个D .5 个20.a ,b ,c 是三个有理数,且abc <0,a +b <0,a +b +c ﹣1=0,下列式子正确的是( ) A .|a |>|b +c |B .c ﹣1<0C .|a +b ﹣c |﹣|a +b ﹣1|=c ﹣1D .b +c >021.若,a b 互为相反数,,c d 互为倒数,m 的绝对值是2,则cd m m ba -+++21的值是( ) A .2B .3C .4D .522.如图,数轴上两定点A 、B 对应的数分别为-18和14,现在有甲、乙两只电子蚂蚁分别从A 、B 同时出发,沿着数轴爬行,速度分别为每秒1.5个单位和1.7个单位,它们第一次相向爬行1秒,第二次反向爬行2秒,第三次相向爬行3秒,第四次反向爬行4秒,第五次相向爬行5秒,……,按如此规律,则它们第一次相遇所需的时间为()A.55秒B.190秒C.200秒D.210秒23.已知有理数a,b,c,d在数轴上对应的点如图所示,每相邻两个点之间的距离是1个单位长度.若3a=4b﹣3,则c﹣2d为()A.﹣3B.﹣4C.﹣5D.﹣624.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数的一组是()A.–2a3和–2b3B.a2和b2C.–a和–b D.3a和3b25.如图,在数轴上有A.B、C、D、E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A.E两点表示的数的分别为 -13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A.-2B.-1C.0D.2【参考答案】***试卷处理标记,请不要删除一、填空题1.【解析】【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0列出二元一次方程组解出xy的值再代入原式即可【详解】解:根据题意得:解得:则原式=2-(-1)-故答案是:【点睛】本题解析:8 3【解析】【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”列出二元一次方程组,解出x、y的值,再代入原式即可.【详解】解:根据题意得:1020 xy⎧⎨-⎩+==,解得:12xy-⎧⎨⎩==,则原式=2-(-1)-18 33=.故答案是:83. 【点睛】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.2.2【分析】根据已知条件xy 互为相反数知x=-y 然后由该式与已知中的方程组组成三元一次方程组解方程组即可【详解】根据题意知x=−y③把③代入①得3y=−2a④把③代入②得3y=a −6⑤由④⑤解得a=2解析:2 【分析】根据已知条件x ,y 互为相反数知x=-y ,然后由该式与已知中的方程组组成三元一次方程组,解方程组即可. 【详解】 根据题意,知22256x y a x y a ①②-=⎧⎨+=-⎩ x =−y ,③ 把③代入①,得 3y =−2a ,④ 把③代入②,得 3y =a −6,⑤ 由④⑤,解得a =2. 故a 的值是2. 【点睛】本题考查了解三元一次方程组,解题的关键是代入消元法.3.不正确;两个负数比较大小绝对值大的反而小【分析】根据数轴具有方向性的特征即可解题【详解】解:绝对值的几何含义表示数轴上该点与原点的距离但是因为数轴是有方向的所以不能单纯的认为如果则比如一正一负的情况解析:不正确; 两个负数比较大小,绝对值大的反而小. 【分析】根据数轴具有方向性的特征即可解题. 【详解】解:绝对值的几何含义表示数轴上该点与原点的距离,但是因为数轴是有方向的,所以不能单纯的认为如果a b >,则a b >,比如一正一负的情况,所以小贝的观点错误. 理由如下:两个负数比较大小,绝对值大的反而小. 【点睛】本题考查了绝对值的大小比较,属于简单题,熟悉绝对值法则是解题关键.4.>【解析】【分析】利用有理数abc在数轴上对应的位置即可解答【详解】解:由图知c<b<0a>0即cb>0ab<0所以cb>ab【点睛】本题考查数轴上点的大小属于基础题解析:>【解析】【分析】利用有理数a、b、c在数轴上对应的位置即可解答.【详解】解:由图知c<b<0,a>0,即cb>0,ab<0,所以cb>ab.【点睛】本题考查数轴上点的大小,属于基础题.5.﹣2a【分析】根据ab的大小去绝对值化简即可【详解】根据ab在数轴上的位置可知a的绝对值大于b的绝对值即|a﹣b|+|a+b|=-a+b-a-b=-2a故本题答案为-2a【点睛】本题考查根据图像判断解析:﹣2a.【分析】根据a,b的大小去绝对值化简即可.【详解】根据a,b在数轴上的位置可知a的绝对值大于b的绝对值,即|a﹣b|+|a+b|=-a+b-a-b=-2a,故本题答案为-2a.【点睛】本题考查根据图像判断式子的正负,能够判断正负是解答本题的关键.6.﹣40【解析】【分析】有理数包括整数和分数整数包括正整数0负整数根据以上内容选出即可【详解】在-4027这四个有理数中整数有-40故答案为:-40【点睛】本题考查了有理数的应用注意:有理数包括整数和解析:﹣4,0【解析】【分析】有理数包括整数和分数,整数包括正整数、0、负整数,根据以上内容选出即可.【详解】在-4,23,0,2.7这四个有理数中,整数有-4,0,故答案为:-4,0.【点睛】本题考查了有理数的应用,注意:有理数包括整数和分数,整数包括正整数、0、负整数,分数包括正分数、负分数.二、解答题7.(1)5.5千克;(2)0.4千克;(3)1270元.【分析】(1)最重的一箱橘子比标准质量重2.5千克,最轻的一箱橘子比标准质量轻3千克,则两箱相差5.5千克;(2)将这20个数据相加,和为正,表示比标准质量超过,和为负表示比标准质量不足,再求绝对值即可;(3)先求得总质量,再乘以2.5元即可.【详解】(1)2.5-(-3)=5.5,答:最重的一箱比最轻的一箱多重5.5千克;(2)(-3×1)+(-2×4)+(-1.5×2)+(0×3)+(1×2)+(2.5×8)=8,8÷20=0.4(千克)答:20箱橘子的平均质量比标准质量超过0.4千克;(3)(25×20+8)×2.5=1270(元),答:这些橘子可卖1270元.【点睛】本题考查了有理数的加减混合运算,在实际问题中的应用,可见数学来源于生活,应用于生活.8.(1)①12;②﹣10;③点P出发2或4秒后,与点Q之间相距4个单位长度;(2)三个点同时出发,经过23或32秒后有MP=MQ.【解析】【分析】(1)①根据两点间的距离公式即可求解;②根据相遇时间=路程差÷速度差先求出时间,再根据路程=速度×时间求解即可;③分两种情况:P,Q两点相遇前;P,Q两点相遇后;进行讨论即可求解;(2)分两种情况:M在P,Q两点之间;P,Q两点相遇;进行讨论即可求解.【详解】(1)①A,B两点之间的距离为8﹣(﹣4)=12,故答案为:12;②12÷(6﹣2)=3(秒),﹣4﹣2×3=﹣10,故当P,Q两点相遇时,点P在数轴上对应的数是﹣10,故答案为:-10;③P,Q两点相遇前,(12﹣4)÷(6﹣2)=2(秒),P,Q两点相遇后,(12+4)÷(6﹣2)=4(秒),故点P出发2或4秒后,与点Q之间相距4个单位长度;(2)设三个点同时出发,经过t秒后有MP=MQ,M在P,Q两点之间,8﹣6t﹣t=t﹣(﹣4+2t),解得t=23;P,Q两点相遇,2t+6t=12,解得t=32,故若三个点同时出发,经过23或32秒后有MP=MQ.【点睛】本题考查了数轴上两点的距离、数轴上点的表示、一元一次方程的应用,比较复杂,要认真理清题意,并注意数轴上的点,原点左边表示负数,右边表示正数,在数轴上,两点的距离等于任意两点表示的数的差的绝对值.9.(1) -1;(2)6;(3)﹣7+2t;(4)t=2 或t=4.【解析】【分析】(1)根据线段中点坐标公式可求点C表示的数;(2)根据时间=路程÷速度,可求t的值;(3)根据两点之间的距离公式可求点P表示的数;(4)分P在点C左边和点C右边两种情况讨论求解.【详解】(1)(﹣7+5)÷2=﹣2÷2=﹣1.故点C表示的数是﹣1.故答案为:﹣1;(2)()572--=6;(3)﹣7+2t;故答案为:﹣7+2t;(4)因为PC之间的距离为2个单位长度,所以点P运动到﹣3或1,即﹣7+2t=﹣3或﹣7+2t=1,即t=2 或t=4.【点睛】此题考查了数轴,一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意分类思想的应用.10.(1)3;(2)|x+1|,1或﹣3;(3)代数式|x﹣1|+|x+3|有最小值,为4.【解析】(1)直接根据数轴上A 、B 两点之间的距离|AB|=|a-b|.代入数值运用绝对值即可求任意两点间的距离;(2)直接根据数轴上A 、B 两点之间的距离|AB|=|a-b|.代入数值运用绝对值即可求任意两点间的距离;(3)根据绝对值的性质,根据得到结论. 【详解】(1)数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3. 故答案为3;(2)数轴上表示x 和﹣1的两点A 和B 之间的距离是|x ﹣(﹣1)|=|x+1|,如果|AB|=2,那么x 为1或﹣3. 故答案为|x+1|,1或﹣3;(3)当代数式|x ﹣1|+|x+3|有最小值,理由:根据数轴上两点之间的距离定义有:|x ﹣1|+|x+3|表示x 与﹣3两点的距离之和, 根据几何意义分析可知:当x 在﹣3与1之间时,|x ﹣1|+|x+3|有最小值4. 【点睛】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.三、13 11.C解析:C 【分析】根据数轴判断a,b 的取值范围即可解题. 【详解】解:由数轴可知,2a 1,0b 1,-<<-<<A 、B 项错误, a,b 异号,D 错误, 故选C. 【点睛】本题考查了数轴的应用,属于简单题,在数轴中判断出有理数的取值范围是解题关键.12.C解析:C 【分析】根据互为相反数的两个数和为0,即可解题. 【详解】解:∵互为相反数的两个数和为0, ∴0,m n += 故选C.本题考查了相反数的性质,属于简单题,熟悉相反数的概念是解题关键.13.C解析:C【解析】【分析】根据图示,可得b<﹣3,0<a<3,据此逐项判断即可.【详解】①∵b<a,∴b﹣a<0;②∵b<﹣3,0<a<3,∴a+b<0;③∵b<﹣3,0<a<3,∴|b|>3,|a|<3,∴|a|<|b|;④∵b<0,a>0,∴ab<0,∴正确的是:①③,故选C.【点睛】本题考查了绝对值的含义和求法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围.14.A解析:A【分析】先求出各数的绝对值,然后进行比较即可得答案.【详解】∵|0|=0,|1|=1,|-3|=3,|±1|=1,0<1=1<3,∴绝对值最小的数是0,故选A.【点睛】本题考查了绝对值,非负数的大小比较,熟练掌握绝对值的意义是解题的关键.15.B解析:B【解析】【分析】根据向左为负,向右为正,列出算式计算即可.【详解】解:设P 0所表示的数是a ,则a+ 1-2+3-4+…+2n+3=n -3即a+(1-2)+(3-4)+(4-5)+…+[2n+1-(2n+2)]+(2n+3)=n-3a+(-1)×(n+1)+ (2n+3) =n -3解得:a=-5.点P 0表示的数是-5.故答案为B .【点睛】此题考查数字的变化规律,数轴的认识、有理数的加减,根据题意列出算式,找出简便计算方法是解题的关键.-16.C解析:C【解析】本题是有理数运算的实际应用,就是已知两个数的和及其中一个加数,求另外一个加数,作减法列出正确的算式 依题意得:311424-=故选C . 17.A解析:A【分析】分析表格数据,找到符合标准的质量区间即可解题.【详解】解:∵每袋的标准质量为500.2±kg ,即质量在49.8kg ——50.2kg 之间的都符合要求, 根据统计表可知第5袋49.7kg 不符合要求,故选A.【点睛】本题考查了有理数的实际应用,属于简单题,熟悉概念是解题关键.18.B解析:B【解析】【分析】根据有理数的定义、无理数的定义进行判断即可得解.【详解】在0,3π,3.14,227,-0.55,8,1.121 221 222 1…(相邻两个1之间依次多一个2)中, 有理数有0,3.14,227,-0.55,8,有理数的个数是5个. 故选B .【点睛】本题考查了实数,主要利用了有理数和无理数定义,熟记概念是解题的关键.19.D解析:D【解析】【分析】根据有理数的概念,解答即可,整数和分数统称为有理数.【详解】整数和分数统称为有理数,整数:6,-5,0,;分数:25-,3.7⋅,124-,1.5,19;故选:D.【点睛】本题考查的知识点是分数的概念,解题关键是正确区分分数和整数.20.C解析:C【解析】【分析】由a+b+c﹣1=0,表示出a+b=1﹣c,再由a+b小于0,列出关于c的不等式,求出不等式的解集确定出c大于1,将a+b=1﹣c,a+b﹣1=c代入|a+b﹣c|﹣|a+b+1|中,利用绝对值的代数意义化简,去括号合并得到结果为c﹣1,即可得答案.【详解】∵a+b+c﹣1=0,a+b<0,∴a+b=1﹣c<0,即c>1,则|a+b﹣c|﹣|a+b﹣1|=|1﹣2c|﹣|c|=2c﹣1﹣(c﹣1)=2c﹣1﹣c=c﹣1,故选C.【点睛】本题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.21.B解析:B【解析】【分析】利用相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【详解】根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=4﹣1=3;当m=﹣2时,原式=4﹣1=3,故选B.【点睛】考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.B解析:B【解析】【分析】根据两点间的距离,可得BA的长,根据爬行的规律,可得以后每两次可以前进3.2,可得爬行的总次数,根据有理数的加法,可得答案.【详解】AB之间的距离为14-(-18)=32,第一次相向爬行1秒后,两只蚂蚁相距32-1×(1.5+1.7)=28.8,以后每两次可以前进3.2,∴28.8÷3.2=9,则最后一次是第19次,即甲乙两只电子蚂蚁相向爬行19秒,故第一次相遇的时间为1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19=(1+19)19÷2=190(秒),答:它们第一次相遇时所需的时间为190秒.故选B.【点睛】本题考查了数轴,根据爬行的规律得出前进的速度,爬行的总次数是解题关键.23.A解析:A【分析】根据3a=4b-3求出b的值,进而求出a,c,d的值,即可确定出所求式子的值.【详解】∵a=b−1,3a=4b−3,∴b=0解得:c=1,a=−1,d=2,则原式=1-2×2=-3.故选A.【点睛】此题考查数轴上点的表示,以及有理数的加减混合运算,熟练掌握运算法则是解本题的关键.根据已知条件和图形,找到b=a+1也是非常关键的.24.B解析:B【解析】【分析】直接利用互为相反数的定义分析得出答案.【详解】A、∵a和b互为相反数,∴–2a3和–2b3,互为相反数,故此选项错误;B、∵a和b互为相反数,∴a2和b2,相等,故此选项正确;C、∵a和b互为相反数,∴–a和–b,互为相反数,故此选项错误;D、∵a和b互为相反数,∴3a和3b,互为相反数,故此选项错误;故选B.【点睛】此题主要考查了互为相反数的定义,正确判断各数的符号是解题关键.25.B解析:B【解析】【分析】根据已知点求AE的中点,AE长为25,其长为12.5,然后根据AB=2BC=3CD=4DE求出A、C、B、D、E五点的坐标,最后根据这五个坐标找出离中点最近的点即可.【详解】根据图示知,AE=25,∴AE=12.5,∴AE的中点所表示的数是-0.5;∵AB=2BC=3CD=4DE,∴AB:BC:CD:DE=12:6:4:3;而12+6+4+3恰好是25,就是A点和E点之间的距离,∴AB=12,BC=6,CD=4,DE=3,∴这5个点的坐标分别是-13,-1,5,9,12,∴在上面的5个点中,距离-0.5最近的整数是-1.故选B.【点睛】此题综合考查了有理数与数轴,数轴上两点的距离。

有理数的加减乘除乘方混合运算专题训练(带答案)

有理数的加减乘除乘方混合运算专题训练(带答案)

1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷11、—22—(—2)2—23+(—2)3 12、2223116(1)(3)(1)(3)22-⨯---÷-⨯-13、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-21、6)12()4365127(÷-⨯+- 22、22)4()5(25.0)4()85(-⨯-⨯--⨯-23、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)3 31、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+- 1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯; (3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ]. (1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯. (1)36×23121)-(; (2)12.7÷)(-1980⨯; (3)6342+)(-⨯; (4))(-43×)-+(-31328; (5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯. (1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423]; (5))-(8743÷)(-87; (6))+()(-654360⨯; (7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯. (1))-(-258÷)(-5; (2)-33121)(--⨯; (3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3; (7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)23; (5)18; (6)0; (7)-4.64;(8)37; (9)8; (10)-25. 4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________. 4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( ) 三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000 四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16) 27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-2002 30.(3分)-)45()45(5222-÷-⨯⨯ 31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3) 33.(5分)30×(21-31+53-109)五、解答题(9分) 34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值. (2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里9.32 -14110.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C 四、23.-90 24.1 25.-3 26.4127.15 28.1 29.-2002 30.1 31.30 32.-4933.-4 五、34.(1)2000 (2)0。

初一有理数加减乘除混合运算基础试题(含答案)

初一有理数加减乘除混合运算基础试题(含答案)

初一有理数加减乘除混合运算一、加减法法则、运算律的复习。

A .△同号两数相加,取___相同的符号_______________,并把__绝对值相加__________________________。

1、(–3)+(–9)-12 2、85+(+15)-1003、(–361)+(–332)-665 4、(–3.5)+(–532)-961 △ 异号两数相加,取_绝对值较大的加数的符号________________________,并用________较大的绝对值减去较小的绝对值____________ _____________. 互为__________________的两个数相加得0。

1、(–45) +(+23)-222、(–1.35)+6.35+53、412+(–2.25)4、(–9)+8 --2△一个数同0相加,仍得___这个数__________。

1、(–9)+ 0=___-9___________;2、0 +(+15)=____15_________。

B1、(–1.76)+(–19.15)+ (–8.24) -29.152、23+(–17)+(+7)+(–13)3、(+ 31)+(–23)+ 53+(–82)-2 4、2+2+(–2)-21、(–3)–(–5)-22、34–(–14)-5 3、0–(–7)-7 D .加减混合运算可以统一为____加法___1、(–3)–(+5)+(–4)–(–10)-2 2、341–(+5)–(–143)+(–5)-5 3、 1–4 + 3–5 4、–2.4 + 3.5–4.6 + 3.5 5、 381–253 + 587–852 二、综合提高题。

1、一个病人每天下午需要测量一次血压,下表是病人星期一至星期五收缩压的变化情况,该病人上个星期日的收缩压为160单位。

请算出星期五该病人的收缩压。

数 学 练 习 (二)一、乘除法法则、运算律的复习。

A.有理数的乘法法则:两数相乘,同号得_正_______,异号得____负___,并把____绝对值相乘_______________。

有理数的运算经典测试题含答案

有理数的运算经典测试题含答案

有理数的运算经典测试题含答案一、选择题1.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km .用科学记数法表示1.496亿是( )A .71.49610⨯B .714.9610⨯C .80.149610⨯D .81.49610⨯【答案】D【解析】分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:数据1.496亿用科学记数法表示为1.496×108.故选D .点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.为促进义务教育办学条件均衡,2019年某地区计划投入4200000元资金为该地区农村学校添置实验仪器,4200000这个数用科学记数法表示为( )A .44210⨯B .64.210⨯C .84210⨯D .60.4210⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4200000=4.2×106,故选:B .【点睛】本题考查科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( ) A .4B .6C .7D .10【答案】B【解析】【分析】把8.1555×1010写成不用科学记数法表示的原数的形式即可得.【详解】∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选B .【点睛】本题考查了把科学记数法表示的数还原成原数,科学记数法的表示的数a×10n 还成成原数时, n >0时,小数点就向右移动n 位得到原数;n<0时,小数点则向左移动|n|位得到原数.4.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,=e f=64,∴222e =±=(4=,∴2125c d ab e ++++=11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.5.如果a 是实数,下列说法正确的是( )A .2a 和a 都是正数B .(-a +2可能在x 轴上C .a 的倒数是1a D .a 的相反数的绝对值是它本身【答案】B【解析】【分析】A 、根据平方和绝对值的意义即可作出判断;B 、根据算术平方根的意义即可作出判断;C 、根据倒数的定义即可作出判断;D 、根据绝对值的意义即可作出判断.【详解】A、2a和a都是非负数,故错误;B、当a=0时,(-a+2在x轴上,故正确;C、当a=0时,a没有倒数,故错误;D、当a≥0时,a的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.6.2018-2019学年度七星关区区级配套“教育精准扶贫”资金约1410000元,1410000用科学计数法表示为()A.6⨯D.41.41101.4110⨯1.4110⨯C.5⨯B.71.4110【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将1410000用科学记数法表示为6⨯,1.4110故选:A.【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为()A.6⨯C.71161011.610⨯B.71.1610⨯⨯D.81.1610【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将116000000用科学记数法表示应为1.16×108.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.0000084=8.4×10-6故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A.﹣1 B.﹣2 C.﹣3 D.﹣6【答案】A【解析】【分析】由正方体各个面之间的关系知道,它的展开图中相对的两个面之间应该隔一个正方形,可以得到相对面的两个数,相加后比较即可.【详解】解:根据展开图可得,2和﹣2是相对的两个面;0和1是相对的两个面;﹣4和3是相对的两个面,∵2+(﹣2)=0,0+1=1,﹣4+3=﹣1,∴原正方体相对两个面上的数字和的最小值是﹣1.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析解答问题.10.2019的倒数的相反数是()A.-2019 B.12019C.12019D.2019【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是1 2019,1 2019的相反数为12019-,所以2019的倒数的相反数是1 2019 -,故选B.【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.11.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为()A.94.610⨯B.74610⨯C.84.610⨯D.90.4610⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.按如图所示的运算程序,能使输出结果为10的是()A.x=7,y=2 B.x=﹣4,y=﹣2 C.x=﹣3,y=4 D.x=12,y=3【答案】D【解析】【分析】根据运算程序,结合输出结果确定的值即可.【详解】解:A、x=7、y=2时,输出结果为2×7+22=18,不符合题意;B、x=﹣4、y=﹣2时,输出结果为2×(﹣4)﹣(﹣2)2=﹣12,不符合题意;C、x=﹣3、y=4时,输出结果为2×(﹣3)﹣42=﹣22,不符合题意;D、x=12、y=3时,输出结果为2×12+32=10,符合题意;故选:D.【点睛】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.13.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km,把 384 000km 用科学记数法可以表示为()A.38.4 ×10 4 km B.3.84×10 5 km C.0.384× 10 6 km D.3.84 ×10 6 km【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】科学记数法表示:384 000=3.84×105km故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.一根1m长的小棒,第一次截去它的12,第二次截去剩下的12,如此截下去,第五次后剩下的小棒的长度是()A.12m B.15m C.116m D.132m【答案】D【解析】【分析】根据题意和乘方的定义可以解答本题.【详解】解:第一次是12m,第二次是211112224⎛⎫⨯==⎪⎝⎭m,第三次是31111122228⎛⎫⨯⨯==⎪⎝⎭m,第四次是411216⎛⎫= ⎪⎝⎭m ,…, ∴第五次后剩下的小棒的长度是511232⎛⎫= ⎪⎝⎭m , 故选:D .【点睛】本题考查了有理数的乘方运算,此题的关键是联系生活实际,从中找出规律,利用有理数的乘方解答.15.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为( ) A .0.278 09×105B .27.809×103C .2.780 9×103D .2.780 9×104【答案】D【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】27 809=2.780 9×410,故选D .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值16.2019年我省实施降成本的30条措施,全年为企业减负960亿元以上,用科学记数法表示数据960亿为( )A .79.610⨯B .89.610⨯C .99.610⨯D .109.610⨯【答案】D【解析】【分析】科学记数法的表示形式为a 10n ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:960亿=96000000000=109.610⨯故选:D.此题主要考查科学记数法,熟练确定a和n是解题的关键.17.用科学记数方法表示0.0000907,得()A.49.0710-⨯B.59.0710-⨯C.690.710-⨯D.790.710-⨯【答案】B【解析】【分析】【详解】解:根据科学记数法的表示—较小的数为10na⨯,可知a=9.07,n=-5,即可求解.故选B【点睛】本题考查科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.18.按如图所示的运算程序,能使输出y的值为1的是()A.a=3,b=2 B.a=﹣3,b=﹣1 C.a=1,b=3 D.a=4,b=2【答案】A【解析】【分析】根据题意,每个选项进行计算,即可判断.【详解】解:A、当a=3,b=2时,y=12a-=132-=1,符合题意;B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;D、当a=4,b=2时,y=12a-=142-=12,不符合题意.故选:A.【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考x=时,y的值是()19.如图,是一个计算流程图.当16A2B.2C.2±D.2±【答案】A【解析】【分析】观察流程图的箭头指向,根据判断语句,当结果是无理数时输出,当结果是有理数时重复上述步骤,即可得到答案.【详解】x=后,取算术平方根的结果为2,判断2不是无理数,再取2的算术平方根解:输入1622是无理数,数出结果.故A为答案.【点睛】本题主要考查流程图的知识点、无理数的基本概念(无限不循环小数)、算术平方根的基本概念,看懂流程图是做题的关键,注意算术平方根只有正数.20.(﹣1)4可表示为()A.(﹣1)×4 B.(﹣1)+(﹣1)+(﹣1)+(﹣1)C.﹣1×1×1×1 D.(﹣1)×(﹣1)×(﹣1)×(﹣1)【答案】D【解析】【分析】根据有理数乘法的定义可得出结论.【详解】(﹣1)4=(-1)×(-1)×(-1)×(-1).故答案选D.【点睛】本题考查的知识点是有理数的乘方,解题的关键是熟练的掌握有理数的乘方.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.一根 1m 长的小棒,第一次截去它的 1 ,第二次截去剩下的 1 ,如此截下去,第五次
2

后剩下的小棒的长度是( )
A. 1 m 2
1 B. 5 m
C. 1 m 16
D. 1 m 32
【答案】D 【解析】
【分析】
根据题意和乘方的定义可以解答本题.
【详解】
解:第一次是
1 2
m,第二次是
1 2
1 2
用科学记数法表示为( )
A. 8.891013
B. 8.891012
C. 88.91012
D. 8.891011
【答案】A
【解析】
【分析】 利用科学记数法的表示形式进行解答即可 【详解】
4.在数轴上,实数 a,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列 结论中,正确的是( )
A. a b 0
率,通过化简,用科学计数法表示即可.
【详解】
解:由题干条件可得,5G 网络峰值速率:100Mbps×204.8=20480 Mbps=2.048×104 Mbps,
故选 D.
【点睛】
本题考查了文字语言转化为数学语言的能力,灵活理解题干的内容并化简是解题的关键.
17.“山西八分钟,惊艳全世界”.2019 年 2 月 25 日下午,在外交部蓝厅隆重举行山西全球
B. a b 0
【答案】A 【解析】
由题意可知 a<0<1<b,a=-b, ∴a+b=0,a-b=2a<0,|a|=|b|,ab<0, ∴选项 A 正确,选项 B、C、D 错误, 故选 A.
C. a b
D. ab 0
5.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为
对值>10 时,n 是正数;当原数的绝对值<1 时,n 是负数.
【详解】
将 7038000 用科学记数法表示为:7.038×106.
故选:C. 【点睛】 此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为 a×10n 的形 式,其中 1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
网络在理想状态下,峰值速率约是 100Mbps,未来 5G 网络峰值速率是 4G 网络的 204.8
倍,那么未来 5G 网络峰值速率约为( )
A.1×102 Mbps
B.2.048×102 Mbps
C.2.048×103 Mbps
D.2.048×104 Mbps
【答案】D
【解析】
【分析】
已知 4G 网络的峰值速率,5G 网络峰值速率是 4G 网络的 204.8 倍,可得 5G 网络峰值速
人,创历史新低.数据 47000 用科学记数法表示为( )
A. 4.7104
B. 47103
C. 4.7 104
D. 0.47105
【答案】A
【解析】
【分析】
科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看
把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝 对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数. 【详解】 解:将 47000 用科学记数法表示为:4.7×104. 故选 A. 【点睛】 本题主要考查科学记数法的表示方法,科学记数法的表示形式为 a×10n 的形式,其中 1≤|a| <10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
B.-2019
C. 1 2019
D. 1 2019
先利用绝对值的定义求出 2019 ,再利用倒数的定义即可得出结果.
【详解】
2019 =2019,2019 的倒数为 1 2019
故选 C 【点睛】 本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.
3.据央视网报道,2019 年 1~4 月份我国社会物流总额为 88.9 万亿元人民币,“88.9 万亿”
“城市病”.预计到 2035 年,副中心的常住人口规模将控制在 130 万人以内,初步建成国际
一流的和谐宜居现代化城区.130 万用科学记数法表示为( )
A. 1.3 106
B.130 104
C.13105
D.1.3105
【答案】A
【解析】
【分析】
科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值是易错
361000000 = 3.61108 ,
故选:C. 【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<
10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
9.若 (x 1)2 2 y 1 0 ,则 x+y 的值为( ).
A. 1 2
【答案】A 【解析】
B. 1 2
C. 3 2
D. 3 2
解:由题意得:x-1=0,2y+1=0,解得:x=1,y= 1 ,∴x+y=1 1 1 .故选 A.
2
22
点睛:本题考查了非负数的性质.几个非负数的和为 0,则每个非负数都为 0.
10.下列语句正确的是( ) A.近似数 0.010 精确到百分位 B.|x-y|=|y-x| C.如果两个角互补,那么一个是锐角,一个是钝角 D.若线段 AP=BP,则 P 一定是 AB 中点 【答案】B 【解析】 【分析】 A 中,近似数精确位数是看小数点后最后一位;B 中,相反数的绝对值相等;C 中,互补性质的考 查;D 中,点 P 若不在直线 AB 上则不成立 【详解】 A 中,小数点最后一位是千分位,故精确到千分位,错误; B 中,x-y 与 y-x 互为相反数,相反数的绝对值相等,正确; C 中,若两个角都是直角,也互补,错误; D 中,若点 P 不在 AB 这条直线上,则不成立,错误 故选:B
科学记数法表示为( )
A. 70.38105
B. 7.038106
C. 7.038106
D. 0.7038106
【答案】C
【解析】
【分析】
科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看
把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝
7.根据如图的程序运算:
当输入 x=50 时,输出的结果是 101;当输入 x=20 时,输出的结果是 167.如果当输入 x
的值是正整数,输出的结果是 127,那么满足条件的 x 的值最多有( )
A.3 个
B.4 个
C.5 个
D.6 个
【答案】D
【解析】
【分析】
根据程序中的运算法则计算即可求出所求.
解:输入 x 16 后,取算术平方根的结果为 2,判断 2 不是无理数,再取 2 的算术平方根
为 2 , 2 是无理数,数出结果.
故 A 为答案.
【点睛】
本题主要考查流程图的知识点、无理数的基本概念(无限不循环小数)、算术平方根的基
本概念,看懂流程图是做题的关键,注意算术平方根只有正数.
12.据报道,2019 年元旦小长假云南省红河州共接待游客约为 7038000 人,将 7038000 用
C.0.384× 10 6 km D.3.84 ×10 6 km
【答案】B
【解析】
【分析】
科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看
把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝
对值>10 时,n 是正数;当原数的绝对值<1 时,n 是负数.
故选 A.
【点睛】
本题考查了科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<
10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
16.北京市将在 2019 年北京世园会园区、北京新机场、2022 年冬奥会场馆等地,率先开
展 5G 网络的商用示范.目前,北京市已经在怀柔试验场对 5G 进行相应的试验工作.现在 4G
12.5 亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( )亿次/秒
A.1.25108
B.1.25109
C.1.251010
D.12.5108
【答案】B
【解析】
【分析】
科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看
把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.
一个符号一样,融入到人们的日常生活当中.2018 年京东在双十一期间(11 月 1 日﹣11 月
11 日)累计下单金额达 1598 亿元人民币.用科学记数法表示数 1598 亿是( )
A.1.598×1011
B.15.98×1010
C.1.598×1010
D.1.598×108
【答案】A
【解析】
【分析】
【点睛】 概念的考查,此类题型,若能够举出反例来,则这个选项是错误的
11.如图,是一个计算流程图.当 x 16 时, y 的值是( )
A. 2
B. 2
C. 2
D. 2
【答案】A
【解析】
【分析】
观察流程图的箭头指向,根据判断语句,当结果是无理数时输出,当结果是有理数时重复
上述步骤,即可得到答案.
【详解】
科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看
把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝
相关文档
最新文档